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A B S T R A C T   

Climate change is expected to increase the frequency and intensity of extreme events, such as droughts and 
floods. Assessing the impacts of climate change on flood volumes is crucial to provide better management of 
flooding disasters given the devastating consequences they can cause. Using flood volume instead of flood peak is 
critical because the latter focuses on the highest possible discharge observed during a flood event, while flood 
volume also considers flow duration, which is an important factor in terms of the hazard caused to the sur
rounding environment. This study aims to evaluate the overall impact of climate change on floods caused by 
long-duration flows exceeding synthetic flooding thresholds. These flows are used to compute flood storage with 
various flow thresholds increasing from the 50th to 95th percentile of annual maximum observed discharge over 
a large sample of 1403 North American catchments. This study also aims to evaluate the contribution of each 
uncertainty source of the ensemble approach (climate models, bias-correction methods, and hydrological 
models) on future flood volumes. The results show that flood volumes are expected to decrease in western 
mountainous areas, the Great Lakes region, and the Maritimes, while increases are expected over most of eastern 
North America. The study finds that climate models contribute the most to the variance of flood volume un
certainty, followed by hydrological models. Overall, this study provides projected flood volume changes for 
North American catchments from a comprehensive ensemble that includes eleven climate models driven by two 
RCP scenarios and four hydrological models of varying complexity. This leads to a large-sample assessment of 
future flood volumes that could be useful to policymakers for making better-informed decisions in flood risk 
management.   

1. Introduction 

Climate change is expected to increase the frequency and intensity of 
extreme events, such as droughts, floods and precipitation events 
(Aldous et al., 2011; Arnell & Gosling, 2013; Martel et al., 2022), pri
marily due to anthropogenic impact (Masson-Delmotte et al., 2021). 
Anthropogenic climate change is causing more intense precipitation 
events, which increase the likelihood of floods (Guhathakurta et al., 
2011; Tabari, 2020). In particular, spring floods in northern regions are 
likely to occur earlier by up to one month due to earlier snowmelt (Döll 
& Zhang, 2010; Arnell & Gosling, 2013). Climate change factors such as 
variations in extreme temperature or heavy precipitation events also 
increase the likelihood of floods, with potential impacts on dam safety, 
altering rivers’ hydrology and water quality, and affecting surrounding 

populations (van Vliet et al., 2013; Fluixá-Sanmartín et al., 2018). 
Land use and land cover also have an impact on the hydrological 

regime (Murdoch et al., 2000; Miller et al., 2002; Carvalho-Santos et al., 
2016; Rasouli et al., 2019; Zhou et al., 2019). The removal of forests and 
shrubland increases surface runoff (Dadhwal et al., 2010; Koneti et al., 
2018), while urbanization decreases infiltration rate and, by extension, 
increases water stress (Rasouli et al., 2019). Similarly, regions with a 
high percentage of agricultural practice can lead to increased surface 
runoff and increased water demand, affecting the overall water avail
ability (Miller et al., 2002; Aldous et al., 2011; Carvalho-Santos et al., 
2016). 

Many climate change impact studies on hydrology have been con
ducted using models to translate projected climate changes into hy
drological responses (Döll & Zhang, 2010; Guhathakurta et al., 2011; 
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Troin et al., 2015; Mittal et al., 2016). Different models and combina
tions of hydroclimatic variables have been applied depending on the 
objectives of the study (Wilby & Harris, 2006; Döll & Zhang, 2010; 
Schnorbus et al., 2014; Troin et al., 2018). Some studies have evaluated 
the impacts of climate change on the occurrence and intensity of 
extreme climate events, such as floods and droughts (Muzik, 2002; 
Prudhomme et al., 2003; Aldous et al., 2011; Devkota & Gyawali, 2015; 
Zhou et al., 2019), while others have focused on the analysis of peak 
flows in terms of timing, magnitude, volume, flood duration, and in
tensity (Doll et al., 2009; Veijalainen et al., 2010; Arnell & Gosling, 
2013; van Vliet et al., 2013; Devkota & Gyawali, 2015; Mohammed 
et al., 2015; Zhou et al., 2019; Sun et al., 2021). Obeysekera et al. (2011) 
point out an expected overall increase in precipitation during the wet 
season. Most of the aforementioned studies were performed on either a 
regional or national scale. Few studies have evaluated flood volumes on 
a continental scale to date (Dankers & Feyen, 2008; He et al., 2022; Ho 
et al., 2022) including at the macroeconomics level (Koks et al., 2019). 
This information at this resolution is relevant as it could aid in guiding 
decision-makers in the design of dams to mitigate future hydrological 
disasters. Quantifying future flood volumes as well as their potential 
increases is therefore essential for a comprehensive assessment of flood 
risk. 

The primary objective of this study is to evaluate the impacts of 
climate change on projected flood volumes in a large sample of catch
ments in North America over a 30-year window for the reference (1971 
to 2000) and future (2070 to 2099) periods. This is important because 
flood peaks focus solely on the highest discharge of an event, while flood 
volumes refer to the entire duration of an event, measuring its overall 
hazard and ability to damage surrounding buildings, ecosystems, and 
livelihoods. In this context, flood volume is defined as the total volume 
of water in excess of a given flood-inducing discharge threshold from a 
single flood event. This study also aims to evaluate the contribution of 
the main elements of the ensemble approach on the total uncertainty in 
flood volume projections. Since it remains a major challenge to quantify 
and reduce individual uncertainties in this approach, this knowledge can 
provide additional insight into the reliability of the ensemble members 
for assessing the impacts of climate change on flood volumes. Section 2 
presents the study area and associated datasets, and Section 3 describes 
the method used for generating maximum flood volumes. Section 4 
presents the relevant results of the evaluation of flood volumes, while 
Section 5 provides an analysis of the results. Section 6 provides 
concluding remarks. 

