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Abstract: Accurate aircraft trajectory prediction is fundamental for enhancing air traffic control
systems, ensuring a safe and efficient aviation transportation environment. This research presents
a detailed study on the efficacy of the Random Forest (RF) methodology for predicting aircraft
trajectories. The study compares the RF approach with two established data-driven models, specifi-
cally Long Short-Term Memory (LSTM) and Logistic Regression (LR). The investigation utilizes a
significant dataset comprising aircraft trajectory time history data, obtained from a UAS-S4 simula-
tor. Experimental results indicate that within a short-term prediction horizon, the RF methodology
surpasses both LSTM and LR in trajectory prediction accuracy and also its robustness to overfitting.
The research further fine-tunes the performance of the RF methodology by optimizing various hy-
perparameters, including the number of estimators, features, depth, split, and leaf. Consequently,
these results underscore the viability of the RF methodology as a proven alternative to LSTM and LR
models for short-term aircraft trajectory prediction.
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1. Introduction

The horizon of aviation is rapidly expanding, with Unmanned Aerial System (UAS)
development. As these systems perform increasingly complex missions and operate in
different environments [1], their need for precise trajectory prediction is undeniably cru-
cial [2]. Aircraft trajectory prediction (ATP) involves forecasting an aircraft’s future position
and motion based on its current and previous positions, as well as on environmental and
operational factors [3]. This is a crucial task for Air Traffic Management (ATM) [4,5], as
it can ensure safety requirements [6–8] and the efficiency of flights [9] by allowing con-
trollers [10,11] to detect potential conflicts [12] and to adjust flight paths accordingly [13,14].

Aircraft trajectory prediction can be formulated as a time-series problem [15]. In a
time-series analysis, data points are collected or recorded at successive points in time, with
the goal often being to predict future values based on historical data. In the ATM context,
the historical data refer to previous positions, velocities, accelerations, and other relevant
aircraft parameter variations over time [16].

A variety of classical methodologies have been successfully employed for time-series
ATP analysis in ATM development [17,18]. State-space models, which utilize the Kalman
filter, have been explored for trajectory prediction in aviation [19]. By modeling the aircraft
dynamics and observation processes, the Kalman filter can predict future aircraft positions
even in the presence of measurement noises. Although an adaptive state-space model
could accurately perform the ATP task using Automatic Dependent Surveillance–Broadcast
(ADS-B) data [19], its performance was affected by computational complexity [20]. In other
words, in scenarios where predictions are required for multiple aircraft simultaneously,
computational cost becomes the limiting factor. The Autoregressive Integrated Moving
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Average (ARIMA) model is a classic statistical method for time-series forecasting [21].
Despite this, the ARIMA was used for trajectory simulation and prediction [22] with
minimal data pre-processing, making it suitable for short-term trajectory predictions.

Memory-based modern methodologies were developed for improving long-term
predictions and processing time. Recurrent neural networks (RNNs) can model sequences
and have been explored for predicting aircraft trajectories [23]. In reference [24], for
instance, the authors trained a neural network to predict an aircraft’s future path by
modeling trajectory data as a time series. RNN could perform fast 4D ATP for the UAS-S4,
which then was developed into Long Short-Term Memory (LSTM) [25]. LSTM networks
are designed as a specific type of RNN architecture, with the aim of remembering patterns
over long time sequences. They are particularly suitable for applications such as the ATP,
where the flight history of an aircraft can influence its future path [26]. Despite their speed
and accuracy in ATP, they were found to be vulnerable when faced with uncertainties
such as noise in data (due to signal blockage and interference), missing values (due to
miscommunications), and misleading values (due to adversarial attacks) [27]. As a result,
‘ensemble’ methods have been proposed for robust predictions.

