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ABSTRACT Software testing (ST) is one of the most important software development life cycle (SDLC)
phases and ST effort is often expressed as a percentage of SDLC effort. Unfortunately, in the literature
ST effort percentage ranges from 10% to 60%. In the literature most of the machine learning algorithms
and metaheuristics for optimizing them have looked at predicting overall SDLC effort without focusing
on any specific SDLC phase, including testing. Therefore, this study investigates the application of the
Software Testing Effort Prediction (STEP) of Gradient Boosting (GB)machine learning regression algorithm
optimized throughDifferential Evolution (DE). Its prediction accuracy is comparedwith those obtainedwhen
the GB is also optimized through Particle Swarm Optimization (PSO) and Genetic Algorithms (GA). The
performance of GB-DE, GB-PSO, and GB-GA was also compared to that of statistical regression (SR).
Seven data sets of actual projects were selected from an international public repository for software projects.
The results showed that GB-DE was statistically better than SR in all seven data sets at 95% confidence,
whereas GB-PSO and GB-GA were better than SR in four and three data sets, respectively. Thus, we can
conclude that GB-DE can be used for STEP of either new projects or enhancement projects developed in
either the third or fourth programming language generation.

INDEX TERMS Testing effort prediction, gradient boosting, differential evolution, particle swarm
optimization, genetic algorithms, ISBSG.

I. INTRODUCTION
Software Engineering is a discipline in which principles,
methods, and techniques are applied for the management of
software development life cycle (SDLC) processes, including
for definition of business needs (requirements engineering),
development (design, construction, and testing), and mainte-
nance phases of software projects. Each SDLC phase has its
specific objectives and activities to performed to achieve a
high quality software product.

Software quality is directly associated with software
testing (ST) [1], which influences the cost, and success of a
software project [2], [3], [4], [5]. To avoid losing customers,
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software companies are investing considerable resources
in ST to release defect-free products [6], [7]. Therefore,
software project managers must adequately predict the
number of resources required for project completion within
the established schedule, costs, and quality targets [8], [9].

It is advisable to have a team dedicated exclusively to ST
activities as it allows unbiased testing [10]. When a software
project is planned, software testing effort prediction (STEP)
is performed to assign suitable resources, such that testing
teams are able to execute efficient tests for identifying and
fixing them [11]. This team requires an STEP to schedule
its activities, request resources, and negotiate the update of
deadlines [7], [8], [9], [10], [12].

Themain problemwhichmotivates the present study is that
the percentage of effort dedicated to ST with respect to the
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total SDLC varies among the published studies, ranging from
10% to 25% [13], 25% to 40% [14], 27% [15], 40% to 50%
[16], [17], [18], [19], [20], 50% to 60% [21], [22], [23], and
more than 60% for critical software [24].
Therefore, these percentages between 10% and 60%

represents a large uncertainty range for software managers.
An STEP is needed since either under or over-prediction can
negatively impact budgets. Accordingly, there exists the need
for researching on STEP for managing, planning, and assign
ST resources.

Regarding software prediction field:

• Several variables have been used in STEP models to
represent the effort such as number of CPU hours [21],
number of executed test cases [22], number of lines of
code changed or added by class throughout the life cycle
of the defect [25], and person-hours needed to define,
implement, and execute the tests [1], [24].

• The most widely used variable regarding SDLC effort is
person-hours [26], [27], [28], [29], [30], [31], [32], [33].

• Software project size is often used in SDLC effort
prediction as an explanatory variable [30].

Therefore, we selected person-hours to represent the effort,
and size of the software project as the explanatory for STEP.

In the software effort prediction field, the models
commonly used have been based on statistical regression
equations, and machine learning models [30].

The No Free Lunch theorem (NFL) [34] states that there
is no optimization or machine learning algorithm that works
best on all problems. In other words, this theorem highlights
the importance of choosing and adapting optimization and
machine learning algorithms to specific problems instead of
looking for one that solves all problems. Thus, we chose to
explore a special type of machine learning algorithms called
ensemble regression methods.

Ensemble regression methods are machine learning algo-
rithms that combine multiple single regression models to
build a more powerful and accurate model [35]. These
methods are based on the idea that a combination of multiple
weak models can overcome the individual limitations of each
model and provide more accurate and robust predictions.

Ensemble methods have been used in different domains
[36], and their performance has outperformed that of
individual regressors [37], [38]. Rather than relying on a
single regression model, ensemble methods take advantage
of model diversity and collective wisdom to improve overall
model performance. Each weak model, often called a ‘‘base
estimator’’, is independently trained on part of the data set
or a modified version of the data set. Next, the predictions
from each model are combined using an aggregation strategy
to obtain the final prediction.

Gradient Boosting (GB) is an ensemble machine learning
algorithm for regression and classification tasks that produces
a final prediction model in the form of an ensemble of weak
tree models. The main advantage is that the construction of
each tree adapts to the residual errors of the previous model.

In other words, in each iteration it highlights records that have
been incorrectly predicted in previous iterations.

Machine learning techniques commonly use metaheuris-
tics to optimize their parameters to obtain the best per-
formance. In accordance with our findings, we identified
31 types of metaheuristic algorithms used in software effort
prediction models. We selected to Differential Evolution
(DE) to the GB optimization, owing to DE is a stochastic evo-
lutionary metaheuristic considered as a promising algorithm
for solving optimization problems in the real world [39]. This
type of metaheuristic is used to find approximate solutions to
problems with search spaces that may be difficult to address
using conventional exact or algorithmic methods.

There are two main reasons for selecting DE, firstly,
in accordance with our findings (‘‘II.Related work’’ section)
we did not find any study using DE for STEP. Secondly,
DE has certain advantages that adjust to the type of
optimization problem we have, such as those mentioned
below:

• Its mutation operator enables rapid exploration of the
search space and effective exploitation of promising
regions.