2. Study area and data 

The main data source for this study was the NAC2H dataset, which 
contains reference and simulated data for 3540 catchments in North 
America; 698 catchments are located in Canada and 2842 catchments in 
the United States. For a more complete description of the scenarios and 
projections composing the NAC2H database, readers are referred to 
Arsenault et al. (2020). 

To ensure high quality and robustness of the data before starting 
calculations for flood volume modelling purposes, the following three 
criteria were used to select catchments from the NAC2H database: 

1) catchments required a minimum of 30 years of observed stream
flow data in the entire dataset (which covers 1950-01-01 to 2018-12- 
31), 

2) catchments required at least 20 years of observed streamflow data 
in the reference period, and 

3) a maximum of 10 % of missing streamflow data for any of the 
years over the reference period was allowed. 

A 30-year reference period was used to properly estimate the dis
tribution of maximum flows and to minimize the impact of natural 
variability on smaller windows. This was to better estimate the magni
tude of flood-inducing discharge thresholds. Catchments that met these 
requirements were used for further analysis. In total, 1403 catchments 

were selected for this study. The catchments’ surface areas vary between 
300 km2 and 179,000 km2 as shown in Fig. 1. Note that for clarity, 
catchments with a drainage area larger than 30,000 km2 are nested 
underneath smaller ones and are not always directly visible. 

From the NAC2H database, a subset of the selected ensemble was 
created by excluding certain elements (Krysanova et al., 2018). The 
dataset used in this study contains observed hydrometeorological data 
for the 1403 catchments, as well as bias-corrected climate simulations 
from eleven climate models of the CMIP5 experiment according to the 
RCP4.5 and RCP8.5 scenarios (Taylor et al., 2012). NAC2H also provides 
hydrological model simulations for four hydrological models calibrated 
with the Kling-Gupta Efficiency metric (KGE; Gupta et al., 2009): GR4J 
(Perrin et al., 2003; Valéry et al., 2014), HMETS (Martel et al., 2017), 
HSAMI (Fortin, 2000), and MOHYSE (Fortin and Turcotte, 2007). Ten 
parameter sets for each model are available within NAC2H, however in 
this study, only the parameter set with the best calibration was kept. 
This was done to eliminate the impact of equifinality, which is generally 
considered to be negligible in terms of its contribution to the overall 
uncertainty and would add a supplementary dimension to the analyses 
for little gain (Poulin et al., 2011; Arsenault & Brissette, 2014; Giuntoli 
et al., 2018; Wang et al., 2020). Additionally, Giuntoli et al. (2018) 
demonstrate that global hydrological models provide most of the un
certainty, rivalled only by the uncertainty from the climate models for 
some regions. Considering that, uncertainty associated with the objec
tive function as well as with the parameter set are excluded from the 
analysis. Moreover, few studies evaluated the uncertainty of compo
nents of the hydroclimatic modelling chain on large samples of catch
ments, and none at date (to our knowledge) evaluate that uncertainty on 
flood volumes. 

The climate model simulations were bias-corrected with four 
methods of varying complexity, the Daily Bias Correction (DBC; Chen 
et al., 2013), Multivariate Bias Correction (MBCn; Cannon, 2018), 
Quantile Delta Mapping (QDM; Cannon et al., 2015), and Two-Stage 
Quantile Mapping (TSQM; Guo et al., 2019) methods. The reference 
period used for bias-correction is the 1971–2000 period in NAC2H, while 
the future period considered is 2070–2099. This leads to a large 
ensemble of possible future hydrological scenarios. 

Additionally, as recommended in other studies, an ensemble of at 
least ten climate models and multiple downscaling methods is typically 
sufficient for capturing most of the uncertainty related to the individual 
ensemble members (Hawkins & Sutton, 2009; Sunyer et al., 2015; Chen 
et al., 2016; Wang et al., 2020), which was respected in this study. Thus, 
the ensemble size of climate models in this study (i.e., eleven models) 
cover adequately the model contribution to the overall uncertainty on 
flood volume changes due to climate change. 

The refinement of the NAC2H was necessary because this compre
hensive database includes a very large amount of hydroclimatic simu
lations. Users of the database are encouraged to generate their own 
credibility subset of the model ensemble by the NAC2H creators since the 
database was generated “as-is” without filtering of spurious simulations 
(Arsenault et al., 2020). Therefore, in this study, all data were taken 
from a public, pre-computed database such that results are reproducible 
by any interested party. Users wishing to use the data from the pre- 
computed database should be aware that all data were calibrated 
using the same number of years that there are on the separate periods. As 
it has been shown previously, calibrating on all available data provides 
more robust hydrological simulations than using a split sample cali
bration–validation approach (Arsenault et al., 2018). Nonetheless, an 
evaluation of calibration period simulations was performed to assess the 
quality of the calibration according to four metrics, as shown in Fig. 2: 
Kling-Gupta Efficiency (KGE; Fig. 2a), Percent bias (Fig. 2b), Coefficient 
of determination (Fig. 2c) and mean-normalized Root Mean Square 
Error (NRSME; Fig. 2d). Table 1 provides the elements defining the 
selected subset in this study. 

