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Abstract: Biomechanics and training load monitoring are important for performance evaluation and
injury prevention in elite swimming. Monitoring of performance and swim stroke parameters is
possible with inertial measurement units (IMU) but has not been validated in para-swimmers. The
purpose of this study was to validate a single IMU-based system to accurately estimate pool-swam lap
time, stroke count (SC), stroke duration, instantaneous stroke rate (ISR), and distance per stroke (DPS).
Eight Paralympic athletes completed 4 × 50 m swims with an IMU worn on the sacrum. Strokes
cycles were identified using a zero-crossing algorithm on the medio-lateral (freestyle and backstroke)
or forward-backward (butterfly and breaststroke) instantaneous velocity data. Video-derived metrics
were estimated using Dartfish and Kinovea. Agreement analyses, including Bland–Altman and
Intraclass Correlation Coefficient (ICC), were performed on all outcome variables. SC Bland–Altman
bias was 0.13 strokes, and ICC was 0.97. ISR Bland–Altman biases were within 1.5 strokes/min, and
ICCs ranged from 0.26 to 0.96. DPS Bland–Altman biases were within 0.20 m, and ICCs ranged from
0.39 to 0.93. A single-IMU system can provide highly valid performance and swim stroke monitoring
data for elite para-swimmers for the majority of strokes, with the exception of backstroke. Future
work should improve bilateral stroke detection algorithms in this population.

Keywords: swimming; paralympic; workload monitoring; wearable; stroke measurement

1. Introduction

Musculoskeletal disorders and pain are commonly reported in swimming and para-
swimming, but few validated tools exist to help guide their use from an injury prevention
perspective [1,2]. For instance, such tools can theoretically help monitor the number of
strokes performed and time spent swimming in a training session, and subsequently the
overall training workload. Such tools could also help us to better understand swimming
technique, reducing injury risk from poor technique performed over a chronic period. In
the field, swim coaches identify swimming kinematic parameters as highly important to
monitor [3]. Furthermore, the previous literature has shown that some mechanical variables
of swim strokes have been linked to performance in swimming [4]. Specifically, stroke
rate (SR) and stroke length (SL) have significant relationships to swimming velocity for all
strokes (for SR) and for freestyle and butterfly (for SL) in elite swimmers [5]. In addition,
automatic estimation of stroke count (SC) would allow for estimates of the number of
shoulder rotations performed in training sessions. Monitoring the SC is of high importance
due to the association between high workloads and shoulder pain in swimmers.

Ninety percent of young, elite swimmers have self-reported shoulder pain [1]. In
addition, in a study of Polish national team para-swimmers, it was reported that 29% of
them had shoulder pain in the 7 days prior to filling out a cross-sectional questionnaire [2].
The average competitive swimmer completes 30,000 rotations of each shoulder every
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week [6]. It is proposed that numerous shoulder movement repetitions can contribute to
joint inflammation and pain [7]. As such, monitoring swimming time and the number of
movement repetitions completed while swimming may help to prevent overuse injuries to
the shoulder. Additionally, monitoring swim stroke technique may be useful in predicting
injury risk longitudinally and adjusting higher-risk movement strategies. However, for this
to happen, valid swim stroke detection tools must first be developed.

While two-dimensional video analysis has historically been the gold standard for per-
formance quantification and monitoring in swimming [3,8,9], it presents many drawbacks,
such as parallax errors, water turbulence [10], and time-consuming data processing [9,11].
An alternate solution with quick data processing times, such as an inertial measurement
unit (IMU), would benefit high-performance teams [4,8,10,12]. IMUs are small, inexpensive
wearable devices that can monitor instantaneous velocity [12–14] and kinematic param-
eters of the swim stroke [15–18]. IMU placement on the sacrum has been suggested to
minimize the effect of drag and allow for good indications of swimmers’ instantaneous
velocity [14], SC [13], instantaneous stroke rate (ISR) [15], and distance per stroke (DPS) [19].
In addition, IMU-based velocity metrics in the wall push-off, glide, stroke preparation,
and free-swimming phases have been shown to help predict competitive swimmers’ pro-
gression of freestyle lap time over a 10-week period [20], highlighting IMUs as a viable
tool to help improve technique and subsequently performance in able-bodied swimmers.
However, lap times, SC, stroke duration, and ISR derived from sacrum-worn IMUs have
only been validated in able-bodied swimmers. Furthermore, ISR was only validated in
freestyle swimming [15], and DPS has not been validated in any population to date. This is
a step that must be completed to ensure accurate monitoring of swimming performance
and workload for all swim strokes in all categories of swimmers alike.