• DE has few parameters to adjust, compared to some
others such as the Genetic algorithm.

• DE adjusts to problems of different dimensions and
complexities, as is the case with the GB hyperparameters
optimization.

• DE (like other evolutionary computing metaheuristics)
tends to perform a broader exploration of the search
space than collective intelligence metaheuristics (such
as Particle Swarm Optimization), which is useful with a
complex search space.

Thus, the contribution of the present study is the inves-
tigation of the application of the GB regression algorithm
optimized through the DE metaheuristic for STEP. We based
the utility and originality of our contributions on the
following reasons:

• SDLC effort prediction is a common practice, whereas
STEP studies are still scarce and a major challenge [18].

• Machine learning (ML) models are more accurate than
non-MLmodels when applied to SDLC predictions [27].

• Ensemble methods have shown better performance than
individual regressors [37], [38].

• GB has shown better prediction performance than other
ML algorithms such as Random Forest, SupportVector
Machine and probabilistic approach-based Bayesian
regression when used in several applications [40].
Moreover, it has been reported to yield good results
when applied to SDLC effort prediction [38]. Because
GB requires tuning several parameters, we use DE to
optimize its hyperparameters since DE works with the
representation of real numbers.

• In accordance with the ‘‘II. Related work’’ section
of the present study, we did not identify any studies
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proposing the application of GB for STEP. Accordingly,
no metaheuristic was applied for the GB optimization.

In the present study, we compared the results of our pro-
posal with simple linear regression (SLR) for the following
reasons: any new proposed model must outperform that of a
statistical regression model [41] and a statistical regression
model is mostly used when comparing its results to those
obtained from SDLC ML models [27], [30].
Because the proposed STEP model is based on the GB

regression algorithm whose parameters are optimized by
the DE metaheuristic, the null (H0) and alternative (H1)
hypotheses to be tested in our study are formulated as follows:

• HDE0: The prediction accuracy of GB optimized through
DE (GB-DE) is statistically equal to that of SLR when
these models are applied to predict the testing effort
of software projects using the size of project as the
explanatory variable.

• HDE1: The prediction accuracy of the GB optimized
through (GB-DE) is not statistically equal to that of the
SLRwhen these models are applied to predict the testing
effort of software projects using the size of the project as
the explanatory variable.

In addition to DE, the two algorithms mostly applied
for optimization are Particle Swarm Optimization (PSO)
and Genetic Algorithm (GA) in accordance with our
results obtained after identifying studies using metaheuristics
for optimizing software effort prediction models (Section
‘‘II.Related work’’ of the present study). Thus, the GB will
be also optimized through PSO and GA, such that their
performance is also compared to that of SLR. Therefore, two
additional hypotheses are also formulated:

• HPSO0: The prediction accuracy of the GB optimized
through PSO (GB-PSO) is statistically equal to that
of the SLR when these models are applied to predict
the testing effort of software projects using the size of
project as the explanatory variable.

• HPSO1: The prediction accuracy of the GB optimized
through PSO (GB-PSO) is statistically not equal to that
of the SLR when these models are applied to predict
the testing effort of software projects using the size of
project as the explanatory variable.

• HGA0: The prediction accuracy of the GB optimized
through GA (GB-GA) is statistically equal to that of the
SLRwhen these models are applied to predict the testing
effort of software projects using the size of project as the
explanatory variable.

• HGA1: The prediction accuracy of the GB optimized
through (GB-GA) is statistically not equal to that of the
SLRwhen these models are applied to predict the testing
effort of software projects using the size of project as the
explanatory variable.

Owning to research on software prediction should involve
real data from industry [29], data of recent software projects,
the use of the same validation method to train and test
the models, as well as the use of the same data sets to

compare prediction models [30], the data sets of projects
used in our study come from the 2022 release of the ISBSG
international public repository of software projects (i.e.,
ISBSG release 2022). The ISBSG includes 11,281 software
projects developed between 1989 and 2021. These projects
were performed in more than 30 different countries, having
as major contributors to Spain (25.5%), Netherlands (20.1%),
United States (9.7%), Finland (7.2%), France (5.7%), India
(5.3%), Australia (4.9%), China (4.9%), Japan (3.4%),
and Canada (3.1%). Regarding industry sector, the major
sectors are Communications (29.5%), Insurance (14.8%),
Manufacturing (10.4%), Government (10.2%), Banking
(9.1%), Medical and health care (5.3%), Financial (4.5%),
Wholesale/Retail (2.2%), Electronics/computers (2.0%) and
Service industry (1.9%). As for application types, the major
ones are Financial Transaction Process/Accounting (27.1%),
Customer management (12.9%), Management Information
System (8.4%), Transaction/Production System (8.2%),
Billing (6.4%), Business (4.3%), Sales andMarketing (4.3%),
Data Warehouse (3.9%), Complex applications (2.9%),
Workflow (2.9%), Embedded systems (2.3%), Integration
(2.2%), Document management (1.9%), Stock control
(1.8%), Catalogue (1.7%), Logistics (1.6%), Electronic Data
Interchange (1.4%), Analysis and Reporting (1.4%), Network
management, Communications (1.3%), Web based (1.2%),
Application software (1.0%), and Office information system
(0.9%) [42]. The ISBSG has also been used in many studies
on software effort prediction [31].

This paper is structured as follows: Section II analyzes
the related work on the generation of models for STEP
when they are optimized through metaheuristics. Section III
describes the metaheuristics implemented to optimize the GB
in this study (i.e., DE, PSO and GA). Section IV presents the
datasets and projects used to validate the proposed method.
Section V details the empirical setup and the results. Section
VI presents a comparison with previous studies, limitations,
and validity threats. Finally, Section VII concludes the study
and mentions the future work.

