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A B S T R A C T   

In controlled environment agriculture spaces, the conditions fluctuate between photoperiod and dark period, 
with crops growing continuously. As crops grow, their impact on the energy demand and energy use, often 
estimated using a building performance simulation tool, becomes more prominent. In this paper, a dynamic crop 
model integrated into a building performance simulation tool is proposed to estimate the yield and heat gain/loss 
from crops by combining a growth model and an energy balance model of the crops. The developed growth 
model is an adjusted version of a greenhouse lettuce growth model modified for high-density controlled envi
ronment agriculture applications by calibrating the sensitive parameters for several indoor environment con
ditions (temperature, lighting, etc.) using an experimental growth dataset. The yield, the energy demand and the 
energy use were assessed for a case study modelled in TRNSYS. The results obtained using the greenhouse and 
developed growth models were compared to those generated with the experimental growth dataset. Depending 
on the indoor environment conditions, the difference in specific energy use estimated using the experimental 
growth dataset and the developed model varied between 0.1% and 3.5%, indicating that the model led to an 
acceptable level of accuracy. The dynamic crop model estimates yield and heat gain/loss from crops for various 
indoor environment conditions, which are essential for carrying out energy, financial, and environmental 
analyses.   

1. Introduction 

Controlled environment agriculture (CEA), such as stand-alone 
agricultural building (greenhouse, plant factory, vertical farm, 
container farm) or building-integrated agriculture (BIA) (rooftop 
greenhouse, BIA space with electric and natural lighting), is a promising 
strategy for year-round crop production. When the crops are stacked 
vertically, these spaces can be classified as high-density CEA spaces, also 
known as indoor plant environments without sunlight or vertical farms. 
These are suitable for local production in cold climates and dense urban 
areas. High-density CEA spaces enhance crop growth by maintaining 
specific indoor environmental conditions – temperature, humidity, 
carbon dioxide (CO2) concentration, lighting intensity, spectrum, and 
duration. Protecting the crops from the outdoors while providing 
optimal growing conditions improves the yield significantly. Still, it also 
leads to high energy consumption, primarily due to lighting, cooling and 
dehumidification. 

Various indoor environment conditions and novel growing ap
proaches are constantly explored to enhance yield without jeopardising 

nutritional quality. For example, under high photosynthetically active 
radiation (PAR) levels and optimal nutrient uptake, the cultivation cycle 
to obtain 250 g lettuce head can be as low as 18 days (Carotti et al., 
2021). However, when searching for the best growing conditions, the 
impact of the explored conditions on energy consumption is rarely 
assessed, as the focus is mostly on yield and quality. Consequently, 
designing and operating CEA spaces that balance yield and energy 
consumption is challenging. To address those issues, energy modelling 
can be used to support the analysis of complex thermal processes of CEA 
operation, such as evaluating different energy-efficient operation stra
tegies (Iddio, Wang, Thomas, McMorrow, & Denzer, 2020). To enhance 
the energy analysis of CEA spaces by estimating yield and energy con
sumption, the modelling of a CEA space, often completed using a 
building performance simulation (BPS) tool, must incorporate the heat 
exchanges between the crops and their environment, the heat/gain from 
crops, as the crops grow (El Ghoumari, Tantau, & Serrano, 2005). 

A limited number of studies have considered yield and crops as 
additional internal gain/loss in a BPS tool, and their characteristics, 
including the different approaches, are compiled in Table 1. Benis, 
Reinhart, and Ferrão (2017), Graamans, Baeza, van den Dobbelsteen, 
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Tsafaras, and Stanghellini (2018), and Zhang and Kacira (2020) selected 
a mechanistic growth model to assess yield but calculated the heat 
gain/loss from crops independently using a fixed leaf area index (LAI) or 
fixed evaporation rate. The LAI is a dimensionless variable defined as the 
total one-sided area of photosynthetic tissue per unit of ground surface 
area (Watson, 1947). Ward, Choudhary, Cundy, Johnson, and McRobie 
(2015), Jans-Singh, Ward, and Choudhary (2021), and Talbot, Lalonde, 
Beaulac, Haillot, and Monfet (2022) selected a mechanistic growth 
model to estimate dynamic heat gain/loss from crops. On the other 
hand, Talbot and Monfet (2021) Ledesma, Nikolic, and Pons-Valladares 
(2022), Yeo et al. (2022), and Song, Liu, Pan, Cheng, and Meng (2023) 
chose an empirical growth model to estimate dynamic heat gain/loss 
from crops. 

Thus, energy analysis completed using a BPS tool must include 
modelling crop growth and the heat exchanges between crops and their 
environment. Furthermore, it must also consider the impact of light 
interception by crops on lighting heat gain. An overview of modelling 
approaches for each of these phenomena is provided in sections 1.1 to 
1.3. 

1.1. Modelling the crop growth 

Crop growth is influenced by air temperature, light intensity and CO2 
concentration. As crops grow, physiological variables such as root and 
shoot dry weights, water mass and leaf area change over time. The 
fluctuation of those variables can be predicted using either empirical or 
mechanistic models. The different models predict growth from a trans
plant to a harvest size for lettuces. Empirical models use one or many 
functions that are developed through data fitting. Those functions are 
easy to implement, but their application is generally limited. They can 
be bound to one set of growing conditions or a range of growing con
ditions. Shimizu et al. (2008) have developed a growth model applicable 
to lettuces growing at a wide range of CO2 concentrations (400 and 
1200 ppm) and a narrow range of lighting intensities (140–200 μmol 
m− 2⋅s− 1), but with all of the other conditions being fixed. Hang, Lu, 
Takagaki, and Mao (2019) have developed a growth model that can use 
different air temperatures and lighting intensities as inputs, but that was 
validated over a limited set of conditions, such as low CO2 concentra
tion. Growth models can also be discretised into sub-models corre
sponding to a stage of growth (Yeo et al., 2022). On the other hand, 
mechanistic plant growth models are algorithms that model plant 
physiological processes such as light interception, photosynthesis rate 
and respiration loss. They are generally more robust than empirical 
models. However, in some cases, they use parameters from the literature 
that do not match the specific growing conditions, potentially leading to 
“erroneous predictions” (Both, 1995). Many mechanistic models, such 
as those proposed by Critten (1991), Van Henten (1994), Pearson, 
Wheeler, Hadley, and Wheldon (1997) and Zhang, Burns, and Turner 

(2008), are extended versions of the model proposed by Sweeney, Hand, 
Slack, and Thornley (1981) for which two outputs, the structural dry 
weight and the non-structural dry weight, are calculated to assess the 
total dry weight. Another category of mechanistic models is based on a 
balance of carbon flows, such as the NICOLET model (Seginer, Straten, & 
Buwalda, 1998) or an adaption to lettuce by Jans-Singh et al. (2021) of a 
tomato yield model (Vanthoor et al., 2011). More recently, artificial 
intelligence approaches, such as machine learning (Cohen et al., 2022) 
and fuzzy logic and neural networks (Chang, Chung, Fu, & Huang, 
2021), have also been used to predict crop growth. 

