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Abstract: In the Internet of Things (IoT) era, the surge in Machine-Type Devices (MTDs) has intro-
duced Massive IoT (MIoT), opening new horizons in the world of connected devices. However, such
proliferation presents challenges, especially in storing and analyzing massive, heterogeneous data
streams in real time. In order to manage Massive IoT data streams, we utilize analytical database
software such as Apache Druid version 28.0.0 that excels in real-time data processing. Our approach
relies on a publish/subscribe mechanism, where device-generated data are relayed to a dedicated
broker, effectively functioning as a separate server. This broker enables any application to subscribe to
the dataset, promoting a dynamic and responsive data ecosystem. At the core of our data transmission
infrastructure lies Apache Kafka version 3.6.1, renowned for its exceptional data flow management
performance. Kafka efficiently bridges the gap between MIoT sensors and brokers, enabling parallel
clusters of brokers that lead to more scalability. In our pursuit of uninterrupted connectivity, we
incorporate a fail-safe mechanism with two Software-Defined Radios (SDR) called Nutaq PicoLTE
Release 1.5 within our model. This strategic redundancy enhances data transmission availability,
safeguarding against connectivity disruptions. Furthermore, to enhance the data repository security,
we utilize blockchain technology, specifically Hyperledger Fabric, known for its high-performance
attributes, ensuring data integrity, immutability, and security. Our latency results demonstrate that
our platform effectively reduces latency for 100,000 devices, qualifying as an MIoT, to less than
25 milliseconds. Furthermore, our findings on blockchain performance underscore our model as a se-
cure platform, achieving over 800 Transactions Per Second in a dataset comprising 14,000 transactions,
thereby demonstrating its high efficiency.

Keywords: Massive Internet of Things (MIoT); publish/subscribe methodology; real-time data
processing; Apache Kafka; Apache Druid; latency; Hyperledger Fabric; storage security

1. Introduction

The Internet of Things (IoT) revolutionizes our interaction with the surrounding
objects, forming a network of diverse devices such as computers, sensors, intelligent
gadgets, and smartphones. These devices are interconnected through various technologies
to access the internet [1]. In upcoming years, through sixth-generation (6G) networks, the
capacity to facilitate interactions among billions of interconnected devices and applications,
all at remarkably elevated data speeds, emerges as a notable prospect which leads us
to the Massive IoT (MIoT) concept [2]. These facts give rise to demanding attention,
including rapid real-time data processing, scalability, storage security, availability, and
latency. Therefore, the impetus to create this model arose from the requirement for fast
information exchange and processing among IoT components, underpinned by a scalable,
secure, and available framework with minimal latency.

IoT-based frameworks require key characteristics to function effectively. These include
(i) connectivity among devices to enable collective intelligence, (ii) accurate and timely
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sensing for detecting environmental changes, (iii) intelligent analysis of gathered data with
minimal latency to extract meaningful insights, (iv) dynamic adaptability to accommodate
evolving systems, (v) scalability to handle increasing device and data volumes, (vi) ability
to manage heterogeneity among devices and data types, (vii) and robust security measures
to protect against cyber threats and data breaches. These attributes collectively shape a
reliable and efficient IoT ecosystem [3]. According to the aforementioned characteristics, a
framework that can satisfy requirements is necessary for supporting all the features [4].

The data generated by IoT sensors can be managed within a centralized environment
such as a cloud. To effectively manage massive data from intelligent devices, it is necessary
for the data to be efficiently and flexibly transmitted from the devices to the cloud [5]. IoT
encompasses energy-efficient devices, often characterized by limited processing power,
computation capacity, and battery capacity [6]. The publish/subscribe concept, offering
event-triggered, asynchronous communication between publishers and subscribers, is
well suited for extensive, distributed IoT services with limited energy, due to its thorough
separation of publishers and subscribers across space, time, and synchronization [7].

In the domain of Massive IoT, numerous challenges require careful consideration for
successful implementation. Foremost among these challenges is efficiently processing mas-
sive and heterogeneous data in real time with minimal latency. Simultaneously, ensuring
network availability and establishing a secure, immutable data storage mechanisms remain
paramount. Our research endeavors revolve around the development and validation of a
novel approach, harnessing the power of a publish/subscribe method for real-time data
processing in the realm of MIoT, while leveraging blockchain technology for the secure
storage of data.

