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Abstract. Efficient adaptation strategies to climate change
require the estimation of future impacts and the uncertainty
surrounding this estimation. Over- or underestimating future
uncertainty may lead to maladaptation. Hydrological impact
studies typically use a top-down approach in which multiple
climate models are used to assess the uncertainty related to
the climate model structure and climate sensitivity. Despite
ongoing debate, impact modelers have typically embraced
the concept of “model democracy”, in which each climate
model is considered equally fit. The newer Coupled Model
Intercomparison Project Phase 6 (CMIP6) simulations, with
several models showing a climate sensitivity larger than that
of Phase 5 (CMIP5) and larger than the likely range based
on past climate information and understanding of planetary
physics, have reignited the model democracy debate. Some
have suggested that “hot” models be removed from impact
studies to avoid skewing impact results toward unlikely fu-
tures. Indeed, the inclusion of these models in impact studies
carries a significant risk of overestimating the impact of cli-
mate change.

This large-sample study looks at the impact of remov-
ing hot models on the projections of future streamflow over
3107 North American catchments. More precisely, the vari-
ability in future projections of mean, high, and low flows is
evaluated using an ensemble of 19 CMIP6 general circula-
tion models (GCMs), 5 of which are deemed hot based on
their global equilibrium climate sensitivity (ECS). The re-
sults show that the reduced ensemble of 14 climate models
provides streamflow projections with reduced future variabil-
ity for Canada, Alaska, the Southeast US, and along the Pa-
cific coast. Elsewhere, the reduced ensemble has either no
impact or results in increased variability in future streamflow,

indicating that global outlier climate models do not neces-
sarily provide regional outlier projections of future impacts.
These results emphasize the delicate nature of climate model
selection, especially based on global fitness metrics that may
not be appropriate for local and regional assessments.

1 Introduction

Understanding the impact of climate change on water re-
sources and hydrology is crucial for developing effective
strategies for mitigation and adaptation (Eyring et al., 2019;
Miara et al., 2017). The output of hydrological (e.g., Karls-
son et al., 2016), water quality (Prajapati et al., 2023), and
sediment transport (Sabokruhie et al., 2021) impact assess-
ment studies is dependent on the choice of the future cli-
mate change projections. Hydrologists primarily use climate
projection outputs from general circulation models (GCMs;
e.g., Tabari, 2020) to study these impacts. The Coupled
Model Intercomparison Project (CMIP) provides standard-
ized metadata from coordinated simulations by different cli-
mate modeling groups (Meehl et al., 2007). The more recent
Phase 6, CMIP6 (Eyring et al., 2016), is gradually replac-
ing the widely used Phase 5, CMIP5, from the last decade
(Hirabayashi et al., 2021; Martel et al., 2022; Zhang et al.,
2023).

The concept of “model democracy” has been widely used
in impact studies (e.g., Collins et al., 2013; IPCC, 2014), de-
spite criticism (Knutti, 2010). This approach considers cli-
mate simulations to be independent and equally plausible,
and it uses the ensemble mean and spread to define climate
model uncertainty. Research has shown that the average of
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equally weighted projections outperforms single models with
respect to simulating mean climatic patterns (Chen et al.,
2017; Reichler and Kim, 2008). However, this approach may
be less effective for the CMIP6 ensemble, as the validity of
some simulations is under question (Hausfather et al., 2022).

The CMIP6 ensemble includes a subset of “hot” models
that predict greater warming than previous predictions made
by CMIP5 (e.g., Kreienkamp et al., 2020). These hot models
have a climate sensitivity that exceeds the expected plausible
range, which is based on observations and our understand-
ing of planetary physics. They also exhibit a higher equilib-
rium climate sensitivity (ECS), a measure of the steady-state
temperature increase in the event of doubled carbon diox-
ide (CO2) concentrations in the atmosphere (Flynn and Mau-
ritsen, 2020; Zelinka et al., 2020). The range of ECS values
in CMIP6 models has increased to 1.8–5.6 ◦C compared with
2.1–4.7 ◦C in CMIP5, with an increase in the multi-model
mean of 3.9 ◦C in CMIP6 from 3.3 ◦C in CMIP5 (Zelinka et
al., 2020).