II. RELATED WORK
This relatedwork section is divided in three subsections: stud-
ies related to the application of metaheuristics for software
effort prediction models; studies specific to software testing
effort prediction models, and studies related to Differential
Evolution in the software effort prediction models.

A. STUDIES RELATED TO THE APPLICATION OF
METAHEURISTICS FOR SOFTWARE EFFORT PREDICTION
MODELS
Table 1 includes forty-eight studies published between
2000 and 2023.

• 29 of them (i.e., 60%) were published in the last five
years,

• 39 of them (i.e., 81%) between 2016 and 2023, and
• only three of them before 2010.
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TABLE 1. Studies classified by publication year on metaheuristic
algorithms applied for feature weighting in software effort prediction
models.

TABLE 2. Metaheuristic algorithms applied for feature weighting in
software effort prediction models.

In summary, the application of metaheuristics suggests a
recent research issue in the field of software-effort prediction.

The 31 types of metaheuristic algorithms used in the
studies listed in Table 1 are alphabetically ordered in Table 2.
The three types of algorithms mostly applied were DE (in
14 studies), GA and PSO (each in 17 studies).

The metaheuristic algorithms listed in Table 2 were used
to optimize the parameters of the following three types of
models:

1) Machine learning:

• Adaptive Neuro-Fuzzy Inference System [57],
[79], [83].

• Analogy-based estimations [44], [48], [51], [52],
[53], [55], [59], [69], [75].

• Case-based reasoning model [46], [87].
• Classification and regression Tree [81].
• Deep belief network [84].
• Deep Neural Network [72].
• Bi-directional Associative Memory [88]
• Fully connected neural network [89].
• Functional link neural network [67].
• Fuzzy logic [78].
• Multi-layer perceptron neural network [43], [71],
[85].

• Neuro-fuzzy inference system [70].
• Radial basis function neural network [67].
• Symbolic regression method [50].
• Support vector regression [47], [62].
• Wavelet neural network [80].

2) Mathematical methods:

• Fuzzy logic system [61], [65], [81].
• Grey relational analysis [45].

3) Equations:

• Statistical Equations [54], [56], [60], [63], [64],
[66], [68], [73], [74], [76], [77], [82], and [86].

• Non-statistical equations [19], [49], and [56].

Table 3 includes 14 studies related to the application of DE
for optimizing the parameters of the software effort prediction
models. It shows the source and size (number of software
projects) of the data sets, the criteria to evaluate the prediction
accuracy, the validation method used for training and testing
the models, and whether the conclusions of the studies were
based on a statistically significant difference. In Table 3 it can
be observed that the data sets used are very old and most have
very small data. In addition, when the studies do not report a
model validation method, the results may not be repeatable
because the projects used for training and testing the models
are not indicated.

B. STUDIES RELATED TO THE SOFTWARE TESTING
EFFORT PREDICTION (STEP)
Thirty-one studies on STEP were classified into four cate-
gories: practices, methods, metrics, andmodels for predicting
probability, category, and person-hours [90]. Twelve of
them had the objective of predicting person-hours (i.e.,
effort) and only two of them based their conclusions on
statistical significance. Each of these two studies used a
data set of software projects and one type of prediction
model: a neural network [14] and a statistical regression
model [92]. In addition to these two models, four machine
learning models have been applied to STEP, and their results
are reported based on statistical significance: case-based
reasoning, decision trees, support vector regression, and
genetic programming [90].
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We also identified a study that used different types of FSM
in statistical regression models for SDEP [91].

As for the three STEP studies recently published, the
first proposed a stacking ensemble model involving neural
networks, support vector regression, and decision tree for
predicting the effort of a specific type of testing: regression
test [93], the second analyzed the impact of data quality on
STEP [94], whereas the third applied statistical regressions
to predict the testing effort for mobile applications [95].

C. STUDIES RELATED TO DIFFERENTIAL EVOLUTION (DE)
IN THE SOFTWARE EFFORT PREDICTION MODELS
When a metaheuristic is applied to an optimization problem,
it is important to report three important aspects: the version of
the metaheuristic used, the parameters used, and performance
results of the algorithm.

Regarding the version of metaheuristics, an algorithm can
have different versions, which vary in the operators or the
way to represent solutions. These metaheuristics also require
parameter tuning, such as the probability of applying an
operator or the way in which a tradeoff is made between
the exploration of new solutions and the exploitation of a
promising solution in the search space. This is important
because the selection of these parameters can lead to a global
optimum or premature convergence.

Bioinspired metaheuristics (evolutionary algorithms and
collective intelligence) are stochastic. Therefore, executing
them several times can generate good, although different,
results for each execution. To determine the performance of
an algorithm, it is suggested to execute it several times and
analyze its variability and results over time using graphical
methods, such as convergence plots. This provides an idea of
the expected results each time a potential solution is searched
and helps researchers make decisions about selecting a
particular metaheuristic for a specific problem.

Table 4 summarizes the studies described in Table 3 with
respect to the experimental characteristics and results of
applying DE to the software effort prediction models. It can
be noted that only two of the 14 studies reported on the search
space and that at most 50% of the studies reported on the DE
version, DE performance, and number of executions.

III. OPTIMIZATION OF GRADIENT BOOSTING
REGRESSOR
This section describes the operation of the GB and the
parameters to be optimized. In addition, the implementation
of the metaheuristics to be compared and the fitness function
to be minimized are described.

A. GRADIENT BOOSTING
GB was developed by Breiman [96] based on the idea of
gradually improving the performance of a model through
a combination of simpler models (usually trees). Later,
Friedman proposed minimizing a loss function by fitting
weak models at each stage [97], [98].

