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Abstract: Aiming to solve the problems with easy false detection of small targets in river floating
object detection and deploying an overly large model, a new method is proposed based on improved
YOLOv5s. A new data augmentation method for small objects is designed to enrich the dataset and
improve the model’s robustness. Distinct feature extraction network levels incorporate different coor-
dinate attention mechanism pooling methods to enhance the effective feature information extraction
of small targets and improve small target detection accuracy. Then, a shallow feature map with 4-fold
down-sampling is added, and feature fusion is performed using the Feature Pyramid Network. At
the same time, bilinear interpolation replaces the up-sampling method to retain feature information
and enhance the network’s ability to sense small targets. Network complex algorithms are optimized
to better adapt to embedded platforms. Finally, the model is channel pruned to solve the problem of
difficult deployment. The experimental results show that this method has a better feature extraction
capability as well as a higher detection accuracy. Compared with the original YOLOv5 algorithm,
the accuracy is improved by 15.7%, the error detection rate is reduced by 83% in small target task
detection, the detection accuracy can reach 92.01% in edge testing, and the inference speed can reach
33 frames per second, which can meet the real-time requirements.

Keywords: river floating object detection; YOLOv5s; data augmentation; small target detection;
edge computing

1. Introduction

Water is one of the most crucial components of natural resources, with a total volume
of approximately 1.4 billion cubic kilometers. However, only 2.5% of this is freshwater, and
within freshwater, only 0.01% is suitable for human use [1]. Rivers are freshwater resources
that are relatively easy for humans to use and are important in our lives. However, with the
rapid development of industry and agriculture, the self-purification ability of river water
ecosystems is being seriously damaged, and ecosystem imbalances occur [2].

Water quality issues are a major challenge that humanity is facing in the twenty-
first century [3]. With the accelerated process of urbanization, river water resources face
contamination from various factors, such as heavy metals [4], chemical agents [5], plastic
products [6,7], and more. Specifically, plastic waste entering water bodies through different
pathways can result in the entanglement and ingestion of aquatic organisms, leading
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to death or reproductive issues among them. This, in turn, disrupts the entire aquatic
ecosystem. Plastic waste can further degrade into microplastics [8–10], adsorbing toxic
substances and causing widespread water pollution, posing a serious threat to drinking
water safety. In managed water bodies like ponds, lakes, and rivers, the survival of aquatic
organisms, primarily fish, is a crucial indicator in the water management system. If dead
fish are not removed in time, an ammonia reaction facilitated by microorganisms and
various enzymes will occur. Pathogenic bacteria carried by the dead fish, along with lipids,
spread throughout the water, posing a severe threat to aquatic life, water quality, and the
surrounding drinking water safety [11]. Therefore, real-time monitoring of visible floating
objects on the river surface significantly enhances the efficiency of timely detection and
treatment by managers. This approach can reduce the negative impact of floating pollutants
on organisms, fisheries, and tourism while minimizing the threat to drinking water safety.

With the traditional method, river managers usually manually inspect or view surveil-
lance videos to confirm the type and location of floating objects. These methods demand
substantial resources and are incapable of conducting 24 h uninterrupted real-time detec-
tion. Due to the diminutive size of certain floating objects, detection errors are prone to
arise during manual monitoring processes. With the application of computer vision, many
fields have rapidly developed, including face recognition [12], autonomous driving [13],
and medical image processing [14]. For the detection of floating objects in a river, we can
use target detection based on the CNN (Convolutional Neural Network, CNN). Target
detection technology mainly realizes the localization of a target, which is classified into two-
and one-stage algorithms. Feature extraction is used in the two-stage algorithm, and it then
generates an RP (region proposal, RP) and locality regression. These representative algo-
rithms are R-CNN [15,16], Faster R-CNN [17,18], and SPP-Net [19], which are characterized
by high accuracy. The one-stage algorithm performs localization regression directly after
feature extraction. These representative algorithms are YOLO [20–22], SSD (Single Shot
MultiBox Detector, SSD) [23,24], and RetinaNet [25], which are characterized by being fast.
Many researchers have adopted different algorithms and targeted improvements according
to unique business scenarios, with the main objective of improving detection accuracy
or speed. In this paper, we adopt YOLOv5 [26,27] as the river drift detection algorithm.
YOLOv5 has better accuracy and speed. This paper is dedicated to improving the detection
effect of floating objects by improving YOLOv5. For target detection with CNN, a large
number of the data samples are primary, and these samples are trained to continuously
update the relevant weights to achieve better detection results. How to obtain more data
that are valid samples with a limited number of datasets is the first problem we face. Then,
for the specific context of the detection of floating objects on the water surface in this paper,
surveillance cameras are often used to obtain data. The cameras are deployed at a certain
distance from the river, and thus, more small targets are detected. Since small targets
occupy fewer pixels in an image and contain less feature information, how to better extract
feature information is one of the main problems that must be solved in this paper. Finally,
the video transmission post-processing approach causes a certain delay, which is deployed
using edge computing [28,29] in this paper. This limits the volume and computational
capacities of the model due to the limited arithmetic power of the edge nodes.

Our main contributions in this article are as follows:

• An enhanced coordinate attention mechanism is incorporated into the YOLOv5 fea-
ture extraction network, and the FPN (Feature Pyramid Network, FPN) is refined to
strengthen the fusion capability of feature extraction.

• The complex operators in the network are optimized for better adaptation to embedded
platforms at the edge.

• A small target data augmentation method based on Mosaic is introduced to the
model. The model’s robustness is improved by adding data samples containing
more small targets.

• A channel-level pruning method is used to compress the model volume, which is then
deployed in edge devices for testing.
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• Ablation experiments were performed to verify the effectiveness of the improved
model, as well as to compare and analyze the performances of different models in an
edge environment.