In general, the models present satisfactory metrics between the 
observed and simulated streamflow, as seen in Fig. 2. While some 
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Fig. 1. Location of the 1403 catchments in this study, covering Canada and the United-States The larger catchments (>30,000 km2) are colored in green, medium 
catchments (10,000–30,000 km2) in pink, and the smaller ones (<10,000 km2) in yellow to better distinguish nested catchments. (For interpretation of the references 
to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Evaluation of streamflow simulations over the calibration period for the 1403 basins simulated by the four hydrological models. Metrics are (a) the Kling 
Gupta Efficiency, (b) the Percent bias, (c) the Coefficient of determination, and (d) the mean-normalized Root Mean Square Error. Each boxplot quantifies the 
difference between the observed and simulated streamflow over the calibration period. Grey markers indicate outliers, while the red horizontal line identifies the 
median value. The blue box represents the interquartile range (25th − 75th percentiles) and the whiskers present the last value not identified as an outlier. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

A. Ionno et al.                                                                                                                                                                                                                                   



Journal of Hydrology 630 (2024) 130688

4

outliers are present for each metric and for each model, an analysis 
shows that the outliers represent different watersheds for each model, 
hinting that some models are more appropriate than others for certain 
catchments. Nonetheless, all models show strengths in various circum
stances and provide useful information for the remainder of this study. 

3. Methodology 

3.1. Evaluating maximum flood volumes 

The steps for generating extreme flood volume projections are 
detailed below. This study evaluates the impacts of climate change on 
both peak flows (m3.s− 1) and the flood event duration (s) such that 
floods should be considered in terms of flood volumes (m3.s− 1.s = m3). 
To visualize these volumes, they are represented by the amount of water 
that would need to be stored in a hypothetical reservoir to prevent flows 
from exceeding a specific threshold for each catchment. To simplify 
calculations and avoid overgeneralization of the regional natural vari
ability, the reservoir does not consider any factors such as evapotrans
piration or infiltration rate. For example, Fig. 3 shows a hydrograph with 
a flood-inducing discharge threshold value of 1130 m3.s− 1. The 
threshold was obtained by calculating the 50th percentile of the distri
bution representing the maximum annual observed streamflow. All 
water above this threshold is considered floodwater (shaded area in 
Fig. 3-a) and stored in the hypothetical reservoir until flows fall below 
the threshold (Fig. 3-b), at which point the water is released back into 
the river. The flood volume for this event would be the maximum cu
mulative storage attained during this process. In this example, the 
maximum flood volume is 2,9E + 8 m3 for the period between late April 
to June. 

To estimate the thresholds, the maximum annual flow values over 
the observational period (1950 to 2010) were calculated. Followed by 
the calculation of the selected thresholds (i.e., 50th, 75th, 90th, and 95th 
percentiles) from the empirical distribution of observed maximum 
annual discharge values). These values provide a constant baseline for 
what constitutes a flood event for a given catchment; they do not reflect 
the actual varying flood-inducing discharge threshold values of different 
rivers and locations. They are indicative of future change, and not of 
absolute fluvial flooding risk in these rivers. However, the aim of this 
study is to evaluate projected changes in flood volume, and a threshold 
was required to define the point at which a river is in a flooding state. 
Hence, maximum annual flow values serve as approximations of 
thresholds that can reasonably be considered as a flood-inducing 
discharge threshold. Although the flood estimations are based on 
empirical distributions (rather than fitted distributions) for simplicity’s 
sake, this does not influence the estimation of the climate change impact 
on flood volumes. Indeed, the potential impacts of projected climate 
change on flood volumes are inferred by evaluating the relative differ
ence between the future and reference period flood volumes using these 

thresholds as flood-generating flows. However, this study does not 
analyze the impacts of climate change on the percentiles of floods. 

The maximum flood volume was calculated using a simulator that 
tracks the hypothetical reservoir storage, inflows, and outflows based on 
the flood-inducing discharge threshold and simulated flows on a day-to- 
day basis (Fig. 4). For every daily time step in both 30-year windows (the 
reference and the future periods), the difference between the simulated 
daily flowrate and the selected threshold flowrate is calculated. If the 
daily volume exceeds the threshold, the excess water is stored in the 
reservoir. Otherwise, the storage volume remains at zero or, if the 
reservoir is storing water, it releases flows at a rate equal to the differ
ence between the threshold and the natural streamflow. The maximum 
storage value in the 30-year span for each simulation is conserved to 
consider the worst-case-scenario flood event. This applies to every 
model run, taking into consideration every possible combination of 
ensemble members and percentiles for a total of 2112 possible combi
nations per catchment as per Table 1. 

3.2. Statistical analysis 

Maximum flood volumes were normalized by calculating the ratio of 
volume to the catchment drainage area, resulting in units of mm before a 
comparison between catchment sizes. This ratio was called the “Flood 
Depth Equivalent” (FDE) for clarity in this study. Then, statistical tests 
were conducted to evaluate the relationships between the physical 
characteristics of the catchment and the median FDE values using the 
Pearson correlation test. Physical characteristics (latitude, longitude, 
elevation, drainage area, as well as crop, forest, grass, shrub, snow, 
urban, water and wetland land cover types) are all taken from the open- 
access NAC2H database. 

