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A B S T R A C T

Edge computing has gained widespread adoption for time-sensitive applications by offloading a portion of
IoT system workloads from the cloud to edge nodes. However, the limited resources of IoT edge devices
hinder service deployment, making auto-scaling crucial for improving resource utilization in response to
dynamic workloads. Recent solutions aim to make auto-scaling proactive by predicting future workloads and
overcoming the limitations of reactive approaches. These proactive solutions often rely on time-series data
analysis and machine learning techniques, especially Long Short-Term Memory (LSTM), thanks to its accuracy
and prediction speed. However, existing auto-scaling solutions often suffer from oscillation issues, even when
using a cooling-down strategy. Consequently, the efficiency of proactive auto-scaling depends on the prediction
model accuracy and the degree of oscillation in the scaling actions.

This paper proposes a novel approach to improve prediction accuracy and deal with oscillation issues.
Our approach involves an automatic featurization phase that extracts features from time-series workload data,
improving the prediction’s accuracy. These extracted features also serve as a grid for controlling oscillation in
generated scaling actions. Our experimental results demonstrate the effectiveness of our approach in improving
prediction accuracy, mitigating oscillation phenomena, and enhancing the overall auto-scaling performance.
. Introduction

The Internet of Things (IoT), which promotes integration between
bjects in the real world and services in the digital world, is influencing
any aspects of our lives, such as health, education, and construction.
hese uses rely primarily on networks composed of a large number of
iny devices immersed in our environment, for example, in the form of
nvironmental and health sensors. The use of these devices is constantly
rowing, leading to a massive number of devices connected to the
nternet (Evans, 2011). The massive data generated by IoT devices
nd their limitations in computing and connectivity capabilities may
ncrease the latency of services.

Edge computing, which offloads the workload of IoT systems from
he cloud to edge nodes, improves system responsiveness by minimiz-
ng latency. However, IoT devices at the edge network are typically
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resource-constrained and heterogeneous, which can hinder the ability
to deploy services to IoT devices.

To address the heterogeneity of IoT technologies, lightweight vir-
tualization technologies, such as containers, have been extensively
employed to facilitate the deployment and management of microser-
vices on edge IoT devices (Ahmed et al., 2019). The container can
package the service program with all its dependencies into a single
module. Thus, services can be run stably and faster, regardless of
the operating environment. Additionally, IoT edge devices within the
same cluster can share resources and communicate with each other via
virtual networks thanks to container orchestration techniques such as
Swarm (2022). Furthermore, kubernetes (2022) considers the concept
of a pod, which is a collection of one or more containers that share
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network and storage resources and adhere to certain operating rules. A
Pod presents the deployable primitive unit of computation.

In this context, the service deployment is presented by deploying
a set of replicas (i.e., containers or pods) on the available machines
that are grouped into clusters, where each replica presents an instance
of the microservice to be deployed. Increasing the number of repli-
cas improves the service’s responsiveness (i.e., reduces latency) but
consequently increases the usage of computation resources.

Resource usage should be further considered at the edge level,
where devices are often limited regarding resources. This requires a
reasonable use of computing resources while meeting user require-
ments (e.g., response time). Therefore, it is necessary to have, dy-
namically and continuously, sufficient replicas that do not exceed the
need (i.e., over-provisioning) and that are not less than the need
(i.e., under-provisioning).

However, current container tools (e.g., Swarm (2022) and kuber-
netes (2022)) need to be more elastic to automatically scale deployed
services. Therefore, this reduces their ability to continuously adapt in
response to the operational environment, such as the frequent changes
in the requested workload (e.g., HTTP requests). In addition, existing
approaches lack the proactivity aspect, which limits the system’s ability
to adapt appropriately to the operational environment.

Proactive auto-scaling plays a pivotal role in adapting systems to
future workload demands, contrasting with reactive auto-scalers that
respond to workload changes as they occur. The proactive behavior
lies in accurately forecasting future workloads, enabling timely system
adaptations (Lorido-Botran et al., 2014). Proactive auto-scaling em-
ploys algorithms to predict future workloads by analyzing historical
data, thus setting the stage for anticipatory system adjustments.

Nonetheless, the effectiveness of proactive auto-scalers, particularly
those employing time-series data analysis, depends considerably on
prediction accuracy (Doan et al., 2019). Various factors influence the
accuracy of the prediction, including workload patterns, sliding win-
dow sizes (Lorido-Botran et al., 2014), machine-learning models, and
prediction horizons. Therefore, enhancing the performance of auto-
scalers necessitates the development of solutions that enhance predic-
tion accuracy, thereby empowering auto-scalers to orchestrate more
appropriate scaling actions (e.g., scaling up or down) in alignment with
actual workload dynamics.

Container-based auto-scaling solutions are still an open question
that needs to be addressed, as highlighted in Qu et al. (2018) and
Dang-Quang and Yoo (2021). Designing and implementing efficient
auto-scalers for containerized services involve numerous challenges
related to dynamic workload characteristics, resource constraints, and
the inherently distributed nature of IoT nodes at the edge. Over-
coming these challenges is imperative to unlock the full potential of
container-based auto-scaling solutions, especially in edge computing
environments where resource optimization and timely scaling actions
are paramount.

Moreover, the continuous generation of actions by the auto-scaler
leads to a dynamic change in the number of replicas, which generates
an oscillation issue. An example of an oscillation source could be a
scenario where a sudden surge in user requests prompts the auto-scaler
to increase the number of replicas at a time 𝑡 − 1. However, at time
𝑡, the auto-scaler reduces the replicas as the workload momentarily
decreases. Shortly after that, for time 𝑡 + 1, the load surges again,
prompting the auto-scaler to increase the replicas once again. This
cycle of continuous scaling up and down leads to oscillation. The
oscillation of the number of replicas has considerable consequences on
the system’s performance, such as increased costs in resource usage in
the case of over-provisioning and performance declines in the case of
under-provisioning. Moreover, reactive adjustments to the number of
replicas can induce latency in the system.

Related work generally adopts the solution based on the cooling
down strategy, which introduces a delay before carrying out a scale-
2

down request following a decrease in the workload volume. However,
this strategy is demanding since it depends on optimizing the cooling
down period parameter. If the period is long, it generates more over-
provisioning; if it is short, that reduces the efficiency of the oscillation
mitigation.

To address the abovementioned issues, this work presents a novel
service auto-scaling approach to sustain desired performance levels
while optimizing resource utilization in the face of dynamic workload
changes (i.e., increase∕decrease). The core of our approach is based on
several key contributions, outlined as follows:

• Adoption of the MAPE-K framework: We have effectuated the
different phases of the MAPE-K (Monitor, Analyze, Plan, and
Execute) controlling loop, providing proficient automatic sys-
tem monitoring, data analyzing, planning adaptation actions, and
executing auto-scaling operations.

• Data Featurization Approach: Our proposed data featurization
mechanism significantly improves the accuracy of the forecasting
model by transforming univariate time-series data, containing
only the workload data, into a multivariate format enriched by
automatically extracting relevant features. Inspired by the tech-
nique of Japanese candlesticks prevalent in trading, this trans-
formation captured additional information, thereby augmenting
the model’s predictive performance. The experiments show that
the featurization process led to a significant relative improve-
ment, with gains exceeding 70%, highlighting its effectiveness in
enhancing forecasting accuracy.

• Grid-based Oscillation Mitigation Strategy: We introduced an
original grid-based approach for mitigating oscillations during
system auto-scaling. Leveraging the data and features harnessed
for workload prediction enhancement, this mechanism, rooted in
the economic grid technique concept, effectively curtails oscilla-
tion issues. Notably, our strategy is parameterless, delineating an
essential departure from existing techniques in related works.

• Comprehensive Evaluation: Validating the efficacy of our pro-
posed approach, we conducted exhaustive evaluations employ-
ing widely recognized datasets prevalently used in auto-scaling
literature. Our approach demonstrated a marked improvement
in workload forecasting and auto-scaling performance metrics,
substantiating the merits of our contributions.

The remainder of the paper is organized as follows. Section 2
reviews the literature, highlighting research issues and gaps, and po-
sitions our work relative to existing studies. Then, Section 3 shows
the overall architecture of our auto-scaling process, followed by the
presentation of the collection and pre-processing of data in Section 4.
Afterward, Section 5 presents our featurization approach. Our LSTM
model for forecasting the future workload is presented in Section 6. Sec-
tion 7 presents our oscillation mitigation approach. Section 8 discusses
the experiments to evaluate our contributions. Finally, we conclude this
study and highlight our directions for future work in Section 9.