The remainder of this article is organized as follows. Section 2 summarizes the related
work on target detection, in particular, surface floating object detection. Section 3 elucidates
the original network architecture of YOLOv5 and the improved YOLOv5 network in this
paper. Section 4 outlines the datasets and experimental environment employed in this
study. Section 5 presents the metrics utilized for network performance evaluation, training
outcomes, as well as experimental results and analyses. Section 6 provides a summary and
discussion of desirable improvements in this domain and outlines future work.

2. Related Works

In recent years, many researchers have used various methods to classify and detect
floating objects on water surfaces. These include radar detection, wireless signals, back-
ground segmentation, and deep learning, such as the method used in this paper. In this
section, we will discuss and analyze the above methods. A method combining texture
detection in a spatial domain and elastic detection in a frequency domain was proposed
in [30]. Compared with the traditional method, the detection performance was improved,
and the accuracy was higher. In terms of inference speed, the average time elapsed is
0.504 s, which cannot meet the speed of real-time detection. The authors of reference [31]
used a 3D LIDAR (Light Detection and Ranging, LIDAR) method fused with a target
detection network, and this can reduce the interference of the water background and
improve the recognition rate. However, this method increased the deployment cost,
while the low detection speed means that it could not meet the real-time requirements.
The authors of reference [32] introduced a GMM (Gaussian Mixture Model, GMM)-based
segmentation method for detecting floating objects on a water surface. The authors
segmented the water surface floaters by improving the background update strategy and
then transferred the GMM results to the HSV color space. Then, a light and shadow
discriminant function was used to solve the light and shadow problems, as well as
foreground smoothing. The method can effectively eliminate the effects of water surface
illumination and ripples, but its detection capacity is not ideal for small targets with a
relatively small number of pixel points.

In deep learning-based object detection methods, the YOLOv5 algorithm is used to
detect floating objects on the water surface in [33]. In the feature extraction network, the
initial topology structure is introduced to enhance feature extraction and optimize the loss
function to improve the speed and accuracy of detection box regression. For waterway
floating object detection, the authors of reference [34] added a feature attention mecha-
nism to the YOLOv5s network, while enhancing the Mosaic method to improve small
target detection, as well as training by extending the data. The authors experimentally
demonstrated that the method could improve the detection accuracy, and the detection
speed could reach 42 FPS (Frames Per Second, FPS). However, in edge devices, the com-
putational power is limited, and further validation is needed to see if the detection speed
can meet the real-time requirements. The real-time detection of surface floating objects
using an improved RefineDet model was proposed in [25]. Deep-level feature extraction
was added, and the feature fusion was performed to improve the detection accuracy. The
anchor point parameters were adjusted to match the multi-scale objects, and a focal loss
function was introduced to solve the foreground–background imbalance problem. The
authors of reference [35] improved the YOLOv3 algorithm to address the deployment and
application of floating object detection algorithms on embedded devices such as drones.
They used a MobileNet network instead of Darknet53 as the backbone network to reduce
model parameters and computational complexity, and obtained more accurate and rep-
resentative prior boxes for prior box clustering. The authors of reference [36] improved
the localization accuracy of YOLOv3 by improving the k-means clustering algorithm to
obtain a priori frames. Category activation mapping replaced the bounding box-based
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localization method with pixel point-based localization. While this method effectively
reduced the target localization errors, the model’s weight was not sufficiently light enough
for practical deployment and use. The authors of reference [37] provided a dataset on
floating debris on water surfaces and improved the ability to detect small objects by adding
feature and detection layers of different scales to mainstream object detection network
models. The above methods are feasible for surface floating object detection, but the deep
learning-based target detection method is more convenient and efficient than the other
methods are. However, different strategies need to be developed for different application
scenarios. In this paper, we improve the YOLOv5s network to solve a small target detection
problem (partial research results were published in the IEEE international symposium
on broadband multimedia systems and broadcasting BMSB 2023 [38]) and improve the
detection accuracy. This enables the YOLOv5 network to achieve a detection accuracy of
93.6% for small targets, with a detection speed of 36 FPS. The model is also channel pruned,
as well as deployed on an edge-computing platform to determine the model’s performance.
This makes the improved network in this paper similar to practical applications and it
obtains more reference experimental data.

3. Methods
3.1. Yolov5 Network Structure

The YOLOv5s model is among the smallest variants in terms of depth and width
compared to other versions. The network structure is divided into four components: input,
backbone, neck, and prediction. The YOLOv5s network structure is illustrated in Figure 1.
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The input section primarily handles image scaling and normalization. The backbone
comprises the Focus structure and CSP (Cross Stage Partial, CSP). YOLOv5 incorporates
two CSP structures: CSP1_X in the backbone and CSP2_X in the neck. These structures
enhance the model’s learning capability, allowing it to maintain accuracy while remaining
lightweight. The neck utilizes an FPN + PAN (Pyramid Attention Network, PAN) structure.
FPN employs a top-down approach, transmitting feature information from higher layers
through up-sampling and fusion to generate feature maps for predictions. In contrast, PAN
aggregates strong localization features from various backbone layers to different detection
layers. GIOU (Generalized IoU, GIOU)_Loss serves as the bounding box loss function
on the prediction side, based on IOU (Intersection over Union, IOU), addressing issues
when bounding boxes lack overlap. In the post-processing phase of target detection, NMS
(Non-Maximum Suppression, NMS) is employed to improve the recognition of targets with
overlapping occlusion.