Several tests were performed to evaluate the resulting maximum 
flood volumes. Firstly, the median volumes of the ensemble for the 
reference and future periods were compared to estimate potential flood 
volume changes caused by climate change. Because it is not possible to 
know which member in the ensemble is the most representative of actual 
future hydrological conditions, the median of the ensemble of maximum 
volumes was calculated for each catchment from all members in the 
selected subset. This ensures a robust approximation of the climate 
model estimates for each catchment and for each period (reference and 
future). The significance of the results was evaluated with the non- 
parametric Wilcoxon test applied on the distributions of flood volumes 
in the reference and future periods for each catchment. Secondly, 
empirical cumulative distribution functions (CDFs) of maximum flood 
volumes were generated to evaluate how the ensemble components (e. 
g., hydrological model (HM), climate model (GCM), bias correction 
method (BCM), and emission scenarios (RCP)) contribute to the overall 
uncertainty under both RCP scenarios. To further evaluate model per
formance, the bias percentage between the observed and simulated 
maximum flood volumes in the historical period (1971–2000) was 
calculated using four percentile thresholds. This was done to evaluate 
how the hydrological models performed in reproducing the observed 
maximum flood volumes and their underlying hydrographs. Lastly, a n- 
way ANOVA (analysis of variance) was performed to assess the contri
bution of each component of the processing chain to the total uncer
tainty. By using the four elements (GCMs, HMs, BCMs, and RCP), a 
second-order variance analysis was computed based on the results ob
tained for each of the four percentile-based threshold values (50th, 75th, 
90th, and 95th) in Section 4.1. The analysis was limited to the second- 
order since almost all the variance could be explained at this stage. 
For each of the 4 threshold values, 14 sets of orders (4 main effects 
terms, 6 first order and 4 s order interactions) were evaluated in terms of 
their contribution to the total variance. This allows to identify which 
element or set of elements among the HM, GCM, BCM or RCP contrib
utes most to the total uncertainty. 

Table 1 
Elements composing the selected ensemble after filtering of the NAC2H 
database.  

Climate models ACCESS1-0 ACCESS1-3 
CanESM2 CSIRO-Mk3-6-0 
FGOALS-g2 GFDL-ESM 2G 
GFDL-ESM 2M GISS-E2-R 
MIROC5 MIROC-ESM 
MIROC-ESM-CHEM  

RCP scenarios RCP4.5 RCP8.5 
Bias correction methods DBC MBCn 

QDM TSQM 
Hydrological models GR4J HMETS 

HSAMI MOHYSE 
Calibration parameter sets 1 
Objective function KGE 
Number of catchments 1403  
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4. Results 

4.1. Maximum flood volumes estimated by the flood volume simulator 

Following the results obtained for the flood volumes, Fig. 5 shows the 
median peak FDE across all ensemble members per catchment for the 
50th percentile flood-inducing discharge threshold for the reference 
period (Fig. 5-a), and the future period under the RCP4.5 (Fig. 5-b) and 

RCP8.5 (Fig. 5-c) scenarios, as well as the difference between the 
reference and the projected future peak flood volumes under the RCP4.5 
scenario (Fig. 5-d) and the difference between the reference and the 
projected future peak flood volumes under the RCP8.5 scenario (Fig. 5- 
e). Further, Figs. S1 to S3 in the supplementary materials depict the 
results for the remaining percentile thresholds (from the 75th to the 95th 
percentile) under the future RCP4.5 and RCP8.5 scenarios. 

An increase in FDE is observed on the west and southeast coasts of 

Fig. 3. An example of flood volume computation. The shaded area between the hydrograph and the 50th percentile flood-inducing discharge threshold constitutes 
the flood volume for a given event. 
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North America, while a decrease in FDE is likely to occur in mountainous 
areas as well as in regions near the Great Lakes (Fig. 5, panels a-c). Very 
little changes in FDE are expected for the rest of the study area. Peak 
flood volumes decrease as the threshold increases from the 50th to 95th 
quantiles (Table 2), as a higher flow is required to reach the threshold 
value. Large catchment areas (with a mean drainage area of 14700 km2; 
Fig. S4b) located in high elevation regions (e.g., between 1500 m and 
3500 m; Fig. S4a) display the largest decreases in flood volume. The 

dominant land cover types for these catchments are forests (Fig. S5b), 
grasslands (Fig. S5c), shrublands (Fig. S5d), snow (Fig. S5e), and water 
(Fig. S5g). On the other hand, catchments with a smaller size (mean 
drainage area of 6400 km2; Fig. S4b) situated in low to medium eleva
tion regions (<1500 m; Fig. S4a) provide the largest increases in flood 
volumes; croplands (Fig. S5a), urban zones (Fig. S5f), and shrublands 
(Fig. S5d) are the dominant land cover characteristics of these 
catchments. 

Fig. 4. Schematic representation of the daily simulator.  
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Results for the 75th to the 95th percentiles show a decreasing 
number of catchments with changes in maximum flood volumes in both 
scenarios (Figs. S1-S3). This is because as the threshold values increase, 
there is a progressively larger number of catchments that have a refer
ence peak flood volume of 0, making the ratio computation impossible. 
Indeed, flows in the reference period are based on the observations, but 
are generated from climate model simulations. Therefore, the flood- 
inducing discharge thresholds, which are computed based on observa
tions, are not in perfect agreement with the reference period simulations 
from the climate model even considering bias-correction, since the bias- 
correction ensures the climate is similar but the natural variability 
within the model remains. In some cases, the selected threshold value is 
simply higher than the maximum peak flow of the reference period. In 
these cases, instead of illustrating the percentage change between the 
reference and future periods, the results show the absolute change in 
terms of mm (Fig. 6). Note that Fig. 6 only displays the results for the 
catchments that had no flood events in the reference period. As such, as 
the percentile threshold increases, fewer catchments have flood volumes 
in the reference period leading to more catchments displayed in Fig. 6. 
Also, as the thresholds increase, the floods are less likely to occur, and 
those that occur have less flood volume. Further, it is important to note 
that all catchments for the 50th percentile (Fig. 5) have a peak flood 
volume for the reference period and are not included in this analysis. 