When it comes to nonlinearity interactions, feature scaling, handling missing values,
ease of interpretation and implementation, and sensitivity to hyperparameter tuning, the
RF algorithms outperform data-driven algorithms such as the LSTM, RNN, CNN, and SVM
methods. Random Forests are inherently effective at modeling non-linear relationships and
complex interactions among features. Trajectory prediction often involves complex inter-
actions between various factors such as speed, acceleration, direction, and environmental
factors, which Random Forests can capture effectively. Unlike algorithms such as SVMs and
neural networks (CNN, RNN, and LSTM), Random Forests do not require input features to
be scaled or normalized. This can be particularly advantageous in trajectory prediction,
where features might have different units and scales. Random Forests can handle missing
data in the input features better than algorithms such as SVMs and traditional neural net-
works. This is crucial in real-world trajectory prediction scenarios where sensor data might
be incomplete or partially missing. Random Forests, being a collection of decision trees, are
relatively easier to interpret and understand than complex models such as LSTM, RNN,
and CNN. This can be important for trajectory prediction in safety-critical applications
where understanding the decision-making process is crucial. While models such as SVMs
and neural networks can be quite sensitive to hyperparameter settings, Random Forests
are often easier to tune, or even perform reasonably well with default settings.

Moreover, due to their ensemble nature, where multiple decision trees vote for the
final prediction, Random Forests are less prone to overfitting compared to models such as
SVMs, especially in scenarios with a large number of features. Given the uncertainties and
complexities of aircraft flight dynamics, and environmental factors such as weather, ‘ensem-
ble’ methods that combine predictions from multiple models have also been investigated to
increase prediction robustness [28]. When considering fault tolerance, ‘ensemble’ learning
methodologies have exhibited exceptional performance [29]. These methods combine
predictions from various models, enhancing both accuracy and robustness. Ensemble tech-
niques aggregate the outputs of individual models, thus reducing the effect of errors. The
Random Forest (RF) method is an ‘ensemble’ learning algorithm that builds a collection of
decision trees [30]. By combining the predictions of these trees through majority voting and
averaging, the RF model becomes more resilient to faults [31], noise [32], and adversarial
attacks [33].

The contribution of this study can be highlighted as the following:

i. Initially, the trajectory prediction of the UAS-S4 was transformed into a problem of
time-series regression.

ii. Subsequently, an efficient Random Forest (RF) architecture was developed and tailored
to fit the trajectory patterns of the UAS-S4.

iii. Lastly, a method was designed for optimizing the hyperparameters and feature
functions of the Random Forest.
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Section 2 articulates the problem related to ATP. The RF methodology and its opti-
mization for performing the ATP task are thoroughly explained in Section 3. Following
this, Section 4 provides the examination and comparison of the RF model results with the
LR and LSTM models. Finally, Section 5 concludes by summarizing the accomplishments
and contributions made through this present study.

2. Problem Statement

It is assumed that a flight area consists of multiple aircraft flying within their des-
ignated air corridors. Given the GPS data of the aircraft at a specific time Tn, including
latitude, longitude, altitude, heading, speed, and time, a model can be developed to predict
the data for the subsequent i intervals [27]. This sequential trajectory prediction within an
air corridor is shown in Figure 1.
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Figure 1. Sequential aircraft trajectory prediction [27].

When formulating ATP as a time-series problem, the goal is to use past flight data to
predict future positions and paths of aircraft. To achieve this aim, the following step-by-step
procedure should be passed to design an efficient ATP model. With this aim, there exist
three main objectives that need to be satisfied. The first is the conversion of the UAS-S4
trajectory prediction into a time-series regression problem. The second is developing an
efficient RF architecture compatible with the UAS-S4 trajectory patterns. The third is the
design of a procedure for the optimization of the RF hyperparameters and features function.

In designing a reliable prediction system, the initial step is the collection of historical
data related to aircraft trajectories [34]. This step involves gathering data points such as
positions, velocities, and other relevant parameters of an aircraft, recorded over specific
time intervals. Collecting a substantial amount of these pertinent data is important for
developing a robust predictive model, as it allows for the analysis and understanding of
previous aircraft movement patterns and behaviors.