Three of the studies in Table 1 selected the mechanistic growth 
model proposed and validated by Van Henten (1994) to model lettuce 
growth in a CEA space. This model is based on principles from plant 
physiology and parameters selected from the literature. It estimates the 
total dry weight (structural and non-structural) of lettuces (Lactuca 
sativa L.) as a function of air temperature, solar irradiance and CO2 
concentration. The model was validated experimentally for two culti
vars in a semi-controlled greenhouse, and the indoor conditions were 
monitored for 56 days. Over this period, the air temperature varied 
between 7 ◦C and 24 ◦C (mean value of 12 ◦C), the mean daily light 
integral (DLI), which is the number of photosynthetically active photons 
delivered to a specific area over 24 h, was 5 mol‧m− 2‧d− 1 and the CO2 
concentration varied between 347 ppm and 776 ppm (mean value of 
464 ppm). In high-density CEA spaces, air temperature, DLI and CO2 
concentration are maintained at a higher level than the one used to 
validate the model. Thus, it is unclear if this model suits high-density 
CEA applications. Graamans et al. (2018) commented that the model 
might underestimate dry matter production for higher temperatures, 
which are usually maintained in those spaces compared to a 
semi-controlled greenhouse. 

1.2. Modelling heat gain/loss from crops 

Different approaches have been proposed to model heat gain/loss 
from crops, i.e., the latent heat gain and the sensible heat gain/loss, in 
BPS tools. These include using a fixed evaporation rate, fixed LAI or a 
dynamic LAI, as reported in Table 2. 

Using a fixed stage of growth is appropriate for sizing the heating, 
ventilation and air conditioning (HVAC) equipment or for modelling 
crops that are growing according to a diversified stage growth man
agement method (Talbot & Monfet, 2020). Still, it is not sufficiently 
precise to establish the energy use as the crops grow. 

1.3. Modelling light interception 

Modelling light interception has two functions: (1) determining the 
useful fraction of the PAR emitted by lights absorbed by crops, which 
influences both the heat gain/loss from crops and growth and (2) 

Nomenclature 

Acronyms 
BIA Building-integrated agriculture 
BPS Building performance simulation 
CEA Controlled environment agriculture 
CVRMSE Coefficient of Variation of the Root Mean Square Error 
DLI Daily light integral 
HVAC Heating, ventilation and air conditioning 
MAD Maximum Absolute Difference 
LA Leaf area per plant 
LAI Leaf area index 
PAR Photosynthetically active radiation 
PCD Planting crop density 

PPFD Photosynthetic photon flux density 
RMSE Root mean square error 
SHR Sensible heat ratio 
VPD Vapour pressure deficit 

Symbols 
CO2 carbon dioxide 
DW dry weight 
FW fresh weight 

Subscripts 
leaf leaf 
tot total 
sht shoot  

M.-H. Talbot and D. Monfet                                                                                                                                                                                                                  



Biosystems Engineering 238 (2024) 38–50

40

determining the lighting heat gain. A few studies incorporated the 
impact of light interception on lighting heat gain (Kokogiannakis & 
Cooper, 2015; Liebman-Pelaez, Kongoletos, Norford, & Reinhart, 2021; 
Talbot & Monfet, 2020), and one incorporated it as a dynamic variable 
that varies with growth (Talbot & Monfet, 2021). Light interception is a 
thermal phenomenon that cannot be neglected to comply with the law of 
energy conservation. 

The previous sections have highlighted the different approaches used 
to model crops and how they were integrated into BPS tools. The pro
posed approaches to model growth and heat gain/loss from crops lack 
integration, suitability to CEA applications and versatility across several 
indoor conditions. In this paper, a dynamic crop model that can predict 
the growth and heat gain/loss from crops for several indoor environ
ment conditions, integrated into a BPS tool, is proposed. It is a grey-box 
model parametrised using an experimental growth dataset from the 
literature that predicts yield and heat gain/loss from crops for several 

indoor environment conditions. It is intended to be part of a versatile 
and transient approach developed in the TRNSYS software (Klein and al, 
2017) that aims to improve CEA space energy, financial and environ
mental analyses. This study focuses on developing a lettuce model 
because it is one of CEA’s most commonly cultivated species (Agri
tecture & WayBeyond, 2021) and can be grown in vertical stacks. 

2. Methods 

This section presents the developed model, its parametrisation and 
calibration using an experimental growth dataset available in the liter
ature, and its implementation for energy analysis. The implementation is 
verified by comparing the use of the experimental growth dataset versus 
the outputs of the dynamic crop model to estimate the yield, the energy 
demand, and the energy use over a cultivation cycle combined into two 
indicators: the specific energy demand for lighting, cooling, dehumidi
fication and heating as well as the specific energy use. These are esti
mated by dividing the maximum energy demand per category and the 
energy used by the shoot fresh weight harvested over one cultivation 
cycle. The energy demand includes the electric energy demand for 
lighting as well as the rate of energy that the space requires to maintain 
the indoor environment at desired conditions for cooling, dehumidifi
cation, and heating. In this context, the energy use is the integral of the 
energy demand (lighting, cooling, dehumidification and heating) over 
one cultivation cycle. The energy demand is influenced by the heat 
gains/losses from external sources (conduction through building enve
lope, solar heat gain through fenestration, ventilation and infiltration) 
and internal sources (occupants, lighting, equipment and crops). As 
such, the energy demand does not include the impact of any HVAC 
equipment, such as the sensible heat gain of a dehumidifier located in 
the space or the latent heat removal associated with the sensible cooling 
process or the efficiency of the equipment. 