FIGURE 1. Representation of the GB process.

At each iteration of the algorithm, a new weak model is
fitted to correct the errors made by previous models. These
weak models are added sequentially and weighted to control
for their influence on the final model.

In regression problems, the objective is to find a function
F(X ) that best approximates the values of the dependent
variable y as shown in (1), where L is a Loss function to be
minimized given the predicted values yi and the actual value y.
This is the first tree to be built with a single leaf, after which,
trees with greater depth are built.

F(X ) =

n∑
i=1

L(yi, y) (1)

Different loss functions can be used, such as the MSE,
Mean Absolute Error (MAE), or Huber loss, which is a
combination of MSE and MAE. In the present study, the
Huber Loss (HL) function is used since it is less sensitive to
unusual values compared to MSE and MAE [99]; therefore,
it is a robust alternative because it balances the quadratic
penalty of the MSE with the linear penalty of the MAE. The
Huber function loss is given by (2).

HL =


1
2 (y− ŷ)2 for|(y− ŷ)| ≤ α

α
(
|(y− ŷ)| −

1
2α

)
otherwise

(2)

In the GB algorithm, the first weak learner L1 is fitted
using data X , from which the response variable y is predicted,
and the residuals r1 = y1 − ŷ1 are calculated. Next, a new
model L2 is fitted, which attempts to predict the residuals of
the previous model; in other words, it attempts to correct the
errors that model L1 has made as L2(X , r1) to later obtain its
residuals r2 = r1 − r̂1. This process is repeated m− 1 times,
where m is the number of weak learners, as shown in Fig. 1.

GB is characterized by having a considerable number of
hyperparameters ‘‘which the performance can differ greatly
depending on its setting’’ [100]. The number of weak
learners, is the number of estimators used to obtain the
predicted value.

Because the objective of GB is to minimize the residual
in each iteration, it is susceptible to overfitting. One way
to avoid this problem is using a regularization value also
known as ‘‘learning rate’’, which limits the influence of each
weak learner on the ensemble (i.e., the rate from which the
model learns). The correct choice of this parameter may
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TABLE 3. Data from studies related to DE applied for feature weighting in software effort prediction models.

TABLE 4. Experimental characteristics and results applying DE in software effort prediction models.

vary depending on the problem. If the learning rate is low,
more trees are required to obtain good results, but the risk of
overfitting is lower. Table 5 describes the GB parameters to
be optimized and their search space (value bounds).

B. HYPERPARAMETER OPTIMIZATION
Based on the problems described in the previous sec-
tion, we identified an optimization problem. Therefore,
we used DE to optimize GB hyperparameters. In addition,
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TABLE 5. Description of hyperparameters of the GB algorithm.

we compared the results of the PSO and a GA implementa-
tions for the following reasons.

First, we selected another metaheuristic that also belonged
to evolutionary algorithms. We selected GA because it
is one of the two most reported in the literature review
presented in section II and we consider it to be a good
point of comparison. Furthermore, the type of representation
of the genetic algorithm as a vector of real numbers fits
the optimization problem at hand. Also, by having several
parameters to adjust, it could provide greater flexibility in
finding solutions.

The other metaheuristic to compare is PSO because we
want to take another metaheuristic that do not belong to
evolutionary computation, but rather with a collective intel-
ligence approach, since cooperation and social adaptation
of this metaheuristic could be potentially good for this
problem. Specifically from collective intelligence, PSO was
selected to be compared with DE, because together with GA,
they are the most reported in the software effort estimation
literature. Additionally, like DE, PSO has a limited number of
parameters to adjust, making it simple to configure. Also, the
representation of solutions allows us to address problemswith
different dimensions. Finally, PSO seeks a balance between
the exploration of the search space and the exploitation of
current solutions, which we consider can be effective for the
hyperparameter optimization problem.

It is worth mentioning that we implemented the canonical
versions of the three metaheuristics for the following reasons:

• Comparisons between different algorithms usually pro-
vide general evidence, that is, this comparison provides
us with a baseline to evaluate its performance in its
most basic version. This can be useful for understanding
the basic behavior of a metaheuristic before considering
improvements or modifications.

• The fairest and most usual way of comparing meta-
heuristics (even as presented in the reported related
work) is to implement the canonical forms, which is
important to avoid bias in the evaluation.

• The comparison between variants would be longer and
would move away from the main problem for software

engineers, where the aim is to provide simpler or more
concrete evidence of the precision for estimating soft-
ware effort in the testing stage. For simplicity, canonical
versions are simpler and easier to understand compared
to their variants, making it easier to communicate
findings to software engineering practitioners and other
researchers.

DE, PSO, and GA need an objective function called
‘‘fitness function’’, which is described in the following
subsection.

1) FITNESS FUNCTION
The term fitness function is linked to evolutionary algorithms
derived from the theory of evolution as a way of finding
the fittest individuals in the process of natural selection. The
term‘‘fitness’’ was introduced to measure the reproductive
success of individuals using genetic algorithms [101].
However, this term is currently used in many evolutionary
algorithms.

The fitness function guides the evolution of a population of
individuals. It defines how good or bad a potential solution to
a problem is (i.e., how close or far it is from the objective).

Optimizing the hyperparameters of a regression model
problem requires a function to measure the prediction
accuracy of each built model (i.e., the prediction error). Since
prediction accuracy measures commonly used such as mean
square error, mean magnitude of relative error, and mean
magnitude of error relative to the estimate are based on
ratios and then correspond to biased accuracymeasures [102],
we rather the absolute residual (AR) and its mean MAR,
which are defined in (3) and (4).