However, a plethora of evidence based on observations and
our understanding of planetary physics indicates that we can
confidently restrict the likely range of future warming trend
and, more importantly, give less weight to extreme estimates
(Liang et al., 2020; Tokarska et al., 2020). Recently, more re-
search has been focused on constraining the ECS based on
historical and paleoclimatic data (Knutti et al., 2017; Sher-
wood et al., 2020) or emergent constraints (Cox et al., 2018;
Nijsse et al., 2020; Shiogama et al., 2022b). For example,
Sherwood et al. (2020) used multiple lines of evidence and
concluded that the likely (with a 66 % chance) ECS value is
between 2.6 and 4.1 ◦C. Consequently, the most recent re-
ports published by the Intergovernmental Panel on Climate
Change (IPCC) have narrowed the likely ECS range to 2.5–
4 ◦C (IPCC, 2023). It should be noted that the uncertainty
surrounding the cooling impact (both direct and indirect) of
aerosols on radiative forcing poses challenges in constrain-
ing future warming estimates (Bellouin et al., 2020; Forster
et al., 2013; Smith et al., 2021). In essence, the current his-
torical measurements do not provide a clear understanding of
whether we are in a high-sensitivity, fast-warming scenario
accompanied by strong contemporary aerosol cooling or if
the situation is the opposite.

Climate change impact studies that include models with
a high ECS may be biased and may overestimate the mag-
nitude of impacts (Hausfather et al., 2022). Using the full
ensemble of CMIP6 projections without restricting the hot
models may no longer be the most appropriate option for im-
pact studies (Ribes et al., 2021). Incorporating climate mod-
els with high sensitivity into impact studies may potentially
lead to an overestimation of the overall economic conse-
quences arising from future climate changes (Shiogama et
al., 2022a). For instance, Shiogama et al. (2021) proposed a
subset selection method that involved screening out hot mod-
els as the first step. On the other hand, Palmer et al. (2023)
found that models with a higher sensitivity better represent

some key climatic processes over Europe. While they were
unable to provide robust physical explanations for their find-
ings, it is worth noting that hot models may provide valuable
information at the regional scale and that this information
may be more important than the global warming trend for
impact modelers, adding to the complexity of selecting mod-
els for regional impact studies.

The decision to weight climate models for impact studies
remains controversial, but it is difficult to ignore the poten-
tial pitfalls of using hot models in these studies (Hausfather
et al., 2022). This study aims to evaluate how including or
excluding hot models in a multi-model ensemble affects the
results of a large-scale hydrological climate change impact
study. This influence is measured in terms of the magnitude
and uncertainty in various streamflow metrics for 3107 North
American catchments.

2 Materials and methods

The data for this study were obtained from the HYSETS
database, which contains hydrometeorological data from var-
ious sources for over 14 000 catchments in North America
(Arsenault et al., 2020b). The database includes all neces-
sary data for the reference period of this study, including
catchment boundaries (in the form of shapefiles), streamflow
observations, weather observations (from stations as well as
multiple gridded and reanalysis datasets), and static catch-
ment descriptors (such as area, slope, elevation, land-use
fractions, and soil properties). This study used the ERA5 re-
analysis dataset, which was found to be a reliable alternative
to gauge observations in a previous large-scale comparison
study over the same study area (Tarek et al., 2020), for me-
teorological data. To ensure representativeness, a subset of
HYSETS catchments were selected using filters. First, catch-
ments with drainage areas below 500 km2 were excluded, as
daily hydrological models would be inappropriate for mod-
eling hydrological processes at smaller scales. Next, catch-
ments required at least 10 years of data to ensure sufficient
data to successfully calibrate hydrological models and bias-
correct climate models. Overall, 3107 catchments were re-
tained.

Table 1 presents the list of 19 CMIP6 GCMs selected
for this study. This list includes five hot models, defined
by an ECS greater than 4.1. These models are as follows:
CanESM5 (ECS of 5.62), NESM3 (ECS of 4.68), IPSL-
CM6A-LR (ECS of 4.52), EC-Earth3-Veg (ECS of 4.3), and
EC-Earth3 (ECS of 4.2). This study will be able to compare
the uncertainty generated by the entire ensemble (19 mod-
els) to that of a reduced ensemble (14 models) obtained by
removing the 5 hot models.