3.2. Improved YOLOv5 Network

The original YOLOv5 network is improved to identify floating debris in rivers. The
improved YOLOv5 network flowchart is shown in Figure 2. A Small Target Data Augmen-
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tation module has been added to the input module of YOLOv5, providing a more complex
background and more samples for the dataset. The coordinate attention mechanism is
added in the Backbone module to reduce the interference of redundant information. Si-
multaneously, we enhance the original Feature Fusion Network of YOLOv5, improving
the network’s capability to extract features from small targets. Additionally, to better suit
embedded development platforms, optimizations and pruning of certain operators in the
network are performed to enhance the detection capability when deploying the network at
the edge. The specific description of the improved YOLOv5 network is as follows.
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3.2.1. Small Target Data Augmentation

Traditional data augmentation methods enhance the dataset by applying operations
such as mirror flipping, scaling, and contrast enhancement to the images. The CutMix [39]
algorithm stitches two images before feeding them into the neural network for training. In
addition, the Mosaic [40] algorithm of YOLOv5s stitches four images so that the synthetic
image contains multiple targets at different scales. To address the problem of small targets
being easily missed and mistakenly detected in application scenarios, this paper proposes
a data augmentation method, STDA (Small Target Data Augmentation, STDA), for small
target training using the Mosaic algorithm. The STDA process [41] is shown in Figure 3.
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The procedure initiates with the fusion of four original images, followed by random
scaling down and the application of data augmentation operations, such as flipping and
merging. Subsequently, the two synthetic images are combined in a way that aligns their cen-
ter points. Finally, a fixed-size selection box is utilized to extract the new sample. This newly
created sample image encompasses a broader spectrum of small target classes and introduces
a more intricate training context compared to the original image. Consequently, it facilitates
effective training without requiring a large hyperparameter batch size, thereby enhancing
the training efficiency of the network model and reducing computational overhead.

3.2.2. Feature Extraction Network Incorporating Coordinate Attention Mechanism

SE (Squeeze and Excitation, SE) [42] and CBAM (Convolutional Block Attention Mod-
ule, CBAM) [43] are both widely used attention mechanisms. However, their fundamental
idea revolves around the limitation of simple convolution operations in capturing long-
range dependencies essential for visual tasks, as they primarily focus on processing local
neighborhoods. The proposed CA (Coordinate Attention, CA) can effectively solve the
above problems. The CA module aggregates the features and fuses them along horizon-
tal and vertical directions, respectively, which not only captures remote dependencies,
but also retains precise location information and can better capture the overall structural
information of the target.

Although the targets at different scales are detected by extracting features at different
levels using the YOLOv5s network, there are still problems, such as interference of complex
backgrounds with feature extraction for the detection of river floaters. Therefore, to address
the problem of small target floating objects in rivers containing less feature information
and being easily disturbed by background factors, this paper proposes to incorporate the
CA module in the feature extraction network CSP-Darknet of YOLOv5s. Since the shallow
feature maps contain a lot of useless background information, the deep feature maps contain
a lot of local feature target information. In this investigation, we adapt the pooling operation
of the CA module to suit diverse layers of feature maps. This adaptation introduces a novel
coordinate attention mechanism, denoted as MCA (Max-pooling Coordinate Attention,
MCA), utilizing maximum pooling. The MCA pooling layer is shown in Figure 4.
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The CA module first embeds coordinate information along two-dimensional directions
for feature map pooling encoding. For each channel xc of the input feature map X of
dimension (C, H, W), a global averaging pooling operation is performed along the horizontal
and vertical directions. Respectively, to obtain two one-dimensional feature codes, where
C, H, and W denote the number of channels, the height, and the width of the feature map,
and the pooling kernels of (H, 1) and (W, 1) are used in the horizontal (X-axis) and vertical
(Y-axis) directions, respectively. The specific calculations are shown in Equations (1) and (2).

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (1)

zw
c (w) =

1
H ∑

0≤j<H
xc(j, w) (2)

Using the concatenate mechanism, the row vector undergoes transposition, and is then
concatenated with the column vector. This concatenated vector subsequently undergoes
a series of operations, including 1 × 1 convolution, BN (Batch Normalization, BN), and
nonlinear activation, adhering to scientific writing conventions. The 1 × 1 convolution
operation is used for channel compression. The calculation is shown in Equation (3).

f = δ(F1([zh; zw])) (3)

where [zh;zw] denotes the transposition, followed by splicing along the spatial dimension;
δ represents the nonlinear activation function; F1 represents the convolutional transform
function; and the generated f represents an intermediate feature mapping encoding both
the horizontal and vertical directions.

Two feature vectors f h ∈ RC/r×H and f w ∈ RC/r×W , are split along the spatial dimen-
sion, and then 1 × 1 convolution and nonlinear activation operations are performed on these
two feature vectors. The hyper-parameter r introduced here denotes the compression rate,
and controls the depth of the output feature map by varying the number of convolution filters.
Then, 1 × 1 convolution is used to adjust the number of channels in f h and f w, which are
consistent with the input feature map X. The calculations are shown in Equations (4) and (5).

gh = σ(Fh( f h)) (4)
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gw = σ(Fw( f w)) (5)

where Fh and Fw denote the convolutional transform functions of f h and f w, respectively,
and σ denotes the Sigmoid activation functions. Finally, gh and gw are used as attention
weights, which are multiplied by the corresponding channels of the input feature map X to
generate the final attention-weighted feature map. The weighted calculation is shown in
Equation (6).

yc(i, j) = xc(i, j)× gh
c (i)× gw

c (j) (6)

The YOLOv5 network builds an FPN by extracting three feature layers. Due to the
high resolution of the feature map obtained by the shallow network, which contains rich,
local information, it can capture more information about the small targets.

In this study, we introduce a feature extraction layer with dimensions (160, 160, 128)
into the YOLOv5 network’s feature extraction module to enhance the detection of small
targets. Then, the CA and MCA modules are inserted after each of the four feature layers,
and the insertion positions are shown in Figure 5.
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3.2.3. Optimized Feature Fusion Network

In CNN, different convolutional layers can extract different target feature information
through convolutional operations. Integrating information from feature maps with varying
scales is advantageous for distinguishing targets, effectively addressing the challenge
of target scale variations, and enhancing the network’s detection performance. In the
YOLOv5s network, the FPN transmits high-level semantic information in a top-down
fashion. Additionally, a bottom-up pyramid is employed to convey location information,
improving feature fusion across different layers and augmenting the network’s capacity to
learn features.