2.1. Dynamic crop model 

The dynamic crop model developed in this study combines two sub- 
models, the growth model and the energy balance model, with inter
mediary variables being exchanged between the two sub-models 
(Fig. 1). The growth model estimates, at every timestep, the total 
(shoot and root) plant dry weight (DWtot). The shoot fresh weight (FWsht) 
and the LAI are estimated using the total plant dry weight. The shoot 
fresh weight is used to estimate yield, while the LAI is used to estimate 
the heat gain/loss from crops and the PAR not absorbed by crops, two 
variables transferred to the thermal zone model. The heat gain/loss from 
crops are incorporated as additional internal gains/losses at the airnode 
energy balance solved according to the heat balance method, while the 

Table 1 
Characteristics of studies that incorporated crops as an additional internal gain/ 
loss in a BPS tool and growth model to model a CEA space.  

Reference BPS tool Space 
Type1 

Crop 
Type 

Type of growth 
model 

Dynamic 
heat 
gain/loss 
from 
crops 

Ward et al. 
(2015) 

TRNSYS RTGH Tomato Mechanistic 
model (Vanthoor, 
de Visser, 
Stanghellini, van 
Henten, 2011) 

☑ 

Benis et al. 
(2017) 

EnergyPlus RTGH 
BELO 
BENL 

Tomato Mechanistic 
model (Vanthoor, 
de Visser, 
Stanghellini, & 
van Henten, 
2011)  

Graamans 
et al. 
(2018) 

EnergyPlus GH 
PF 

Tomato Mechanistic 
model (Van 
Henten, 1994)  

Zhang and 
Kacira 
(2020) 

EnergyPlus PF Lettuce Mechanistic 
model (Van 
Henten, 1994)  

Talbot and 
Monfet 
(2021) 

TRNSYS BELO Lettuce Empirical model ( 
Shimizu, 
Kushida, & 
Fujinuma, 2008) 

☑ 

Jans-Singh 
et al. 
(2021) 

EnergyPlus BENL Lettuce Mechanistic 
model 
(adaptation of  
Vanthoor et al. 
(2011) to lettuce) 

☑ 

Ledesma 
et al. 
(2022) 

EnergyPlus RTGH Lettuce Empirical model 
based on data 
from  
Fraile-Robayo, 
Álvarez-Herrera, 
Reyes M, 
Álvarez-Herrera, 
Fraile-Robayo 
(2017) 

☑ 

Talbot 
et al. 
(2022) 

TRNSYS CF Lettuce Mechanistic 
model (Van 
Henten, 1994) 

☑ 

Yeo et al. 
(2022) 

TRNSYS RTGH Tomato Empirical model 
discretised in 
seven stages of 
growth 

☑ 

Song et al. 
(2023) 

EnergyPlus CF Lettuce Empirical model ☑ 

1 Stand-alone spaces | PF: Plant factory, CF: Container farm, GH: Stand-alone 
greenhouse. 
1 Building integrated agriculture (BIA) spaces | BELO: BIA space with electric 
lighting only, BENL: BIA space with electric. 
1 and natural lighting, RTGH: Rooftop greenhouse. 

Table 2 
Approaches to estimate heat gain/loss from crops in BPS tools.  

Approach Reference  

1) Fixed evaporation rate Harbick and Albright 
(2016) 
Zhang and Kacira (2020)  

2) Fixed leaf area index Kokogiannakis and Cooper 
(2015) 
Benis et al. (2017) 
Nadal et al. (2017) 
Graamans et al. (2018) 
Lalonde, Talbot, and 
Monfet (2019) 
Baglivo et al. (2020)  

3) Dynamic leaf area index that varies according to 
growing conditions in a transient modelling 
approach 

Ward et al. (2015) 
Jans-Singh et al. (2021) 
Talbot and Monfet (2021) 
Ledesma et al. (2022) 
Talbot et al. (2022) 
Yeo et al. (2022) 
Song et al. (2023)  
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PAR not absorbed by crops is used to estimate the lighting heat gain. 

2.1.1. Growth model 
The adjusted growth model is an adaptation of the algorithm pro

posed by Van Henten (1994) coded according to the equations and pa
rameters summarised in Supplementary Tables A1 and A2. This model 
was developed to be used solely with solar PAR. Thus, it is first modified, 
as expressed by Equation (1), to account for both PAR sources (solar and 
electric lighting) to make it suitable for CEA applications. 

PAR= csoltoPAR •q″
sol + cPPFDtoPAR • PPFD (1)  

where PAR is the total photosynthetic active radiation that includes both 
solar and electric lighting (W⋅m− 2

cultivated); cPPFDtoPAR is the fraction of the 
total solar spectrum that is PAR, set to a value of 0.44; cPPFDtoPAR is the 
conversion factor from PPFD to the equivalent solar PAR, set to a value 
of 0.217 W⋅m− 2

cultivated⋅(μmol⋅m− 2⋅s− 1)− 1 (Dorais, 2003); and PPFD is the 
photosynthetic photon flux density from electric lighting 
(μmol⋅m− 2⋅s− 1). 

The growth model is then parametrised by (1) modifying some pa
rameters according to recent literature or to be more suitable to high- 
density CEA applications and (2) calibrating the parameters of the 
growth model that were previously identified as sensitive (Van Henten & 
Van Straten, 1994) using an experimental growth dataset from Carotti 
et al. (2021) detailed in Table 3. Carotti et al. reported the shoot fresh 
weight (FWsht) and total dry weight (DWtot) per plant for lettuce (Lactuca 
sativa cv. Batavia Othilie) growing in a CEA space under different PPFD 
and indoor air conditions with a planting crop density of 25 plant•m− 2. 
Those conditions were reported for a root temperature of 28 ◦C, a vapour 
pressure deficit (VPD) that alternated between 0.58 kPa and 0.34 kPa for 
the photoperiod and dark period, respectively, a CO2 concentration of 
1200 ppm and a photoperiod of 16 h. The growth model is calibrated 
from a transplant weight of 1.2 gFW•plant− 1 with a dry matter content 
estimated to be 5% (Puccinelli, Malorgio, Pintimalli, Rosellini, & Pez
zarossa, 2022) to the moment the shoot fresh weight reaches a 
marketable weight of 250 gFW•plant− 1. 