MAR =
1
N

N∑
i=1

ARi (3)

ARi = |Actual testing efforti
− Predicted testing efforti| (4)

Because we search for the solution that has the smallest
MAR value, this becomes a minimization problem. To obtain
theMAR shown in (3), we performed a Leave-One-Out Cross
Validation (LOOCV) process, where each project was used
as test data and the other n-1 projects from each dataset as
training data.

Next, we detail the implemented versions of each meta-
heuristic that were tested and compared to optimize the GB
hyperparameters using the described fitness function.

2) DIFFERENTIAL EVOLUTION (DE)
DE [103] works from vectors as shown in (5), where −→x i,G
represents vector i in generation G, and NP is the size of the
population.

−→x i,G = 1, . . . ,NP (5)

During the mutation process, each vector −→x i,G (target
vector) in the population generates a descendant −→u i,G (trial
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vector) through a mutant vector −→v i,G. This mutant vector is
obtained as shown in (6), where −→x r0,G,

−→x r1,G and −→x r2,G
are randomly selected vectors from the current population,
taking care that r0 ̸= r1 ̸= r2. −→x r0,G is known as the base
vector and −→x r1,G and −→x r2,G are the difference vectors. F
is a user-defined scale factor that controls how much an
individual is different from other individuals in the previous
generation.

−→v i,G =
−→x r0,g + F(−→x r1,g +

−→x r2,g) (6)

In the crossover operator, once the mutant vector −→v i,G
is generated, it is combined with the target vector −→x i,G
to generate the trial vector −→u i,G as shown in (7), where
CR ∈ [0, 1] is the probability that a value in the vector
is combined by the crossover operator with another value,
in other words, it defines the similarity between the trial
vector and the mutant vector. The value randj generates a
real random number with a uniform distribution between
0 and 1, j ∈ 1, . . . , n is the jth variable of the vector,
Jrand ∈ [1, n] is an integer that prevents the trial from being
a copy of the target vector. For our problem, n = 5 (five GB
hyperparameters listed in Table 5).

−→u i,j,G =


−→v i,j,G (randj ≤ CR)or(j = Jrand )

−→x i,j,G otherwise
(7)

Finally, the best vector between the target vector and the
trial vector, according to the fitness function, is selected
to remain in the population as shown in (8) (assuming a
minimization problem).

−→x i,G+1 =


−→u i,G f (−→u i,G) ≤ f (−→x i,G)

−→x i,G otherwise
(8)

This variant of DE is known as DE rand/1/bin, where
‘‘rand’’ means the criterion used for the selection of the base
vector −→x i,G, ‘‘1’’ indicates the number of difference vectors
used and ‘‘bin’’ is the type of crossover operator used. In this
case it is binomial, as shown in Equation (7).

3) PARTICLE SWARM OPTIMIZATION (PSO)
PSO is a metaheuristic that simulates the behavior of natural
particles [104]. In PSO, unlike GA and DE, information is
obtained from the entire population. PSO operates with a
population (swarm) of candidate solutions (called particles).
These particles move along the search space and their
movement depends on the best position obtained, as well
as the best global position found by the swarm. To do this,
each particle has a position, −→p (which for our problem is
represented by a vector of the form [x1, x2, x3, x4, x5], a value
for each GB hyperparameter) in search space and a velocity,
−→v (of the form vx1, vx2, vx3, vx4, vx5) which determines its
movement through space.

Furthermore, each particle emulating the real world
exhibits both inertia and acceleration. The inertia continues
to the particle in the direction in which it moves into

the population, whereas the acceleration depends on two
characteristics:

• Each particle is attracted to the best location it has found
(pBesti ).

• Each particle is attracted to the best location found by
the set of particles (pBestg ).

Based on these characteristics, −→v i(t) which denotes the
velocity of particle i at time t is calculated as in (9), where c1
and c2 are the constants of attraction to the best location of the
particle and the global best location of the swarm respectively.
Also, r1 and r2 are two random numbers ∈ [0,1]. Once the
velocities of all particles have been updated, their positions
are updated in each iteration as in (10).

vi(t + 1) = vi(t) + c1 · r1 · (pBesti − pi(t))

+ c2 · r2 · (pBestg pi(t)) (9)

pi(t + 1) = pi(t) + vi(t) (10)

4) GENETIC ALGORITHM (GA)
The GA was proposed by Holland in 1975 [101]. This
is perhaps one of the three most used metaheuristics in
software effort prediction models as shown in Table 2. It is
characterized by having potential solutions in the form of
a binary string called genotype (although there is also a
representation for real numbers), where each element of
the string is called a chromosome. These individuals evolve
over time. In GA, it is important to define the crossover
and mutation operators, as well as the individual selection
process and individual replacement mechanism, all of which
are described next.

When an individual is represented by a string of chro-
mosomes, it allows for more versatile solution exploration.
Owing to the nature of the hyperparameters, we selected a real
representation, in which each chromosome is a real number.
In this study, we implemented a deterministic tournament for
the selection process of parents, where several individuals
from the population were randomly selected and their fitness
values were compared [105]. The two individuals with the
best fitness in each tournament were selected as parents to
generate the offspring. This choice was based on the idea
that selecting the best individuals in each tournament helps
maintain and improve the quality of the solutions throughout
the generations. Additionally, as a random tournament,
there is an opportunity for all individuals to participate in
tournaments.

Crossover and mutation operators are important for popu-
lation variations. The crossover operator that we selected to
simulate reproduction and generate offspring was ‘‘Interme-
diate recombination’’ [106], in which, from the two parents:
P1 = V1, . . . ,Vm and P2 = W1, . . . ,Wm, the value of each
son’s allele was generated bymixing the parental alleles, as in
(11) and (12) for the two sons S1 and S2. In this method, P1
and P2 intersect at the position k . The parameter a ∈ [0,1]
is given by the user and biases the proportion of information
that each son will have from each of its parents starting from
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position k . This method helps maintain genetic diversity in
the population by introducing new combinations of genes.