The core contributions of this research paper are as follows:

1. We introduce a comprehensive architectural framework, rooted in the publish/subscribe
methodology, tailored for real-time data processing within the expansive domain of MIoT.

2. To tackle the intricacies of real-time data processing, we employ the robust capabilities
of Apache Kafka version 3.6.1 and Apache Druid version 28.0.0.

3. Recognizing the significance of data storage security and immutability, we incorporate
Hyperledger Fabric, a cutting-edge blockchain technology, to fortify our system’s data
storage capabilities.

4. In pursuit of network availability and efficiency, we employed two Software-Defined
Radios (SDRs) based on LTE as our “Network-in-a-box” through two distinct imple-
mentations, showcasing the potential for robust network connectivity.

5. Furthermore, we substantiate the effectiveness of our proposed model through a series
of meticulously designed experiments. These experiments are aimed at quantifying
latency and assessing the overall performance of our blockchain-integrated solution.

In doing so, our research not only offers a comprehensive architectural framework
but also provides empirical evidence of its practicality and efficiency, thus contributing
substantively to the field of MIoT.

Related Work

The authors in [8] conducted a comprehensive state-of-the-art review, shedding light
on how the microservice-based architecture is leveraged to enhance non-functional charac-
teristics, specifically reliability and availability, in IoT ecosystems. Their pioneering work
outlines several critical challenges addressed by MAs, including IoT device integration,
heterogeneity, interoperability, fault tolerance, scalability, and system deployment and
configuration. Moreover, they provide insights into the techniques proposed for handling
non-functional requirements (NFRs) within MAs for IoT systems. Notably, for improving
availability, reactive architecture, circuit breaker patterns, orchestration, and machine learn-
ing have emerged as prominent techniques, while messaging protocols have been favored
for addressing interoperability challenges. Furthermore, for scalability, orchestration and
load balancing techniques have been explored. However, they highlight that MAs have
not been universally explored across all IoT domains, and most notably, another study
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identified a critical gap in the literature concerning end-to-end availability and reliability,
emphasizing that this surpasses the mere availability of individual components within a
system [9].

In [10], the proposed hybrid centralized and blockchain-based architecture addresses
critical challenges encountered by resource-constrained IoT devices. The author believes
that traditional cryptographic approaches have been extensively explored but are ill suited
for the resource limitations of IoT devices, a concern that aligns with the findings of the
study in [11]. The incorporation of blockchain technology for IoT authentication, as in-
troduced in that study, has been a growing area of interest in recent years. However,
that study’s emphasis on minimizing computational costs and addressing real-time re-
quirements distinguishes it from existing blockchain-based approaches that often incur
significant overhead. The novel hybrid architecture proposed herein, combining centralized
and blockchain-based elements, represents a promising direction for efficiently bolstering
IoT security while mitigating the resource and scalability challenges faced by IoT systems.

In the landscape of publish–subscribe systems, the article in [12] sheds light on the
critical design features and performance metrics for several open-source systems such
as Apache Kafka and RabbitMQ. The present work contributes by offering a rigorous
evaluation of seven open-source systems, establishing common criteria for comparison,
and providing insights into functionality and performance under real-world conditions.
However, this study needs to further explore alternative systems like ActiveMQ, Apache
Pulsar, ZeroMQ, Redis, and others, which would contribute to a more comprehensive
understanding of publish–subscribe systems’ capabilities and limitations.

The author in [13] in the realm of fog computing contributes a valuable lightweight
authentication scheme tailored for resource-constrained IoT devices and fog gateways.
On the other hand, pre-shared key (PSK) authentication methods have been proposed
as a solution for low-resource devices, although they have faced questions about their
security robustness [14]. That study introduced an innovative approach by combining
the Elliptic Curve Diffie–Hellman Ephemeral (ECDHE) key exchange algorithm with PSK
authentication within a Message Queuing Telemetry Transport (MQTT) publish–subscribe
framework in the context of distributed fog computing. However, that study’s focus on
ECDHE-PSK authentication within the MQTT publish–subscribe architecture may limit its
applicability to other fog computing and IoT contexts.