2. Literature review

This section outlines a literature review fundamental to our re-
search contributions, covering various facets of IoT system deployment
in edge environments: virtualization, auto-scaling, workload forecast-
ing, and oscillation mitigation. Each subsection includes a brief back-
ground, reviews existing work, and highlights the gaps our research
addresses, thereby elucidating the originality and relevance of our
proposed approach.

2.1. Virtualization and autoscaling

Many works have been performed on auto-scaling at the cloud
level in the literature. In Kovács (2019), auto-scaling is defined as
a method used in distributed computing, especially in the cloud, to

dynamically and automatically adjust the computing resources in a
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set of servers based on traffic workload. Additionally, auto-scaling is
a crucial component of orchestration regarding policy and flexibility
for cloud containers and virtual machines. To explain the auto-scaling
feature, we take as an example (similar to that presented in Mishra et al.
(2020)) the number of servers running behind a web application that
can be automatically increased or decreased depending on the number
of active users. Since these measurements vary considerably during the
day and servers are a limited resource, operating a sufficient number
of servers to support the current workload is often worthwhile. Auto-
scaling is very useful for meeting customer service requirements. It
reduces the number of active servers when activity is low and launches
new servers when activity is high.

The cloud is based on virtualization technology, which allows for
executing multiple work environments on the same server. In this
regard, Varghese and Buyya (2018) and Pahl et al. (2017) explain, in a
simple and detailed way, the virtualization architecture, presenting the
trends and technologies involved in the cloud. Containers are a funda-
mental virtualization property, allowing for deploying microservices on
the cloud server. Several domains increasingly use containers, including
service meshes, edge and fog computing, IoT, smart cars, and smart
cities, as in Ahmed et al. (2019), Jamshidi et al. (2018), Khazaei et al.
(2017) and Morabito et al. (2017).

There are two types of autoscaling, vertical autoscaling and horizon-
tal autoscaling (Al-Dhuraibi et al., 2017). The distinction between these
two types of auto-scaling stems from how computing resources are
added to the infrastructure. In vertical autoscaling, computing power
is added to existing replicas/nodes. In contrast, horizontal autoscaling
increases a system’s capacity by adding more replicas (e.g., containers)
to the environment, allowing for processing and memory load sharing
across multiple devices.

In the edge computing context, resources are often limited (e.g.,
Gateway devices), which makes having a mechanism for increasing and
decreasing computational resources (i.e., vertical auto-scaling) on the
same node less valuable or even unrealistic. Therefore, horizontal auto-
scaling becomes more suitable by dynamically changing the number
of replicas (e.g., containers or pods) to distribute the processing load
among devices that constitute a so-called cluster.

Furthermore, auto-scaling approaches are classified into two types:
reactive and proactive. As in our previous work (Bali et al., 2020),
the reactive auto-scaler reacts to the current workload or resource
utilization according to predefined rules and thresholds. In proactive
auto-scaling, an algorithm forecasts future workload based on historical
data (Lorido-Botran et al., 2014). The difference is that, in proactive
mode, the auto-scaler must predict workloads to adapt the system to
future needs, while in reactive mode, the system reacts to current
workload changes (Lorido-Botran et al., 2014).

Due to the ease of implementation, most current auto-scalers use re-
active threshold-based approaches, as used in Kubernetes HPA, Google
Cloud Platform, Amazon EC2, and Oracle Cloud. For this purpose,
many studies (Klinaku et al., 2018; Taherizadeh and Stankovski, 2019;
Nguyen et al., 2020) suggest using the reactive auto-scaling functional-
ity offered by cloud servers. However, selecting appropriate thresholds
is difficult, especially when dealing with complex workloads (Imdoukh
et al., 2019). To optimize the configuration of thresholds, auto-scalers
can use static heuristic techniques offline according to predefined
workloads (Zhong and Buyya, 2020). These strategies are unable to
cope with highly dynamic workloads in which applications must scale
at runtime (Zhong et al., 2022).

In addition, although this improved reactive approach is simple, it
is less efficient since it generates oscillations due to sudden and unpre-
dictable workload changes. As a result, the reactive approach results
in waste due to the over-provisioning of resources and degradation of
the system’s performance when releasing the resources that the system
needs.

Our work proposes a proactive auto-scaling approach that enhances
3

the accuracy of workload forecasting and overall performance.
2.2. Workload forecasting techniques

In Dang-Quang and Yoo (2021), the authors demonstrate that their
proactive auto-scaler outperforms Kubernetes’ default horizontal au-
toscaling pod (HPA) regarding accuracy and speed when provisioning
and de-provisioning resources.

In proactive auto-scaling as in Sangpetch et al. (2017), Imdoukh
et al. (2019) and Dang-Quang and Yoo (2021), machine learning
algorithms are often applied in time-series analysis for workload fore-
casting. Different ML algorithms are used to predict the future from
historical data (Lorido-Botran et al., 2014). The time-series-based fore-
casting approaches offer more performance than regular regression ap-
proaches specifically designed for forecasting tasks. These approaches
explicitly consider the sequential nature of the data and incorporate
past observations to make predictions, taking into account temporal
patterns. In contrast, regular regression models, such as Linear and
Polynomial Regression, typically assume a constant relationship be-
tween the input and target variables without explicitly accounting for
these temporal patterns. The literature uses two common categories of
time-series data analysis and forecasting methods.

First, algorithms based on statistical time-series analysis (e.g.,
ARIMA) are widely used, such as those presented in Lorido-Botran et al.
(2014), Sangpetch et al. (2017), Calheiros et al. (2014), Roy et al.
(2011), Kan (2016), Li and Xia (2016), Ciptaningtyas et al. (2017) and
Meng et al. (2016). These statistical approaches, while effective, are
slower in dynamic workload environments and often result in resource
overuse (Imdoukh et al., 2019). Most of these works are primarily
intended for cloud environments, so the application of these techniques
in edge computing is limited due to resource constraints.

Second, there are solutions based on advanced machine learning,
such as neural networks (ANN) and LSTM algorithms have been ex-
plored, for instance, in Calheiros et al. (2014), Goli et al. (2021), Zhu
et al. (2019), Saxena and Singh (2022), Kumar et al. (2021), Imdoukh
et al. (2019) and Dang-Quang and Yoo (2021). The study in Imdoukh
et al. (2019) shows that the LSTM model not only matches the accuracy
of the ARIMA model, but also offers faster prediction speeds. Addi-
tionally, recent advances include the utilization of bidirectional LSTM
networks (BiLSTMs), gated recurrent units (GRUs), and convolutional
neural networks (CNNs) for workload forecasting. Using Bi-LSTM for
predicting future HTTP workloads is examined in Dang-Quang and
Yoo (2021). In contrast, Mozo et al. (2018) introduces a short-term
network traffic forecasting method using CNNs, which incorporates a
multiresolution input strategy and separate convolutional channels for
different data granularities.

Other studies have combined various prediction algorithms to en-
hance generalization capabilities and employed attention mechanisms
to refine prediction accuracy. For example, Wang et al. (2020) pro-
poses a probabilistic method using Gaussian process regression (GPR),
complemented by a stack of three forecasting models: random forest
(RF), LSTM, and linear regression (LR). Recent studies have explored
innovative architectures and deep learning techniques for workload
forecasting. For instance, Patel and Bedi (2023) introduces MAG-D,
a complex architecture incorporating Bi-GRU layers, a Bi-LSTM layer,
and a multivariate attention layer for cloud workload forecasting.
Similarly, Dogani et al. (2023) uses CNN and GRU networks to extract
spatial and temporal features, thereby aiming to improve forecasting
accuracy.

However, the effectiveness of proactive auto-scalers is highly depen-
dent on prediction accuracy (Doan et al., 2019), which in turn depends
on factors such as workload patterns, history windows (Lorido-Botran
et al., 2014), the machine learning model, and the prediction horizon.
Therefore, enhancing prediction accuracy remains a crucial and open
issue in container-based autoscaling.