S1 = V1, . . .Vk ,Wk+1 ∗ a+ Vk+1

∗ (1 − a), . . . ,Wm ∗ a+ Vm ∗ (1 − a) (11)

S2 = W1, . . .Wk ,Vk+1 ∗ a+Wk+1

∗ (1 − a), . . . ,Vm ∗ a+Wm ∗ (1 − a) (12)

For the mutation operator, we use the ‘‘uniform mutation’’
method, which replaces the value of a randomly selected
chromosomewith a random value between the allowed limits.
This selection is justified because a uniform mutation is used
for genes with integer or float values. Finally, the type of
replacement was elitist, where the best individuals survived
in each generation to maintain the best fit.

After describing the versions and implementations of the
threemetaheuristics, we summarize the following: On the one
hand, PSO is an algorithm based on the collective intelligence
approach, inspired by the behavior of groups of organisms
that share information with each other. DE and GA are
based on biological evolution characteristics, such as natural
selection and reproduction.

On the other hand, the way of representing individuals is
different, while in PSO the potential solutions are represented
with particles that have a position and velocity in the search
space, the solutions in GA are represented as a vector of
chromosomes where each gen is a value to optimize. In DE
and GA, crossover and mutation operators allow to generate
new solutions from those in the population (descendants).
On the other hand, PSO does not have crossover or mutation
operators, since the particles update their values based on
their own knowledge and the knowledge of the entire swarm
(there are no descendants).

Finally, for the problem of optimizing GB hyperparame-
ters, PSO and GA have the same objective, but the search for
an optimal solution is different due to their representation of
each individual and the operators that allow reaching the best
solution.

IV. DATASETS OF SOFTWARE PROJECTS
In the ISBSG, the testing effort by project is reported in
person-hours spent on the following activities: testing plan,
system testing, performance testing, creation and execution
of automated tests, and acceptance testing [107]. However,
the reporting of testing effort is not a mandatory field in
the ISBSG repository, and a number of projects have null
values in this field, similar to the other criteria used to extract
projects, such as functional size methods or language type.

Table 6 shows the number of projects extracted from the
ISBSG repository excluding non-null values for testing effort,
functional size method (FSM), language type, resource level,
and those with A or B ratings on data quality, and functional
sizing methods rating [107].
The ISBSG also classifies software projects according

to the type of development. Table 7 shows the final 2,009

TABLE 6. Criteria for selecting software projects from ISBSG data set
(11,281 projects).

TABLE 7. Software projects classified by type of development.

projects in Table 6, classified by new, enhancement, and re-
development types.

As the re-development projects in Table 7 consist of
11 projects, only the new and enhancement types were
considered in our study. In Appendix A, each data set is
classified by type of programming language, FSM, and
resource level.

Twelve scatter plots (testing effort vs. FSM) were gen-
erated. They corresponded to the 12 data sets of Appendix
A having a number of projects higher than or equal to
30. All of them had resource level type 1, which refers to
people whose time is included in the reported effort data.
ISBSG records four types of resource levels, and type 1
corresponds to the development team effort (the sum of
efforts spent by the project team, project management, and
project administration) [107].
The 12 scatter plots showed skewness, heteroscedasticity,

and unusual values. Then, the χ2, Shapiro-Wilk, skewness,
and kurtosis statistical distribution tests were performed to
test the effort and FSM variables using the data set, whose
results are shown in Appendix B. Thus, data of all data sets
were normalized by applying the natural logarithm (ln) [41],
and the unusual values with studentized residuals greater than
three in absolute value were excluded. Fig. 2 shows the scatter
plot corresponding to the raw data of the 91 new projects
sized in FISMA and coded in third generation programming
languages, whereas Fig. 3 shows the normalized data set from
Fig.2 including the trend line, and the four excluded unusual
values (enclosed in red circles).

Table 8 lists the calculated values used for selecting
seven final data sets used in our study. The types of
FSM corresponds to IFPUGV4+ [108], FISMA [109], and
NESMA [110]. Each data set was selected based on the
following criteria.

1) A percentage of unusual values not higher than
five [111].

2) Functional form data showing a positive correlation,
that is, showing that the higher the value of size (i.e.,
FSM), the higher is the testing effort [112].

3) A coefficient of determination (r2) higher than
0.5 should be considered acceptable [113].
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FIGURE 2. Raw data set of 91 new projects.

FIGURE 3. Normalized data set from Fig. 2.

V. EMPIRICAL STUDY AND RESULTS
In the following subsections, we describe the setup of the
experiments, performance of the metaheuristics, and results
obtained.

A. EMPIRICAL STUDY SETUP
The DE, PSO, and GA metaheuristics were implemented
to optimize the hyperparameters of the GB regressor to
minimize the MAR objective function. Fig. 4 shows a
diagram with the steps followed for the comparison of the
described algorithms.

In this study, each metaheuristic was independently
executed 30 times with a unique random number seed
(calculating their statistical values in the process) as recom-
mended in [114]. The more executions that are performed,
the more robust the algorithm’s performance.The DE, PSO,
and GA metaheuristics were implemented to optimize the
hyperparameters of the GB regressor to minimize the MAR
objective function.

The empirical study was conducted on a platform using
Python 3.9.13, a macOS High Sierra 10.13.6 operating
system with an Intel Core i5 3.1 Ghz and 8GB RAM.