The article by [15] proposes the RTID framework by utilizing Apache Spark for
efficient data processing, RESTful API, and OAuth 2.0 for secure access management. In
the realm of real-time IoT data processing, prior research has delved into addressing the
multifaceted challenges associated with efficiently managing massive data [16]. Traditional
approaches, including 6LoWPAN [17] and IoT with Cloud system (CCS) [18], have been
fundamental in shaping the IoT landscape but have faced limitations in terms of flexibility
and data management efficiency. Although it contributes to enhancing real-time Massive
IoT data processing, more comprehensive comparative studies with existing frameworks
are necessary to firmly establish the RTID framework’s suitability and feasibility in practical
deployment scenarios.

Contrary to previous efforts in the field of data processing in IoT, which often tackled
individual challenges using various methods and architectures like publish/subscribe and
microservice-based approaches, some of which did not consider the big scale in MIoT, our
research takes a holistic approach. Our primary objective is to present a comprehensive
framework that integrates all these challenges into a unified architecture. This paper aims
to provide an intricate overview of real-time data processing in MIoT and to address these
formidable challenges collectively.

The remainder of this paper unfolds as follows: in Section 2, we firstly present our
pioneering proposed architecture—a comprehensive and robust publish/subscribe archi-
tecture designed to handle real-time data processing in the MIoT ecosystem. Moreover,
each layer of this architecture and the data flow are detailed, offering a comprehensive
understanding of its inner workings. Finally, we delve into the mechanics of our cho-
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sen publish/subscribe methodology, employing Apache Kafka and Druid, elucidating
how these components synergize to facilitate efficient data processing. Section 3 explores
experimental analysis, illuminating both the capabilities and limitations of our model.
Section 4 initiates a thoughtful discussion, while Section 5 highlights a few key conclusions
to the paper.

2. Materials and Methods

A five-layer architectural framework has been designed and implemented to accom-
modate the demands of the MIoT platform, as shown in Figure 1. This design facilitates
connectivity for a wide range of IoT devices such as sensors and actuators, demonstrating a
profound efficiency. In order to reach an efficient platform, we tried to emphasize retention,
processing, and secured storage capabilities in this architecture, which, respectively, are
provided by Apache Kafka, Apache Druid, and blockchain technology.
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Figure 1. Architecture for MIoT with distinct domains.

2.1. Domains and Data Flow

Recognizing the need to tackle diverse challenges, we opted to structure the model
into five distinct domains. This approach was chosen to optimize our solution. The initial
domain, comprising sensing and actuating devices, plays the role of data acquisition. To
ensure availability, domain 2 (connectivity and gateway) employs dual mobile network
operators (MNOs) and automatic switchover, thereby safeguarding framework availability
in case of failure. As mentioned earlier, we use two LTE-based SDNs. The subsequent
domain not only delivers scalability, real-time data processing, and minimal latency but also
incorporates data retention capabilities. Storage security measures are established within
the fourth domain. A concise overview of these domains and their respective functionalities
is provided in Table 1.

To illustrate the data flow intricacies, a three-zone framework was employed to de-
pict the entire process, from data collection to its secure storage on the blockchain. The
process initiates with data collection by sensors, followed by its transmission to gateway
devices and subsequently network simulators. The network simulators, represented by
our simulated dual SDRs, namely Pico LTE acting as a Network-in-a-Box, establish connec-
tivity to Kafka. Employing protocols outlined in Figure 2, they function as publishers or
producers, facilitating data transfer to Kafka. Meanwhile, Hyperledger Fabric subscribes
to specified Kafka topics via socket.io, ensuring secure access for end-users. Additionally,
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Apache Druid, functioning as a real-time data analytics tool, serves as another consumer in
the chain.

Table 1. Brief description of the domains.

Domains Description

1st Domain—Sensor/actuator Includes devices to collect various data, e.g.,
temperature, humidity, pressure, position, etc.

2nd Domain—Connectivity and gateway

Includes Pico LTE, which is an SDR to simulate
MNOs in order to provide various connectivity

protocol, e.g., LTE Cat 0, Cat 1, Cat M1, Cat
NB1, and Cat NB2

3rd Domain—Data retention and processing Includes Apache Kafka and Apache Druid for
data retention and real-time processing

4th Domain—Secured/immutable storage Includes Hyperledger Fabric to supply with
storage security

5th Domain—End-user Includes smart home application in order to
manage and track IoT devices
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2.1.1. Sensor and Actuator Domain