Four sensitive parameters (Van Henten & Van Straten, 1994), light 
use efficiency at very high CO2 concentration (cε), yield factor (cβ), 

Fig. 1. Overview of the dynamic crop model developed as a TRNSYS component.  

Table 3 
Experimental growth dataset used to parametrise the growth model (Carotti et al., 2021).  

Conditions Low PPFD Medium PPFD High PPFD 

PPFD, μmol•m− 2•s− 1 200 400 750 
DLI, mol•m− 2•d− 1 11.5 23.0 43.0 
DWcontent at harvest, % 2.6 3.8 4.2 
Air temperature, ◦C 20 24 28 20 24 28 20 24 28 
Relative humidity (photoperiod/dark period), % 75/85 80/89 85/91 75/85 80/89 85/91 75/85 80/89 85/91 
SLA, cm2⋅gDW

− 1 360 436 400 295 300 314 244 272 250 
Cultivation cycle, days 28.0 25.3 27.0 21.2 19.0 23.6 18.3 18.1 21.2  
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extinction coefficient (ks) and saturation growth rate (cgr,max), are cali
brated using the growth experimental dataset. Calibration is used to 
match the output of a model with measured data by modifying its pa
rameters. There is no consensus on the approach or criteria to use for the 
calibration of growth models. López-Cruz, Ruiz-García, Fitz-Rodríguez, 
Salazar-Moreno, and Rojano-Aguilar (2017) compared three calibration 
methods, a classic nonlinear least squares method and two Bayesian 
methods, to improve the prediction of lettuce dry weight with a growth 
model. Different criteria were used depending on the method, such as 
the sum of the square error and the root mean square error (RMSE). They 
concluded that the methods all performed similarly. Two techniques 
were employed sequentially by Ramirez, Rodriguez, Berenguel, and 
Heuvelink (2003) to calibrate a tomato growth model: least squares 
identification methods and a genetic algorithm. Due to the limited 
availability of information on the subject, it may be advisable to employ 
best practices for calibrating BPS models, as the developed growth 
model is integrated into this type of tool. The calibration of BPS models, 
specifically building energy models, can be automated or manual, 
depending on the number of parameters to calibrate. Automated cali
bration is characterised by programmed mathematical procedures or 
analytical approaches to complete the calibration procedure (Coakley, 
Raftery, & Keane, 2014), such as statistical methods (e.g., Bayesian 
approach) and evolutionary algorithms (e.g., genetic algorithm). Baba, 
Ge, Zmeureanu, and Wang (2022) reported that Bayesian approaches 
have been used to calibrate unknown input variables, while genetic al
gorithms have been used in several studies for the auto-calibration of 
energy consumption. They also concluded that genetic algorithms 
required fewer simulations to obtain a calibrated model. Thus, the 
variables cε, cβ, ks, cgr,max are calibrated using a genetic algorithm that 
minimises the RMSE between the shoot fresh weight estimated with the 
growth model and the shoot fresh weight reported by Carotti et al. 
(2021). The shoot fresh weight estimated with the growth model is 
calculated according to equation (2) based on the total dry weight from 
the growth model. The parameters’ bounds are listed in Table 4, and the 
genetic algorithm is limited to a maximum of 200 generations and a 
population size of 50. 

FWsht(t)=DWsht(t) /DWcontent = [(1 − cτ) • DWtot(t)] /DWcontent (2)  

where FWsht is the shoot fresh weight (gFW•plant− 1); DWcontent is the dry 
matter content (gDW⋅gFW

− 1); DWsht is the shoot dry weight (gDW•plant− 1); 
DWtot is the total dry weight (gDW•plant− 1); and cτ is the ratio of the root 
dry weight to the total dry weight. 

Statistical criteria, such as the Coefficient of Variation of the Root 
Mean Square Error (CVRMSE) and the Maximum Absolute Difference 
(MAD), are also calculated, as proposed by Baba et al. (2022), to 
compare the obtained results. 

2.1.2. Energy balance model 
The energy balance model adapts the algorithm proposed by Graa

mans, van den Dobbelsteen, Meinen, and Stanghellini (2017). The en
ergy balance is defined by equation (3), where the latent and sensible 
gain/loss from crops are defined by equations (4) and (5) and the net 
radiation terms by equations (7) and (8), and where the thermal storage 
in the leaf and stems is considered negligible (Stanghellini, 1987). Every 

term of the energy balance equation varies with leaf growth, which is 
considered using the LAI. The LAI, as defined by equation (6), is pro
portional to the leaf area per crop (LA) and the planting crop density 
(PCD), (Kozai, 2016). The system of equations is solved using the 
modified secant method, which has been adapted to calculate moist air 
properties dynamically. 

q,
plt,sol + q,

plt,SW − q,
plt,conv − q,

plt,latent = 0 (3)  

q,
plt,latent =LAI • λ

χs − χa

rs + ra
(4)  

q,
plt,conv = LAI • ρa,i • cpa,i

Tplt − Ta,i

ra
(5)  