The impact study in this paper uses a traditional top-down
hydroclimatic modeling chain consisting of one shared so-
cioeconomic pathway (SSP8.5), 19 CMIP6 GCMs, one bias
correction method, and one hydrological model. The study
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Table 1. The 19 GCMs selected in this study and their correspond-
ing ECS values.

GCM ECS

CANESM5 5.62a

NESM3 4.68a

IPSL-CM6A-LR 4.52a

EC-Earth3-Veg 4.3a

EC-Earth3 4.2a

ACCESS-ESM1-5 3.88b

GFDL-CM4_gr1 3.89b

GFDL-CM4_gr2 3.89b

MRI-ESM2-0 3.14a

MPI-ESM1-2-LR 3.02b

BCC-CSM2-MR 3.01a

MPI-ESM1-2-HR 2.98b

FGOALS-g3 2.87b

GFDL-ESM4 2.62a

NorESM2-LM 2.60a

MIROC6 2.57a

NorESM2-MM 2.49b

INM-CM5-0 1.92a

INM-CM4-8 1.83a

a ECS values were taken from Tokarska
et al. (2020). b ECS values were taken
from Hausfather et al. (2022).

focuses solely on GCM uncertainty and does not consider
other components, such as alternative SSPs, bias correction
methods, or hydrological models, which would add uncer-
tainty to future projections. These have been explored in
previous studies (e.g., Wilby and Harris, 2006; Chen et al.,
2011; Giuntoli et al., 2018; Troin et al., 2022) and are out-
side the scope of this work. The reference period is based on
the 1971–2000 time frame, while the future climate is based
on 2070–2099.

Figure 1 illustrates the methodological framework for each
study catchment (Arsenault et al., 2020a). Precipitation and
temperature data are first extracted from 19 CMIP6 climate
models under the SSP8.5 scenario for both the reference
and future periods. Using precipitation and temperature from
the ERA5 reanalysis over the reference period, climate data
are then bias-corrected using the multivariate bias correc-
tion (MBCn) method. These bias-corrected climate scenar-
ios are subsequently employed as inputs for a calibrated hy-
drological model to compute streamflows. These computed
streamflows are then employed to examine the impact of in-
cluding (or not including) hot models in the impact study,
using a set of defined metrics. Further details are provided
below.

Climate models are mathematical representations of the
Earth’s climate system, based on current understanding of its
physics and chemistry. They are formulated using simplify-
ing assumptions and parameterizations but may not fully cap-
ture the complexity of the real climate system due to limited

Figure 1. Methodological framework performed for each of the
study catchments.

observations and understanding. As a result, climate models
can be biased when compared with observations, due to fac-
tors such as model resolution, errors in reference datasets,
and sensitivity to initial conditions. To ensure realistic im-
pact simulations in impact studies, it is important to bias-
correct climate model outputs. In this work, Cannon’s (2018)
N -dimensional MBCn method was used to correct biases in
daily precipitation and temperature. MBCn is considered the
most advanced and efficient quantile-based multivariate bias
correction method, as reported by studies such as Chen et
al. (2018), Su et al. (2020), and Cannon et al. (2020). MBCn
transfers the distribution of observational data to the corre-
sponding distribution from the climate model while preserv-
ing the projection trends of the climate model simulation
crucial for climate change impact studies (Maraun, 2016).
No downscaling was performed because this study was con-
ducted at the catchment scale.