As implied by the domain’s name, it hosts a variety of devices such as sensors, actua-
tors, and board computers for capturing environmental data. For our study, we utilized
BL654 and ibNav sensors to execute data collection. PinnacleTM 100 DVK devices from
Laird Connectivity manufacturing company in Akron, OH, USA, were adopted as gateway
elements which were equipped with a SIM card for connectivity purposes. Notably, we
harnessed Wi-Fi for ibNav and Bluetooth for Pinnacle to facilitate data transmission from
sensors to gateways. This, in turn, enabled onward transmission to the network layer,
housing two SDR devices from Nutaq. Leveraging BL654 sensors, we effectively captured
temperature, humidity, and pressure readings. With ibNav, our scope expanded to encom-
pass position data alongside the aforementioned metrics. The devices in use are depicted
in Figure 3.
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2.1.2. Gateway and Connectivity Domain

With the inclusion of network simulators, we can emulate LTE-M, an optimal con-
nectivity protocol, to achieve fast, high-rate data transfer with minimal latency [19]. The
network domain ensures the smooth transition of data from the sensor/actuator domain to
the storage and processing domain.

Our experimental configuration incorporated two Nutaq PicoLTE second-generation
devices, skillfully simulating two mobile network operators (MNOs), as shown in Figure 4.
Leveraging the capabilities of PicoLTE, we established a dynamic and robust simula-
tion platform. This enabled the creation of an LTE-centric network environment for our
MIoT experiments and streamlined the assessment of our MIoT system’s performance
and behavior.
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Nutaq’s first-generation PicoLTE showcases a range of attributes, making it a com-
pelling solution for various LTE needs. Characterized by its compact and portable design,
this all-in-one integrated solution offers support for LTE Cat 0, Cat 1, Cat M1, Cat NB1, and
Cat NB2, ensuring compatibility across multiple LTE generations. The cost-effectiveness
and affordability of this solution stands out, providing an accessible option for diverse
deployments. Configuration support is offered for all LTE bands, encompassing both the
Frequency Division Duplex (FDD) and Time Division Duplex (TDD) modes.

2.1.3. Data Retention and Processing Domain

Within our envisioned model, this specific domain assumes the critical role of pre-
serving and performing real-time analytics on the massive amount of data generated by
IoT devices. By utilizing data retention regulations in Apache Kafka, we achieve the
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dual advantage of customized data storage duration and the capability to execute various
data manipulations. These manipulations encompass aggregation, filtering, data-type
transformation, field redaction, etc.

Simultaneously, Apache Druid facilitates real-time data processing, enhancing the
framework’s capacity for instantaneous analytics. In data analytics, the choice between a
data warehouse and a real-time analytics database hinges on the task at hand. Snowflake,
a notable example of a data warehouse, excels at reporting and data consolidation. Its
cost-efficient architecture prioritizes low-cost storage and allows for concurrency through
clustering, making it ideal for periodic reports and insights. In contrast, Apache Druid
represents the domain of real-time analytics databases, specifically designed for interactive
data conversations with sub-second response times, high concurrency, and flexibility.
Moreover, Druid’s dynamic schema approach adapts to changing data, while its focus
on low-latency querying and real-time analytics makes it a powerful solution for swiftly
processing large volumes of streaming data. Table 2 provides a comparison in this regard.

Table 2. Summary of Apache Druid advantages vs. data warehouse.

Data Warehouse Apache Druid as a Real-Time Analytic Tool

Provides reporting without considering
performance

Provides reporting while performance is
important (interactive data conversation)

Focuses on low cost Focuses on low latency (fast)

Cluster concurrency High concurrency

Inflexible, locking (fixed schema) Flexible in heterogenous data types (fixed
schema, flexible schema)

2.1.4. Secured/Immutable Storage Domain

In this domain, the blockchain and database collaborate to establish a decentralized
and secure ledger. This partnership guarantees data integrity and immutability by pre-
serving hashed versions of the transmitted data. Serving as a conduit, Kafka receives data
from devices and conveys it through the pipeline to the database. Following this, the data
undergo a secure hashing process, and the resultant hash is archived within the blockchain,
creating an immutable history of the initial data.

In our research, we incorporated the Inter Planetary File System (IPFS) to assist the
blockchain. This integration facilitates the hosting of produced MIoT data, improving the
overall system’s performance. IPFS serves as a valuable complement to blockchain since
it functions as a decentralized peer-to-peer network for file sharing and storage, relying
on unique resource addresses to locate and retrieve data through Distributed Hash Tables
(DHTs). The IPFS efficiently minimizes redundancies and conserves storage space using
file hashes. It is essential to note that IPFS operates differently from blockchain. Once a
file is uploaded to the network, it is impossible to be removed intentionally. However,
IPFS necessitates periodic cache clearing, gradually phasing out less popular files from the
network [20].