IMUs are an under-researched technology in para-swimming. Previous investigations
have focused on automation detection of kicking mechanics [21,22], upper limb coordi-
nation [23], and joint kinematic changes following electrical stimulation [24]. However,
all of this research uses either multiple sensors or has specific use cases. One previous
study has shown that a single IMU placed on the sacrum is a valid solution for perfor-
mance quantification in swimmers with impairments compared to gold-standard tether
units. Instantaneous velocity estimates in the four swimming strokes of para-swimmers
showed small Bland–Altman biases of 0.03–0.06 m.s−1, root mean square errors (RMSE) of
0.14–0.39 m.s−1, and ICC between 0.49–0.94 for all stroke types [14]. Fleiss [25] proposed
that ICC values less than 0.40 were considered poor; 0.40 to 0.59 as fair; 0.60 to 0.74 as
good; and 0.75 to 1.00 as excellent. As such, instantaneous velocity can be estimated using
IMUs with small biases, low RMSE, and fair to excellent ICC values in swimmers with
impairments [14]. However, a gap exists to study the automatic quantification of swim
stroke mechanics in para-swimming using a single IMU. Specifically, no research to date
has validated a single sacrum-worn IMU to quantify SC, stroke duration, ISR, DPS, and
lap time in para-swimmers for all swimming strokes. The aim of the current study was
to validate an IMU solution against the gold-standard two-dimensional video to quantify
these variables in Paralympic swimmers completing the four swimming strokes.

2. Materials and Methods
2.1. Participants

Eight Paralympic athletes (4m/4f; age: overall = 23.25 years ± 2.87, m = 23.75 years
± 2.63, f = 22.00 years ± 3.16; height: overall = 158.74 cm ± 26.01, m = 172.83 cm ± 14.63,
f = 144.65 cm ± 28.90; body mass: overall = 61.54 kg ± 17.00, m = 72.43 kg ± 14.91,
f = 50.65 ± 11.65) participated in the current study. All athletes were classified by the
World Para Swimming Classification Panels and compete at an international level. Details
of participants’ disabilities, para-swimming classes, and strokes performed in the present
study can be found in Table 1. The 8 recruited athletes represent the entire population of
the Centre de Haute Performance, a national training center for para swimming. As such,
this represents the entire population available to sample and exceeds the sample size used
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in previous para-swimming research using a sacrum-worn IMU [14]. Informed consent
was obtained from all subjects involved in this study. This study was conducted according
to the guidelines of the Declaration of Helsinki and approved by the Institutional Review
Boards of McGill University (protocol code 22-05-021, approved on 03/10/2022) and École
de Technologie Supérieure (protocol code H20221001, approved on 03/11/2022).

Table 1. Details of disabilities, para-swimming classes of the athletes, and strokes performed.

Athlete ID Disabilities Classes Swimming Strokes

1 Right femoral-fibula-ulnar syndrome; Dysmeliac right upper limb S8, SB7, SM8 FY, BK, BR, FR
2 Intellectual Impairment S14, SB14, SM14 FY, BK, BR, FR
3 Dysmelia, congenital left hand amputee S10, SB9, SM10 FY, BK, BR, FR
4 Cerebral palsy S9, SB8, SM9 FY, BK, BR, FR
5 Pseudoachondroplasia S5, SB5, SM5 BR, FR
6 Achondroplasia dwarfism S6, SB6, SM6 BK, BR, FR
7 Stroke (post-bleeding aneurysm) S7, SB6, SM7 FY, BK, BR, FR

8 Congenital impaired strength loss at the left hip, knee, and ankle
with associated foot deformity SB9 FY, BK, BR, FR

World Para Swimming classifies freestyle, butterfly, and backstroke events as S, breaststroke as SB, and individual
medley as SM. A lower number indicates a more severe activity limitation. Physical impairment numbers range
from 1 to 10, and intellectual impairments are classified as 14. FY = Butterfly, BK = Backstroke, BR = Breaststroke,
and FR = Freestyle.

2.2. Instrumentation

A single IMU (±16 g, 120 Hz, Xsens Dot, Xsens Technologies, Enschede, The Nether-
lands) was placed between the participant’s posterior superior iliac spines (Figure 1). The
IMU had dimensions of 36 × 30 × 11 mm and a mass of 3.15 g. Data were recorded on the
IMU onboard memory.
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HR G10, Canon Inc., Tokyo, Japan) was positioned to capture a 10 m section of the pool 

Figure 1. Placement of the IMU on the sacrum of an athlete.

A 360◦ video camera (60 Hz, Fusion, GoPro Inc., San Mateo, CA, USA) was used as a
reference to record the timing of stroke cycles. A second stationary camera (30 Hz, Vixia
HR G10, Canon Inc., Tokyo, Japan) was positioned to capture a 10 m section of the pool for
measurement of DPS. See Figure 2 for a visual representation of the experimental set-up.
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Figure 2. The experimental setup for the data collection shows (A) the above camera view and (B) the
stationary camera view.