After collecting the raw data, the next imperative step is feature engineering [35].
This process involves extracting and formulating essential features or factors from the raw
data that significantly influence trajectory predictions. Features corresponding to sensor
data were taken into account. We considered the following sensor data for training the
RF model.

i. Location coordinates, for which the GPS provided latitude, longitude, and altitude
data.

ii. Speed, derived from changes in position over time.
iii. Heading, obtained from compass data indicating the direction in which the UAS-S4s

were moving.
iv. Time stamps, for which the time intervals between data points were considered for

capturing the dynamics of movement.
v. Derived features, including distance traveled over a period, average speed, and rate

of turning, were engineered from raw sensor data.
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By identifying and engineering these crucial features, the raw data were transformed
into a more useful and insightful format that enhances the effectiveness of the predictive
models.

For the engineered features, various time-series models were then applied to the
data [36]. Time-series models are suitable for this task as they are designed to understand
and predict sequential data effectively. These models range from traditional ones, such as
Autoregressive Integrated Moving Average (ARIMA), to advanced, data-driven structures,
such as the LSTM and RFs. Each of these models brings unique strengths to their processing
and predicting based on sequential data, providing different options to choose from based
on the specific requirements and nature of the data.

Aircraft trajectory is not solely determined by its previous positions. There are exter-
nal factors or exogenous variables [37] that significantly influence the aircraft path. These
factors include meteorological conditions, airspace constraints, and specific performance
metrics of the aircraft itself. Due to the impact of these external elements, they are incorpo-
rated into the prediction models as additional inputs, thereby improving the accuracy and
reliability of the trajectory prediction model.

Model validation is a crucial step in analyzing the effectiveness and reliability of the
developed prediction model. It is essential to ensure that the model is not simply over-fitted
to the training data [38], which would limit its ability to generalize to unseen data [39].
During this phase, the model is trained on a subset of the collected data and subsequently
tested and validated on a separate set of unseen data to objectively evaluate its predictive
performance and accuracy.

Once the model is validated and deemed reliable, it is then deployed for predicting
future trajectories. Leveraging both current and past trajectory data, the model can actively
forecast future paths that aircraft are more likely to take. Such a capability is indispensable
for ATM and planning purposes.

The proposed time-series analysis provides a systematic method for anticipating an
aircraft’s future trajectory based on its historical path. However, the intricacy of real-world
flight dynamics means that this approach may need to be refined for optimal accuracy. In
other words, as flight dynamics are subjected to continuous changes due to various factors,
the time-series prediction model would need to be regularly updated and refined [40].
As new data on aircraft trajectories become available, incorporating these data to update
the model is crucial. This iterative refinement process ensures that the model remains
accurate and effective in predicting aircraft trajectories over time by adapting it to the
aircraft flight dynamics.

3. Methodology

The RF model is an ‘ensemble’ machine learning method that combines multiple deci-
sion trees to perform predictions. In this technique, each decision tree undergoes training
using a random subset (fold) of the available data and considers only a random subset
for each branch. During the trajectory prediction phase, the RF output is determined by
aggregating the predictions from all individual decision trees. In our time-series regression
scenario, the RF model is supposed to calculate the average of these predictions. This
process involves training the model with a trajectory dataset and using it to predict future
trajectories, as follows [41]:

1. Data Collection: The UASs’ time history flight trajectory data were generated and col-
lected using the UAS-S4 simulator. These data included latitude, longitude, altitude,
heading, speed, and time.

2. Data Preprocessing: Firstly, data cleaning incorporated handling missing values, out-
liers, and noise. Secondly, features were engineered [42], and new features that
may be relevant to the memory for the ATP were created. For instance, historical
trajectory points can be used to create features including ‘previous_latitude’, ‘previ-
ous_longitude’, and ‘previous_altitude’.