From Fig. 6, the catchments with an increase in peak flood volumes are 
located on the west coast and eastern side of the United States for the 
75th and 90th percentiles (Fig. 6-a, 6-b, 6-c, and 6-d), and in the south of 
the United States for the 95th percentile (Fig. 6-e and 6-f). 

Further, the set of catchments with reference peak flood volumes 
greater than 0 (Fig. 5) was divided into two categories for each RCP 
scenario and flood-inducing discharge threshold (Table 3). The cate
gories are (1) catchments with decreasing flood volumes in the future 
period compared to the reference, and (2) catchments with future in
creases in flood volumes. It is noteworthy that for both RCP scenarios, 
the percentage of catchments in each category remains almost constant, 
with an approximately 20 % − 80 % split, respectively, regardless of the 
threshold value. This implies that as the thresholds increase and fewer 
catchments experience floods in the reference period, the remaining 
catchments react with the same trend, showing the robustness of the 
results to the selected threshold value. There are slightly fewer catch
ments with increases in flood volumes for the RCP8.5 scenario compared 
to the RCP4.5 scenario. 

Lastly, Fig. 7 demonstrates catchment location where results are 
significant (green points) and non-significant (red points) with respect 
to the emissions scenario and the threshold value. It is observed that 
regions surrounding the Great Lakes as well as the mountainous region 
of western North America are typically non-significant. This is also true 
for a small subset of catchments on the west- and south-east coasts of the 
United States and central Canada. Further, Table 4 shows significance 
levels in concordance with the different emission scenarios and thresh
olds. Significance levels increase as percentile thresholds increase. 

4.2. Correlation results between FDE and catchment characteristics 

With regards to the results obtained for the correlation tests 
(Table 5), no useful correlations were found between median FDE values 
and individual catchment characteristics. This is because the coefficient 
of determination (R2) used in the study was below 1 % for all combi
nations. This means that less than 1 % of the variance could be explained 
by any single one of these variables. 

Note that for more information concerning the catchment 

Fig. 5. Median normalized peak flood volumes (FDE) per catchment for the 50th percentile for the 1971–2000 reference period (a), the 2070–2099 future period 
under the RCP4.5 scenario (b), and the RCP8.5 scenario (c). Differences between the projected and the reference maximum flood volumes under the RCP4.5 and 
RCP8.5 scenarios are presented in panels (d) and (e), respectively. 

Table 2 
Minimum and maximum FDE values over the entire set of catchments for the 
RCP4.5 and RCP8.5 scenarios, and per threshold value.  

Future emissions 
scenario 

Percentile 
threshold 

Minimum FDE 
(mm) 

Maximum FDE 
(mm) 

RCP4.5 50 2.5 382 
75 0 220 
90 0 175 
95 0 160 

RCP8.5 50 0 400 
75 0 220 
90 0 160 
95 0 140  
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Fig. 6. Median normalized FDE for catchments with no reference storage volume for the future period under RCP4.5 (a, c, e) and future period under RCP8.5 (b, d, f); 
for the 75th (a, b), 90th (c, d), and 95th percentile (e, f). 

Table 3 
Statistics on the changes in flood volumes over the entire set of catchments for the RCP4.5 and RCP8.5 scenarios, and per threshold value.  

Future emissions 
scenario 

Percentile 
threshold 

Total number of catchments with positive flood volumes in the 
reference period 

Overall decrease 
in flood volume 

Overall increase 
in flood volume 

No. of 
catchments 

(%) No. of 
catchments 

(%) 

RCP4.5 50 1403 320  22.8 1083  77.2 
75 1398 255  18.2 1143  81.8 
90 1164 195  16.8 969  83.2 
95 705 141  20.0 564  80.0 

RCP8.5 50 1403 343  24.4 1060  75.6 
75 1398 281  20.1 1117  79.9 
90 1164 203  17.4 961  82.6 
95 705 143  20.3 562  79.7  
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characteristics and the method of retrieval, refer to Arsenault et al. 
(2020). Further, the elevation was calculated as being the mean eleva
tion in relation to mean sea level per catchment, and the land covers 
represent the permanent land cover for that catchment. For example, 
snow cover indicates the permanent snow cover that a catchment can 
have throughout the year. 

4.3. Uncertainty of the selected ensemble elements 

The previous results pertain to the median value of the ensemble. 
Fig. 8 presents the empirical CDFs of the elements composing the full 
ensemble to assess the variability obtained for the future period under 
the two RCP scenarios compared to those obtained for the reference 
period. Note that the distributions in Fig. 8 are truncated to show details 

Fig. 7. Significance test for catchments with significant results (green circles) and nonsignificant results (red circles) for the RCP4.5 (a, c, d, g) and RCP8.5 (b, d, f, h) 
scenarios for the 50th (a, b), 75th (c, d), 90th (e, f), and 95th percentile (g, h). (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 4 
Summary of the significance test results over the entire set of catchments for the 
RCP4.5 and RCP8.5 scenarios, and per flood threshold percentile.  