The parameters used for each metaheuristic are presented
in Table 9, where it can be observed that for DE,we encourage
the diversity of vectors in the population with a value of F =
0.8 (suggested in [69]) and a value of CR =0.5 (suggested in
[59], [70]) promoting a balance of crossover probability.

FIGURE 4. Diagram describing the procedure followed in the present
study.

B. METAHEURISTICS PERFORMANCE
Table 10 shows the descriptive statistics of the performance
of each metaheuristic during 30 executions, optimizing the
hyperparameters of the GB. In Table 10, the GB optimized
through DE has the best results in all datasets with a lower
MAR values were obtained from DE rather than with PSO or
GA, and often with a greater standard deviation. In addition,
despite performing 30 executions, the standard deviation of
each metaheuristic was minimal. Thus, we can assume that,
regardless of the randomness of these algorithms, the results
are similar.

In Fig. 5 to 11, three of the 30 executions of each meta-
heuristic by data set are shown (the execution with the best
MAR, the worst one and the median of the 30 executions).
In general, PSO tends to converge prematurely, whereas for
DE, it is possible to obtain better results and not get stuck
in local optima. Moreover, Fig. 5 to 11 show that the best
performance between PSO and GA depends on the data set
because there is no metaheuristic that outperforms the other.

C. RESULTS
Table 11 shows the best Mean Absolute Residual (MAR)
with its respective Median Absolute Residual (MdAR) using
the model. This shows that GB-DE has better values than
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TABLE 8. Coefficients of correlation (r ) and determination (r2) by data set.

TABLE 9. Parameters setup for each metaherustic.

GB-PSO, GB-GA, and SLR, except for the two MdARs for
GB-PSO.

As mentioned in the Introduction, one MAR is not
sufficient to establish a statistically significant improvement
in the STEP. Therefore, a suitable statistical test was
applied to compare the accuracies among the models [118].
Table 12 presents the χ2, Shapiro-Wilk, skewness and
kurtosis normality tests for each set of Absolute Residuals
(AR) of the results in Table 11, and none of the sets of
ARs meet the assumption of normality with 95% confidence.
Accordingly, the Friedman non-parametric test was applied
to determine whether at least one algorithm generated
significantly different results from the others. All Friedman
p-values included in Table 12 were less than 0.05. Thus,
we can conclude that each data set of software projects has
at least one statistically different prediction model.

The differences between the ARs of the projects were
taken (SLR and GB-DE, SLR and GB-PSO, and SLR and
GB-GA) with the objective of identifying the specific model
with statistical differences. Next, the four normality statistical
tests were performed for each difference of ARs: if any of
their four p-values were lower than 0.05, then data were
non-normally distributed at 95% confidence, and a Wilcoxon
test was applied (themedians of themodels in Table 11 should
be compared); otherwise, a t-paired test was performed (the
means of models of Table 11 were compared) [119] as shown
in Table 13.

VI. DISCUSSION
The present study was motivated by the following issues:

• The ST aims to ensure that the software meets the
established requirements and works correctly through
extensive tests to identify and correct defects before the
software is delivered to the final users.

• The STEP is relevant for software managers and
software practitioners.

• Many studies have proposed models to predict SDLC
effort. However, few studies have specifically focused
on STEP.

Regarding the results, we can identify that GB-DE
outperforms the results of SLR, although the transformed data
have a linear relationship between the explanatory variable
and the dependent variable, GB does not assume this type
of relationship, making it more robust and flexible when
combining multiple decision trees. Furthermore, GB is an
ensemble algorithm that by combining several weak trees
to build a stronger one, decreases the sensitivity to outlier
data that a linear regression has and leads to a significant
reduction in the prediction error. Also, by having a GB
hyperparameter optimization process, the best values of all
possible combinations were used to improve the results.

A. COMPARISON WITH PREVIOUS STUDIES
The related work section has highlighted the following seven
issues:

1) There are only two studies similar to ours in the
sense that they use a metaheuristic for optimizing the
parameters of STEP models [19], [49]; however, none
of them have proposed the application of DE, PSO
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TABLE 10. Descriptive statistics of fitness function results through the 30 executions by each metaheuristic optimizing the hyperparameters of the GB by
data set.

TABLE 11. Prediction accuracy by model (the values of GB-DE, GB-PSO and GB-GA correspond to the best MAR with its respective MdAR from Table 12).

and GA metaheuristics for optimizing the parameters
of Gradient Boosting, and only Cuckoo [19] and Bat
[49] metaheuristics for optimizing the parameters of
equations.

2) As for data sets (Table 3):

a) None of the studies were specifically used for
the testing phase (i.e., STEP) but predicted the
development effort of the projects.

b) None of them classified the projects based
on their type of development, functional size
method, or programming language.

c) One of them [53] was artificially generated.
d) They were obtained from projects not recently

developed: COCOMO 81, Albrecht, Kemerer,

and Desharnais, were published in 1981, 1983,
1987, and 1989, respectively. The NASA-93 and
NASA-60 data sets were integrated for projects
developed between 1971-1987, and between
1980 and 1990. The most recent had 24 projects
published in 2011.

e) Only two studies used the absolute
residuals as prediction accuracy
criteria.

f) Only five of them reported the type of validation
method used for training and testing the models,
and none used a leave-one-out cross validation
method.

g) Only two studies based their conclusions on
statistical differences.
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TABLE 12. Normal statistical test by best result obtained from Table 12 for each metaheuristic.

TABLE 13. Statistical tests for data distribution between models by dataset.

3) Regarding DE (Table 4) - Experimental setup:
a) Ten studies reported parameters used in the

implementation of the DE algorithm.
b) Six of them reported the version of DE used.