Aerospace 2024, 11, 49 5 of 15

3. Model Training: ‘RandomForestRegressor’ was imported from the ‘sklearn.ensemble’
library. The RF model was trained while the out-of-bag (OOB) error was enabled [43].
This error is the average squared difference for regression. The OOB error was
monitored during training to provide a preliminary estimate of model performance,
in which internal validation (the OOB samples acted as validation sets) and unbiased
estimates (since the model was tested on samples it had not seen during training) are
provided. Eventually, the RF model learns to make predictions based on the input
features and their relationships to the target variable.

4. Model Evaluation: After training the RF model, Mean Absolute Percentage Error
(MAPE) and out-of-bag (OOB) error were considered as metrics for performance
analysis.

5. Model Optimization: The effectiveness of the RF model for trajectory prediction de-
pends on multiple factors, such as data quality and hyperparameter tuning. Fine-
tuning of the RF model hyperparameter is necessary to achieve optimal perfor-
mance. For hyperparameter tuning, parameters including ‘n_estimators’ [44],
‘max_depth’ [45], ‘min_samples_split’, and ‘min_samples_leaf’ [46] were ad-
justed using ‘GridSearchCV’ to improve performance.

6. Real-time Prediction: This process consists of using the trained RF model to make
new trajectory predictions. The relevant features are input for each trajectory, and
the model outputs predicted future trajectories based on learned patterns. The RF
model calculates the average of decisions (predictions made by trees) [47]. The
additive model combines decisions from a series of base models using the relationship
g = f0 + f1 + . . . + fk. Therefore, the final model g is the sum of base models fk.
Figure 2 illustrates the architecture of the RF model with the aim of the UAS-S4
trajectory prediction.
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Firstly, trajectory dataset containing the UAS-S4 GPS data provides n trajectory sam-
ples for the RF model. These samples are transmitted to the ‘In-Bag’ and ‘Out-of-Bag’
blocks in parallel. The ‘In-Bag’ block provides a subset of training samples used to train
a particular decision tree within the ensemble. The ‘Out-of-Bag’ block gathers samples
as a subset of training data that are not used during the training of a specific decision
tree within the ensemble. Relying on the ‘In-Bag’ and ‘Out-of-Bag’ blocks, the bootstrap
sampling process is executed. In this bootstrap sampling, samples are randomly selected
and replaced in the original dataset to create a new dataset of equivalent size. On average,
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approximately 63.3% of the unique instances from the original dataset are selected at least
once in this process (known as ‘In-Bag’ samples). The remaining 36.7% that are not selected
constitute the OOB samples for that specific tree. Samples are then sent to the trees as a
unique regressor and have a particular architecture. Trees are trained, and each makes
trajectory predictions based on its individual learning. Predicted trajectories are collected,
and their average is considered as the most representative value.

4. Results and Discussion

The Random Forest (RF) method, as a machine learning algorithm, can reach its full
capabilities if it accesses to a large and comprehensive dataset. To create such a dataset, the
UAS-S4 system was used to generate a significant number of aircraft trajectories, creating a
high-quality training database. Figure 3 shows the UAS-S4 Ehécatl manufactured by Hydra
Technologies, and Table 1 provides detailed specifications regarding its geometry and flight
data parameters.
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Table 1. The UAS-S4 geometrical and flight data parameters.