In this study, the GR4J lumped rainfall–runoff model (Per-
rin et al., 2003) was chosen to simulate streamflows. The
model was selected due to the large number of catchments,
which made it infeasible to use more complex, distributed
models. Additionally, lumped models use averaged tempera-
ture and precipitation at the catchment scale, which is more
consistent with the scale of GCMs, eliminating the need for
downscaling. Lumped models have been shown to perform
well with respect to simulating streamflows at catchment out-
lets (e.g., dos Santos et al., 2018; Reed et al., 2004). The
GR4J model is simple, efficient, and shows high performance
compared with other lumped conceptual models. It uses pre-
cipitation, potential evapotranspiration (PET), and catchment
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Figure 2. Study catchment location. The color scale corresponds to the hydrological model Kling–Gupta efficiency (KGE) calibration score
over the reference period. Only catchments with available data, a KGE values higher than 0.5, and an area larger than 500 km2 were selected.

surface area as inputs. To account for snow accumulation in
some catchments, the GR4J model is linked with the Ce-
maNeige snow module (Valéry et al., 2014), resulting in a
six-parameter model (GR4J-CN). The GR4J-CN model com-
bination has been used in many studies, including climate
change impact studies, and has been shown to perform well
under a wide range of conditions (e.g., Riboust et al., 2019;
Tarek et al., 2020; Wang et al., 2019). The calibration was
performed using the Kling–Gupta efficiency (KGE) metric.
The KGE metric (Gupta et al., 2009) directly combines the
bias, ratio of variance, and correlation into a single metric. It
provides a more robust and refined assessment of model per-
formance when calibrating hydrological models, addressing
the drawbacks of the Nash–Sutcliffe efficiency (NSE) met-
ric (Nash and Sutcliffe, 1970; Knoben et al., 2019). Figure 2
presents the location of the 3107 retained catchments, which
all have a KGE calibration value above 0.5.

The hydroclimatic modeling chain described above gen-
erated 19 different 30-year time series of daily streamflow
for the 2070–2099 future period, each corresponding to one
of the 19 GCMs listed in Table 1. Three streamflow metrics
were extracted from each 30-year time series, representing
mass balance (Qmean) and high (Qmax) and low (Qmin) flows:

– Qmean was obtained by averaging daily streamflow over
the 30-year period;

– Qmax was obtained by averaging the 30 annual maxi-
mum simulated streamflows;

– Qmin was obtained by averaging the 30 annual mini-
mum simulated streamflows.

These metrics will be used to assess the impact of removing
hot climate models across a range of flow conditions.

Figure 3 presents the three dispersion metrics used in this
study to compare the spread (or uncertainty) of future projec-
tions of streamflow metrics. For the three streamflow metrics,
19 values from the original ensemble and 14 from the re-
duced ensemble for both the reference and future periods are
extracted. The spread of the streamflow projections over the
reference period is small, but it is not zero due to imperfect
bias correction and the hydrology model’s strong nonlinear
response to precipitation and temperature inputs. The spread
is comparatively much larger in the future period, mainly due
to differences in the sensitivity and structure of the climate
models.

Total spread (TS) is defined as the full range of future
streamflow responses:

TS=metricmax−metricmin. (1)

The interquartile range (IQR) is defined as the distance be-
tween the 75th and 25th quantiles of the distribution, as
shown by the blue rectangle in the box plot in Fig. 3.
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Figure 3. Representation of the dispersion metrics used in this pa-
per. Each marker represents one of the 19 climate models. METRIC
refers toQmean,Qmax, orQmin, all in units of cubic meters per sec-
ond (m3 s−1).

IQR=Q75−Q25 (2)

Finally, the standard deviation (σ ) is the standard mathemat-
ical measure of dispersion. In the case of a normal distribu-
tion, the standard deviation and interquartile range are per-
fectly correlated, but this may not be the case for a skewed
distribution.

All three metrics have units of cubic meters per sec-
ond (m3 s−1) and are, therefore, dependent on catchment size
and, to a lesser extent, mean annual precipitation. To account
for this, the metrics will be presented in a nondimensional
form:

TSnd =
TS14

TS19
, (3)

where TS19 and TS14 represent the total spread for the full
and reduced ensemble, respectively. TSnd varies between 0
and 1: TSnd = 1 means that no reduction in total spread was
obtained by removing the five warm models from the ensem-
ble, whereas TSnd = 0 signifies that the total spread of the
reduced ensemble has been totally eliminated.