For small target detection, an excessively high sampling rate can result in the loss of
feature information, thereby affecting the detection effectiveness. In the previous subsection,
we added a feature layer of size (160, 160, 128) to the feature extraction network. The 4×
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down-sampling rate retains more target feature information than the other high sampling
rates do. As shown in Figure 6, we combine the added feature layer with the other three
original feature layers to construct a new Feature Pyramid Network.
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The up-sampling operation in the FPN network uses the nearest-neighbor interpola-
tion algorithm. Although this algorithm is simple, there are obvious mosaic and jagged
phenomena, which cause a large reduction in image quality. However, this undoubtedly
increases the difficulty of detection for small targets that occupy fewer pixel points. In
this paper, we adopt the bilinear interpolation method instead of the nearest-neighbor
interpolation method. The bilinear interpolation method considers the influence of correla-
tion among the four surrounding neighboring points during the calculation process. This
effectively addresses the limitation of discontinuous nearest-neighbor interpolation.

3.2.4. Network Optimization for Edge Devices

In the embedded devices at the edge, convolution operations can be better adapted,
and small size convolutions have a faster computational speed than large size convolutions
do. In YOLOv5, the Focus module is designed to retain more image information. However,
due to the fact that this information is located at a lower level, its practical application
has a limited impact on improving the network’s detection accuracy. Additionally, most
chip manufacturers do not provide a Focus interface, which hinders the conversion and
deployment of the YOLOv5 model. To achieve better hardware support, we opt to replace
the Focus module with a convolutional layer of stride 2 and size 6 × 6. As shown in
Figure 7, the comparative results indicate that both approaches possess computational
capabilities, and the convolutional layer has fewer parameters.
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The SPP (Spatial Pyramid Pooling, SPP) module initially reduces the input channels
by half using a convolutional module. Subsequently, it performs three parallel max-pooling
operations on the feature map, followed by concatenating and merging these results with
the original features. Finally, it enlarges their size using a convolutional module, with filter
sizes of 5, 9, and 13; larger filter sizes require more computation and parameters. Small
filter sizes have a smaller receptive field, and using small-size pooling directly instead
of large-size pooling may lead to the loss of global information, affecting the network’s
detection performance. In this study, we use 2, 3, and 5 consecutive 3 × 3 pooling layers in
the SPP module to replace 5 × 5, 9 × 9, and 13 × 13 pooling, respectively.

3.2.5. Model Pruning

The network depth and width of YOLOv5s are only about 1/3 and 1/2 as large as
those of the standard network, respectively. Nevertheless, the model continues to impose
computational demands on edge nodes that have restricted computational resources. The
direct deployment of the model does not result in the best detection performance, and it
is difficult to meet the real-time requirements of business scenarios. Model pruning [44]
can compress the model’s size and improve its inference speed. Unstructured pruning is
computationally inefficient and often necessitates specific software or hardware accelerators
for implementation. On the other hand, the fine-grained, excessively conservative pruning
approach lacks flexibility and complicates control of the scale of the pruning process. In
this paper, we employ structured channel-level pruning [45]. This method correlates the
scale of the BN layer with those of the convolutional channels and selectively prunes a
certain percentage of channels, using it as an indicator to identify the important channels.

The CBL (Convolutions with Batch Normalization and Leaky, CBL) modules in the
YOLOv5s network mainly consist of three components: the convolutional and BN layers,
and the ReLU (Rectified Linear Unit, ReLU) activation function. These components are re-
sponsible for performing convolution, normalization, and activation operations. According
to the above method, we prune the convolutional layers in all the CBL modules. Firstly, the
following transformation is performed on the BN layer, as shown in Equation (7).

x̂ =
x− µB√

σ2
B + ε

; y = γx̂ + β (7)

Using the parameter in the BN layer as the required scale for pruning, this will not
impose an additional overhead on the network. x and y represent the inputs and outputs
of the BN layer. B = {x1, x2,. . ., xn} indicates the current small batch; µB and σB represent
the mean and standard deviation of the input activation degree pair B, respectively; γ
and β represent the trainable affine transformation parameters with respect to scale and
displacement, respectively. Jointly training the network weights and these scale factors
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with sparse regularization involves adding the L1 regularity constraint, as depicted in
Equation (8).

L = ∑
(x,y)

l( f (x, W), y) + λ ∑
γ∈Γ

g(γ) (8)

where (x, y) denotes the training input and target, respectively; W denotes the trainable
weights; the first sum denotes the network normal training loss function; and the second
sum is the regularization of the scale factor. In this paper, we set g(λ) = |λ|, where λ is
penalized sparsity, and we used it to balance the two terms. After channel-level sparse
training, a model with many scale factors close to zero is obtained, as shown in Figure 8a;
then, we prune these channels with scale factors close to zero. Finally, we remove the
input–output connections of these channels and the corresponding weights to obtain a
more compact model (as shown in Figure 8b).
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Figure 8. Channel pruning process. (a) Shows the original network; (b) shows the pruned network.

For the YOLOv5s model used in this paper, we control the ratio by controlling the size
of the threshold T in the pruning process. For different datasets, the pruning effect will
be different. For the dataset used in this article, after pruning 55% of the convolutional
channels, the network detection accuracy and speed are very balanced. Therefore, the
pruning threshold in this article is set to 0.55.

4. Dataset and Experimental Environment
4.1. Datasets

In this paper, the dataset was mainly collected through the Internet and obtained by
taking our own photographs. The dataset in this paper contains 10,100 images of floating
objects, including four categories of plastic bottles, plastic bags, water plants, and dead
fishes. After the dataset was labeled with the labeling tool, the training, validation, and
test sets were divided in a ratio of 8:1:1, as shown in Table 1, and a sample of the main
categories of the dataset [38] is shown in Figure 9.

Table 1. Float dataset.