2.3. Protocol

The athlete was instrumented during a regular season training session. A 15 min
warm-up was completed prior to the protocol, individualized for the athlete, and prescribed
by the head coach. The protocol required that athletes perform a 4 × 50 m protocol (the
sequence being 50 m of butterfly, 50 m of backstroke, 50 m of breaststroke, and lastly, 50 m
of freestyle). Each athlete was asked to swim at a rate of perceived exertion of 7/10 on the
Borg CR-10 scale [26]. Each athlete rested for a minimum of 1 min between each 50 m trial.
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Each 50 m trial was initiated from a dive start at the end of the pool where the previous
50 m trial was terminated. The stroke types performed by the athlete were prescribed
by the head coach of the swimming team based on their capabilities, availability during
training, and fatigue/injury status. A total of 29 individual stroke trials were recorded
(freestyle = 8, backstroke = 7, breaststroke = 8, butterfly = 6).

Video clips were collected using a video camera attached to an extendable pole posi-
tioned directly above the athlete, allowing for a ‘birds-eye’ view of each swimming trial
(Figure 2A). An operator carried the pole along the side of the pool so that the camera
remained above the athlete throughout the trials. To allow for optimal camera positioning,
all trials were performed in the lane closest to the poolside. A second stationary camera
recorded each swim trial over the middle 10 m section of the pool. IMU and video data
were synchronized by tapping the IMU three times in clear view of both cameras.

2.4. Data Processing
2.4.1. IMU Processing

All data were processed with custom-made software (Matlab 2023a, Mathworks,
Natick, MA, USA). Instantaneous velocity and position were calculated as described
previously [14]. Five trial events were manually defined by a trained operator: (1) dive
start, (2) dive end, (3) start of underwater kicks, (4) end of underwater kicks/start of swim,
and (5) end of swim.

Stroke cycles were identified using a zero-crossing algorithm [18] applied to the
medio-lateral (freestyle and backstroke) or forward-backward (butterfly and breaststroke)
instantaneous velocity data. Details of the calculations for each stroke parameter from the
IMU data are presented in Table 2.

Table 2. Description of IMU and video calculations for each stroke parameter.

Stroke Parameter Unit IMU Description Video Camera Video Description

Stroke count (SC) count Sum of detected stroke cycles
per lap. Above swimmer Sum of tagged stroke cycles

per lap.

Stroke duration ms
Time difference between the
nth and nth + 1 stroke cycle
start points.

Above swimmer
Time difference between the nth

and nth + 1 stroke cycle starting
points.

Instantaneous
stroke rate Strokes/min

Estimated rate of strokes per
minute (60/duration of a
given stroke in seconds).

Above swimmer Stroke duration (s) divided by 60 s.

Distance
per stroke (DPS) m

Displacement between the
nth and nth + 1 stroke cycle
start points.

Stationary and above
swimmer

Displacement (stationary camera)
between the nth and nth + 1 stroke
cycle starting points (taken from
the above swimmer camera).

Lap Time s
Time difference between the
1st and 5th manually defined
swim events.

Above swimmer

Time difference between the first
frame where the athlete initiated
the dive and the first frame where
the athlete touched the wall.

2.4.2. Video Processing

Video data from the camera positioned above the athlete (see Figure 2A) were rendered
using Fusion Studio (Version 1.2, GoPro Inc., San Mateo, CA, USA). Video data were con-
verted from 360◦ to 2-D using GoPro Player’s “Overcapture” feature (Version 2.1.6, GoPro
Inc., San Mateo, CA, USA). Two-dimensional videos were analyzed in Dartfish (Version 8,
Dartfish, Fribourg, Switzerland), with stroke cycle start points tagged. Definitions of the
video-based start point of strokes are presented in Table 3.
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Table 3. Definitions of the video start points of the stroke cycle for the four swimming styles.

Stroke Style Definition of the Start of the Stroke Cycle

Freestyle The start of torso rotation as the arm recovery phase is ending.
Backstroke The start of the arm pull phase after the catch phase has finished.

Breaststroke The start of the arm-pull phase after the sculling-out movement has finished.
Butterfly The start of the arm pull phase after the catch phase has finished.

Stroke cycle start points were tagged at two separate times by the same trained
operator, rendering two time series extracted from each video sequence, then used to assess
the intra-rater reliability of the method. Pearson’s R correlations between the two video
tagging datasets showed extremely strong correlations (r = 0.999, n = 1042), confirming
the relative reliability of the large effect [27]. A root mean square error (RMSE) of 64 ms
(df = 1040, p < 0.001), or roughly 4 video frames at 60 Hz, between the datasets were
observed. Therefore, given this evidence for the very high intra-rater reliability of the video
tagging method, the means of the two intra-rater video-derived stroke cycle start timings
were then used as a comparison to the IMU-derived stroke cycle start points.