Similarly, for the interquartile range ratio, we find the fol-
lowing:

IQRnd =
IQR14

IQR19
. (4)

However, in this case, the potential values vary in the 0–
∞ range. More practically, a value below 1 indicates that
the IQR has been reduced by removing the five hot models
from the ensemble, whereas a value larger than 1 shows the
opposite. The latter is possible if the removed models are
somewhat close to the median of the ensemble.

Finally, for the standard deviation the following ratio is
used:

σnd =
σ14

σ19
, (5)

where a value below 1 indicates a smaller standard devia-
tion for the reduced ensemble, and the opposite for a value
above 1. σnd has the same possible range of values as IQRnd
(0–∞).

3 Results

Figure 4a presents the box plots of projected temperature in-
creases for each of the 3107 catchments and for each cli-
mate model. The box plots provide a visual representation
of key elements of the temperature increase distribution. The
median of the distribution is shown as the red line near the
center of the blue rectangle, which delimits the interquar-
tile range (Q75 and Q25 for the upper and lower ends of the
rectangle, respectively). The whiskers represent the 2.5th and
97.5th quantiles of the distribution, providing a 95 % cover-
age of the dataset. Quantiles below 2.5 and above 97.5 are
shown as dots. Results indicate that the distribution of the
projected temperature increases generally follows the same
order as the ECS values presented in Table 1. However, there
are some differences, which are not unexpected as global-
scale ECS values are compared to regional-scale 1T values.
The five hot models are ranked as the first, second, third,
fifth, and sixth hottest regional models based on median val-
ues (considering that GFDL-CM4_gr1 and GFDL-CM4_gr2
– fourth and fifth, respectively – are actually the same model
with different spatial resolutions).

Figure 4b presents the box plots of the projected changes
in relative precipitation between the future and reference pe-
riods

(
Pfut−Pref
Pref

)
. The box plots depict the distribution of the

projected precipitation changes for each of the 3107 catch-
ments. Results indicate that the hot models, identified by
their ECS values, are also among the models with the largest
projected changes in relative precipitation. Specifically, the
five hot models are all within the group of the eight wettest
models. The models with more modest increases in precip-
itation (e.g., MPI-ESM and ACCESS) are also among the
cooler models. This trend is expected, as a warmer atmo-
sphere can hold more moisture (up to 7 % ◦C−1, according to
the Clausius–Clapeyron relationship), leading to more pre-
cipitation. Increased precipitation may mitigate the antici-
pated impacts of warmer models, such as increased evapo-
transpiration.

In order to show regional patterns related to Fig. 4, Fig. 5
displays the mean 1T (Fig. 4a) and mean 1P/P (Fig. 4b)
ratios between hot models and normal models. For temper-
ature, a red color indicates that hot models are warmer than
the other models on average. For precipitation, blue colors
highlight increased precipitation in the hot models compared
with the normal models. Overall, the hot global models ex-
hibit a systematically larger temperature increase over the en-
tire study domain. The hot models mostly exhibit increased
precipitation compared with the normal models. However,
the Pacific coast of the US as well as some catchments in
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Figure 4. (a) Distribution of projected temperature increase (1T ) and (b) projected relative annual precipitation increase (1P/P ) for the
19 selected CMIP6 models for the 2070–2099 future period compared with the 1971–2000 reference period. Each box plot represents the
distribution of the projected increases for the 3107 study catchments. The climate models are ordered in terms of their global-scale ECS
values, starting with the largest on the left. The box plot whiskers correspond to the 2.5th and 97.5th quantiles, and a few catchment that were
beyond the y axis limits are not shown.

the Southwestern US exhibit a decrease in precipitation ac-
cording to the hot models. These observations underscore the
regional variability in temperature and precipitation patterns
when comparing hot and normal models.

Figure 6 presents the ratio of mean projected streamflow
changes (hot models / normal models) for Qmean, Qmax, and
Qmin. A blue color indicates larger projected streamflows
by the hot models. Results show spatial patterns that differ

depending on the streamflow metrics. Hot models project
higher mean flows over most of the study domain, except
in the southwestern regions, where increased evapotranspira-
tion nullifies potential increases in precipitation. For Qmax,
increases are mostly localized in the Eastern US, whereas
Qmin values are widely increasing in Canada and mostly de-
creasing in the US.
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Figure 5. Mean1T (a) and1P/P (b) ratios (hot models to normal
models). For 1T , a red color indicates that hot models are warmer,
on average, than their normal (non-hot) counterparts. For 1P/P , a
blue color shows that hot models are wetter than their normal (non-
hot) counterparts. The graphs represent the differences computed
between the future and reference periods.