Classes Training Set Validation Set Test Set

Bottles 3280 410 410
Plastic bags 2560 320 320

Planktonic algae 1200 150 150
Dead fishes 1040 130 130
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4.2. Experimental Environment

To verify the effectiveness of the improvements to the YOLOv5 network in Section 3
and the performance of the model in real deployment applications, two experimental
environments are set up in this paper. The first of these is a network model training en-
vironment, where the effectiveness of each improvement module is verified in ablation
experiments. The second one is an edge deployment environment, in which the perfor-
mances of the different models are compared and analyzed. The test results are presented
in the next section. The main environment configuration and parameters are shown in
Table 2.

Table 2. Main environment configuration and parameters.

Environment System and Hardware Version and Hardware Model

Training environment
Systems Ubuntu18.04

Graphics card GeForce RTX 3090
Framework Pytorch

Edge test environment Data collection equipment 2 Megapixel 1/1.8” CMOS Smart Capture Camera
Embedded chips Hi3519AV100

In this paper, we use a network model based on edge computing to deploy surveillance
cameras around a river to collect data and use SOCs (Systems on a Chip, SOCs) to provide
arithmetic support to realize the analysis and inference of the data. We chose Hi3519AV100
from HISILICON (Shenzhen, China) as the edge node data processing unit. This is mainly
used in surveillance IP cameras, aerial drones, and many other products. It also has
a 2.0 Tops neural network computing performance, a dual-core CORTEX-A53 + IVE, a
hardware acceleration unit NNIE (Neural Network Inference Engine, NNIE), and a DSP
(Digital Signal Processor, DSP), supporting deep learning. Where 1.8” in Table 2 means
1.8 inches CMOS stands for Complementary Metal Oxide Semiconductor.

5. Results and Discussion
5.1. Evaluation Metrics

YOLO introduces the notion of an objectivity (confidence) score, reflecting the net-
work’s confidence in the presence of an object within a designated bounding box. A
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prediction is deemed a TP (True Positive, TP) if it satisfies the following criteria: the ob-
jectivity score exceeds or equals the confidence threshold, the predicted category aligns
with the true label, and the IOU within the true category surpasses or equals the IOU
threshold. If either of the latter two conditions do not hold, the prediction is a FP (False
Positive, FP). IOU is a metric used to evaluate the correctness of a bounding box, and it
represents the ratio of the intersection of the detection box to the ground truth and the
merged part. The experimental part of this paper introduces four metrics, precision, recall,
mAP (Mean Average Precision, mAP), and FPS, as quantitative criteria for judging the
effectiveness of the detection of the model, and the detection results are analyzed and
compared. Precision represents the percentage of TPs in all the predictions, and recall
represents the percentage of FPs in floating object detection. The mAP measures the ability
of the trained model to detect targets in all the classes. As a frame rate per second, the
FPS indicates the number of images that are processed per second to evaluate the speed of
object detection. Mathematically,

IoU =
D ∩ G
D ∪ G

(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

mAP =
∑k

i=1 APi

K
(12)

where D denotes the detection frame, and G denotes the ground truth; FP and FN are
false positives and negatives, respectively. The AP calculation can be defined as the area
contained by the interpolated precision–recall curve on the X-axis. This approach is called:
AUC (Area Under the Curve, AUC). K represents the number of target classes.

5.2. Network Training

During the training process, we set the number of iterations to 300, the weight decay
coefficient to 0.0001, the learning rate momentum to 0.937 for mitigating model overfitting,
and the maximum training batch to 32. The dynamics of precision, recall, and mAP are
illustrated in Figure 10, with the horizontal axis representing the number of training steps
and the vertical axis indicating the magnitude of each value.
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Figure 11 illustrates the loss function curve, with the lower values indicating a better
performance; the ideal value is 0. As the number of training iteration steps increases,
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the loss consistently decreases, stabilizing after 300 rounds. When the classification loss
decreases, this means that the classification prediction becomes more similar to the label,
which indicates more accurate classification. When the box loss decreases, this means that
the error between the predicted and labeled boxes becomes smaller.
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5.3. Experimentation and Analysis

For the improvement of the YOLOv5s network structure, we conduct the following
ablation experiments to verify the effectiveness of the proposed method: original net-
work and comparative experiments, involving adding CA and CA + MCA, respectively;
ablation experiments on each improved module in the network in this paper; compre-
hensive performance comparison experiments on the different network models in the
edge environments.

In this paper, we incorporate CA and MCA in feature layers at different depths, re-
spectively, to focus on the different levels of feature information. To verify the effectiveness
of the CA module on the original network and its ability to enhance the network after
adding the MCA module, we conduct the following experiments. Firstly, 200 images with
507 small target annotations are selected as the small target test set. The error detection rate
is the performance indicator in this test. The error detection rate represents the ratio of the
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number of mistakenly detected and missed small target objects to the total number of small
targets. The test results are shown in Table 3.

Table 3. Comparison of CA and MCA module ablation experiments.

CA MCA Error Detection/pc Error Detection Rate/% Model Size/MB

# # 18 0.035 14.10
• # 5 0.009 14.82
• • 3 0.006 14.82

From the above data, it is clear that the original network is not ideal for small target
detection, with 18 wrongly detected targets, and a false detection rate of 0.035%. The error
detection rate decreased by 0.026 percent after adding CA, and after replacing shallow CA
with MCA, the error detection rate decreased by another 0.003 percent due to the addition of
CA. With the addition of the attention mechanism, the mode size increased. In this paper, by
changing some CA modules to MCA modules, this only creates a difference in the method of
feature extraction and does not increase the model size, while improving the detection effect.
This shows that the data in this paper can effectively enhance the detection capability of the
network for small targets by incorporating a coordinate attention mechanism.