2.1.5. End-User Domain

Within IoT ecosystems, the end-user domain delivers significant value to its desig-
nated users. This domain offers a user-friendly interface for users that allows them to
log in and to monitor their IoT devices. In other words, in a smart device ecosystem,
this domain is responsible for analyzing sensor data, generating visual representations of
device performance, and providing a user interface for initiating firmware upgrades. These
upgrades ensure that devices remain equipped with the latest features, security enhance-
ments, and performance improvements. Users can effortlessly initiate firmware updates
through the application interface, ensuring device maintenance and feature enhancement.
Consequently, the end-user domain in the IoT ecosystem serves the dual purpose of data
visualization and firmware management.
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User authentication within this domain is paramount to enable communication with
the blockchain. To ensure secure access, a two-layer authentication mechanism is employed.
The first layer handles the initial user authentication, while the second layer leverages the
blockchain’s inherent authentication procedures. Both layers work in tandem to verify
the user’s identity. The data presented to the user are based on their specific needs and
access credentials. This layer acts as the gateway for user interaction with the blockchain,
enabling users to submit requests and to receive responses. Additionally, this layer offers
the flexibility to develop other applications, specified for individual user requirements [19].

2.2. Publish/Subscribe Method for Data Retention and Processing

The publish/subscribe messaging approach is characterized by the sender (publisher)
of the data which is not explicitly targeting a particular recipient. Instead, the publisher
categorizes the message in some manner, and the recipient (subscriber) subscribes to receive
specific categories of messages. Typically, publish/subscribe systems employ a broker, a
central hub where messages are published [21].

Figure 5 depicts the logic behind the publish/subscribe system architecture. Within
this system, numerous producers and consumers are at play. Each producer corresponds
to an application or device responsible for generating diverse data types—such as tem-
perature, humidity, pressure, position tracking data, etc.—which are then transmitted to
the central broker. On the other side, consumers have the flexibility to asynchronously
subscribe to specific data types as needed. This approach greatly surpasses the traditional
request/response or point-to-point methods. To effectively organize and manage messages
within the broker, a system of topics is employed, and these topics are further divided
into partitions.

Sensors 2023, 23, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 5. The logic behind publish/subscribe system architecture. 

2.2.1. Apache Kafka as Stream Processing Platform 
Apache Kafka, a platform which uses the publish/subscribe method, emerged as a so-

lution to the challenges posed by traditional request/response messaging systems. A data-
base commit log in Kafka serves the purpose of maintaining customized durations so that 
the data can be read consistently. Furthermore, Kafka’s data can be distributed across the 
system, offering increased safeguards against failures (availability) and substantial potential 
for performance improvement. 

The current state of Apache Kafka is undeniably exciting. Kafka has been adopted by 
numerous organizations all around the world. This open-source platform has rapidly as-
cended as one of the fastest-growing projects in the open-source community [22]. At its core, 
Kafka drives the trend of efficiently handling and analyzing data streams. Illustrated in Fig-
ure 6, Apache Kafka comprises fundamental components, namely producer, cluster, broker, 
topic, partition, and consumer. 
• Broker: Within Kafka, a multitude of brokers exist in the ecosystem. Their primary 

responsibility is to accept messages from producers and to subsequently commit 
them to a designated Kafka topic. 

• Producer: Producers are responsible for creating new messages and delivering them 
to a Kafka topic in a specific broker. 

• Consumer: Consumers subscribe to one topic or sometimes multiple topics and read 
messages. Since consumers store the tracking history of the consumed data, they can 
pause and resume their consumption progress without losing their position. 

• Cluster: In the Kafka ecosystem, clusters can house multiple brokers within them. 
Within each cluster, there exists a broker tasked with the crucial duty of monitoring 
broker failure. This broker is called the controller. 

Figure 5. The logic behind publish/subscribe system architecture.