Images from the stationary video camera were analyzed in Kinovea (Version 0.9.5, Ki-
novea open-source project, www.kinovea.org, accessed on 1 September 2023). Above-water
and stationary camera video data were synchronized using the first frame of toe-off from the
above-swimmer camera operator after the swimmer had passed the red cones (positioned
to indicate the stationary camera capture space). This method of synchronization was used
as the camera views of the operator were not impeded by water turbulence or splashes.
The 10-meter capture space was calibrated using Kinovea’s ‘perspective grid’ function
(calibrated as the 2.5 m lane width × the 10 m lane length between the red cones). The head
trajectory of the athlete was tracked through the capture space. DPS was calculated as the
displacement in meters of the athlete from the start to the end of each stroke cycle using the
stationary video camera. For freestyle and backstroke, distances per stroke were calculated
as the displacement between stroke cycle start points for each arm independently. Details
of the calculations for each stroke parameter from the video data are presented in Table 2.

2.5. Statistical Analyses

Agreement between video and IMU-derived SC, stroke durations, ISR, DPS, and lap
times were assessed using Bland–Altman analyses [28]. Bland–Altman plots, ninety-five
percent (95%) limits of agreement (LoA), and RMSE were calculated using Microsoft Excel
(Version 16.76, Microsoft Corporation, Redmond, WA, USA). 95% LoA was defined as
the mean difference between video and IMU ± 1.96 standard deviations (SD). All further
statistical analyses were completed for each type of stroke using R (Version 4.2.1, R Core
Team, 2018). Scattering of data around the bias, skewness, and kurtosis confirmed a
normal data distribution [15], using the R “moments” package (Version 0.14.1, Komsta &
Novomestky, 2022). Single measures of intraclass correlation coefficients (ICC) in a two-way
model on absolute agreement (ICC 2, 1) were computed for all outcome variables [29] using
the R “psych” package (Version 2.3.6, Revelle, 2023). ICC less than 0.40 was considered
poor; 0.40 to 0.59 was fair; 0.60 to 0.74 was good; and 0.75 to 1.00 was excellent [25]. The
standard error of measurement (SEM) was calculated as SD ×

√
(1 − ICC), using base R.

Mean Absolute Percentage Error (MAPE) was calculated for all outcome variables using
the R “MLmetrics” package (Version 1.1.1, Yan, 2016). The coefficient of variation (CV) was
calculated for all IMU and video-derived outcomes using base R.

3. Results
3.1. Stroke Count

The results of the Bland–Altman analyses and agreement analyses for stroke counts
are detailed in Table 4. The Bland–Altman analyses showed an overall bias of 0.13 strokes
(95% CI [−0.83; 1.07]). The RMSE was 0.49 strokes. Agreement analyses revealed an ICC of

www.kinovea.org


Bioengineering 2024, 11, 15 7 of 14

0.97 (95% CI [0.93; 0.98]). The MAPE was 0.66%. Similar CVs between both data sources
were observed.

Table 4. Bland–Altman and agreement results for stroke count.

N RMSE
(Strokes)

Count
Mean ± SD

Bias (Strokes)
[95% CI]

95% Limits of Agreement
[95% CI] ICC

[95% CI]
SEM

(Strokes)

CV
MAPE

(%)Lower Limit
(Strokes)

Upper Limit
(Strokes) IMU Video

Overall 28 0.49 27.54 ± 9.73 0.13
[−0.05; 0.30] −0.82 [1.13; 0.51] 1.07 [0.76; 1.38] 0.97 [0.93; 0.98] 1.72 35.37 35.28 0.66

Freestyle 8 0.59 25.59 ± 9.49 0.31
[−0.06; 0.68]

−0.73
[−1.36; −0.09] 1.35 [0.72; 1.99] 1 [0.99; 1] 0 36.58 37.58 0.91

Backstroke 7 0.38 24.14 ± 7.40 0.29 [0.09; 0.48] −0.24
[−0.58; 0.10] 0.81 [0.47; 1.15] 1 [0.99; 1] 0 30.54 30.81 1.10

Breaststroke 8 0.66 32.07 ± 12.54 −0.14
[−0.65; 0.37]

−1.50
[−2.38; −0.61] 1.21 [0.32; 2.10] 1 [0.99; 1] 0 39.25 38.99 1.71

Butterfly 6 0 28.83 ± 8.80 0 [0; 0] 0 [0; 0] 0 [0; 0] 1 [1; 1] 0 30.51 30.51 0

3.2. Stroke Duration

The results of the Bland–Altman analyses (Figure 3) and agreement analyses for stroke
durations are detailed in Table 5. The Bland–Altman analyses showed an overall bias of
−0.15 ms (95% CI [−6.37; 6.07]). The RMSE was 100.81 ms for all strokes. Agreement
analyses revealed an ICC of 0.97 (95% CI [0.97; 0.98]). The MAPE was 8.78%. Similar CVs
between both data sources were observed.