LAI =PCD • LA (6)  

where the net radiation flux absorbed by the crops can be from solar 
radiation (q,

plt,sol) and/or the short-wave radiation from electric lighting 
(q,

plt,SW) (W⋅m− 2
cultivated); q,

plt,latent is the latent heat flux from crops 
(W⋅m− 2

cultivated); q,

plt,conv is the convective heat flux (gain or loss) from 
crops (W⋅m− 2

cultivated); LAI is the Leaf Area Index (m2
leaves⋅m− 2

cultivated); λ is 
the heat of vaporisation of water (kJ⋅kg− 1); χs is the vapour concentra
tion at the canopy level (g⋅m− 3); χa is the air vapour concentration 
(g⋅m− 3); rs is the stomatal resistance (s⋅m− 1); ra is the aerodynamic 
resistance (s⋅m− 1); ρa,i is the indoor air density (kg⋅m− 3);, cpa,i is the 
specific heat of the indoor air (J⋅(kg•◦C)− 1); Tplt is the leaves tempera
ture (◦C); Ta,i is the indoor air temperature (◦C); LA is the leaf area per 
plant (m2

leaves⋅plant− 1); and PCD is the planting crop density 
(plant⋅m− 2

cultivated). 
The absorbed PAR (q,

sol,plt and q,

SW,plt), often referred to as net radi
ation, is the primary input flux to the energy balance of the crops 
(equation (3)) and represents a portion of the transmitted solar radiation 
(equation (7)) or PAR emitted by lights (equation (8)) depending on the 
light interception. The light interception fraction (i.e., 1 − e− ks•LAI) is 
assessed using extinction coefficients as proposed by Katsoulas & Stan
ghellini, 2019 since it can be applied to various planting crop densities. 

q,
plt,sol =

(
1 − e− ks,solLAI) • q″

sol (7)  

q,
plt,SW =

(
1 − e− ks,elLAI) • q″

el,SW (8)  

where ks,sol and ks,el are the extinction coefficients associated with solar 
radiation and PAR from electric lighting; q″

sol is the transmitted solar 
radiation flux (W⋅m− 2

cultivated); and q″
el,SW is the short-wave radiation flux 

from electric lighting (W⋅m− 2
cultivated). 

2.1.3. Light interception modelling 
The electric lighting power input (q″

el) splits in three: the convective 
heat gain (q,

el,conv), the long-wave radiation heat gain (q,

el,LW), and the 
short-wave radiation (q,

el,SW), often referred to as the photosynthetic 
active radiation (PAR). The energy distribution depends on the lighting 
heat fractions (convective (fconv)/radiative long-wave (fLW)/radiative 
short-wave (fSW)) which are specific to the lights model. Only a fraction 
of the short-wave radiation is intercepted and absorbed by crops 
(q,

plt,SW), while the rest is contributing to the lighting heat gain (q,
zone,SW) 

as illustrated in Fig. 2. As the leaf coverage over the cultivated area 
expands, the light interception increases, thereby increasing the radia
tion absorbed by crops and decreasing lighting heat gain. Light inter
ception is influenced by factors such as cultivated crops, planting crop 
density and light source. 

2.2. Space model 

The modelled space is a 3.02 m × 2.44 m x 1.97 m room located in a 

Table 4 
Bounds used for the calibration of the growth model sensible parameters.  

Parameter Lower 
bound 

Upper 
bound 

Reference 

cε, g⋅J− 1 3•10− 6 17•10− 6 Set heuristically 
cβ 0.4 0.9 

López-Cruz et al. (2017) 
ks 0.66 0.9 

Tei, Scaife, and Aikman (1996) and Van 
Henten (1994) 

cgr,max, s− 1 0.5⋅10− 6 5.0⋅10− 6 Set heuristically  
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building maintained at an ambient temperature of 20 ◦C, and the 
simulation timestep is 10 min. A vertical hydroponic stacking system 
with a 2.8 m2 footprint and three tiers with 46.5 cm vertical spacing is 
installed in the space, as illustrated in Fig. 3. The walls, floor and ceiling 
have an overall U-value of 0.12 W⋅(K‧m2)− 1, a thermal capacity of 1000 
J⋅(kg‧K)− 1, and a density of 113.17 kg m− 3. They are covered with 
water-repellent panels to minimise the migration of water vapour 
through the surfaces. The space is enriched in CO2 to enhance crop 
growth and is airtight to avoid the dilution of the CO2. Moreover, it is 
assumed that the air is well-mixed and air velocity over the leaves is 
sufficient to facilitate gas exchange. Indoor conditions alternate between 
two states: (1) photosynthesis state that occurs during the photoperiod 
(when the lights are on) and (2) respiration state that occurs during the 
dark period (when the lights are off). The three tiers are lit with electric 
lighting, and their heat fractions are assumed to be 0.52/0.11/0.37 
(fSW/fLW/ fconv) as illustrated in Fig. 2. 

2.3. Modelling verification 

Two different verifications are proposed to ensure the crop model is 
implemented correctly. First, the reliability of the growth model to 
predict yields for other lighting intensities that are not part of the 
experimental growth dataset, specifically at 300 and 500 μmol m− 2•s− 1. 
It is completed by assessing yields at 200, 300, 400 and 500 μmol 
m− 2•s− 1 and the anticipated result is a linear rise in annual yield be
tween 200 and 500 μmol m− 2•s− 1 as previously established by Jin, 
Fomiga Lopez, Heuvelink, and Marcelis (2023). For lighting intensities 
of 300 and 500 μmol m− 2•s− 1, the values of the sensible parameters are 
determined through interpolation, drawing upon the calibrated values. 

Second, to ensure the implementation of the energy balance is ac
curate, the proposed energy modelling approach is then verified by 
comparing the estimated energy use per category with those reported by 
Graamans et al. (2018). This verification is solely for implementing the 
energy balance model, as the results are for a fixed LAI of 2.1 with a light 

Fig. 2. Energy distribution of the electric lighting power input.  

Fig. 3. Small-scale high-density CEA space.  
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interception fraction of 0.81. The indoor environment conditions are 
adjusted to match those reported in Table 5, with a planting crop density 
of 17.6 plant•m− 2. Additionally, the cultivated area is increased to 10.2 
m2 to maintain the same ratio of cultivated area over the volume spec
ified in Graamans et al. (2018). For this verification, two alterations are 
also introduced to the proposed energy modelling approach: (1) the 
impact of light interception on lighting heat gain is neglected, and (2) 
moisture removal associated with the sensible cooling process, with a 
sensible heat ratio of 0.7, is added. The latest is included because the 
software DesignBuilder accounts for moisture removal when computing 
the cooling energy demand of the space. The comparison is completed 
for the energy use by category for lighting, cooling and dehumidifica
tion, as detailed in section 3.4. 