To address this challenge, our approach introduces an automated so-
lution based on feature extraction (i.e., featurization) from data during

the data processing phase. We extract features (such as maximum and
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minimum values) to provide a comprehensive description of the data
window, which then serves as input for the forecasting model, LSTM,
to predict future workloads. Including these features significantly en-
hances the prediction model’s accuracy, as detailed in the evaluation
section (Section 8). In contrast to solutions like Imdoukh et al. (2019)
and Dang-Quang and Yoo (2021), our method enhances the workload
data with automatically generated features. This automated feature
generation process simplifies our model’s data preparation require-
ments compared to traditional multivariate approaches, which often
necessitate collecting additional features, as we will discuss in the
subsequent subsection.

2.3. Time-series featurization

While many auto-scaling studies have traditionally focused on uni-
variate time-series data, such as workload, it has been widely recog-
nized in the literature that incorporating multivariate data (i.e., fea-
tures) can significantly improve forecasting accuracy. Cetinski and
Juric (2015) demonstrated the importance of extending training data
with relevant features, such as the time of day and weekends.

In the context of auto-scaling, LSTM models have been shown to
effectively capture complex non-linear feature interactions when ap-
plied to multivariate data with numerous dimensions and a substantial
volume of data (Ogunmolu et al., 2016). Laptev et al. (2017) proposed
a novel LSTM architecture that leverages an autoencoder for feature ex-
traction, achieving superior performance compared to the vanilla LSTM
model. In their data preparation process, they incorporated additional
specific features such as weather information (e.g., precipitation, wind
speed, temperature) and city-level information (e.g., current trips, cur-
rent users, local holidays). However, most of these additional features
cannot be automatically extracted and need to be logged during data
collection.

Various classical statistical time-series features have been consid-
ered in the literature to improve forecasting accuracy. Hyndman et al.
(2015) explored features such as mean, variance, ACF (Auto-correlation
Function), trend strength, linearity, peak, and season. Di et al. (2012)
focused on important and predictive statistical properties of host load,
including mean load, load fairness index, noise-decreased fairness in-
dex, and N-segment pattern. However, these derived features, partic-
ularly those related to trend and seasonality, usually require manual
analysis to identify their parameters.

To further illustrate the significance of incorporating relevant fea-
tures, Wang et al. (2021) established a dataset by collecting features
of complex system simulation to improve the performance of the re-
source prediction of simulation applications in the cloud. These features
include average, maximum, and minimum values of usage metrics
such as CPU, memory, file system, network (receive and send bytes),
communication delay, and execution time. Similarly, Kao et al. (2020)
focused on communication metrics, specifically incoming traffic, outgo-
ing traffic, number of connections, and network traffic load (per day).
These features need to be obtained during data logging since they are
not derived automatically.

In our approach, instead of relying on pre-existing collected multi-
variate (i.e., features) such as CPU usage and number of HTTP requests,
we propose an automatic extraction of new features from each col-
lected data. Specifically, in this work, we showcase the effectiveness
of our automatic feature extraction method, which enriches univariate
data, such as HTTP requests, by adding new features using non-linear
functions. Drawing inspiration from Japanese Candlesticks, a technique
widely used in the trading domain, we apply this featurization tech-
nique to each data window. This automatic generation of features
eliminates the need for manual analysis of statistical properties, par-
ticularly trend and seasonality parameters, thereby streamlining the
data preparation process and enhancing the accuracy of time-series
forecasting.
4

2.4. Oscillation mitigation

Another essential aspect to consider is the continuous action gen-
eration by the auto-scaler, which can lead to frequent changes in the
number of replicas, resulting in oscillation issues that waste resources.
For example, at time 𝑡, the auto-scaler may reclaim a resource just
eleased at time 𝑡−1, then consider re-releasing it at time 𝑡+1. This fre-

quent toggling cannot only waste resources, but also introduce response
lags to the system. Such continuous action changes might arise due to
workload fluctuations or inaccurate predictions. Oscillation mitigation
aims to reduce the number of unnecessary changes in the number of
replicas, thereby improving system performance and reducing resource
wastage.

Unfortunately, oscillation mitigation has not received sufficient at-
tention in the literature. To overcome this limitation, Imdoukh et al.
(2019) and Dang-Quang and Yoo (2021) have integrated the oscillation
mitigation technique into the self-adaptive and autonomous MAPE-K
loop system (Arcaini et al., 2015). Therefore, we compared the results
in our study with those in Imdoukh et al. (2019) and Dang-Quang
and Yoo (2021), as they had good results on the data analysis and
implementation of an auto-scaling system, as well as they considered
the oscillation mitigation issue.

Our grid-based oscillation mitigation approach benefits from the
generated features. The feature values form a value grid, where each
line (i.e., value) represents a reference action. This grid enables match-
ing the actions generated by our auto-scaling system to the reference
actions to reduce the oscillation issue. We have called this original
method of handling oscillation ’Grid-based oscillation mitigation’. Our
approach has a further advantage, as the grid values change dynami-
cally according to the historical data window used. Approaches in the
literature often use the cooldown timer (CDT) principle (Imdoukh et al.,
2019), which delays the execution of a scaling-down request due to
the decreased workload volume. However, this CDT solution requires
finding an optimized delay timer value. In contrast, our oscillation
processing approach is less demanding since it is a parameterless mech-
anism, and it could improve the oscillation mitigation compared to
the related work approaches. Moreover, combining our grid-based ap-
proach with the CDT mechanism significantly improves the oscillation
mitigation.

Finally, it is worth noting that our approaches of featurization im-
proving the forecasting accuracy and the oscillation mitigation can be
used in other scientific fields where there is a need to make more accu-
rate time-series forecasting, such as the transportation domain (Nguyen
et al., 2018), where there is a need for traffic flow prediction and the
networks for autonomous and proactive resource management.

3. Overall architecture

Our approach adheres to the MAPE-K (Monitor-Analyze-Plan-
Execute over a shared Knowledge) framework (Computing et al., 2006)
to ensure effective auto-scaling. As depicted in Fig. 1, MAPE-K outlines
the general auto-scaling process in our context. Initially, the auto-
scaler monitors the system by logging relevant measurement data
(e.g., number of HTTP requests and CPU usage) during the monitoring
phase. These historical data constitute the time series data, crucial for
model training and forecasting.

In the analysis phase, the auto-scaler evaluates the system state
and forecasts future workload using our LSTM model. This forecasting
model capitalizes time-series workload data, such as the number of
HTTP requests, collected in real-time from the deployed system. A key
component of this analysis phase is our unique featurization approach
to time-series data, designed to enhance the accuracy of workload
prediction. The output of the model is a prediction of future workload,
for example, the estimated number of HTTP requests for the upcoming
minute.
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Fig. 1. General auto-scaling process.

Subsequently, the planning phase generates a plan that includes
scaling actions, focusing primarily on adjusting the number of service
replicas. The generated plan is designed to address the oscillation issue
effectively. Finally, the Execute step of the MAPE-K loop executes the
generated plan. In our architecture, the LSTM-based prediction model
is an integral part of the shared knowledge in the MAPE-K loop, as
illustrated in Fig. 1.

4. Data collection and pre-processing

The data collection is based on the monitoring phase. In our case, we
used univariate time series data. We organized the dataset to have only
two valuable pieces of information: the time (period) and the count of
HTTP requests. Thus, the overall dataset is aggregated and transformed
such that each record represents the total workload (i.e., number of
HTTP requests) per minute.

Time-series data can be collected and stored by the Prometheus tool,
which aggregates metrics from monitoring tools such as CAdvisor and
Node Exporter.

We use the Worldcup98 Dataset (Arlitt and Jin, 2000) and NASA
dataset (Dang-Quang and Yoo, 2021) to evaluate and compare our
forecasting approach to those in the literature. The Worldcup98 Dataset
contains the HTTP request logs for approximately 1.3 billion total re-
quests made to the FIFA World Cup Website between April 30 and July
26, 1998. In contrast, the NASA’95 dataset contains a two-month log
of all HTTP requests made to the Florida NASA Kennedy Space Center
Web server. These datasets have been used extensively to evaluate
auto-scalers in the cloud computing literature (Imdoukh et al., 2019).
We will further present the used datasets in the evaluation section
(Section 8).

4.1. Data scaling

Scaling the data can increase the performance of some ML algo-
rithms, such as LSTM, in our case. Scaling involves adjusting the values
of numeric variables to achieve a common scale. As a result, data is
transformed to be bounded within a newly defined range, such as [0,
1], using the min–max scaling mechanism as presented in Eq. (1).