For the same homemade floater dataset, a second experiment is conducted, which
involves ablation, incorporating each improvement module in the YOLOv5s network.
According to the analysis of the data in Table 4, it is clear that the improved modules in
this paper all have differently improved detection accuracies. The inclusion of the attention
mechanism caused the largest improvement in accuracy, with a 4.09 percentage increase.
In the test after the incorporation of all the modules, the accuracy reached a maximum of
93.76%. Table 3 lists the performance indexes after incorporating each improved module in
YOLOv5s, respectively. Combining all the data, the improved modules in this paper can
effectively enhance the detection accuracy of YOLOv5s. It is evident that, compared to the
original network, the improved algorithm in this paper exhibits superior performance in
the test on small target floating objects in the river.

Table 4. Comparison of the results of the improved module ablation experiment.

No. CA + MCA New FPN STDA Precision mAP@0.5:0.95 Recall

1 # # # 0.8104 0.5213 0.8251
2 • # # 0.8513 0.5767 0.8259
3 # • # 0.8298 0.5260 0.8301
4 # # • 0.8368 0.5391 0.7914
5 • • # 0.8730 0.5669 0.8509
6 • # • 0.8797 0.5772 0.8760
7 # • • 0.8414 0.5405 0.8590
8 • • • 0.9376 0.5962 0.9081

The third experiment deploys the original and improved networks separately in the
edge test for comparative performance analysis. The test results are shown in Table 5.

Table 5. Performance of different networks in edge testing.

Algorithms Precision FPS Model Size/MB

YOLOv5s 0.8059 13 14.10
SSD300 0.8002 2 90.06

Faster R-CNN 0.8490 0.62 165.80
EfficientDet [46] 0.7801 6.4 16.22

Our Method 0.9201 33 4.31
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Mainly the original networks with and without channel pruning, and the improved
networks with and without channel pruning are tested in this paper. In this paper, the
network model not only requires a high accuracy and efficiency, but also a balance between
accuracy and speed to make the system work better. Analysis shows that for the edge
nodes with a limited arithmetic power, the oversized Fast R-CNN and SSD can perform
correctly, but the inference speed is too slow to meet the real-time requirement. EfficientDet
is a lightweight, scalable detection network, and it contains a total of eight models; the
accuracy and time complexity of the model increases with the model size [46]. As a small
object detection network, EfficientDet has a slightly higher computational cost than that of
YOLOv5s, while its detection accuracy is also lower than that of YOLOv5s. The pruned
network compressed the volume by 69% and improved the detection speed at the edge end
1.53 times, achieving an FPS of 33 and enabling real-time detection. The pruned network
reduced the detection accuracy by 1.75% compared to that of the training end of the
network. The small accuracy loss is acceptable when considering the speed improvement.

6. Conclusions

To ensure both the inference speed and accuracy of the YOLOv5 network at the
edge, this study has introduced improvements to the model, and the effectiveness of these
modifications has been validated through ablation experiments. The improved model
outperforms the other models in terms of its detection accuracy and speed by deploying
different models to compare and analyze various performance metrics. In this paper, using
the improved model, it achieved a 92.01% correction rate at the edge end and an inference
speed of 33 FPS, which meet the real-time performance. It provides a feasible solution for
the embedded deployment of river floating object detection.

In the future, we may face challenges posed by larger datasets or more intricate water
surface environments. For the enhanced YOLOv5 network model in this study, the next
crucial step involves improving the model’s capacity to handle noise information, thereby
addressing the dynamic nature of external environments. Furthermore, we will conduct
operator optimizations specifically tailored for designated embedded platforms to elevate
the overall model’s performance. Building upon the enhancements achieved in this study
for the YOLOv5 network model, our future endeavors will focus on utilizing YOLOv5
as the foundational unit of embedded platforms, contributing to the development of an
edge-coordinated target detection network.
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Enstitüsü Derg. 2021, 3, 129–132. [CrossRef]
3. Schwarzenbach, R.P.; Egli, T.; Hofstetter, T.B.; Von Gunten, U.; Wehrli, B. Global water pollution and human health. Annu. Rev.

Env. Resour. 2010, 35, 109–136. [CrossRef]
4. Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal

water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Inno. 2021, 22,
101504. [CrossRef]

5. Porretti, M.; Arrigo, F.; Di Bella, G.; Faggio, C. Impact of pharmaceutical products on zebrafish: An effective tool to assess aquatic
pollution. Comp. Biochem. Phys. C 2022, 261, 109439. [CrossRef] [PubMed]

6. MacLeod, M.; Arp, H.P.H.; Tekman, M.B.; Jahnke, A. The global threat from plastic pollution. Science 2021, 373, 61–65. [CrossRef]
[PubMed]

7. Lechthaler, S.; Waldschläger, K.; Sandhani, C.G.; Sannasiraj, S.A.; Sundar, V.; Schwarzbauer, J.; Schüttrumpf, H. Baseline Study on
Microplastics in Indian Rivers under Different Anthropogenic Influences. Water 2021, 13, 1648. [CrossRef]

8. Galloway, T.S.; Cole, M.; Lewis, C. Interactions of microplastic debris throughout the marine ecosystem. Nat. Ecol. Evol. 2017, 1,
0116. [CrossRef] [PubMed]

9. Jambeck, J.R.; Geyer, R.; Wilcox, C.; Siegler, T.; Perryman, M.; Andrady, A.; Narayan, R.; Law, K.L. Plastic waste inputs from land
into the ocean. Science 2015, 347, 768–771. [CrossRef] [PubMed]

10. Lamb, J.B.; Willis, B.L.; Fiorenza, E.A.; Couch, C.S.; Howard, R.; Rader, D.N.; True, J.D.; Kelly, L.A.; Ahmad, A.; Jompa, J.; et al.
Plastic waste associated with disease on coral reefs. Science 2018, 359, 460–462. [CrossRef]

11. Syanya, F.J.; Litabas, J.A.; Mathia, W.M.; Ntakirutimana, R. Nutritional fish diseases in aquaculture: A human health hazard or
mythical theory: An overview. Eur. J. Nutr. Food Saf. 2023, 15, 41–58. [CrossRef]