Future emissions 
scenario 

Threshold 
Percentile 

Catchments with significant results 
(%) 

RCP4.5 50  70.9 
75  71.8 
90  75.2 
95  76.7 

RCP8.5 50  78.6 
75  79.1 
90  80.5 
95  82.4  
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to a better degree where the ensembles diverge the most. 
A recurring finding of this analysis is the increase in the projected 

flood volumes which tend to become more pronounced between the 
RCP4.5 and RCP8.5 scenarios in comparison to the reference peak flood 
volumes (Fig. 8). The ensemble spread of the hydrological models con
tributes to the overall uncertainty in the future flood volume projections 
(Fig. 8-a), but to a lesser extent than the climate models (Fig. 8-b), which 
provide the most variability. This could be attributed to the fact that 
fewer hydrological models make up the ensemble compared to climate 
models. Lastly, the uncertainty associated with the bias correction 
methods on the flood volume projections is the least variable overall 
(Fig. 8-c). 

Fig. 9 demonstrates the distribution of simulation flood volume bias 
calculated for the 50th percentile threshold, with flood volumes 
computed using the observed flows and the simulated flows on the 
historical period. This allows evaluating the model error on the histor
ical period, which is likely also present in the reference and future 
simulations. Each boxplot in Fig. 9 shows the bias between the simulated 
and observed maximum flood volumes over the entire reference period 
for all catchments (i.e., each boxplot contains one value per catchment). 
It can be seen that GR4J and HSAMI provide the most reliable results, 
while HMETS providing a strong negative bias. The HMETS simulated 
flows are generally well represented but with a systematic peak flow 

underestimation, leading to an underestimations of flood volumes 
compared to a fixed threshold. However, since the results are presented 
in relative terms (relative change between the reference and future pe
riods), this aspect is not as critical as if the models were used to evaluate 
absolute flood-based risk. 

4.4. Variance analysis of ensemble elements 

This section evaluates the relationships between the ensemble ele
ments and the associated uncertainty within each element in the pro
cessing chain. Table 6 presents the results obtained, ordered from the 
most to least contributing, in terms of maximum contribution from one 
catchment (column 3), and the average contribution from every catch
ment (column 4). The first three sets were selected for further analysis as 
they contributed the most to uncertainty compared to the other eleven 
sets. Note that the minimum contribution was 0 % in every case 
scenario. 

Results of the uncertainty analysis for the most relevant sets of ele
ments for the four percentile threshold values are presented in Figs. 10 
to 12 for sets 1 to 3 (which represent the main effect of HMs and GCMs, 
and the first order effects of the GCMs and RCPs; see Table 6). Sets 1 
(HMs), 2 (GCMs), and 3 (GCMs and RCP) show a decrease in their 
overall contribution to uncertainty as the percentiles decrease. The in
dividual HM and GCM elements contribute the most to the uncertainty 
in the projected flood volumes, more than the associated interaction 
terms. The main BCM effects rank 5th in terms of variance contribution. 
Set 1 (HM) displays an effect where a decrease in storage volume is 
observed, while sets 2 (GCM) and 3 (GCMs and RCP) display effect 
where an increase in storage volume is observed. 

Further, sets 1 (GCMs) and 3 (GCMs and RCPs) contribute to the 
uncertainty over the eastern and western coasts of the United States 
(Figs. 10 and 11), where the dominant catchment characteristics are 
cropland, shrubland, urban zones, lower elevations (<1500 m), and 
smaller drainage areas (approximately 6400 km2 on average). Set 2 
(HM) has a localised influence on uncertainty in the mountainous re
gions of the midwestern United States and Canada (Fig. 12), where the 
dominant catchment characteristics are forest, grassland, shrubland, 
snow, water, high elevations (1500 to 3500 m) and large drainage areas 
(approximately 14700 km2 on average). 

Table 5 
Correlations between catchment characteristics and median FDE over the entire 
domain, as well as the associated p-value.  

Characteristics R2 ρ-value 

Latitude (◦) 0.0023  0.0042 
Longitude (◦) 0.0000  0.7050 
Surface area (km2) 0.0028  0.0016 
Elevation (m) 0.0005  0.1761 
Type of land cover (%)    

Cropland  0.0075  0.0000 
Forest  0.0003  0.3002 
Grassland  0.0003  0.3215 
Shrubland  0.0025  0.0029 
Snow  0.0046  0.0001 
Urban  0.0002  0.4619 
Water  0.0020  0.0074 
Wetland  0.0022  0.0053  

Fig. 8. Empirical CDFs under the reference scenario and the future RCP4.5 and RCP8.5 scenarios for the hydrological models (a), the climate models (b), and the bias 
correction methods (c). 
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5. Discussion 

5.1. Projected flood volume changes 

From the projections made in this study for the 2070–2099 period, 
overall increasing flood volumes are expected over a large part of North 
America, although some areas show decreasing flood volumes. The 
findings are in agreement with previous studies, which show that river 
flow discharges (Do, Westra, & Leonard, 2017; Tabari, 2020) and flood 
volumes (He et al., 2022; Sun, Li, Shan, Xu, & Wang, 2021; Zhou et al., 
2019) are projected to decrease in the western regions and increase in 
the eastern regions of North America. 

For catchments that are subject to a future increase in flood volume, 

the “business-as-usual” scenario (RCP8.5) would lead to the highest 
increase. This can be explained by the fact that the RCP8.5 scenario 
projects a higher increase in projected temperature and precipitation 
compared to the RCP4.5 scenario. Furthermore, as percentile thresholds 
increase, catchments affected by a change in flood volume maintain a 
similar geographical distribution, which increases confidence in the 
results which are geographically robust to the choice of threshold value. 