Apache Kafka as Stream Processing Platform

Apache Kafka, a platform which uses the publish/subscribe method, emerged as a
solution to the challenges posed by traditional request/response messaging systems. A
database commit log in Kafka serves the purpose of maintaining customized durations so
that the data can be read consistently. Furthermore, Kafka’s data can be distributed across
the system, offering increased safeguards against failures (availability) and substantial
potential for performance improvement.
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The current state of Apache Kafka is undeniably exciting. Kafka has been adopted
by numerous organizations all around the world. This open-source platform has rapidly
ascended as one of the fastest-growing projects in the open-source community [22]. At its
core, Kafka drives the trend of efficiently handling and analyzing data streams. Illustrated
in Figure 6, Apache Kafka comprises fundamental components, namely producer, cluster,
broker, topic, partition, and consumer.

• Broker: Within Kafka, a multitude of brokers exist in the ecosystem. Their primary
responsibility is to accept messages from producers and to subsequently commit them
to a designated Kafka topic.

• Producer: Producers are responsible for creating new messages and delivering them
to a Kafka topic in a specific broker.

• Consumer: Consumers subscribe to one topic or sometimes multiple topics and read
messages. Since consumers store the tracking history of the consumed data, they can
pause and resume their consumption progress without losing their position.

• Cluster: In the Kafka ecosystem, clusters can house multiple brokers within them.
Within each cluster, there exists a broker tasked with the crucial duty of monitoring
broker failure. This broker is called the controller.
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• Topic: In the Kafka system, messages are neatly categorized into topics, functioning
much like database tables. These topics play the role of maintaining data, ensuring its
retention over a pre-defined time frame. Each broker has the capacity to host one or
multiple topics.

• Partition: Within each topic, multiple partitions serve as containers for logging mes-
sages. When messages are sent to these topics, they are written to partitions using
an append-only approach, signifying that the data remain unaltered and immutable
during the reading process.

The data generated by IoT devices, serving as producers, is initially routed to Kafka
brokers. Within the broker infrastructure, the data are directed to a queue. Subsequently,
the broker ensures the data’s persistence by allocating them to a specific partition within
a designated topic. On the consumer side, which, in our project, is represented by the
blockchain component, subscriptions are made to the broker’s partition or topic, and data
are consumed from the queue asynchronously. Vital metadata, indicating which data
have already been processed and which remain, are maintained in Kafka Zookeeper. Any
necessary actions are relayed back to the broker, subsequently reaching the IoT devices. In
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this context, the blockchain serves as the producer, while IoT devices function as consumers
in our system. Latency is measured using the equation below:

Ttotal = TDB + WTDB + TB + TBC + WTBC + RTBC + RTBD (1)

This equation accounts for the various time components involved in the data process-
ing latency, including the time for publishing data by IoT devices (TDB), the wait time in the
queue for data processing at the broker (WTDB), the processing time in the broker layer (TB),
the time required to transfer the data processed by the broker to the blockchain component
(TBC), the wait time in the queue for data processing at the blockchain component (WTBC),
the time required to transfer the processed data back to the broker by the blockchain com-
ponent (RTBC), and the time required to transfer the information back to the IoT devices
through the broker (RTBD). The latency metrics observed within the queue are detailed in
the corresponding Table 3.

Table 3. Broker’s queue properties and description.

Queue Properties Description

Response Send Measures the time taken by the broker to send a response to the client
after receiving a request

Request Queue Measures the time a client request spent waiting in the broker’s request
queue to be processed

Request Local Measures the time taken by the broker to process a client request that
was directed to the same broker

Response Remote Measures the time taken by the broker to receive a response from
another broker in the Kafka cluster

Response Queue Measures the time a response spent waiting in the broker’s response
queue to be sent back to the client

Median Represents the 50th percentile of the distribution of the response time
for requests in this broker

3. Results and Analysis

The research presented in this article focused on addressing the challenges of data
processing and communication within MIoT using the publish/subscribe method and lever-
aging blockchain for secured data storage, with a specific emphasis on latency. Throughout
the experimentation and analysis, several key findings regarding latency were observed,
shedding light on the system’s performance and effectiveness. With reference to latency
measuring, we employed Kafka’s Confluent Center, as well as Apache Druid, a built-in
feature for showing statistics along with predefined use cases. In terms of hardware, we
utilized a Ubuntu machine with the configurations detailed in Table 4.

Table 4. Simulation parameters.