Figure 7 presents the TSnd for mean (Qmean), annual
max (Qmax), and min (Qmin) streamflow obtained by remov-
ing the 5 hot models from the 19-member ensemble. A dark
red color indicates no reduction in TS with the reduced en-
semble, whereas lighter colors indicate a reduction. It can
be seen that there is a clear spatial pattern that is relatively
similar for all three streamflow metrics. The largest reduc-
tions in TS are seen in the northern regions as well as in
the US Southeast, and along the US Pacific coast for Qmean
and Qmin. For all other regions of the US, no reduction in
TS is observed. The reduced spread observed in the north-
ern regions is smaller for Qmax. Despite these trends, a lot
of variability remains present, with neighboring catchments
sometimes showing contrasting behavior. More specifically,
57.0 % of the catchments see a decrease in TS for Qmean,
53.3 % see a decrease for Qmax, and 61.7 % see a decrease
for Qmin.

The data from Fig. 7 are shown in the form of box plots
on the left side of each panel to better illustrate the range of
TS reduction. This shows that the median TSnd is relatively
high for all three streamflow metrics: 0.96 for Qmean, 0.95
forQmax, and 0.93 forQmin. This is primarily because a sig-
nificant number of catchments see no reduction in TS (43 %,
46.7 %, and 38.3 %, respectively). However, there is a signif-
icant reduction in TS observed in many catchments, and this
decrease is strongly dependent on the geographical location
of the catchments. Additionally, it can be seen that removing

Figure 6. Ratio of mean projected changes (hot models divided by
normal models) for (a) Qmean, (b) Qmin, and (c) Qmax. A blue
color shows that hot models project larger streamflows than their
normal (non-hot) counterparts.

the hot models has a greater impact onQmin than on the other
two metrics.

The TSnd is heavily impacted by outliers and may not
accurately represent the overall spread of models. Figure 8
presents the σnd for the three streamflow metrics. A red color
(σnd > 1) indicates that the model spread has increased fol-
lowing the removal of the hot models, whereas a blue color
(σnd < 1) corresponds to a decrease. Results indicate that re-
moving the hot models consistently reduces σnd in Canada
for Qmean and Qmin, as well as to a lesser extent for Qmax.
However, for the continental US, the results are more com-
plex, with a lot of regional variability. Removing outlier mod-
els in the North Central, Northeastern, and Southwestern US
results in an increase in σnd for both Qmean and Qmax. Over-
all, as shown in the box plots in Fig. 8, removing the hot
models likely reduces the spread in roughly two-thirds of
catchments, while one-third see an increase. These values
are larger than those obtained for TS. The trends seen in
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Figure 7. Total spread ratio
(

TSnd =
TS14
TS19

)
for Qmean (a),

Qmax (b), and Qmin (c) resulting from the removal of the five hot
models. Box plots are shown on the left side of each panel.

the IQRnd are also very similar to those of σnd (see Figs. S1
and S2 in the Supplement).

4 Discussion

Uncertainty is a key factor in assessing the impact of climate
change. Different models and techniques, including various
climate models, can lead to diverse climate projections and
scenarios. Climate change interacts with other stressors, such
as land-use change and population growth, in complex and
unpredictable ways, making it important to accurately ad-
dress uncertainty in climate impact studies to develop ef-
fective adaptation measures. Incorrectly representing uncer-
tainty can lead to poor adaptation.