Additionally, maximum flood volumes vary strongly depending on 
the percentile threshold used. The 50th to 95th percentile threshold 
analysis displays a decreasing number of catchments requiring larger 
storage volumes under both scenarios and sensitive to extreme in
creases; this is in agreement with the study of Prudhomme et al. (2003). 

Results obtained for the catchments that experience snowfall and 
snowmelt seasons show an increase in storage volume needs. However, 
the literature clearly depicts a decreasing trend of spring flooding 
amplitude due to climate change, which is contradictory to the present 
study except in far north catchments (Arsenault et al., 2013; Cochand 
et al., 2019). Furthermore, as the method used in calculating the daily 
storage volumes is based on a 30-year window, only the worst-case 
scenario peak volumes over the 30-year span are retained for each 
combination. This results in an ensemble of extreme event storage vol
umes per catchment, although this may be opposite of the observations 
for mean peak flood volumes in some cases. For example, some northern 
catchments show increases in flood volumes even though it is expected 
that snowmelt, the main driving factor of peak flows, should decrease in 
the future. It is likely that flood volumes are driven by more extreme 
events under climate change, which likewise impacts the hydrology of 
these northern catchments. 

5.2. Uncertainty of ensemble members and land cover types in the 
projected high flows 

Regarding the high number of simulations and element combinations 
provided in the study, the projected storage volume requirements across 
North America are robust to the climate model variability and spatial 
distribution of results. The large number of selected GCMs, HMs, and 
BCMs results in a large ensemble of possible future hydrological sce
narios, capturing most of the uncertainty related to the individual 

Fig. 9. Percent bias between the observed and simulated maximum peak floods on the historical period by catchment and hydrological model for the 50th 
percentile threshold. 

Table 6 
Ordered contributors to the uncertainty from variance analysis.  

Component 
set no. 

Component 
set elements 

Maximum 
contribution from 
one catchment over 
the study area (%) 

Mean contribution 
from all catchments 
over the study area 
(%) 

1 GCM  77.3  28.1 
2 HM  99.8  20.9 
3 GCM and RCP  56.6  15.2 
4 HM and GCM  33.2  8.5 
5 GCM and BCM  49.6  7.7 
6 BCM  41.7  6.2 
7 HM, GCM and 

RCP  
32.9  6.1 

8 GCM, BCM 
and RCP  

31.4  5.7 

9 HM, GCM and 
BCM  

39.7  4.0 

10 HM and BCM  35.8  1.8 
11 RCP  27.2  1.7 
12 HM and RCP  43.0  0.7 
13 BCM and RCP  8.5  0.7 
14 HM, BCM and 

RCP  
25.1  0.4 

HM: Hydrological Model, GCM: Global Climate Model, BCM: Bias Correction 
Method, RCP: Representative Concentration Pathway. 
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ensemble members (Miller et al., 2002; Chen et al., 2011; Sunyer et al., 
2015; Wang et al., 2020). The use of subsets from the full ensemble to 
meet the purpose of this study allowed for the generation of a reliable 
estimate of the ensemble mean. 

The top mean contribution to uncertainty for the areas where an 
increase in the projected flood volumes is provided by the main element 
GCM, and the first order elements GCMs and BCMs. Oppositely, the 
mean contribution to uncertainty for the areas with an expected 
decrease in the projected flood volumes is provided by the main HM 
element. Overall, the contribution to the total uncertainty from the 
GCMs is significant for smaller catchments (<6400 km2 on average) of 

lower elevations (<1500 m) with a small number of different dominant 
land cover types, while the HMs uncertainty dominates the catchments 
with a larger surface area (>14700 km2 on average), characterized by a 
higher elevation (1500 to 3500 m) and a large number of various 
dominant land cover types. It is important to note that this study did not 
find any correlation between flood volume changes and catchment 
characteristics such as land use (Table 5). It is also likely that land use 
will evolve in the next decades such that the hydrological response 
might be modified substantially. In this study, catchment characteristics 
were considered constant, which might also introduce biases between 
the historical and future period flood volume estimations. 

Fig. 10. Contribution of uncertainty (%) caused by the GCM element with the 50th percentile (a), the 75th percentile (b), the 90th percentile (c), and the 95th 
percentile (d). 

Fig. 11. Contribution of uncertainty (%) caused by the GCM and RCP element combination with the 50th percentile (a), the 75th percentile (b), the 90th percentile 
(c), and the 95th percentile (d). 
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The uncertainty associated with the GCM and HM elements was 
explored in many studies and has been shown to be the leading con
tributors in the uncertainty in hydrological modeling (e.g., Knutti et al., 
2010; Troin et al., 2015; 2018). In concert with the catchment charac
teristics, GCMs can also affect the performance of the hydrological 
model (Karmalkar et al., 2019). Further, the uncertainty associated with 
the GCMs and BCMs follow close behind the HMs by contributing to high 
amounts of uncertainty as well; a point studied by other studies (Knutti 
et al., 2010; Veijalainen et al., 2010; Chen et al., 2011; Poulin et al., 
2011; Kim et al., 2016; Troin et al., 2018; Wilby & Harris, 2006). Both 
elements are known to provide the largest uncertainty on high flows 
(Gao et al., 2020) and on the projected streamflow values above the 75th 
percentile (Wang et al., 2020). The GCMs and BCMs uncertainty is 
substantial for regions with a complex topography (Fluixá-Sanmartín 
et al., 2018), such as the mountainous areas with large water bodies (i.e., 
lakes, rivers, wetlands, etc.) and high humidity contents, where the local 
processes can differ from the GCM representation and BCMs can strongly 
influence results. Similarly to HMs, it is often the model structure that 
underrepresents the region’s natural variability and fluctuations, thus 
affecting the model efficiency and performance for climate change 
impact studies. This could be one of the reasons behind the poor per
formance of the hydrological HMETS model which provide the least 
reliable results when comparing percent bias in the historical observa
tion period. 