Parameters Value

CPU Intel(R) Core(TM) i7-9750U CPU @ 2.60 GHz

RAM 16 GB

Storage 512 GB

No. of Kafka clusters 1

No. of Kafka brokers 1 and 2

No. of Kafka topics 50 to 500

No. of messages per second 1000 to 100,000
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3.1. Latency of Apache Druid without Apache Kafka

In Figure 7, we present the latency measurements for Apache Druid in an environment
where Apache Kafka is not in operation. The graph illustrates how latency changes under
varying message rates. Notably, we observe a significant increase in latency when Apache
Druid is subjected to a message rate of 100,000 messages per second. It is essential to note
that the messages in this context consist of temperature, humidity, and pressure values,
which are not typically high in volume.
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3.2. Latency with Apache Kafka in Operation

In Figure 8, we explore the impact of incorporating Apache Kafka with different
numbers of topics in a single-broker setup. Here, we observe that the latency remains
consistently low, reaching less than 25 milliseconds even when processing 100,000 messages
per second. When compared to [5], their results reveal an average latency of approximately
25 ms for a workload of 60 messages per second for a message size of 10,000 KB. It is
noteworthy that their scale may not be indicative of MIoT, emphasizing the distinction in
the performance evaluation between the two studies. This fact demonstrates the efficiency
and reliability of our utilization of Kafka to handle data streams with diverse topics,
ensuring minimal latency for real-time data processing.

To sum up, our systems are designed to efficiently manage up to 100,000 sensors, each
capable of transmitting low-volume measurements every second, when accommodating
500 topics. All of these conditions apply when we are operating within a framework of
consistently low latency.
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3.3. Request Pool Usage

As previously discussed, each broker features a dedicated queue. When a producer
dispatches a message, it enters the queue, where it predominantly remains in an idle state,
occasionally transitioning to an active state. Request pool usage represents the average
capacity utilization of request handlers across all brokers. In other words, it quantifies the
percentage of time that the request handler threads are actively engaged and not in an idle
state. Figure 9 illustrates that, at a data rate of 100,000 messages per second, the request
handler is active for just 2.06 percent of the time, highlighting an exceptionally efficient
utilization of resources.
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3.4. Throughput and Availability Trade-off: One Broker vs. Two Brokers

In this section, we explore the crucial trade-off between throughput and availability
in our system. Our investigation uncovers an intriguing dynamic: a single-broker config-



Sensors 2023, 23, 9692 13 of 16

uration yields superior throughput, while introducing two brokers may result in a slight
degradation. In a dual-broker configuration, one broker assumes the role of the leader while
the other acts as the follower. This setup ensures the replication of partitions from the leader
broker to the follower broker in the event of a broker failure, guaranteeing continuous data
availability. Notably, with the introduction of two brokers, there is a marginal, albeit not
substantial, decrease in throughput, as depicted in Figure 10.
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3.5. Blockchain Performance

We utilized Hyperledger Caliper, a freely available open-source tool, to assess the
performance of our blockchain platform. Our testing involved Hyperledger Fabric utilizing
hardware identical to that of the Kafka test. In Figure 11, we present the performance
results for writing and reading transactions during our evaluation. The figure vividly
demonstrates a positive correlation between Transactions Per Second (TPS) and the number
of transactions, underscoring the efficiency of the proposed platform.
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Furthermore, our findings, as depicted in Figure 11, reveal that as the transaction count
escalates, the success rate of accepting read transactions remains consistently high. This
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observation underscores the network’s robust capability to handle massive read requests
while maintaining the accuracy and reliability of the data retrieval process.

4. Discussion

In this section, we will elaborate on positive aspects associated with adopting the pro-
posed MIoT framework which empowers enterprises to access a variety of valuable results
and to elevate their overall functioning. In this evolving landscape of the Internet of Things,
our paper champions the use of the publish/subscribe approach, integrating Apache Druid
and Apache Kafka for enhanced scalability and low latency in MIoT applications, which
reaches less than 25 ms for 100,000 sensors in contrast to existing works that report 25 ms
latency for significantly fewer devices. Supporting such a number of sensors, bolstered by
dual mobile network operators for connectivity resilience and, on the other hand, utilizing
Hyperledger Fabric for storage security, for which its performance remained high with
more than 800 successful TPS in 14,000 transactions, our model signifies a breakthrough in
MIoT innovation, opening avenues for future research and advancements. The positive
aspects can be divided into six sections, as follows:

• Low latency: Utilizing Kafka’s publish/subscribe architecture eliminates the need
for real-time app control and data allocation since data are available for subscription
from any IoT application in Kafka topics asynchronously. This attribute significantly
contributes to our framework’s low-latency performance.