4) Regarding DE (Table 4) - Performance:
a) Only seven studies reported the performance of

the algorithm, either with convergence graphs,
descriptive statistics, or Pareto frontiers.

b) Only six studies have reported the execution of
the DE algorithm several times to determine its
performance.

B. LIMITATIONS
The limitations in this research work are the following:

• ISBSG Release 2022 includes 11,281 software projects;
however, we could only select 1,292 projects in seven
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FIGURE 5. Convergence plots of executions for the data set: Enhancement, 3GL, FISMA (N = 63 projects).

FIGURE 6. Convergence plots of executions for the data set: Enhancement, 3GL, NESMA (N = 631 projects).

FIGURE 7. Convergence plots of executions for the data set: Enhancement, 4GL, NESMA (N = 603 projects).

FIGURE 8. Convergence plots of executions for the data set: New, 3GL, FISMA (N = 87 projects).

data sets by observing the criteria suggested for the
ISBSG guidelines (described in Section IV).

• We only used three types of FSM as the explanatory
variable (i.e., FISMA, NESMA, IFPUG V4+).

• We implemented only in a single version that the three
metaheuristics used for hyperparameter optimization;

that is, the variants of these metaheuristics were not
explored, nor were they exhaustively compared to other
metaheuristics.

• We did not optimize the hyperparameters of the three
metaheuristics used; but they were used in the values
suggested in Table 9.
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FIGURE 9. Convergence plots of executions for the data set: New, 3GL, NESMA (N = 45 projects).

TABLE 14. Validity threats addressed in our work.

C. VALIDITY THREATS
There are four categories of valid threats in search-based
predictive modeling for Software Engineering: conclusion,
internal, external and construct [120]. The descriptions of the
17 validity threats, as well as the way in which they were
addressed in our work are presented in Table 14.
In addition to the validity threats listed in Table 14,

we identified the following:

• Internal: The ISBSG suggests using projects with a
rating code of ‘‘A’’ or ‘‘B’’ applied to the func-
tional size to build prediction models. However, the
ISBSG does not report the method used to to sug-
gest such categories. Moreover, we excluded unusual
values based only on mathematical criteria. We are
aware that to exclude an extreme value, it is also
necessary to know the factors that strong influence
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FIGURE 10. Convergence plots of executions for the data set: New, 4GL, IFPUG V4+ (N = 44 projects).

FIGURE 11. Convergence plots of executions for the data set: New, 4GL, NESMA (N = 89 projects).

on the value [121]; however, we were not able to
know it.

• External: The accuracy of the prediction given projects
not used to train the models depend on the specification
of the software requirements. This is because, in the
requirements stage, the size of the projects is estimated,
which is the explanatory variable in the generated
models to predict the software testing effort.

• Construct: The values of the dependent and explanatory
variables used to train and test the models are trans-
formed.

VII. CONCLUSION
In accordance with the results in Table 13, we can reject the
null hypothesis HDE0, and accept the alternative HDE1 for
all of the datasets evaluated for GB-DE with a confidence
of 95%.

As for GB – PSO, we reject the null hypothesis HPSO0 for
the four data sets, and accept the alternative HPSO1 at 95%
confidence.

Regarding GB-GA, we reject the null hypothesis HGA0
for the three data sets, and accept alternative HGA1 at 95%
confidence.

Based on the results presented in Tables 11 and 13, the
GB-DE can be used to STEP using FSM as explanatory
variable of the following projects:

1) New software projects:
• Coded in 3GL and measured with FISMA or
NESMA.

• Coded in 4GL and measured with IFPUG V4+ or
NESMA.

TABLE 15. Number of projects for testing effort analysis.

2) Software enhancement projects:

• Coded in 3GL and measured with FISMA or
NESMA.
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TABLE 16. Normal statistical tests applied to 14 data sets with projects greater than 30.

• Coded in 4GL and measured with NESMA.

We can conclude that the GB-DE can be used by software
managers and software practitioners for STEP of either new
projects or enhancement projects, developed in either third or
fourth programming language generation. Thus, the practical
applications of GB-DE for software project managers could
allow obtaining a more accurate STEP to allocate the suitable
teams resources and budget for testing activities.

As future work the following elements are proposed:

• The exploration of other Boosting algorithms for
regression, such as Histogram Based Gradient Boosting,
reduce the errors made by a previous single model.

• Consideration of other Bagging algorithms such as
Random Forest, which allows the reduction of variance,
where simple algorithms are used in parallel with
the objective of taking advantage of the independence
between the single algorithms, reducing the error when
averaging the predictions.

• The study of other metaheuristics inspired by phys-
ical phenomena, such as simulated annealing or hill
climbing, to optimize the parameters of a regression
algorithm.

• Implementation of hyperparameter optimization for
metaheuristics implemented to optimize the parameters
of any regressor.

• Comparisons between different versions of metaheuris-
tics to conclude the version that adapts to the character-
istics of the regression algorithm used.

• Application of Boosting, Bagging, and metaheuristics to
predict the effort of other software process phases, such
as construction or maintenance.

• The models used in this study applied without non-
transformed data.

APPENDIX A
NUMBER OF PROJECTS FOR TESTING EFFORT ANALYSIS
Table 15 classifies each data set of the 481 and 1,517 projects
in Table 7 by type of programming language, FSM, and
resource level. Because of the minimum data set size required
for the statistical tests used in the present study, we only
selected those data sets from Table 15 whose size was higher
than or equal to 30 software projects, that is, five and seven
data sets for new and enhancement types, respectively.

APPENDIX B
NORMAL STATISTICAL TESTS APPLIED TO 14 DATA SETS
Table 16 shows that the smallest p-value among the tests
performed on the data set was less than 0.01. Therefore,
it can be rejected that the testing effort and FSM come from
a normal distribution with 99% confidence for the 24 cases.
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