12. Chaudhari, A.; Bhatt, C.; Krishna, A.; Travieso-González, C.M. Facial Emotion Recognition with Inter-Modality-Attention-
Transformer-Based Self-Supervised Learning. Electronics 2023, 12, 288. [CrossRef]

13. Zhang, K.Y.; Amineh, R.K.; Dong, Z.Q.; Nadler, D. Microwave Sensing of Water Quality. IEEE Access 2019, 7, 69481–69493.
[CrossRef]

14. Phung, K.A.; Nguyen, T.T.; Wangad, N.; Baraheem, S.; Vo, N.D.; Nguyen, K. Disease Recognition in X-ray Images with Doctor
Consultation-Inspired Model. J. Imaging 2022, 8, 323. [CrossRef] [PubMed]

15. Hoang, T.; Hoang, D.; Jo, K.H. Realtime Multi-Person Pose Estimation with RCNN and Depthwise Separable Convolution. In
Proceedings of the 2020 RIVF International Conference on Computing and Communication Technologies (RIVF), Ho Chi Minh,
Vietnam, 14–15 October 2020.

16. Zhang, W.; Wang, S.H.; Sophanyouly, T.C.; Chen, J.Z.; Qian, Y.T. Deconv R-CNN for Small Object Detection on Remote Sensing
Images. In Proceedings of the IGARSS 2018—2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia,
Spain, 22–27 July 2018.

17. Widiyanto, S.; Wardani, D.T.; Wisnu Pranata, S. Image-Based Tomato Maturity Classification and Detection Using Faster R-CNN
Method. In Proceedings of the 2021 5th International Symposium on Multidisciplinary Studies and Innovative Technologies
(ISMSIT), Ankara, Turkey, 21–23 October 2021.

18. Zhang, X.; Cui, J.; Liu, H. Weed Identification in Soybean Seedling Stage Based on Optimized Faster R-CNN Algorithm. Agriculture
2023, 13, 2023. [CrossRef]

19. Zhang, X.B.; Zhang, Y.; Hu, M.; Ju, X.M. Insulator defect detection based on YOLO and SPP-Net. In Proceedings of the 2020
International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE), Bangkok, Thailand, 30 October–1
November 2020.

20. Zailan, N.A.; Mohd Khairuddin, A.S.; Khairuddin, U.; Taguchi, A. YOLO-based Network Fusion for Riverine Floating Debris
Monitoring System. In Proceedings of the International Conference on Electrical, Communication, and Computer Engineering,
Kuala Lumpur, Malaysia, 12–13 June 2021.

21. Song, W.; Suand, S.A. TSR-YOLO: A Chinese Traffic Sign Recognition Algorithm for Intelligent Vehicles in Complex Scenes.
Sensors 2023, 23, 749. [CrossRef] [PubMed]

22. Alqaysi, H.; Fedorov, I.; Qureshi, F.Z.; O’Nils, M. A Temporal Boosted YOLO-Based Model for Birds Detection around Wind
Farms. J. Imaging 2021, 7, 227. [CrossRef]

23. Liu, Z.P.; Fang, W.; Sun, J. SSD small object detection algorithm based on feature enhancement and sample selection. In
Proceedings of the 2021 20th International Symposium on Distributed Computing and Applications for Business Engineering
and Science (DCABES), Nanning, China, 10–12 December 2021.

24. Liu, S.C.; Shi, H.J.; Guo, Z. Remote sensing image object detection based on improved SSD. In Proceedings of the 2022 3rd
International Conference on Computer Vision, Image and Deep Learning & International Conference on Computer Engineering
and Applications (CVIDL & ICCEA), Changchun, China, 20–22 May 2022.

25. Zhang, L.L.; Wei, Y.X.; Wang, H.B.; Shao, Y.H.; Shen, J. Real-Time Detection of River Surface Floating Object Based on Improved
RefineDet. IEEE Access 2021, 9, 81147–81160. [CrossRef]

https://doi.org/10.47769/izufbed.862679
https://doi.org/10.1146/annurev-environ-100809-125342
https://doi.org/10.1016/j.eti.2021.101504
https://doi.org/10.1016/j.cbpc.2022.109439
https://www.ncbi.nlm.nih.gov/pubmed/35961532
https://doi.org/10.1126/science.abg5433
https://www.ncbi.nlm.nih.gov/pubmed/34210878
https://doi.org/10.3390/w13121648
https://doi.org/10.1038/s41559-017-0116
https://www.ncbi.nlm.nih.gov/pubmed/28812686
https://doi.org/10.1126/science.1260352
https://www.ncbi.nlm.nih.gov/pubmed/25678662
https://doi.org/10.1126/science.aar3320
https://doi.org/10.9734/ejnfs/2023/v15i81326
https://doi.org/10.3390/electronics12020288
https://doi.org/10.1109/ACCESS.2019.2918996
https://doi.org/10.3390/jimaging8120323
https://www.ncbi.nlm.nih.gov/pubmed/36547488
https://doi.org/10.3390/agriculture13102023
https://doi.org/10.3390/s23020749
https://www.ncbi.nlm.nih.gov/pubmed/36679542
https://doi.org/10.3390/jimaging7110227
https://doi.org/10.1109/ACCESS.2021.3085348


Water 2024, 16, 86 18 of 18

26. Dai, M.; Dorjoy, M.M.H.; Miao, H.; Zhang, S. A New Pest Detection Method Based on Improved YOLOv5m. Insects 2023, 14, 54.
[CrossRef]

27. Liu, X.; Chen, Y.J.; Liu, B.J. Target Recognition Algorithm Based on YOLOv5 Network and Depth Camera for 2D Interference
Elimination. In Proceedings of the 2022 IEEE International Conference on Advances in Electrical Engineering and Computer
Applications (AEECA), Dalian, China, 20–22 May 2022.