• Data retention with Kafka: Kafka’s data retention feature is a crucial asset in our
framework. It guarantees that data remain accessible even in situations where la-
tency or disruptions may occur. By retaining data over extended periods, Kafka
ensures the reliability and resilience of the system, enabling historical data analysis
and auditing capabilities.

• Scalability: The framework’s scalability stems from Kafka’s ability to deploy brokers
across diverse clusters within various cloud services. Indeed, partitioning is crucial
because when a partition is scaled in multiple brokers, various consumers can concur-
rently consume from the same partition across diverse clusters, particularly beneficial
during high message traffic periods for a given Kafka topic.

• Availability: Our framework places a significant emphasis on ensuring uninterrupted
service availability. Kafka’s inherent fault tolerance, achieved through data replication
and distributed architecture, plays a pivotal role in this regard. Additionally, the
introduction of multiple brokers and leader–follower configurations, as discussed
earlier, contributes to high availability, as it guarantees data continuity even in the
event of a broker failure. Last but not least, having two MNOs guarantees connectivity
availability in case of connection failure.

• Integrity and security: Leveraging blockchain technology, our framework secures
data with a high commitment to integrity. Blockchain’s inherent immutability ensures
that data remain tamper-proof, maintaining the trustworthiness of stored information.
Robust security measures, including multi-layered authentication protocols and en-
cryption, further fortify our system against potential threats, providing a shield for
the protection of sensitive data.

• Monitoring and insights: Administrators can harness our framework to gain pro-
found insights from the massive data flow. With the ability to monitor data in real
time and to conduct in-depth analyses, administrators can make informed decisions,
identify trends, and proactively address issues, enhancing the overall efficiency of
IoT operations.

In summary, our study not only combines advanced technologies effectively to address
challenges in the realm of MIoT but also opens avenues for further research and innovation.
While the publish/subscribe method proves robust for many scenarios, it is important to
note its limitations, particularly in synchronous communication scenarios such as media
streaming. However, by integrating blockchain, Kafka, and robust security measures, we
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have constructed a framework that excels in terms of low latency, scalability, availability,
data integrity, and data retention, making it a powerful solution for various IoT applications.

5. Conclusions

As the landscape of the Internet of Things continues to evolve, the proliferation
of Machine-Type Devices (MTDs) has given birth to the concept of MIoT, a significant
trend in the realm of connected devices. In this paper, we have championed the use of
the publish/subscribe approach for data storage, delivering notable improvements in
scalability and latency for the interconnected world of IoT. By incorporating Apache Druid,
an analytical database software, into our framework, we have empowered real-time data
processing, further enhancing the capabilities of MIoT applications. Our strategic choice
of Apache Kafka as the data transmission platform has streamlined the flow of data from
sensors to brokers, creating an efficient subscription ecosystem that caters to the dynamic
needs of IoT applications. With our proposed architecture, we have projected that the
system could effectively support an IoT network comprising a minimum of 100,000 sensors,
each transmitting low-volume messages per second, across a network featuring 1 broker
and 500 topics.

Moreover, we have bolstered the resilience of our connectivity by simulating the
presence of two mobile network operators (MNOs) through Software-Defined Radio (SDR)
devices, providing a reliable backup for uninterrupted data transmission, even in the face
of connection failures.

Notably, our commitment to data security is unwavering, exemplified by our deploy-
ment of Hyperledger Fabric, a cutting-edge blockchain technology celebrated for its robust
security and data integrity features. The results of our comprehensive analysis underscore
the model’s core attributes, highlighting its remarkable scalability, unwavering availability,
robust security protocols, and minimal latency, positioning it as a formidable solution in
the ever-evolving area of MIoT.

Furthermore, it is essential to recognize that while the publish/subscribe approach
proves to be robust for numerous MIoT scenarios, its effectiveness in synchronous commu-
nication scenarios, such as media streaming, may have limitations. These aspects, among
others, open doors for future research and innovation, inviting further exploration into the
dynamic and multifaceted world of MIoT. As the MIoT ecosystem continues to expand
and diversify, our approach not only pushes the boundaries of what is currently achievable
but also sets a new standard for the future of connected devices and data processing. This
paves the way for ongoing advancements and innovations in the exciting field of MIoT,
providing a solid foundation for building smarter, more responsive, and highly efficient
IoT applications that cater to the diverse needs of our connected world.
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