3. Results 

The results are presented for the case study, the small-scale CEA-HD 
space, for two versions of the developed crop model: (1) with the initial 
growth model (section 3.2) and (2) with the adjusted growth model 
(section 3.3) following the proposed modifications and calibration of the 
most sensitive parameters using a genetic algorithm. Before these re
sults, the approach undertaken to establish the heat gain/loss from crops 
using the experimental growth dataset (Table 3) is detailed (section 3.1). 
The results from the verification of the models are presented in section 
3.4. 

3.1. Heat gain/loss from crops using the experimental growth dataset 

The procedure used to assess the specific demand and the specific 
energy use based on the heat/gain loss from crops using the experi
mental growth data set is similar to the one illustrated in Fig. 1. How
ever, instead of modelling growth, the growth dataset is used. The 
dataset by Carotti et al. (2021) reported the shoot fresh weight (FWsht)

and total dry weight (DWtot) per plant for lettuce as well as the Specific 
Leaf Area (SLA) and the dry matter content (DWcontent) instead of the LAI. 
Thus, the LAI is estimated using the measured shoot fresh weight and dry 
matter content according to Equations (9) and (10). Equation (9) 

estimates the LAI based on the planting crop density, the SLA and the 
leaf dry weight (DWleaf ). Equation (10) estimates the leaf dry weight 
based on the leaves to shoot dry weight ratio (DWleaf/DWsht), the shoot 
fresh weight and the dry matter content. 

LAI =PCD • LA=PCD •
[
SLA • DWleaf

]
(9)  

DWleaf =
DWleaf

DWsht
• DWsht =

DWleaf

DWsht
• FWsht • DWcontent (10)  

Where SLA is the Specific Leaf area (m2•gDW
− 1 ); DWleaf is the dry leaf 

weight (gDW•m− 2
cultivated); and DWleaf/DWsht is the leaves to shoot dry 

weight ratio. It was estimated heuristically based on Carotti et al. (2021) 
to a value of 0.92. 

As an example, the impact of the crops growing on the energy de
mand for cooling, heating and dehumidification at Medium PPFD/24 ◦C 
is illustrated in Fig. 4. As crops grow, the cooling energy demand de
creases while the dehumidification energy demand increases during the 
photoperiods. During the dark periods, additional heating and dehu
midification are required towards the end of the cultivation cycle, while 
the cooling energy demand remains minimal. 

3.2. Performance of the initial growth model 

The specific energy demand for lighting, cooling, dehumidification 
and heating and the specific energy use are presented in Figs. 5 and 6 
when yield and heat gain/loss from crops are estimated using the 
experimental growth dataset reported by Carotti et al. (2021) versus the 
initial growth model. The two indicators are estimated over a cultivation 
cycle, i.e., from a transplant weight of 1.2 gFW•plant− 1 to a marketable 
weight of 250 gFW•plant− 1. The LAI and cultivation cycle calculated 
using the experimental growth dataset versus the initial growth model 
are presented in Fig. 7. 

As expected, the lighting specific energy demand is not influenced by 
crop growth while the cooling specific energy demand is slightly influ
enced by crop growth due to light interception. On the other hand, the 
dehumidification demand and heating demand depend on the heat gain/ 
loss from crops, which increase as the crops grow. The initial growth 
model overestimates the specific energy demand for dehumidification 
and heating, which can be attributed to an overestimation of the LAI, as 
illustrated in Fig. 7. 

The specific energy use is underestimated for most conditions when 
the initial growth model is used, with a maximum difference of 22.0% 
(High PPFD@28 ◦C). This is explained by the shorter cultivation cycle 
estimated with the initial growth model. However, for some conditions, 
this is offset by overestimated energy demand for dehumidification and 
heating, leading to low differences in the specific energy use. 

Fig. 4. Energy demand at Medium PPFD @24 ◦C over a cultivation cycle for cooling (solid line), heating (dotted line) and dehumidification (dashed line) using the 
experimental growth dataset. 

Table 5 
Indoor environment conditions of the CEA modelled by Graamans et al. (2018).  

Indoor environment conditions Values 

PPFD, μmol•m− 2•s− 1 500 
DLI, mol•m− 2•d− 1 28.8 
Heating setpoint (photoperiod/dark period), ◦C 24/24 
Cooling setpoint (photoperiod/dark period), ◦C 30/30 
Minimum relative humidity (photoperiod/dark period), % 65/65 
Maximum relative humidity (photoperiod/dark period), % 90/90  
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As illustrated in Fig. 7, the initial growth model overestimates the 
growth rate for all the conditions, leading to an overly short cultivation 
cycle. The predicted cultivation cycle is consistently shortened by 2.2% 
(Medium PPFD@24 ◦C) to 28.2% (High PPFD@28 ◦C). The estimation of 
the maximum LAI is also overestimated by the initial growth model from 
51% (Low PPFD@24 ◦C) to 142% (High PPFD@28 ◦C). 

The results showed that the initial growth model did not perform 
well in a high-density CEA application. It overestimates the LAI and the 
growth rate. As a result, it significantly overestimates the specific energy 
demand for dehumidification and heating and the annual yield. The 
influence on specific energy use is lessened but underestimated for most 
conditions. Thus, the model needs to be adjusted to better estimate the 

Fig. 5. Specific energy demand estimated using the experimental growth dataset from Carotti et al. (2021) (solid bars) and the initial growth model from Van Henten 
(1994) (hatched bars) over one cultivation cycle. 

Fig. 6. Specific energy use estimated using the experimental growth dataset from Carotti et al. (2021) (solid bars) and the initial growth model from Van Henten 
(1994) (hatched bars) over one cultivation cycle. 
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specific energy demand for dehumidification and heating and the spe
cific energy use of a high-density CEA space. 

3.3. Performance of the adjusted growth model 

To improve the model, some parameters are modified according to 
recent literature or to be more suitable to high-density CEA application 
as listed in the last column of Supplementary Table A2. The boundary 
conductance (gbnd) and stomatal conductance (gstm) are modified 
(Table A2) according to Graamans et al. (2017). Additionally, as high
lighted in section 3.2 and illustrated in Fig. 7, the LAI estimated using 
the initial growth model showed substantial differences compared to 
values derived from the experimental growth dataset. As such, the 
equation that calculates the LAI (Equation (A.6i)) is modified to Equa
tion (A.6m) to use the specific leaf area (SLA) instead of the structural 
leaf ratio (clar) since the SLA is available in recent literature (e.g., Carotti 
et al. (2021)). 