Specification Value

Wingspan 4.2 m
Wing area 2.3 m2

Total length 2.5 m
Mean aerodynamic chord 0.57 m
Empty weight 50 kg
Maximum take-off weight 80 kg
Loitering airspeed 35 knots
Maximum speed 135 knots
Service ceiling 15,000 ft
Operational range 120 km

The flight dynamics of the UAS-S4 were modeled around its equilibrium by analyzing
its differential equations for lateral and longitudinal motion [48]. The longitudinal state
vector, Xlon = [u w q θ]T was made up of state variables including axial velocity u, vertical
velocity w, pitch rate q, and pitch angle θ. This vector is governed by the longitudinal input
vector δlon =

[
δe δT

]T , comprising elevator deflection δe and thrust δT . Similarly, the
lateral state vector, Xlat = [v p r φ]T includes lateral velocity v, roll rate p, yaw rate r, and
roll angle φ and is influenced by the lateral input vector δlat =

[
δa δr

]T , which includes
aileron and rudder deflections. In any trim condition, the UAS-S4 Flight Dynamics Model
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(FDM) is representable through a state-space system that employs the state vector X, input
vector δ, and output vector Y [48].

.
X(t) = A X(t) + B δ(t)
Y(t) = C X(t) + D δ(t)

(1)

where the matrices for the longitudinal state space are [48]:

Alon =


Gu
Hu

Mu + M .
wHu

0

Gw
Hw

Mw + M .
wHw

0

0
u0

Mq + u0M .
w

1

−g cosθ0
−g sinθ0

0
0



Blon =


Gδe

Hδe

Mδe + M .
w Hδe

0

GδT
HδT

MδT + M .
wHδT

0

, Clon =


0
0
0
1


T

, Dlon = 0

(2)

and the matrices for the lateral state-space include [48]:

Alat =


Yv
Lv
Nv
0

Yp
Lp
Np
1

−(u0 − Yr)
Lr
Nr
0

g cosθ0
0
0
0



Blat =


0

Lδa

Nδa

0

Yδr

Lδr

Nδr

0

Clat =


0
0
0
1


T

, Dlat = 0

(3)

and Gu, Gw, Hu, Hw, Mu, Mw, Mq, Gδ, Hδ, Mδ are the longitudinal and Yv, Yp, Yr, Lv, Lp, Lr,
Nv, Np, Nr, Yδ, Lδ, Nδ are the lateral dimensional stability derivatives.

The database of aircraft trajectories was generated using a simulator that was de-
veloped using our UAS-S4 flight dynamics model, which incorporates a support vector
regression (SVR) algorithm [49,50] and a resilient adaptive fuzzy controller [48]. This
database includes 1820 trajectories that contain 218,400 samples. Each sample is repre-
sented as a vector as [latitude, longitude, altitude, heading, speed, time] T obtained from
the GPS data.

In the literature review section, both the Linear Regression (LR) and Long Short-Term
Memory (LSTM) models were considered for comparison with the Random Forest (RF)
method. The Random Forest (RF) model was trained using the UAS-S4 trajectory dataset.
Subsequently, its performance was benchmarked versus that of the LR and LSTM models,
as this comparison primarily focused on the Mean Absolute Percentage Error (MAPE) as
an evaluation metric, which is not highly sensitive to outliers [51]. Outliers refer to data
points that deviate significantly from the other observations, potentially due to variability
or errors. They can influence the outcome of statistical analyses and might sometimes lead
to misleading conclusions.

The MAPE is a metric used to evaluate the performance of regression models. It
provides a straightforward way to calculate the average error of predictions, whether the
error is due to underestimation or overestimation, which can be represented in Equation (4):

MAPE =
1
m ∑m

j=1

∣∣∣∣ yi − ŷi
yi

∗ 100
∣∣∣∣ (4)

where m is the total number of observations, yi is the actual values, and ŷi is the predicted
values including latitude, longitude, altitude, heading, speed, and time. The error was
computed based on measuring Euclidean distance. Since for specific altitudes, UAS-S4s
were arranged in a 16 km2 flight zone, and each sector was 100 m × 100 m, 1% error could
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be 1.4 m at max [4]. By considering 1.4 m misplacement for 1% error, the MAPE can give a
more comprehensible result.