𝑥′ =
𝑥 − 𝑥min

𝑥max − 𝑥min
(1)

where 𝑥′, 𝑥, 𝑥min, and 𝑥max represent the scaled value, original value,
minimum value of the feature in the dataset, and maximum value,
respectively.

4.2. Data reframing and horizon of prediction

The data reframing step is essential for transforming the initial
time-series workload data, which typically consists of a sequence of
logged workload values (such as HTTP requests), into a format suitable
for building a supervised learning-based forecasting model. Reframing
5

Fig. 2. Time-series reframing, with window size = 2.

involves using the workload values from previous time steps as input
variables and the workload value from the next time step as the
output variable. As illustrated in Fig. 2, the original data is presented
as a chronological list of time-series data points. Reframing converts
these data into a sliding window format comprising two values. Each
sliding window in this format effectively captures a time series segment,
providing the necessary context for the forecasting model to predict
future values based on observed historical patterns.

The data prepared in the previous step are sufficient for a single-step
prediction. For the case of multi-step prediction (e.g., next fifth-time
step), we assign the corresponding output value in the training process.
However, this approach is not practical, since it may require many
models that match the size of the forecasting horizon. For example, five
models are needed for a prediction horizon of five-time steps. Another
alternative is the recursive multistep prediction (Imdoukh et al., 2019).
However, its limitation is the degradation of accuracy as the size of the
horizon increases.

5. Our time-series featurization

The analysis phase of the MAPE-K loop (in Fig. 1) is based on fore-
casting the future workload. Predicting the future workload is essential
for making the auto-scaling process proactive. This prediction is based
on quantitative forecasting using the collected and pre-processed data
from the monitoring step, representing the historical workload data. We
propose adding a featurization phase to improve the accuracy of the
forecasting algorithm (LSTM in our case). The time-series featurization
enriches the time-series data, which initially contains only workload
information, by extracting new relevant information from the data, as
will be presented in the following subsection.

5.1. General description and motivation of our featurization approach

Our approach adds a step of time-series featurization (i.e., feature
extraction) to improve prediction accuracy. The added features are de-
rived from the input data, mainly summarizing the time-series window
data.

To formulate the data featurization, we first define the workload
data at a specific instant 𝑡 as 𝑑𝑡. Consequently, time-series data 𝑇𝑆 can
be expressed as n-tuple:
𝑇𝑆 = (𝑑0, 𝑑1,… , 𝑑𝑛). The featurization can be modeled as a function:

𝐹 ∶ 𝐷𝑠 → 𝐷𝑘

𝑊𝑡 = (𝑑𝑖−𝑠,… , 𝑑𝑡−1, 𝑑𝑡) → 𝐹𝑡 = (𝑓𝑡1, 𝑓𝑡2,… , 𝑓𝑡𝑘)
(2)

where 𝐷 represents the domain of the data value (e.g., integer or real),
the window at time 𝑡, 𝑊𝑡, contains the 𝑠 previous values, and the
function generates 𝐹𝑡 of 𝑘 features.

Building upon our featurization approach, the input to the predic-
tion model, denoted as the function 𝑃 , is a combination of the data
window 𝑊𝑡 and its corresponding extracted features 𝐹𝑡, as defined
in Eq. (2). Eq. (3) formalizes this integration:

𝑃 ∶ 𝐷𝑠 ×𝐷𝑘 → 𝐷ℎ
(3)
(𝑊𝑡, 𝐹𝑡) → 𝑌𝑖 = (�̄�𝑡+1, �̄�𝑡+2,… , �̄�𝑡+ℎ)
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Fig. 3. Japanese candlestick information.

where 𝑊𝑡 and 𝐹𝑡 represent the data window and the extracted feature,
respectively, as outlined in Eq. (2). The function 𝑃 (𝑊𝑡, 𝐹𝑡) predictions
spanning a horizon of ℎ steps. In scenarios where the prediction is
focused on a single step ahead, the function simplifies to 𝑃 (𝑊𝑡, 𝐹𝑡) =
�̄�𝑡+1.

Our featurization methodology draws inspiration from the Japanese
Candlestick concept (Tam, 2015) commonly utilized in financial trad-
ing of different assets such as stocks, providing helpful information
like open, low, high, and close, as presented in Fig. 3. Formally, the
information of the Japanese candlestick can be represented as a 4-
tuple (Open(p), High(p), Low(p), Close(p)), where Open, High, Low,
and Close represent the first value, the maximum value, the minimum
value, and the final value in the period 𝑝, such as a day. The information
provided by a sequence of Candlesticks offers an abstraction, allowing
traders to comprehend stock evolution better. Fig. 4(a) presents the
line representation corresponding to the sequence of Tesla stock price
values (i.e., time-series data), while Fig. 4(b) presents the equiva-
lent representation based on the Japanese candlesticks, where each
candlestick summarizes a one-day period.

5.2. Time-series featurization algorithm

Algorithm 1 Feature Extraction.
Require:
1: 𝑇𝑆 = (𝑑1, 𝑑2, ..., 𝑑𝑛)
2: 𝑠 : window size
Ensure: 𝑟𝑒𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎

3: 𝑟𝑒𝑓𝑜𝑟𝑚𝑢𝑙𝑎𝑡𝑒𝑑𝐷𝑎𝑡𝑎 ← {}
4: for 𝑖 ← 1 to 𝑛 − 𝑠 do
5: 𝑤 ← (𝑑𝑖, ..., 𝑑𝑖+𝑠)
6: 𝑜𝑝𝑒𝑛 ← 𝑑𝑖
7: 𝑐𝑙𝑜𝑠𝑒 ← 𝑑𝑖+𝑠
8: 𝑙𝑜𝑤 ← min(𝑤)
9: ℎ𝑖𝑔ℎ ← max(𝑤)

10: 𝑤 ← 𝑤‖[𝑜𝑝𝑒𝑛, 𝑐𝑙𝑜𝑠𝑒, 𝑙𝑜𝑤, ℎ𝑖𝑔ℎ]
11: reformulatedData.append(𝑤)
12: end for

To map the candlestick concept to our context, we consider that the
window is the equivalent to the period (ex. 3 m, 15 m, one day, etc.).

Given the window: 𝑤 = (𝑑𝑡−𝑠, 𝑑𝑡−𝑠−1,… , 𝑑𝑡), where 𝑠 is the size of
the window, the candlestick features are obtained by the Eqs. (4), (5),
(6), and (7).

𝑂𝑝𝑒𝑛 = 𝑑𝑡−𝑠 (4)

𝐶𝑙𝑜𝑠𝑒 = 𝑑𝑡 (5)

𝐿𝑜𝑤 = min(𝑤) (6)

𝐻𝑖𝑔ℎ = max(𝑤) (7)
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Fig. 5 presents an extract of time-series data organized in periods with
its features.

Other information, such as indicators, can be added like the average
(Eq. (8)).

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 = 1
𝑠

𝑠−1
∑

𝑖=0
𝑑𝑡−𝑖 (8)

Our time-series featurization process is presented in Algorithm 1.
The data sequence is passed in parameters. The window size is used to
reformulate the data in Line 5. Lines 6–9 extract the features, which
are concatenated to the initial window in Line 10.

The time complexity of the feature extraction part of the algo-
rithm is linear (i.e., 𝑂(𝑛)) to the input size, which corresponds to
|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠| × 𝑤𝑧, where |𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠| is the number of features to extract
and 𝑤𝑧 represents the window size.

5.3. Rationale behind our feature extraction

The primary aim of drawing inspiration from the Japanese Candle-
stick is to enhance prediction accuracy by deriving features that encap-
sulate important information from time-series data. In our approach,
the period represents the sliding windows (Fig. 2).

As mentioned in Chernikov et al. (2022), the features can be used as
auxiliary information to achieve better accuracy. Our approach has the
advantage of automatically generating dynamic features that capture
relevant information. This featurization provides time-based features,
like open (i.e., the first value of a window) and close (i.e., the last
value of a window), as well as value-based features, like maximum
and minimum. The extracted features describing the data presented
in the window allow for capturing short-term dependencies, while the
sequence of these features enables capturing long-term dependencies.

To present the importance of the extracted features by our featur-
ization approach, we analyze their correlation in two datasets, World-
Cup’98 and NASA’95, which are used for our experimentation. Fig. 6
illustrates the correlation between various features extracted using our
approach and the target variables over a predictive horizon of 15 lag
steps. This correlation analysis demonstrates the relationship between
extracted features and the target variables, highlighting their potential
impact on enhancing prediction accuracy.