The calibration of the most sensitive parameters of the modified 
growth model leads to the parametrisation of the growth model shown 
in Fig. 8, with the corresponding statistical criteria tabulated in Table 6. 

The relative differences between the results obtained with the initial 
and adjusted growth model, compared to the results derived from the 
experimental growth dataset (Carotti et al., 2021), are presented in 
Table 7. The differences are reduced to less than 5.2% and 10.4% for the 
specific energy demand for dehumidification and heating and to 3.5 % 
for the specific energy use, compared to differences that ranged up to 
79.4% and 153.5% for the specific energy demand for dehumidification 
and heating and 22.0% for the specific energy use with the initial growth 
model. The difference is reduced to less than 3.5% compared to 

differences that ranged up to 28.2%. 

3.4. Verification of the modelling approach 

The results obtained with the adjusted growth model provide addi
tional insight into establishing the energy performance of high-density 
CEA spaces. The results of two different verifications are presented. 
First, the ability of the growth model to predict yields for lighting in
tensities that were not included in the experimental growth dataset 
described in Table 3 is completed. The estimated yields for 200, 300, 
400 and 500 μmol m− 2•s− 1 are depicted in Fig. 9. As expected, the figure 
illustrates linear correlations between predicted yield and lighting in
tensity. The R-square values obtained range from 0.8645 to 0.9201, 
demonstrating a satisfactory level of robustness of the model. 

Second, to ensure that the implementation of the energy balance is 
accurate, a comparison of the estimated energy use by category with 
those reported by Graamans et al. (2018) is completed. As such, the 
model and the energy modelling approach are altered according to the 
information listed in section 2.3. As previously stated, this is solely for 
implementing the energy balance model as the results are for a fixed LAI 
of 2.1, a light interception fraction of 0.81 without considering its 
impact on the zone heat gain, crop density of 17.6 plant•m− 2, cultivated 
area of 10.2 m2, PPFD of 500 μmol m− 2•s− 1, DLI of 28.8 mol m− 2•d− 1, 
temperature between 24 and 30 ◦C, relative humidity between 65 and 
90%, and a sensible heat ratio of 0.7. The comparison is completed over 
the lighting, cooling and dehumidification energy use intensity, as 
illustrated in Fig. 10. Upon altering the proposed modelling approach, 
which only applies to the results presented in Fig. 10, it is observed that 
the discrepancies for the cooling and dehumidification are 5% and 1%, 

Fig. 7. LAI estimated using the experimental dataset from Carotti et al. (2021) (solid lines including experimental points) and the initial growth model from Van 
Henten (1994 (dashed lines) over one cultivation cycle. 

Fig. 8. Calibrated sensible parameters for ■ 20 ◦C, × 24 ◦C, and ● 28 ◦C.  
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Table 6 
Statistical criteria of the calibration minimising the RMSE of the fresh weight per plant.   

Low PPFD (200 μmol m− 2•s− 1) Medium PPFD (400 μmol m− 2•s− 1) High PPFD (750 μmol m− 2•s− 1) 

20 ◦C 24 ◦C 28 ◦C 20 ◦C 24 ◦C 28 ◦C 20 ◦C 24 ◦C 28 ◦C 

RMSE, gFW⋅plant− 1 2.1 8.8 6.6 12.2 12.3 18.2 16.2 16.0 14.5 
CVRMSE, % 2.3 10.1 6.3 13.9 18.1 18.7 10.6 18.2 17.2 
MAD, gFW⋅plant− 1 2.9 15.9 14.1 19.2 19.9 35.2 17.9 31.3 26.4  

Table 7 
Relative differences for the specific energy demand, specific energy use and cultivation cycle using the growth models (initial & adjusted) compared to the results 
derived from an experimental growth dataset (Carotti et al., 2021).  

Conditions Relative difference, % 

Dehumidification specific energy demand Heating specific energy demand Specific energy use Cultivation cycle 

Initial Adjusted Initial Adjusted Initial Adjusted Initial Adjusted 

Low 
PPFD 

20 ◦C 49.3 0.5 60.4 1.4 18.2 1.0 24.0 1.2 
24 ◦C 40.7 0.3 47.8 1.3 4.9 0.9 14.9 3.1 
28 ◦C 65.4 2.5 66.8 4.1 5.3 0.5 16.2 1.7 

Medium 
PPFD 

20 ◦C 49.8 0.0 68.3 1.7 8.4 1.6 12.8 3.5 
24 ◦C 77.7 5.2 91.3 0.0 8.7 3.5 2.2 0.7 
28 ◦C 79.4 0.1 122.3 8.0 3.5 1.5 18.0 3.4 

High 
PPFD 

20 ◦C 24.5 0.0 57.1 3.2 15.9 1.2 14.9 0.2 
24 ◦C 38.3 0.0 83.3 2.6 14.3 2.4 17.7 4.1 
28 ◦C 76.5 2.0 153.5 10.4 22.0 0.1 28.2 1.2  

Fig. 9. Estimated yield with the adjusted growth model for different lighting intensity for ▴ 20 ◦C, 24 ◦C, and ● 28 ◦C.  

Fig. 10. Comparison of the energy use intensity estimated by Graamans et al. (2018) (solid bars) and the ones from the current study as a verification step 
(hatched bars). 
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confirming the proper implementation of the energy modelling 
approach. 

4. Discussion 

The results obtained from this study are not easily comparable to 
data available in the literature since the specific energy use is rarely 
reported, unlike the specific energy consumption, which is based on the 
consumption of the HVAC equipment and lighting. Since several pa
rameters influence the HVAC equipment design and performance, esti
mating their energy consumption adds a layer of complexity for 
comparative analyses. For example, Weidner, Yang, and Hamm (2021) 
compared the specific energy consumption of various high-density CEA 
spaces modelled reported in the literature. The authors noted a signifi
cant disparity in specific energy consumption, ranging from approxi
mately 3.2 to 59.1 kWh⋅kgFW

− 1, which can be partially explained by 
important differences regarding the HVAC equipment design and per
formances. The disparity can also be attributed to differences in main
tained indoor environment conditions, cultivation methods, location, 
envelope characteristics and energy modelling approach. 