With the increased future temperatures, an intensification
in the hydrological cycle is expected. However, this does
not guarantee an automatic increase in water flow rates.
This is because the rise in average temperature can also
have a considerable impact on evapotranspiration. The out-
come of these two factors working together is complex and
varies based on the geographical location and primary cli-

Figure 8. Standard deviation ratio
(
σnd =

σ14
σ19

)
for Qmean (a),

Qmax (b), and Qmin (c) resulting from the removal of the five hot
models. Box plots are shown on the left side of each panel.

mate zones. The research paper indicates that regions char-
acterized as hot tend to be associated with increased precipi-
tation, further complicating the relationship between temper-
ature and water flow.

Results show that removing the hot models is likely to re-
duce the spread of three streamflow metrics. Between 60 %
and 75 % of catchments show a decrease in the spread of
future streamflow projections, indicating that the hot mod-
els are outliers or are further from the mean than the av-
erage model. In such cases, keeping the hot models would
result in an overestimation of future streamflow uncertainty.
However, removing the hot models also led to an increase
in the spread in certain regions, indicating overconfidence in
the results. This means that, although they are outliers with
respect to the ECS, the hot models may not be outliers with
respect to impact studies. Generally, a reduction in spread
was evident in northern regions, such as Canada and Alaska,
as well as the coast of California and the Southeastern re-
gion of the US. Shiogama et al. (2022b) also concluded that
the inclusion of hot models leads to an overestimation of an-
nual mean precipitation increases in Alaska, Canada, and the
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Figure 9. Box plots of the average standard deviation ratio for
Qmean,Qmax, andQmin resulting from the removal of five random
models, after sampling 100 random combinations of five models.

western US, where there is a substantial decrease in the vari-
ability in streamflow metrics.

A reduction in the spread of future streamflow is expected
when removing the hot models or reducing the number of cli-
mate models. A bootstrapping methodology was used to de-
termine if the changes in spread were due to a reduction in the
number of models. This was conducted by selecting a ran-
dom sample of 14 (out of 19) models 100 times and comput-
ing the average standard deviation ratio. This was repeated
for all catchments, and the aggregated results are shown in
Fig. 9.

The results indicate that removing five random models
results in a decrease in the standard deviation ratio almost
75 % of the time for all three streamflow metrics, but the
median spread reduction ratio for this spread metric is ex-
tremely small (about 0.99 for all three streamflow metrics).
This shows that removing the five hot models has a much
larger impact than removing five random models. Therefore,
the spread reduction observed in many catchments is not
solely related to a reduction in the number of models.

At first glance, there is a strong physical reasoning for
removing climate models with equilibrium climate sensitiv-
ity (ECS) values exceeding those expected from current data
and the current understanding of planetary physics (Ribes et
al., 2021; Shiogama et al., 2021). However, it should be noted
that most impact studies are conducted at the regional or lo-
cal scale, and these models may not be considered outliers at
these scales. This study found that, although they may still
be among the hottest in the study domain, globally hot mod-
els are not consistently the hottest, raising questions about
whether their global behavior should automatically eliminate
them from regional studies.

In this study, the climate performance of these models
(such as their ability to represent climatic, hydroclimatic, or
hydrological metrics) was not evaluated. The goal was to
examine the impact of removing 5 hot models from a 19-

member ensemble. However, it is important to note that judg-
ing climate models based solely on their ECS values may re-
sult in the removal of models that have desirable characteris-
tics at the regional scale (e.g., Palmer et al., 2023). Addition-
ally, keeping hot models may also be useful from an impact
perspective because they may provide a clearer picture of fu-
ture changes, as internal variability is less likely to obscure
changes. This is similar to the rationale behind using high-
emission scenarios in impact studies, such as SSP8.5, even
though they may not be considered realistic scenarios any-
more (e.g., Hausfather and Peters, 2020). It is important to
consider worst-case scenarios when analyzing potential out-
comes, as high levels of greenhouse gas emissions or high
model sensitivity, such as those projected in SSP8.5 or high-
ECS models, are not unrealistic, even though they may be
less likely. While it is valuable to consider these high-end
scenarios, it should be made clear that they are indeed worst-
case scenarios.