On the other hand, our approach avoids generating linear depen-
dences between the extracted features and the input variables (i.e., data
window), which could potentially cause instability or overfitting in the
models. The non-linear functions (e.g., max and min) applied to the
data introduce variations in the derived features, leading to a diver-
sity of information. This benefits the forecasting model as it captures
different aspects of the underlying patterns.

6. LSTM model

LSTM is a multi-layer learning model and an advanced type of
recurrent neural network (RNN). Recurrent neural networks are dis-
tinguished by an ability to memorize from prior inputs to influence the
current input and output. Due to the vanishing gradient problem (Hu
et al., 2018), RNNs tend to forget what they have seen in previous
layers and do not learn appropriately in cases of long-term dependency.
LSTM overcomes this drawback of RNN by using gate mechanisms that
control the information flow. Thus, LSTM is highly suited for predicting
the subsequent sequence in time-series data, such as workload over
time. An LSTM network connects many LSTM units (i.e., cells) together.

An LSTM unit comprises an internal memory controlled by three
gates: input, forget, and output. The role of each gate is to regulate the
volume of data that passes through it. The input gate decides whether
the input should modify the cell’s content, with its output 𝐶 ′

𝑡 obtained
by Eqs. (10) and (11). The forget gate determines whether to reset the
cell content to 0; its output corresponds to 𝑓𝑡 calculated by Eq. (9).

The output of these two gates forms the basis for calculating the new



Journal of King Saud University - Computer and Information Sciences 36 (2024) 101924A. Bali et al.
Fig. 4. Representation of Tesla stock.
Fig. 5. Overview of the proposed multivariate data structure.

cell state, 𝐶𝑡, as presented in Eq. (12). Finally, the output gate decides
whether the cell content (i.e., 𝐶𝑡) should impact the output of the cell
ℎ𝑡 as presented in Eqs. (13) and (14).

𝑓𝑡 = 𝜎(𝑊𝑓 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓 ) (9)

𝑖𝑡 = 𝜎(𝑊𝑖.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (10)

𝐶 ′
𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐 .[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐 ) (11)

𝐶𝑡 = 𝑓𝑡 × 𝐶𝑡−1 + 𝑖𝑡 × 𝐶 ′
𝑡 (12)

𝑜𝑡 = 𝜎(𝑊𝑜.[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (13)

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝐶𝑡) (14)

where 𝑊 and 𝑏 represent the weights and bias, respectively. In addi-
tion, 𝜎 (sigmoid) and 𝑡𝑎𝑛ℎ denote the used activation functions.

Our proposed approach employs a sequential architecture of LSTM
units arranged in a pipeline, as depicted in Fig. 7. The size of the
input layer is designed to correspond to the sliding window, where
each unit sequentially receives a specific input 𝑥𝑖. In contrast, the
output layer consists of a single unit, which produces the predicted
value 𝑥′𝑡+1. The architecture encompasses a hidden layer populated
with a set of LSTM units (e.g., ten units). The Adam optimizer is
utilized in the optimization process, fine-tuning the model’s parameters
7

Table 1
Hyperparameters of our primary LSTM model.

Parameter Value

Input size 17
Output size 1
Hidden units 30
Loss function MAE
Optimizer Adam
Batch size 512
Epochs 50

based on the training data. Table 1 delineates the configurations of our
primary LSTM model. In particular, Section 8 evaluates our approach
by experimenting with various hyperparameter configurations, such as
the number of units and epochs of the hidden layer, to compare robustly
with related work.

7. Grid-based oscillation mitigation

Oscillation in auto-scaling arises primarily due to frequent and
sudden changes in the number of replicas generated by the auto-scaler
in response to workload fluctuations or inaccurate predictions. Such
oscillation can lead to resource waste and introduce response lags to the
system, affecting overall efficiency and performance. Existing solutions
like the cooldown timer (CDT) and scaling down ratio (SDR) used
in Dang-Quang and Yoo (2021) and Imdoukh et al. (2019) require
parameter tuning, and their performance depends on the precise values
of these parameters (i.e., CDT and SDR).

In contrast, our grid-based approach for oscillation mitigation offers
a parameterless solution by utilizing features extracted during the
forecasting phase. These extracted features form grid lines that aim
to reduce action volatility and consequently mitigate oscillation. Fig. 8
shows an illustrative example of a grid of a window of 𝑠 size, with grid
lines corresponding to four Japanese candlestick features: open (first
value), low (minimum value), high (maximum value), and close (last
value).

Suppose the model predicts a value 𝑥′𝑡+1 less than the current value
𝑥𝑡, indicating a request for resource reduction (i.e., down-scaling). In
that case, our approach selects the value of the nearest higher grid line
instead of directly using the predicted value. For instance, if the next
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Fig. 6. Correlation analysis of extracted features with a 15-Step predictive horizon in WorldCup’98 and NASA’95 datasets.
Fig. 7. Illustration of our LSTM architecture, simplified with example values for input
and hidden layer sizes.

Fig. 8. A grid based on four features with the workload curve.

value 𝑥′𝑡+1 = 50, the Planner selects the line value of 55 (i.e., close line).
Similarly, if 𝑥′𝑡+1 = 35, the planner selects the line value of 40 (i.e., open
line), thereby ensuring a significant reduction while mitigating the
oscillation effect.

Algorithm 2 outlines the steps involved in this grid-based oscillation
mitigation approach. At each execution, the algorithm estimates the
future workload using a prediction model (e.g., LSTM), as shown in
Line 6.

When a system downscale is needed, our approach adjusts the
workload value to a value from the feature set, as obtained in Line 2.
The feature set values, representing the grid lines, are generated by
Algorithm 1. The function ‘getNextRoof’ (Lines 11–14) returns a value
from the grid that is the smallest value greater than the predicted work-
load value, aiding in a controlled reduction of replicas. Subsequently,
the algorithm computes the required number of replicas (Line 10) by
dividing the predicted workload value by the replica capacity, which
signifies the workload capacity of a replica. Specifically, replicaCapacity
represents the number of requests a replica can process within a given
time frame (e.g., one minute).
8

Algorithm 2 Grid-based Oscillation Mitigation
Require:
1: 𝑤 =< 𝑑𝑡−𝑠, ..., 𝑑𝑡−1, 𝑑𝑡 >
2: 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑒𝑡 = {𝑙𝑜𝑤(𝑤), 𝑜𝑝𝑒𝑛(𝑤), 𝑐𝑙𝑜𝑠𝑒(𝑤), ℎ𝑖𝑔ℎ(𝑤)}
3: 𝐹𝑜𝑟𝑒𝑐𝑎𝑠𝑡𝑖𝑛𝑔𝑀𝑜𝑑𝑒𝑙
4: 𝑟𝑒𝑝𝑙𝑖𝑐𝑎𝐶𝑎𝑝𝑎𝑐𝑖𝑡𝑦
Ensure: 𝑛𝑒𝑤𝑅𝑒𝑝𝑙𝑖𝑐𝑎𝑠

5: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑊 𝑜𝑟𝑘𝑙𝑜𝑎𝑑 ← 𝑑𝑡
6: predNextWorkload ← predict(ForecastingModel, w)
7: if (predNextWorkload < currentWorkload) then
8: predNextWorkload ← 𝑔𝑒𝑡𝑁𝑒𝑥𝑡𝑅𝑜𝑜𝑓 (predNextWorkload,

featureSet)
9: end if

10: newReplicas ← predNextWorkload ∕ replicaCapacity

11: function getNextRoof(𝑒𝑙𝑡, {𝑒𝑙1, 𝑒𝑙2, ...𝑒𝑙𝑛})
12: 𝑠𝑢𝑏𝑆𝑒𝑡 ← inferior(𝑒𝑙𝑡, {𝑒𝑙1, 𝑒𝑙2, ...𝑒𝑙𝑛})
13: roof ← min(subSet)
14: return roof
15: end function

8. Experiments and results

In this section, the main objective of the evaluation is to present the
feasibility and utility of our two contributions, namely time-series fea-
turization, which improves the accuracy of the forecasting model, and
our oscillation mitigation approach, which improves the auto-scaling
efficiency.

To achieve this objective, each of the following subsections presents
an important aspect of the evaluation.