The calculation expressed by Equation (1) involves subtracting each predicted value
from its corresponding actual value by taking the absolute value of each of these differences
and then by averaging these absolute differences over a number of observations. The
resultant value, expressed in units of the predicted variable, provides a straightforward
indication of the average magnitude of the prediction errors, regardless of their direction.
A lower MAPE indicates that a model is more accurate, while a higher MAPE suggests
that the predictions are, on average, farther from their actual values. Figure 4 provides an
insight into the performance of various prediction models by using the Mean Absolute
Percentage Error (MAPE) index as the evaluation metric.
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In Figure 4, MAPE values are depicted for the LR, LSTM, and RF models used for
trajectory prediction. The LSTM and LR models are those of the designed models in our
previous study [25]. Each model was assessed within a prediction horizon spanning 5 min.
The LR model could never surpass the performance levels exhibited by its counterparts,
LSTM and RF, and its lowest MAPE (1.19%) was achieved for the immediate prediction. The
error was computed based on measuring Euclidean distance. Since, for specific altitudes,
UAS-S4s were arranged in a 16 km2 flight zone, and each sector was 100 m × 100 m, 1%
error could be 1.4 m at max [4].

In the short-term prediction window spanning 1 to 2 min, the RF model outperformed
both the LSTM and LR, with an average MAPE that was 0.23% lower. However, for long-
term predictions within a 4 to 5 min horizon, LSTM was better than the RF model by an
average of 0.31% MAPE reduction. For the specific task of evaluating available airspaces for
UAV allocation, which requires a maximum prediction horizon of 2 min, the RF model is
more efficient than the LSTM for its predictive performance. Additionally, for our UAS-S4
trajectory dataset, training of the RF model was 2.7 times faster than the LSTM (using two
GTX TITAN X GPUs). The RF had a simpler mechanism for avoiding overfitting. As a
result, we opted for the RF model for predicting UAS-S4 trajectories. The trained RF model
could predict the UAS-S4 trajectories over a 2 min horizon in no longer than 69 ms.

Given the very good performance of the RF model, it is needed to optimize its hyper-
parameters. In this way, the OOB error was used for evaluating the ‘min_sample_leaf’,
and ‘min_sample_split’ hyperparameters as it offered a reliable estimate of the RF model
performance on unseen data. It was crucial for determining the optimal minimum number
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of samples per leaf and split to prevent overfitting. The OOB error was calculated using
the following procedure.

i. For each training instance (data point) that was not included in the bootstrap sample
(i.e., left out of the bag) for a particular tree in the ensemble, its value was predicted
using that tree.

ii. After all trees are constructed, for each training instance, the average of the predictions
made by the trees for which that instance was out-of-bag was calculated.

iii. The OOB error is then the average of the squared differences between these averaged
predictions and the actual values of the training instances. Mathematically, if yi is the
actual value of the ith instance and ŷi is the averaged OOB prediction for that instance,
then the OOB error is calculated as:

OOB error =
1
n

n

∑
i=1

(yi − ŷi)
2 (5)

where n is the number of training instances.

While normalization of input features is not essential for Random Forest models due to
their inherent scale invariance, it does not harm the model’s performance and leads to some
side benefits such as uniformity, outlier sensitivity, and consistency with other models. We
normalized the RF’s input features, especially for its consistency across different models.
This is essential for our further transferability analysis of adversarial attacks. Input feature
normalization caused (y − ŷ) ranges between 0 and 1 and consequently, in Equation (5),
OOB error ∈ [0, 1].