In this study, the question of whether to remove the hot
models for impact studies is complex. Results showed that
removing these models increased the future uncertainty in
streamflow for about one-third of all catchments. This sug-
gests that these hot outliers may not always be hydrologi-
cal outliers when put through a hydrological modeling pro-
cess. Hydrological models are well known for being highly
nonlinear integrators of weather variables, such as tempera-
ture and precipitation, and these results align with findings
from other studies that have demonstrated the complex rela-
tionship between climate model projections and hydrological
projections (e.g., Chen et al., 2016; Ross and Najjar, 2019).
The fact that the CMIP6 hot climate models tend to be wet
models may also be a factor in these results, as increased
evapotranspiration could be offset by increased precipitation,
leading to somewhat average results for the wrong reasons.

The regional impact of model importance is also compared
(see Figs. S3 and S4, which demonstrate the total spread ratio
resulting from removing a single climate model and creating
an 18-member ensemble). Removing CanESM5 leads to a
clear reduction in the total spread in Alaska and the Yukon
(for Qmean and Qmin) and in the Southeastern US for Qmax,
indicating that CanESM5 is an outlier in these regions. Con-
versely, removing NESM3 does not result in significant de-
creases in spread over most of the study domain, as the high
ECS value of NESM3 does not automatically translate into
a correspondingly higher level of regional warming (see also
Fig. 4), demonstrating that it is not an outlier in most regions.
This underscores the strong regional differences among glob-
ally identified hot models.

The only uncertainty in this study is that originating from
GCM/Earth system models. As stated earlier, in most im-
pact studies, additional sources of uncertainty would also
be incorporated. Additional greenhouse gas emission sce-
narios would be selected as well as other impact models
(e.g., hydrology models). Downscaling and additional bias
correction may be performed. These additional components
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are likely to generate additional uncertainty which may, in
some cases, dwarf that of climate models. As such, many of
the differences observed between the original and reduced
climate model ensembles in this paper may have little im-
pact on the final uncertainty estimation. For example, for low
flows, many studies have shown that most of the uncertainty
lies within the hydrology models (e.g., Giuntoli et al., 2018;
Krysanova et al., 2018; Trudel et al., 2017) and that removing
climate models would have no impact on uncertainty.

The results show that there is no simple answer as to
whether or not including hot models in climate change im-
pacts studies. In the absence of any computational limita-
tions, we would recommend using as many climate models
as possible and then subsequently studying the impact of in-
cluding/excluding hot models. If the selection of a subset of
climate models is necessary (e.g., inability to use a large en-
semble due to limited computational capability or the cost of
running impact models) removing hot models may be a rea-
sonable option. Evaluating climate model fitness for impact
studies is a difficult endeavor, and, in addition to the ECS, ad-
ditional performance metrics should also carefully be taken
into account.

5 Conclusion

This study examines the impact of removing a subset of hot
climate models on the spread of future projections of stream-
flow for 3107 North American catchments. Three stream-
flow metrics were considered: mean annual streamflow and
the means of the respective annual maximum and minimum
streamflow, over the reference period (1971–2000) and future
period (2070–2099).

Hot climate models are determined based on their global
equilibrium climate sensitivity (ECS), whereas impact stud-
ies typically focus on the local to regional scale. The hot cli-
mate models remain among the hottest in our regional evalu-
ation, but they also tend to be among the wettest, potentially
leading to a complex hydrological response.

Our research revealed mixed impacts of removing the hot
climate models. A decrease in the variability in the projected
streamflow metrics was generally observed in Canada and
Alaska, the Southeast US, and the Pacific coast of the US.
However, in other regions, removing the hot models resulted
in no changes or, in some cases, even increases in the vari-
ability in the projected flows. This suggests that the hot mod-
els are not necessarily hydrological outliers, raising questions
about using global performance metrics rather than regional
metrics for model selection.

The findings of this study emphasize the importance of
carefully selecting climate models and the potential risks of
including inadequate models in impact studies. In the ab-
sence of constraints, it is recommended to use as many cli-
mate models as possible when determining impact uncer-
tainty and to assess the impact of subsets of climate models

(based on high global equilibrium climate sensitivity or other
performance metrics) a posteriori to evaluate the sensitivity
of the impact model to climate model selection. These results
highlight the need for further research on climate model fit-
ness and the proper selection of model subsets for impact
studies.
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