8.1. Simulator

To examine our approach, we developed a simulation program
in Python (using NumPy, Pandas, Scikit-learn, and Keras libraries)
to test and compare our results with related work (Imdoukh et al.,
2019; Dang-Quang and Yoo, 2021). This simulator enables the auto-
scaling of replicas according to the prediction data generated by the
machine learning model presented in Section 6. As shown in Fig. 9,
the simulation tool consists of five phases, following the MAPE-K loop,
including monitoring the auto-scaling and evaluating the results to
verify the impact of the models on the auto-scaling process.
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Fig. 9. Architecture of the simulator.
8.2. Performance metrics

Two types of metrics are considered: forecasting model metrics and
auto-scaling metrics.

8.2.1. Evaluation metrics for the prediction model
The regression models selected in this study, LSTM and Bi-LSTM,

allow the prediction of future sequences of a dataset according to
the parameters acquired during its training. The efficiency of these
forecasting models is evaluated according to their generalization error
rate (i.e., accuracy). The accuracy evaluation in regression analysis
consists of comparing the original target with the predicted one. For
these measures, we can use different metrics such as Mean Absolute
Error (MAE), Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and R-squared (𝑅2), which help to explain the errors and
predictive ability of the model (Chicco et al., 2021). These measures
are defined as follows:

• MAE (Mean Absolute Error) represents the difference between the
actual and predicted values, calculated by averaging the absolute
errors over the dataset (Eq. (15)).

• MSE (Mean Squared Error) represents the average squared differ-
ence between the actual and predicted values (Eq. (16)).

• RMSE (Root Mean Squared Error) represents the standard devia-
tion of the prediction by the square root of MSE (Eq. (17)).

• Coefficient of determination (𝑅2) represents the proportion of the
variance in the dependent variable that is predictable from the
independent variables in the regression model. The value of 𝑅2,
which usually ranges from 0 to 1, indicates the strength of the
correlation between the actual and predicted values, with higher
values indicating a better model fit (Eq. (18)).

𝑀𝐴𝐸 = 1
𝑁

𝑁
∑

𝑖=1
|𝑦𝑖 − 𝑦𝑖| (15)

𝑀𝑆𝐸 = 1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (16)

𝑅𝑀𝑆𝐸 =
√

𝑀𝑆𝐸 =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (17)

𝑅2 = 1 −
∑𝑁

𝑖=1
(

𝑦𝑖 − 𝑦𝑖
)2

∑𝑁
𝑖=1

(

𝑦𝑖 − �̄�
)2

(18)

where 𝑦, 𝑦𝑖 and 𝑦𝑖 represent actual value, predicted value, and mean of
actual values y, respectively.

As shown by equations, MSE and MAE are error metrics that quan-
tify the difference between predicted and actual values. A lower value
for these metrics indicates better performance, meaning the model’s
predictions are closer to the actual values. The RMSE, being the square
root of MSE, penalizes more significant errors further, giving a better
representation of the overall prediction performance. Thus, a model
having a lower MSE value implies that it has a lower value of RMSE.
Additionally, we included the R-squared (R2) metric to assess the
proportion of variance in the predicted values, obtained by forecasting
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models, compared to actual values. It represents an informative metric
of the model’s goodness-of-fit, where a higher value indicates a better
fit.

8.2.2. Auto-scaler evaluation metrics
The performance evaluation of our auto-scaling simulator is based

on two essential aspects: elasticity and provisioning rate. For this
purpose, we have used the metrics proposed in Herbst et al. (2016)
and Bauer et al. (2018a). These metrics have been used in several
literature studies on auto-scaling, such as Imdoukh et al. (2019), Dang-
Quang and Yoo (2021) and Bauer et al. (2018b):

• Under-provisioning metric (𝜃𝑢) indicates the number of missing
replicas (e.g., containers) needed to reach the requested number
of replicas in a time interval (Eq. (19)).

• Over-provisioning metric (𝜃𝑜) represents the supplied replicas that
exceed the demanded number, as shown in Eq. (20).

• Under-provisioning time (𝑇𝑢) reflects the time during which the
simulator was under-provisioning (Eq. (21))

• Over-provisioning time (𝑇𝑜) reflects the time during which the
simulator was over-provisioning (Eq. (22))

• Elasticity speedup (𝜖𝑛) reveals the performance gain obtained by
using a proactive auto-scaler. In this work, the elasticity speedup
is calculated by a ratio between two cases: using a proactive
auto-scaler and a reactive auto-scaler, which are represented in
Eq. (23), by the 𝑝 and 𝑟 indices, respectively. In contrast to the
previous metrics, the higher the 𝜖𝑛 value, the higher the auto-
scaler performance. In other words, the best auto-scaler has lower
𝜃𝑢, 𝜃𝑜, 𝑇𝑢, 𝑇𝑜 values and essentially a higher 𝜖𝑛 value.

𝜃𝑢 =
100
𝑇

𝑇
∑

𝑡=1

𝑚𝑎𝑥(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) − 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑(𝑡), 0)
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡)

𝛥𝑡 (19)

𝜃𝑜 =
100
𝑇

𝑇
∑

𝑡=1

𝑚𝑎𝑥(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑(𝑡) − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡), 0)
𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡)

𝛥𝑡 (20)

𝑇𝑢 =
100
𝑇

𝑇
∑

𝑡=1
max(𝑠𝑔𝑛(𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) − 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑(𝑡)), 0)𝛥𝑡 (21)

𝑇𝑜 =
100
𝑇

𝑇
∑

𝑡=1
max(𝑠𝑔𝑛(𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑(𝑡) − 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡)), 0)𝛥𝑡 (22)

𝜖𝑛 =
( 𝜃𝑢,𝑟
𝜃𝑢,𝑝

.
𝜃𝑜,𝑟
𝜃𝑜,𝑝

.
𝑇𝑢,𝑟
𝑇𝑢,𝑝

.
𝑇𝑜,𝑟
𝑇𝑜,𝑝

)

1
4

(23)

where, 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑(𝑡) represents the correct number of replicas corre-
sponding to the actual workload, and 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑(𝑡) represents the num-
ber of replicas offered by the auto-scaler according to the predicted
value of the workload. 𝛥𝑡 corresponds to the time interval (e.g., each
1 min) used to check the change in workload, 𝑇 represents the entire
evaluation period, and 𝑠𝑔𝑛() is the sign function.

8.3. Datasets

To validate our findings, we selected the following two publicly
available datasets.



Journal of King Saud University - Computer and Information Sciences 36 (2024) 101924A. Bali et al.
Fig. 10. Representation of Worldcup 98’ dataset by number of requests per minute.

Fig. 11. Representation of NASA 95’ dataset by number of requests per minute.

8.3.1. Worldcup’98 dataset
The Worldcup’98 dataset contains the HTTP request logs of more

than 1.3 billion requests from the 1998 FIFA World Cup website in
France between April 30 and July 26 (Arlitt and Jin, 2000). This high
request load is due to the number of spectators worldwide who fol-
lowed this event. The Worldcup 98’ Dataset is often used by researchers
working on auto-scaling in the cloud. Moreover, this will allow us to
compare our results with other studies such as Imdoukh et al. (2019)
and Dang-Quang and Yoo (2021).

The data structure of this dataset contains the following prop-
erties: timestamp, clientID, objectID, size, method, status, type, and
server (Arlitt and Jin, 2000). To better manage this data, we performed
a preprocessing by grouping all logs occurring in the same minute into
a single cumulative record, as in Imdoukh et al. (2019). As a result, the
information about the number of requests corresponds to the number
of received requests in one minute. Fig. 10 plots the dataset obtained.

8.3.2. NASA 95’ dataset
The NASA 95’ Dataset provides a two-month log of HTTP re-

quests to the NASA Kennedy Space Center Web server in Florida. This
dataset contains 3,461,612 requests collected between July 1, 1995,
at 00:00:00 and August 31, 1995, at 23:59:59. The timestamps are
accurate to one second. It should be noted that no accesses were
reported from 01/Aug/1995:14:52:01 to 03/Aug/1995:04:36:13 since
the web server was shut down due to Hurricane Erin Dang-Quang and
Yoo (2021). Fig. 11 plots a part of the dataset.

8.3.3. Data analysis
In our analysis of the WorldCup and NASA datasets, specifically

focusing on the first 80k data points, we observed distinct statistical
behaviors in each dataset. For the NASA dataset, as depicted in Fig. 12,
there are initial fluctuations in mean and variance values. However,
these metrics stabilize after the first 40,000 data points, suggesting
a transition to a more consistent workload pattern over time. This
observation was substantiated by the Augmented Dickey–Fuller (ADF)
test, which indicated stationarity with a near-zero p-value.