We determined accuracy for evaluating the ‘max_depth’ hyperparameter as it could
provide a straightforward measure of overall RF model performance regarding the balanced
UAS-S4 dataset. Accuracy was calculated as the percentage that complements the out-of-
bag (OOB) error.

accuracy = (1 − OOB error)× 100 (6)

Following the hyperparameter tuning, the ‘max_features’ hyperparameter controls
the number of features that should be considered when looking for the best split at each
node in the decision tree. The most common settings for ‘max_features’ in a regression
problem are ‘None’, ‘log2’, and ‘sqrt’. ‘None’ considers all the features for finding the
best split at each node; ‘log2’ uses log2 of the number of features, which means that a
very small subset of features is considered at each split, which may be useful for very
high-dimensional datasets; and ‘sqrt’ uses the square root of the number of features for
making the best split at each node. It is often used as a default heuristic by providing a
good balance between creating diverse trees and the depth of trees. The aim is to balance
between model diversity (having different trees in a forest may capture different patterns)
and the prediction accuracy of individual trees. We used OOB error to evaluate the RF
performance using various ‘max_features’.

Figure 5 depicts the RF model performance in terms of an OOB error percentage (%)
for different ‘max_features’ settings.

Figure 5 illustrates a graph where the x-axis represents the number of estimators and
the y-axis depicts the out-of-bag (OOB) error. In this figure, three ‘line’ and ‘dot’ styles
are present: a dashed line corresponding to ‘max_features’ set as ‘None’, a solid line
for the ‘sqrt’ setting, and a dotted line associated with ‘log2’. It is noticeable from the
graph that as the number of trees reaches 14, the OOB error for RFs begins to stabilize. By
analyzing the results more closely, it was found that the ‘sqrt’ setting provided the smallest
rate of out-of-bag error, whereas the log2 setting demonstrated enhanced precision in the
validation accuracy. In other words, the out-of-bag error did not vary significantly as the
number of trees increased.
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‘max_depth’ is a crucial hyperparameter used in the RF model and other tree-based
algorithms such as decision trees and gradient boosting trees. The ‘max_depth’ parameter
specifies the maximum depth of each tree in the Random Forest. The depth of a tree is the
maximum distance from the root node to any leaf node. This hyperparameter is supposed
to control overfitting, model complexity, and training time. By limiting the depth of the
trees, the model can avoid fitting too closely to the training data, thus helping to mitigate
overfitting. Deeper trees can model more complex patterns, but they may also capture
noise in the data. Shallower trees can generally train the model faster than the deeper trees
because there are fewer computations to perform. Figure 6 illustrates the RF accuracy for
a variety of ‘max_depth’ values. Setting an appropriate ‘max_depth’ helps manage the
trade-off between model complexity and overfitting.
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Given that trajectory data comprise a limited set of features, our evaluation primarily
zeroes in on the test data accuracy, taking into account variations in forest size and the
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maximal depth of individual trees. As depicted in Figure 6, a direct correlation exists
between an enlarged number of trees in the forest and enhanced accuracy of the RF model.
The RF model accuracy increases with the ‘max_depth’ value. Specifically, the accuracy
experiences a growth with each additional tree introduced, eventually stabilizing once
the count reaches 16 trees (black point). A close examination of Figure 6 reveals that the
maximum accuracy was achieved using the RF model when it reached 99.4% with 28 trees.
We utilized 16 trees in order to avoid overfitting and model complexity.

A very deep tree might capture noise in the data and overfit, while a very shallow tree
might not be able to capture the underlying patterns, resulting in underfitting. Other regu-
larization hyperparameters in tandem with ‘max_depth’, such as ‘min_samples_split’
and ‘min_samples_leaf’, can be considered. These hyperparameters were involved in
the proposed RF trajectory prediction model. They help to control the growth of the trees
and, consequently, affect the model performance and complexity. ‘min_samples_split’
defines the minimum number of samples required to split an internal node. Figure 7 shows
the OOB error obtained in % for various ‘min_samples_split’ values.
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By considering ‘max_features’ = 14 and ‘max_depth’ = 16, setting the ‘min_
samples_split’ value higher can smooth the RF model, resulting in less overfitting. A
higher value of ‘min_samples_split’ means that our RF algorithm is less likely to learn
fine-grained UAS-S4 trajectory patterns, which could result in a simpler model. On the
other hand, with fewer splits, the RF model is less flexible and cannot adequately capture
the underlying patterns in the data, leading to higher bias and underfitting. Moreover, the
RF model becomes less sensitive to variations in the data. While this fact might reduce
overfitting, it also prevents the RF model from learning important, finer-grained UAS-S4
trajectory patterns that are crucial for accurate predictions.