Bioengineering 2024, 11, x FOR PEER REVIEW 7 of 17 
 

 

The results of the Bland–Altman analyses and agreement analyses for stroke counts 
are detailed in Table 4. The Bland–Altman analyses showed an overall bias of 0.13 strokes 
(95% CI [−0.83; 1.07]). The RMSE was 0.49 strokes. Agreement analyses revealed an ICC 
of 0.97 (95% CI [0.93; 0.98]). The MAPE was 0.66%. Similar CVs between both data sources 
were observed. 

Table 4. Bland–Altman and agreement results for stroke count. 

 N 
RMSE  

(Strokes) 
Count  

Mean ± SD 
Bias (Strokes)  

[95% CI]  

95% Limits of Agreement  
[95% CI] ICC  

[95% CI] 
SEM  

(Strokes) 

CV 
MAPE 

(%) Lower Limit  
(Strokes) 

Upper Limit  
(Strokes) 

IMU Video 

Overall 28 0.49 27.54 ± 9.73 0.13 [−0.05; 0.30] −0.82 [1.13; 0.51] 1.07 [0.76; 1.38] 0.97 [0.93; 0.98] 1.72 35.37 35.28 0.66 
Freestyle 8 0.59 25.59 ± 9.49 0.31 [−0.06; 0.68] −0.73 [−1.36; −0.09] 1.35 [0.72; 1.99] 1 [0.99; 1] 0 36.58 37.58 0.91 

Backstroke 7 0.38 24.14 ± 7.40 0.29 [0.09; 0.48] −0.24 [−0.58; 0.10] 0.81 [0.47; 1.15] 1 [0.99; 1] 0 30.54 30.81 1.10 
Breaststroke 8 0.66 32.07 ± 12.54 −0.14 [−0.65; 0.37] −1.50 [−2.38; −0.61] 1.21 [0.32; 2.10] 1 [0.99; 1] 0 39.25 38.99 1.71 

Butterfly 6 0 28.83 ± 8.80 0 [0; 0] 0 [0; 0] 0 [0; 0] 1 [1; 1] 0 30.51 30.51 0 

3.2. Stroke Duration 
The results of the Bland–Altman analyses (Figure 3) and agreement analyses for 

stroke durations are detailed in Table 5. The Bland–Altman analyses showed an overall 
bias of −0.15 ms (95% CI [−6.37; 6.07]). The RMSE was 100.81 ms for all strokes. Agreement 
analyses revealed an ICC of 0.97 (95% CI [0.97; 0.98]). The MAPE was 8.78%. Similar CVs 
between both data sources were observed. 

 
Figure 3. A Bland–Altman plot comparing video and IMU stroke durations. 

Figure 3. A Bland–Altman plot comparing video and IMU stroke durations.



Bioengineering 2024, 11, 15 8 of 14

Table 5. Bland–Altman and agreement results for stroke duration.

N RMSE
(ms)

Duration
(ms)

Mean ± SD

Bias (ms)
[95% CI]

95% Limits of Agreement [95% CI]
ICC

[95% CI]
SEM
(ms)

CV MAPE
(%)

Lower Limit
(ms)

Upper Limit
(ms) IMU Video

Overall 1011 100.81 1042 ± 430 −0.15
[−6.37; 6.07]

−197.83
[−187.06; −208.59]

197.53
[186.76; 208.29] 0.97 [0.97; 0.98] 75.05 41.93 41.25 8.78

Freestyle 399 103.05 735 ± 114 0.17
[−9.95; 10.30]

−202.05
[−219.59; −184.52]

202.40
[184.86; 219.94] 0.66 [0.60; 0.71] 72.81 18.87 14.84 11.78

Backstroke 200 132.03 1605 ± 831 −4.51
[−22.84; 13.83]

−263.79
[−295.55; −231.28]

254.78
[223.02; 286.53] 0.30 [0.17; 0.42] 93.15 16.78 9.00 12.48

Breaststroke 245 87.97 1322 ± 224 3.47
[−7.56; 14.51]

−166.17
[−184.95; −147.40]

173.12
[154.35; 191.89] 0.98 [0.97; 0.99] 67.32 31.52 30.95 4.34

Butterfly 167 62.58 826 ± 89 −1.01
[−10.53; 8.51]

−124.01
[−140.50; −107.53]

121.99
[105.51; 138.48] 0.96 [0.95; 0.97] 45.04 17.07 17.18 3.71

3.3. Instantaneous Stroke Rate (ISR)

The results of the Bland–Altman analyses (Figure 4) and agreement analyses for ISR
are detailed in Table 6. The Bland–Altman analyses showed an overall bias of −0.84 strokes
per min (95% CI [−1.46; −0.22]). The RMSE was 10.05 strokes per min. Agreement analyses
revealed an ICC of 0.90 (95% CI [0.88; 0.91]). The MAPE was 8.97%. CV were similar
between both data sources for breaststroke and butterfly but differed in the bilateral strokes.
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Table 6. Bland–Altman and agreement results for ISR.