In contrast, the WorldCup dataset, illustrated in Fig. 13, demon-
strates a different pattern, with both mean and variance increasing
over time. This behavior is indicative of a non-stationary time series,
as further evidenced by its ADF test result, which yielded a p-value of
10
Fig. 12. Data analysis of NASA dataset.

Fig. 13. Data analysis of WorldCup dataset.

0.056638. This value suggests non-stationarity, potentially complicat-
ing the modeling process due to the influence of trend and seasonality
components.

In light of these findings, some forecasting models like ARIMA
necessitate transforming the time series data to achieve stationarity
before modeling. In our work, our approach leverages an LSTM model
that does not necessitate this transformation thanks to its ability to
capture complex patterns in the data effectively.

Additionally, the distribution of the NASA’95 dataset is less compli-
cated than that of Worldcup 98’ (Dang-Quang and Yoo, 2021). Fig. 14
showcases the data distributions for both datasets: Worldcup and NASA.
The Worldcup dataset is characterized by a higher degree of variability
and outliers, as evidenced by the broader spread of data points. This
is particularly highlighted by the stark difference between the median
value of 3884 and the maximum value, which surpasses 200,000,
indicating the presence of extreme values in the Worldcup dataset. In
contrast, the NASA dataset demonstrates less variability, as shown by
its maximum value of around 300 and a median value of 29, indicating
a more concentrated distribution of data points.

The Worldcup’98 dataset, therefore, presents a significant challenge
in terms of prediction due to its high variability and complex patterns,
featuring unpredictable peaks. This contrasts with the NASA’95 dataset,
which exhibits a more stable and predictable pattern.

8.4. Evaluation protocol

First, we have rebuilt the forecasting models proposed in the lit-
erature to reproduce these tests in the same operating environment
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Table 2
Our featurization-based forecasting approach vs. related work.

Dataset Approach RMSE R2 MSE MAE

NASA
LSTM (Imdoukh et al., 2019) 0.0811 0.6430 0.0066 0.0607
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0813 0.6409 0.0066 0.0609
Our model 0.0016 0.9993 2.6343e−06 0.0015

Worldcup’98
LSTM (Imdoukh et al., 2019) 0.0023 0.9862 5.1755e−06 0.0016
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0020 0.9898 3.8043e−06 0.0013
Our model 0.0006 0.9990 3.5793e−07 0.0004
Fig. 14. Data distribution comparison of Worldcup and NASA datasets.

and execution conditions. This approach allows for reproducible and
non-biased results. Consequently, we retained the same configuration
of hyperparameters proposed in each approach.

Second, the efficiency evaluation of each forecasting algorithm
will be based on its performance results. However, the configuration
parameters proposed for these algorithms (Imdoukh et al. algorithm
in Imdoukh et al. (2019), Dang et al. algorithm in Dang-Quang and
Yoo (2021) and our algorithm in Table 1) are not sufficient to cover all
our test cases, whether during the prediction stage or the auto-scaling
of the system.

Therefore, we needed to test several combinations of the key hy-
perparameters of these models to verify their impact on the contri-
butions of different approaches by analyzing the change in forecast-
ing results. Additionally, based on multiple combinations of settings
and parameters, this study identifies the best model with the optimal
configuration.

Third, each dataset selected, namely Worldcup ’98 and NASA ’95,
is partitioned into two subsets: one for training the model and the
other for testing purposes. Inspired by the principle ‘‘Pareto (80–
20)’’ (Dunford et al., 2014), we allocated 80% of the data for training
and the remaining 20% for testing, applying this division to each
dataset. The training data is scaled independently of the testing data to
prevent potential bias. The results obtained from executing the model
on the test data were meticulously analyzed using various performance
metrics to assess the accuracy and reliability of the forecasts.

Finally, we experimented with our predicted data as well as those
of Imdoukh et al. (2019) and Dang-Quang and Yoo (2021) in our
simulator, to choose the best auto-scaling approach, which deals most
effectively with oscillation mitigation. These approaches are evaluated
according to the metrics presented in Section 8.2.

8.5. Evaluation of our forecasting approach

Initially, we aim to reproduce the forecasting approaches proposed
in the literature and test them under similar operating conditions.
Specifically, we consider for comparison the two approaches (Imdoukh
et al., 2019; Dang-Quang and Yoo, 2021) as they both utilize multilayer
learning techniques and address the oscillation issue. Imdoukh et al.
(2019) employs an LSTM model, while Dang-Quang and Yoo (2021)
utilize a Bi-LSTM model.
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Next, we aim to ensure that our featurization-based approach can
produce accurate forecasts compared to these existing works. Then, we
also aim to assess the impact of featurization on forecasting results.

8.5.1. Comparison to related work
We employed the metrics introduced in Section 8.2, namely RMSE,

MSE, MAE, and 𝑅2, to evaluate the regression model. Table 2 presents
the evaluation metrics compared to the related work.

During these tests, we noticed that the results of the two related
work approaches were consistently close, with occasional variations
in performance where one approach outperformed the other. Never-
theless, our approach with the featurization always performed well in
these tests and outperformed other approaches.

In the case of the NASA dataset, the improvement rendered by
our approach is particularly noteworthy. As explained in Subsubsection
Section 8.3.3, the NASA dataset exhibits a more stable pattern, which
can positively impact the forecasting error. In contrast, the World-
cup’98 dataset contains numerous workload peaks, leading to more
outliers in the differences between predicted and actual data. These
substantial and frequent discrepancies obscure the overall enhancement
observed in evaluation metrics such as RMSE and MAE.

Our model displayed remarkable performance for the NASA dataset,
surpassing the best values reported in the related works. Notably,
our model demonstrated approximately relative improvements of 98%,
55%, 99%, and 97% in RMSE, R2, MSE, and MAE, respectively.

This reduction in the error rate has, therefore, impacted the qual-
ity and accuracy of the forecasting as presented in Figs. 15(a) and
15(b), which visualize the prediction of our model on Worldcup’98 and
NASA dataset respectively. The red color represents the actual dataset,
whereas the prediction of our model is plotted using the blue color. It
is clear that our model fits well with the test dataset.

8.5.2. Result of the hyperparameter combination tests
To further evaluate the effect of the featurization mechanism, we de-

cided to change the LSTM hyperparameters of the different approaches
to see if that impacts our findings. We have chosen the following
hyperparameters: the number of units and epochs. The number of units
corresponds to the dimension of the hidden cells. The number of epochs
defines the number of times the learning algorithm will change the
network’s weights.

Table 3 shows that our approach, regardless of the changed hy-
perparameters, outperforms related work thanks to our featurization
mechanism. As in the previous test category, the improvement with the
NASA dataset is more apparent and significant.

8.5.3. Evaluation of the impact of our featurization mechanism on the
related work approaches

In the previous testing phase, we sought to determine the influence
of our featurization mechanism by adjusting two key hyperparameters:
the number of units and the number of epochs. In this test category,
we consider the overall hyperparameters of related work models by
applying our featurization mechanism to the data before using the
forecasting algorithms of the related work (i.e., Imdoukh et al. (2019),
Dang-Quang and Yoo (2021)). Table 4 showcases that our featurization
mechanism enhances the forecasting accuracy of the related work,
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Fig. 15. Our model forecasting.
Table 3
Forecasting results with varying the hyper-parameters: the numbers of units and epochs.