5.3. Limitations and implications for hydrological studies 

The experimental design of this study has some limitations. First, 
only one objective function was used to evaluate the performance of the 
hydrological models at simulating high flows. While it is common 
practice to use the KGE objective function to evaluate the quality of a 
hydrological simulation in catchments of varying characteristics (Paul & 
Negahban-Azar, 2018), more objective functions are often required to 
assess their contributions to the total uncertainty (Poulin et al., 2011; 
Kouchi et al., 2017; Paul & Negahban-Azar, 2018; Hunter et al., 2021). 
For example, the Nash-Sutcliffe Efficiency metric (NSE; Nash & Sutcliffe, 
1970) is generally used in studies where the high flows are of interest 
given the quadratic nature of the error function, weighting them more 
heavily. However, the objective functions and calibration parameter sets 

are elements that cause very little to no uncertainty in high-flow studies 
(Wilby & Harris, 2006; Maurer et al., 2010; Chen et al., 2011). The 
experimental design of this study relies on the NAC2H database, and the 
only option other than KGE was to select the logKGE metric which is ill- 
suited for this study. 

Even though lumped hydrological models are often used in hydro
logical climate change impact studies, the inclusion of one or more 
distributed hydrological models in the ensemble would likely influence 
the results of streamflow simulations (Maurer et al., 2010). Lumped 
hydrological models are catchment-scale representations of the trans
formation of precipitation into discharge and do not provide any 
spatially hydrological response, compared to distributed hydrological 
models. In addition, our analysis is based on four quantiles for the 
calculation of storage volumes; using more quantiles would provide a 
more comprehensive analysis of the flood volume magnitudes. Addi
tionally, using real flood thresholds as opposed to synthetic ones would 
be an interesting experiment, as it would allow to explore the response 
of a particular region’s flood to climate change while respecting regional 
flood protection levels. 

Finally, it would be interesting to compare the approach proposed 
herein to an event-based analysis, where individual flood events could 
be analyzed both in the historical and future periods. This could be 
achieved by separating baseflow from event flow and evaluating 
changes to flood volumes during high-flow events. While perhaps not 
directly applicable to all catchments (i.e. snowmelt dominated vs rain
fall dominated), when it could be applied, this method might provide 
more accurate results. In this study, we attempted to imitate this concept 
using the flow quantiles as proxies of baseflow that are constant in time, 
which is a simplification that could impact the accuracy and reliability 
of the obtained results. 

6. Conclusion 

The primary aim of this study was to evaluate the potential future 
evolution of flood volumes over a large sample of North American 
catchments. Such an evaluation is critical as water storage reservoirs are 
necessary for sustainable development strategies for many communities. 
Our evaluations indicate that overall flood volume projections should 
increase in most areas of North America, with the highest increase in 

Fig. 12. Contribution of uncertainty (%) caused by the HM element with the 50th percentile (a), the 75th percentile (b), the 90th percentile (c), and the 95th 
percentile (d). 
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flood volume projections observed on the west coast of the United States 
and in eastern North America. However, some regions should experience 
a decreasing flood volume such as the western Canada, the midwestern 
United States, and the Great Lakes region in the east of North America. 
Water retention structures with varying volumes may be necessary to 
adapt the water storage regarding the flood volume projections. Based 
on a flood volume simulator that estimates maximum flood volumes 
based on a flood-level threshold, the mean storage volume required per 
catchment was calculated for several percentiles based on observed 
streamflow data. 

A decrease in peak flood volumes is expected in high elevation re
gions (1500 to 3500 m), while an increase in storage volume is expected 
for low elevation regions (<1500 m). Small catchment areas (areas 
smaller than 6400 km2) are more sensitive to climate change than the 
large catchments, with a large increase in flood volume projections 
expected. 

The present investigation has allowed for an evaluation of the un
certainty level associated with the main elements constituting the 
ensemble on the flood projections. The results of the variance analysis 
show that the hydrological models and the climate models are the 
dominant sources of uncertainty, contributing to 20.9 % and 28.1 % to 
the total uncertainty (including interactions), respectively. They are 
followed by the bias correction methods and the RCP scenarios, with the 
latter playing a minor and almost negligible role in the assessment of 
climate change impacts on flood projections for the study catchments. 

Even though this study was limited by the use of lumped hydrolog
ical models, a single objective function and a set of calibration param
eters, their inclusion has however contributed to strengthen current 
practices in the field of hydrological modeling and forecasting of 
extreme events such as flooding. The careful integration of these, 
coupled with more realistic flood thresholds, could lead to more relevant 
results, further pushing the state-of-the-art on the research climate 
change and flood predictions topic. Nevertheless, this study provides a 
large-sample overview of an oft-overlooked flooding metric in extreme 
hydrological climate change impact studies, which can be considered as 
a starting point for future research regarding the fluvial flood risk 
assessment. 
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