The other pivotal hyperparameter is ‘min_samples_leaf’, which specifies the min-
imum number of samples required at a leaf node. Setting this to a high value creates a
constraint on refining the partitions, which smoothens the model and avoids overfitting.
With a larger number of samples in the leaf, the model becomes more robust to noise in
the data. Figure 8 shows the RF model performance in terms of OOB error with increasing
‘min_samples_leaf’.

Utilizing ‘max_features’ = 14, ‘max_depth’ = 16, and higher values for the ‘min_
samples_leaf’ parameter prevents the RF model from overfitting, but excessive values
might lead to model overfitting. On the other hand, the RF model trained with a low
‘min_samples_leaf’ value might not generalize well to new data because it is too tailored
to the training data and can result in lower accuracy. These parameters should be adjusted
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using techniques such as grid search, random search, or Bayesian optimization. The
proper tuning of these hyperparameters generalizes the RF model well to unseen data by
effectively balancing bias and variance. For the RF model, the ‘min_samples_split’ was
considered 9 where the OOB error was 1.13%, and ‘min_samples_leaf’ was set into 10
where the OOB error was 1.28% using the ‘GridSearchCV’ optimizer. This optimizer in
the Scikit-learn library facilitates hyperparameter optimization by exhaustively evaluating
model performance across a defined parameter grid. Using cross-validation, it assesses
every parameter combination, typically employing metrics such as accuracy or precision to
determine the best configuration. Upon identifying the optimal parameters, the model is
trained on the complete dataset. Using the UAS-S4 dataset, the RF model was trained, and
its hyperparameters were tuned accordingly. The optimized RF model accurately predicted
the future trajectories of the UAS-S4.
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5. Conclusions

This study provides a comprehensive analysis to evaluate the efficiency of the Random
Forest (RF) methodology in predicting aircraft trajectories. In this study, the RF approach
was compared to two renowned data-driven models: Long Short-Term Memory (LSTM)
and Logistic Regression (LR). The research relies on a considerable dataset comprising
historical aircraft trajectory data obtained from a UAS-S4 simulator.

The study shows that, within the constraint of a short-term prediction horizon, the
RF methodology excels in trajectory prediction accuracy, outshining both the LSTM and
LR models. Furthermore, a meticulous optimization process was undertaken to enhance
the RF methodology performance, which involved fine-tuning several hyperparameters,
including the number of estimators, features, depth, split, and leaf parameters.

Notably, it was observed that selecting ‘max_feature’ = sqrt yielded the lowest rate
of out-of-bag error for the RF under stable conditions. The model accuracy saw substantial
improvement with the addition of each tree. Increasing the ‘min_samples_split’ value
induced a smoothing effect on the model, consequently mitigating the risk of overfitting.
In essence, a higher ‘min_samples_split’ value restrained the algorithm from learning
overly detailed patterns, culminating in a model with a simplified structure. Similarly,
increasing the ‘min_samples_leaf’ value imposed restrictions on further partition refine-
ments, ensuring the model remained smooth and resilient to overfitting. When the leaf
nodes had a higher sample count, the model demonstrated enhanced robustness against
data noise. Together, these insights underscored the promising potential of the RF method-
ology, highlighting it as a valuable alternative to the LSTM and LR models, particularly in
tasks requiring short-term trajectory prediction.
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Nomenclature

m Total number of observations
y Actual trajectory value
ŷ Predicted trajectory value
Tn The time during which the aircraft is at step n
LR Logistic Regression
LSTM Long Short-Term Memory
MAPE Mean Absolute Percentage Error
RF Random Forest
UAS Unmanned Aerial System
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