N
RMSE

(Strokes/
min)

ISR
(Strokes/min)
Mean ± SD

Bias
(Strokes/min)

[95% CI]

95% Limits of Agreement
[95% CI] ICC

[95% CI]

SEM
(Strokes/

min)

CV
MAPE

(%)Lower Limit
(Strokes/min)

Upper Limit
(Strokes/min) IMU Video

Overall 1011 10.05 65.74 ± 21.27 −0.84
[−1.46; −0.22]

−20.48
[−21.55; −19.41]

18.80
[17.73; 18.80]

0.90
[0.88; 0.91] 6.98 35.29 32.00 8.97

Freestyle 399 12.90 83.91 ± 13.03 −1.45
[−2.71; 0.19]

−26.61
[−28.79; −24.61]

23.71
[21.53; 25.89]

0.61
[0.54; 0.67] 9.08 20.03 13.95 12.02

Backstroke 200 12.31 73.94 ± 8.01 −1.06
[−2.77; 0.64]

−25.17
[−28.12; −22.16]

23.04
[20.09; 26.00]

0.26
[0.12; 0.38] 8.69 16.97 9.06 12.84

Breaststroke 245 4.30 41.95 ± 11.45 −0.26
[−0.81; 0.28]

−8.78
[−9.72; −7.83]

8.25
[7.31; 9.19]

0.92
[0.90; 0.94] 3.29 28.29 27.21 4.52

Butterfly 167 2.25 46.65 ± 7.58 0.05
[−0.29; 0.39]

−4.38
[−4.97; −3.79]

4.47
[3.88; 5.07]

0.96
[0.94; 0.97] 1.53 16.41 16.48 3.70

3.4. Distance Per Stroke (DPS)

The results of the Bland–Altman analyses (Figure 5) and agreement analyses are
detailed in Table 7. The Bland–Altman analyses showed an overall bias of −0.06 m (95% CI
[−0.09; −0.04]). The RMSE was 0.20 m for all strokes. Agreement analyses revealed an ICC
of 0.91 (95% CI [0.88; 0.93]). The MAPE was 10.78%. CV showed stroke-specific differences
between data sources.
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Table 7. Bland–Altman and agreement results for distance per stroke.

N RMSE
(m)

DPS (m)
Mean ± SD

Bias (m)
[95% CI]

95% Limits of Agreement
[95% CI] ICC

[95% CI]
SEM
(m)

CV
MAPE

(%)Lower Limit
(m)

Upper Limit
(m) IMU Video

Overall 198 0.20 1.63 ± 0.47 −0.06
[−0.09; −0.04]

−0.44
[−0.48; −0.39] 0.31 [0.26; 0.36] 0.91 [0.88; 0.93] 0.14 29.61 28.54 10.78

Freestyle 75 0.17 1.68 ± 0.46 −0.01
[−0.05; 0.03]

−0.35
[−0.42; −0.28] 0.33 [0.27; 0.40] 0.93 [0.89; 0.96] 0.12 29.41 26.30 8.54

Backstroke 43 0.24 2.03 ± 0.18 −0.16
[−0.21; −0.11]

−0.50
[−0.59; −0.41] 0.18 [0.09; 0.18] 0.39 [0.11; 0.62] 0.17 8.46 11.13 10.55

Breaststroke 48 0.21 1.31 ± 0.44 −0.04
[−0.10; 0.01]

−0.45
[−0.55; 0.35] 0.36 [0.26; 0.47] 0.89 [0.81; 0.94] 0.15 34.13 34.67 14.15

Butterfly 32 0.19 1.48 ± 0.36 −0.09
[−0.15; −0.03]

−0.42
[−0.53; −0.32] 0.24 [0.14; 0.34] 0.87 [0.75; 0.93] 0.13 23.93 25.56 11.31

3.5. Lap Time

The results of the Bland–Altman analyses and agreement analyses are detailed in
Table 8. The Bland–Altman analyses showed an overall bias of 0.04 s (95% CI [−0.09; 0.02]).
The RMSE was 0.15 s for all strokes. Agreement analyses revealed an ICC of 1 (95% CI
[1; 1]). The MAPE was 0.32%. Similar CVs between both data sources were observed.

Table 8. Bland–Altman and agreement results for lap time.