28. Kim, Y.; Yi, S.; Ahn, H.; Hong, C.H. Accurate Crack Detection Based on Distributed Deep Learning for IoT Environment. Sensors
2023, 23, 858. [CrossRef]

29. Donno, M.D.; Tange, K.; Dragoni, N. Foundations and Evolution of Modern Computing Paradigms: Cloud, IoT, Edge, and Fog.
IEEE Access 2019, 7, 150936–150948. [CrossRef]

30. Sun, X.; Deng, H.; Liu, G.; Deng, X. Combination of Spatial and Frequency Domains for Floating Object Detection on Complex
Water Surfaces. Appl. Sci 2019, 9, 5220. [CrossRef]

31. Zhang, R.B.; Xiao, Y.F.; Zheng, Y.N. Detection of Floating Objects on Water Surface Based on Fusion of Lidar and Vision. Appl.
Laser 2021, 41, 619–628.

32. Jin, X.L.; Niu, P.W.; Liu, L.F. A GMM-Based Segmentation Method for the Detection of Water Surface Floats. IEEE Access 2019, 7,
119018–119025. [CrossRef]

33. He, X.Q.; Wang, J.C.; Chen, C.B.; Yang, X.Q. Detection of the floating objects on the water surface based on improved YOLOv5. In
Proceedings of the IEEE 2nd International Conference on Information Technology, Big Data and Artificial Intelligence (ICIBA
2021), Chongqing, China, 17–19 December 2021.

34. Lin, F.; Hou, T.; Jin, Q.; You, A. Improved YOLO Based Detection Algorithm for Floating Debris in Waterway. Entropy 2021, 23,
1111. [CrossRef] [PubMed]

35. Wang, J.; Xiao, W.; Ni, T. Efficient object detection method based on improved YOLOv3 network for remote sensing images. In
Proceedings of the IEEE 3rd International Conference on Artificial Intelligence and Big Data (ICAIBD 2020), Chengdu, China,
28–31 May 2020.

36. Li, G.J.; Yao, D.Y.; Ai, J.Y. Floating objects detection based on improved YOLOv3. J. Guangxi Univ. Nat. Sci. Ed. 2021, 46, 1569–1578.
37. Tharani, M.; Amin, A.W.; Maaz, M.; Taj, M. Attention neural network for trash detection on water channels. arXiv 2020,

arXiv:2007.04639.
38. Li, H.; Yang, S.P.; Liu, J.J.; Fang, H.; Fu, Z.M.; Zhang, R.; Jia, H.M.; Lv, L.M. A method for detecting floating objects on water based

on edge computing. In Proceedings of the IEEE International Symposium on Broadband Multimedia Systems and Broadcasting
(BMSB 2023), Beijing, China, 14–16 June 2023.

39. Walawalkar, D.; Shen, Z.Q.; Liu, Z.C.; Savvides, M. Attentive Cutmix: An Enhanced Data Augmentation Approach for Deep
Learning Based Image Classification. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020.

40. Wang, C.L.; Zhou, Z.R.; Chen, Z.M. An Enhanced YOLOv4 Model with Self-Dependent Attentive Fusion and Component
Randomized Mosaic Augmentation for Metal Surface Defect Detection. IEEE Access 2022, 10, 97758–97766. [CrossRef]

41. Li, H.; Yang, S.P.; Liu, J.J.; Yang, Y.; Kadoch, M.; Liu, T.Y. A Framework and Method for Surface Floating Object Detection Based
on 6G Networks. Electronics 2022, 11, 2939. [CrossRef]

42. Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Wu, E.H. Squeeze-and-Excitation Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42,
2011–2023. [CrossRef]

43. Fan, R.X.; Qiu, Z.P. Improved YOLOv5 Algorithm Based on CBAM Attention Mechanism. In Proceedings of the 2022 International
Conference on Frontiers of Artificial Intelligence and Machine Learning (FAIML), Hangzhou, China, 19–21 June 2022.

44. Chang, C.C.; Huang, C.H.; Chu, Y.S. A hardware-friendly pruning approach by exploiting local statistical pruning and fine grain
pruning techniques. In Proceedings of the 2022 IEEE International Conference on Consumer Electronics-Asia (ICCE-Asia), Yeosu,
Korea, 26–28 October 2022.

45. Liu, Z.; Li, J.G.; Shen, Z.Q. Learning Efficient Convolutional Networks through Network Slimming. In Proceedings of the 2017
IEEE International Conference on Computer Vision (ICCV), Venice, Italy, 24–27 October 2017.

46. Song, S.J.; Jing, J.F.; Huang, Y.Q.; Shi, M.Y. EfficientDet for fabric defect detection based on edge computing. J. Eng. Fibers Fabr.
2021, 16, 15589250211008346. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/insects14010054
https://doi.org/10.3390/s23020858
https://doi.org/10.1109/ACCESS.2019.2947652
https://doi.org/10.3390/app9235220
https://doi.org/10.1109/ACCESS.2019.2937129
https://doi.org/10.3390/e23091111
https://www.ncbi.nlm.nih.gov/pubmed/34573736
https://doi.org/10.1109/ACCESS.2022.3203198
https://doi.org/10.3390/electronics11182939
https://doi.org/10.1109/TPAMI.2019.2913372
https://doi.org/10.1177/15589250211008346

	Introduction 
	Related Works 
	Methods 
	Yolov5 Network Structure 
	Improved YOLOv5 Network 
	Small Target Data Augmentation 
	Feature Extraction Network Incorporating Coordinate Attention Mechanism 
	Optimized Feature Fusion Network 
	Network Optimization for Edge Devices 
	Model Pruning 


	Dataset and Experimental Environment 
	Datasets 
	Experimental Environment 

	Results and Discussion 
	Evaluation Metrics 
	Network Training 
	Experimentation and Analysis 

	Conclusions 
	References