Graamans et al. (2018) are some of the few researchers who have 
reported specific energy use. Their model estimated yield using the 
growth model developed by Van Henten (1994) with specific energy use 
ranging from 1420 to 1489 MJ⋅kgDW

− 1 , depending on the location. This 
corresponds to a specific energy use of 15.5–15.6 kWh⋅kgFW

− 1 for a dry 
matter content of 3.9%, which aligns with the results shown in Fig. 6. 
However, it is important to highlight that this comparison has limita
tions mainly due to (1) disparities in the modelling parameters, such as 
the indoor environment conditions and possibly the weight of crops at 
transplant and harvest, and (2) the modelling approach. The main 
distinction in indoor environment conditions is the use of floating set
points for indoor air temperature and relative humidity rather than 
tightly controlling them to a fixed value. As for the modelling approach, 
Graamans et al. (2018) did not use a growth model to estimate crops 
heat gain/loss; the LAI was set to a constant value over the simulation 
period. As specified in section 3.4, the impact of light interception on 
lighting heat gain was also neglected, and moisture removal associated 
with the sensible cooling process was included. When the latter (mois
ture removal) is factored into estimating the energy demand, it allows 
for the direct sizing of the dehumidification system based on the dehu
midification energy demand. Conversely, omitting moisture removal 
might necessitate an intermediary step to size the dehumidification 
system using the dehumidification energy demand. However, this 
approach provides a comprehensive understanding of the space energy 
requirements for the proper sizing of the HVAC system since it supports 
calculating the space sensible heat ratio (SHR). As an example of the 
usefulness of this approach, it becomes apparent that towards the end of 
the cultivation cycle, the dehumidification energy demand increases, 
leading to a reduction of the SHR of the space. Consequently, selecting a 
cooling system that can deliver a low SHR would be better since it would 
be most efficient. Another example is if a heat recovery loop is used to 
cool LED lights. This type of cooling system does not contribute to any 
moisture removal from the air. As such, moisture removal associated 
with the sensible cooling process should not be included in the energy 
modelling approach. 

It is important to underline some of the limitations of the developed 
crop model. One key parameter in the growth model, the dry matter 
content, has a significant influence over two main outputs: yield and 
heat gain/loss from crops. In the developed growth model, the dry 
weight is first estimated to subsequently derive the fresh weight and the 
LAI using the dry matter content. However, in comparison to data 
available in the literature, the dry matter contents used in this study 
(2.6, 3.8 and 4.2%, as specified in Table 3) are lower than those reported 
by Meinen, Dueck, Kempkes, and Stanghellini (2018), which ranged 
from 5.8% to 8.4% for the same variety (‘Othilie’). Thus, the results 
obtained in this study, such as the specific energy demand and specific 

energy use, could be limited to ‘Othilie’ lettuces with relatively low dry 
matter content. 

Furthermore, the developed growth model exhibits additional limi
tations, such as being tailored for a harvest weight equal to or smaller 
than 250gFW per plant, constrained to well-irrigated crops with 
adequate nutrients, specific to the indoor conditions that fall into the 
range of the experimental dataset used and specific to ‘Othilie’ variety 
cultivated by Carotti et al. (2021). To perform energy analysis with in
door conditions that do not fall into the range of the experimental 
dataset used and/or other variety of lettuces, the sensible parameters 
could be calibrated using the approach proposed in this study for 
another experimental growth dataset and specific model parameters, 
such as the SLA and the dry matter content, should be adjusted. 

The developed crop model is tailored for high-density CEA applica
tions and is part of a versatile approach. The model was developed to 
model spaces with solar and/or electric lighting for various planting 
crop densities and photoperiods. Dynamic moisture air properties also 
included in the model to support future calibrations under less common 
indoor air conditions. The next step would entail applying the same 
approach used in this study to other CEA applications, such as a closed 
greenhouse with electric lighting. This would require verifying and 
adjusting the growth model, if necessary. Additionally, the methodology 
developed in this study could potentially be applied to adapt the crop 
model to other leafy greens, such as kale and spinach. 

5. Conclusion 

In this paper, a grey-box growth model was developed to estimate 
the yield, the energy demand and the energy use of high-density 
controlled environment agriculture (CEA) spaces. The model builds 
upon an existing lettuce growth model, initially developed for green
houses by Van Henten (1994) and adjusted by modifying specific pa
rameters and calibrating the most sensitive ones. The calibrations were 
completed using an experimental growth dataset containing nine sets of 
indoor environment conditions for lettuce grown in a high-density CEA 
space. Two indicators were used to assess the model performance: spe
cific energy demand and specific energy use. Before the proposed 
modifications and calibration, the initial model overestimated the leaf 
area index, which led to higher specific energy demand for heating and 
dehumidification. It also overestimated the growth rate, leading to 
underestimating the specific energy use for most conditions. 

This initial assessment highlighted that the model must be adjusted 
for controlled environment agriculture applications. Specific parameters 
were thus modified according to available values in the literature and 
better suited to high-density CEA applications, and four sensitive pa
rameters were calibrated. The model calibration was completed over the 
shoot fresh weight using a genetic algorithm with an objective function 
that minimised the root mean square error. This resulted in a para
metrisation of four sensitive parameters (cε, cβ, ks, cgr,max), using nine 
sets of conditions. The dynamic crop model was developed as a grey-box 
model, incorporating the heat exchanges of crops as they grow to a high- 
density CEA space modelled in the TRNSYS software. Moreover, the 
dynamic crop model can be used for energy analysis of indoor envi
ronment conditions that fall within the range of conditions used in this 
study by interpolating the sensitive parameters. The calibration 
approach could be used to parametrise the model for other cultivars and 
indoor conditions. 

This contribution allows, through a transient approach, the estima
tion of yield, energy demand and energy use considering crop growth for 
a wide range of indoor environment conditions commonly selected to 
grow lettuce in CEA spaces. These are essential to complete energy, 
financial and environmental analyses and to support optimisation of the 
trade-off between crop growth and energy requirements. 
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