N RMSE
(s)

Lap Time (s)
Mean ± SD

Bias (s)
[95% CI]

95% Limits of Agreement [95% CI] ICC
[95% CI]

SEM
(s)

CV MAPE
(%)Lower Limit (s) Upper Limit (s) IMU Video

Overall 30 0.15 48.29 ± 16.35 0.04
[−0.09; 0.02]

−0.34
[−0.43; −0.24] 0.26 [0.17; 0.35] 1 [1; 1] 0 33.87 33.86 0.32

Freestyle 8 0.16 42.04 ± 13.43 −0.10
[−0.19; 0.01]

−0.35
[−0.51; −0.20] 0.16 [0.00; 0.32] 1 [1; 1] 0 31.84 32.05 0.39

Backstroke 6 0.14 46.11 ± 8.50 −0.03
[−0.15; 0.09]

−0.32
[−0.52; 0.12] 0.26 [0.05; 0.46] 1 [1; 1] 0 18.50 18.37 0.28

Breaststroke 8 0.12 57.16 ± 19.37 −0.01
[−0.10; 0.08]

−0.26
[−0.41; 0.11] 0.23 [0.08; 0.38] 1 [1; 1] 0 33.91 33.87 0.17

Butterfly 8 0.19 47.31 ± 19.00 −0.01
[−0.15; 0.13]

−0.41
[−0.65; −0.16] 0.39 [0.14; 0.63] 1 [1; 1] 0 40.25 40.07 0.42

4. Discussion

In this study, we showed how a single IMU can be used to obtain in-field assessments
of swim stroke variables that scientists and coaches can relate to the biomechanical risk
of fatigue and injury during para-swimming. Results from the present study highlight
overall good to excellent validity in the IMU system, with some discrepancies in specific
parameters and strokes. The current IMU system can accurately estimate stroke count
and lap times with a high level of confidence. Swim cycle stroke-to-stroke parameters
(stroke duration, instantaneous stroke rate, and distance per stroke) showed the strongest
validity for butterfly and breaststroke; analyses of freestyle showed lesser validity for cycle-
to-cycle timing parameters (stroke duration and instantaneous stroke rate); and backstroke
performed poorly for all cycle-to-cycle stroke parameters.

4.1. Stroke Count

Results from the present study show similar magnitudes of error comparing the IMU
to video-derived stroke counts, falling between ± 1 [30,31] and ± 2 strokes of error for
freestyle swimming [11,32,33]. This is in agreement with previous findings of errors of
less than 1 stroke when comparing a sacrum-worn IMU to video-derived stroke counts for
butterflies [34]. Commercially available smart watch devices that estimate stroke count
have reported MAPEs of 6.2–9.3% (Apple Watch S2) and 6.8–17.6% (Garmin Finex 3HR) [35].
Additionally, the head-worn TritonWear unit showed MAPEs of 0%, 7.1%, 2.4%, and 4.9%
for butterfly, backstroke, breaststroke, and freestyle, respectively, higher than the results of
the present study [36]. Together, this highlights the excellent validity of the current system
to estimate stroke count, performing similarly to this research consensus and outperforming
commercial devices. As such, the current system is a valid tool to monitor the number of
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stroke cycles performed by athletes while training, as highlighted by the low SEM for all
strokes, aiding workload monitoring practices. One possible use case for this tool would be
to track the number of stroke cycles performed per week to quantify the reintroduction of
athletes to in-season training loads following an injury.

4.2. Instantaneous Stroke Rate (ISR)

Although previous studies had reported on instantaneous stroke rates derived from
sacrum-worn IMUs [18], validations were only performed for freestyle in able-bodied
swimmers. The present study validated the instantaneous stroke rate for all four strokes
in an elite para-swimming population. Our results on instantaneous stroke rate errors
for butterfly and breaststroke are similar to previous lap averaged stroke rate errors in
the literature [30], but we report higher errors for freestyle and backstroke. A possible
explanation for this is the medio-lateral zero-crossing stroke detection algorithm, which
assumes body roll and associated lateral accelerations while swimming oscillates cycli-
cally [18]. In the current study, the highest errors in backstroke and freestyle were observed
for athletes 1, 3, and 4 (Table 1). While each of these athletes has differing impairments,
it is proposed that a common kinematic outcome of these impairments is irregularity in
their lateral accelerations, since the algorithm uses this cyclical motion to detect stroke
cycles. To directly compare against the literature, we estimated the lap averaged stroke rate
from the collected data and observed MAPEs of 0.8%, 1.6%, 4.9%, and 2.2% for butterfly,
backstroke, breaststroke, and freestyle, respectively. These values are similar in magnitude
to the previous literature [36]. With the validated tool, instantaneous stroke rate can be
used to determine an athlete’s ability to adequately deal with the demands of training and
competition. The point at which instantaneous stroke rate reduces significantly during a
constant-intensity training session can be inferred as the point where the negative effects of
fatigue cannot be mitigated by an athlete. As such, instantaneous stroke rate can be used
in monitoring practices to determine an athlete’s endurance capacity in specific events.
This can allow for targeted interventions, such as strength and conditioning, to improve an
athlete’s endurance capacity, specifically when they fatigue. However, athlete impairment
and stroke type should be considered when determining the thresholds used to identify
temporal changes in instantaneous stroke rate. This is due to the variation in sensitivity of
this metric, as highlighted by the differing SEMs by stroke type.

4.3. Distance per Stroke (DPS)

A previous study also presented the distance per stroke derived from an IMU placed
on the sacrum [19]. However, no study to date has directly validated IMU-derived distance
per stroke against gold standard video. To compare our results directly to those of the
literature, we estimated lap averaged stroke length from the collected data and observed
MAPEs of 5.7%, 6.8%, 10.4%, and 6.4% for butterfly, backstroke, breaststroke, and freestyle,
respectively, similar in magnitude to the previous literature [36]. For backstroke and
freestyle, the largest errors between video and IMU-derived distance per stroke were
observed for athletes 3, 4, and 8 (Table 1). As with ISR, the common kinematic outcome of
the varying impairments between the abovementioned athletes is irregularities in lateral
accelerations. Once again, this may reduce the ability of the zero-crossing algorithm to
detect stroke cycles, introducing errors into the distance per stroke estimations. However,
SEMs for each stroke type ranged from 0.12 m to 0.17 m, highlighting small levels of error
and minimal variation between stroke types. As such, distance per stroke, as validated in
the present study, can provide novel information to coaches, athletes, and support staff
about relative changes in stroke length within one lap. This information may provide
time-based indices of when an athlete cannot mitigate the negative effects of fatigue while
swimming. This metric can be used in combination with instantaneous stroke rate to better
determine when and how fatigue affects an athlete during their training and competitions.
This could allow for specific interventions to target the kinematic changes seen in cycle-to-
cycle stroke parameters.
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4.4. Lap Time

In previous literature comparing IMU (or accelerometer) to video-derived lap times in
100 m freestyle, the majority of lap time errors fell within ± 0.5 [32] to ± 1 s [33]. In the
present study, a 95% LoA of [−0.35; 0.16] seconds were reported, suggesting the majority of
the dataset for freestyle had an error of ± 0.5 s. The present study reported lower MAPEs
in comparison to the head-worn TritonWear unit [36]. It should be noted that the present
study used a trained operator to manually define the start and end points of the swim
trial as a step in the data processing workflow, whereas the literature reports times based
on automated start and end points. While the reported values in the literature are higher
than those of the present study, they represent automatic solutions that could be easier to
incorporate as part of a regular performance monitoring workflow. However, validation
of this parameter allows lap times to be monitored longitudinally across specific training
sets over a season. As such, progression and regression in swimming performance can
be determined. This may allow for the identification of overtraining or maladaptation to
training, a current practice completed manually by coaches via stopwatches that can be
improved via longitudinal parameter monitoring.

4.5. Limitations and Future Work

In the present study, some limitations should be highlighted. First, the sample size
(n = 8) is small. However, this sample represents the entire population of para-swimming
athletes training with the studied group, meaning the results are representative of the
in-tended end user [37]. Additionally, as the athletes with a range of impairments per-
formed the four swimming strokes, a high level of inter-subject variability were represented
in the present dataset (see Table 1). Secondly, tagging swim stroke events using video
was sometimes unclear due to water turbulence, which may introduce some errors into
the validation analyses. However, high intra-rater reliability was confirmed, and mean
values were used for the statistical analyses to minimize operator error introduced into
the validation analyses. Video-derived distance per stroke was calculated following the
trajectory of the swimmer’s head, while the IMU-derived parameter is estimated from
sacrum displacement. This introduces some errors into the validation analyses. Lastly,
the underlying calculations used to estimate distance per stroke assumed that the IMU
traveled 50 m per lap. The IMU moved from the dive start position outside of the pool to a
position corresponding to the moment when the athletes touched the opposite end of the
pool. The actual distance traveled by the IMU includes a change in vertical displacement
in the dive phase until the beginning of the swimming phase at the surface of the water,
plus the swimming phase distance, minus the distance between the hand touching the wall
and the IMU. Future work should consider (1) alternate algorithms to detect stroke cycles
for freestyle and backstroke in para-swimmers and (2) the validity of automated lap time
estimations in elite para-swimmers.

5. Conclusions

The present study shows excellent validity between the IMU and video-based systems
for stroke count and lap time estimation in para-swimmers, matching or exceeding the
current state of the art in the literature, and doing so for the first time for all strokes. The
system also shows good to excellent validity in stroke duration, ISR, and DPS for all strokes
except backstroke. As such, the current system can be used as a valid tool to monitor
the number of movement repetitions performed over trials, training sessions, and weeks,
allowing for in-pool workload monitoring specific to swim strokes. Additionally, ISR
and DPS can be used together to determine when and how fatigue affects an athlete’s
kinematic patterns in a competitive event or training session. This can ultimately allow for
interventions to be personalized to the individual to better prepare them for the demands
of their performances and reduce injury risk. However, special attention should be given
when using this tool with athletes that have impairments that affect the regularity of lateral
accelerations in freestyle and backstroke.
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