Case Dataset Approach RMSE R2 MSE MAE

30 units with 50 epochs

NASA
LSTM (Imdoukh et al., 2019) 0.0811 0.6430 0.0066 0.0607
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0813 0.6409 0.0066 0.0609
Our model 0.0024 0.9997 6.1537−06 0.0017

Worldcup’98
LSTM (Imdoukh et al., 2019) 0.0023 0.9861 5.1755e−06 0.0016
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0020 0.9898 3.8042e−06 0.0013
Our model 0.0006 0.9990 3.5793e−07 0.0004

20 units with 120 epochs

NASA
LSTM (Imdoukh et al., 2019) 0.0807 0.6468 0.0065 0.0606
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0817 0.6381 0.0067 0.0610
Our model 0.0044 0.9989 1.9779e−05 0.0027

Worldcup’98
LSTM (Imdoukh et al., 2019) 0.0038 0.9609 1.4625e−05 0.0035
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0021 0.9884 4.3315e−06 0.0017
Our model 0.0017 0.9916 3.1499e−06 0.0015

10 units with 50 epochs

NASA
LSTM (Imdoukh et al., 2019) 0.0816 0.6389 0.0067 0.0614
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0823 0.6326 0.0068 0.0614
Our model 0.0073 0.9971 5.2620e−05 0.0051

Worldcup’98
LSTM (Imdoukh et al., 2019) 0.0044 0.9485 1.9246e−05 0.0040
Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0023 0.9858 5.3124e−06 0.0018
Our model 0.0019 0.9907 3.4721e−06 0.0017
Fig. 16. Relative improvement percentage of metrics: Our approach vs. Related works.

especially evident in the case of the NASA dataset. For example, our ap-
proach improves approximately 92% in 𝑅𝑀𝑆𝐸 and 55% in 𝑅2 for the
LSTM model. Additionally, it significantly improves the performance of
the Bi-LSTM model with approximately 84% improvement in 𝑅𝑀𝑆𝐸
and 55% improvement in 𝑅2.

8.5.4. Finding and analysis summary of our featurization approach evalu-
ation

Our featurization approach has exhibited substantial improvements
in forecasting accuracy, as substantiated through a comprehensive
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evaluation encompassing comparisons with related works, testing mod-
els with varied hyperparameters, and assessing the impact of our
featurization on existing forecasting works.

Fig. 16 visually represents the percentage improvement achieved
by comparing our forecasting model relative to the best values of
compared related works, which are presented in Table 2.

In both datasets, our approach consistently surpassed other models
in accuracy metrics such as RMSE, MSE, and MAE. The relative im-
provements ranged approximately between 70% and 99%, highlighting
the efficacy of our featurization in minimizing forecast errors.

For the WorldCup dataset, the 𝑅2 value of our model was compa-
rable to other models that already exhibited high 𝑅2 values (around
0.99). This similarity indicates that our model captures levels of vari-
ance in the data similar to that of the other models while still achieving
superior performance in error metrics.

It is important to note that the different metric values are computed
based on scaled data. Upon descaling the data (i.e., inverting the scaling
process), the metric values increase while maintaining the same relative
improvement percentage.

In addition, our work uses an LSTM model that predicts the future
workload in order to handle the complexity, the non-stationarity, and
the possible uncertainties of the workload data through its ability
to learn long-term dependencies and patterns in the data. The LSTM
model addresses the non-stationary nature, which has varying means
and variances, by learning from sequences of data, effectively captur-
ing trends and seasonal effects, which are common in non-stationary
data. Our featurization approach, which automatically extracts features
describing the input data, aims to aid the LSTM model in handling
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Table 4
The impact of our featurization mechanism on the related work approaches.

Dataset Approach RMSE R2 MSE MAE

NASA

LSTM (Imdoukh et al., 2019) 0.0811 0.6430 0.0066 0.0607
LSTM (Imdoukh et al., 2019) ⊕ our featurization 0.0056 0.9983 3.1902e−05 0.0043

Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0813 0.6409 0.0066 0.0609
Bi-LSTM (Dang-Quang and Yoo, 2021) ⊕ our featurization 0.0130 0.9908 0.0002 0.0099

Worldcup’98
LSTM (Imdoukh et al., 2019) 0.0022 0.9861 5.1755 0.0016
LSTM (Imdoukh et al., 2019) ⊕ our featurization 0.0016 0.9935 2.4442e−06 0.0010

Bi-LSTM (Dang-Quang and Yoo, 2021) 0.0019 0.9898 3.8043e−06 0.0013
Bi-LSTM (Dang-Quang and Yoo, 2021) ⊕ our featurization 0.0052 0.9289 2.6619e−05 0.0051
Fig. 17. Auto-scaler behavior using NASA’95 dataset.
uncertainties inherent in time-series data, such as noise and workload
fluctuations in the NASA and WorldCup datasets. The data variability
(fluctuations) can be well handled if it presents a pattern available
or similar to one in the training dataset. While entirely new patterns
caused by external uncertainties (e.g., sudden workload spikes due to
external events) that were not present in the training data require
retraining or updating the model with new data that includes these
patterns.

8.6. Evaluation of the auto-scaler

This subsection primarily evaluates our oscillation mitigation ap-
proach by assessing the auto-scaler performance. Therefore, we will
discuss our strategies and the results of the tests conducted using the
auto-scaling simulator. We have implemented our auto-scaling simula-
tor in two modes: the reactive and the proactive. The reactive mode,
common in most commercial solutions, operates without utilizing pre-
diction functionality. The reactive approach serves as a baseline to
compare the enhancement offered by the proactive approaches and
plays a role in calculating auto-scaling performance metrics, notably
the 𝜖𝑛 metric (Elasticity speedup in Eq. (23)).

The proactive mode facilitates the analysis of the performance of
our approach and its comparison with related works, such as those
by Imdoukh et al. (2019) and Dang-Quang and Yoo (2021).

To allow a fair comparison, we ran our auto-scaling simulator under
the same conditions proposed in existing literature, using predicted
data collected from previous tests.

In these tests, we considered five auto-scaling approaches:

• The reactive approach: Auto-scaling is based on current monitor-
ing data, lacking forecasting capability. This simplistic category
represents most industrial auto-scaling solutions.

• Our proactive approach (𝑂𝑢𝑟𝑃 𝑟𝑜𝑎𝑐𝑡𝑖𝑣𝑒): This represents our
proactive approach that uses the data generated from our
featurization-based forecasting algorithm without processing the
oscillation issue.

• Our Proactive & Grid approach (𝑂𝑢𝑟𝑃 𝑟𝑜𝑊 𝑖𝑡ℎ𝐺𝑟𝑖𝑑): This is our
proactive approach combined with our grid-based oscillation mit-
igation approach.
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• Work1 : An approach proposed in literature (Imdoukh et al.,
2019), applying our predicted data generated by our
featurization-based approach. It suggested a cooldown timer
(CDT) of 10 s and a scaling down ratio (SDR) of 40%.

• Work2 : the approach proposed in the literature (Dang-Quang and
Yoo, 2021) employing our predicted data. It selects 60-second
CDT and 60% SDR.

8.6.1. Reactive vs. our proactive approach
In this test category, we demonstrate the enhancements brought by

our proactive approach, based on the featurization forecasting mecha-
nism.

Comparing two Figs. 17(a) and 17(b), we observe that our proactive
approach shortens response times due to its predictive capabilities
regarding system resource requirement changes. Moreover, our fore-
casting approach has notably improved test result metrics values across
both datasets (NASA and WorldCup), as presented in Table 5.

Thanks to the forecasting mechanism, our proactive approach re-
duces the variation between the current and the needed resources
(i.e., replicas), thus improving auto-scaling performance. For instance,
in the case of Worldcup dataset, our model improves the metric values
of over-provisioning (𝜃𝑜), under-provisioning (𝜃𝑢), over-provisioning
time (𝑇𝑜), under-provisioning time (𝑇𝑢) and elasticity speedup (𝜖𝑛) by
about 55%, 76%, 55%, 33%, and 140%, respectively. Also, for the
NASA dataset, our proactive approach enhances the overall auto-scaling
performance (i.e., 𝜖𝑛) by about 206%. This significant improvement
demonstrates the importance of the proactive behavior of our approach,
which uses our featurization-based forecasting approach.

8.6.2. Our approach with vs. without oscillation mitigation
To evaluate the impact of our oscillation mitigation approach on

the auto-scaling behavior, we compare our proactive approach with
and without the oscillation mitigation. Table 6 summarizes the test
results. Our oscillation mitigation approach was able to improve the
performance of the auto-scaler enormously. It improved the overall
Elasticity Speedup metric (𝜖𝑛) by about 400% with the NASA’95 dataset
and 108% with the WorldCup’98 dataset.
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Table 5
Reactive vs. our Proactive auto-scaling approaches with Worldcup 98’ and NASA
Datasets.

Dataset Metric Reactive Our proactive

NASA

𝜃𝑜 2.8139 0.0493
𝜃𝑢 1.1794 1.1993
𝑇𝑜 13.3070 9.5947
𝑇𝑢 13.2231 11.6587

𝜖𝑛 1 3.0659

Worldcup’98

𝜃𝑜 10.1007 4.4949
𝜃𝑢 4.6103 1.0628
𝑇𝑜 20.2554 9.0138
𝑇𝑢 20.4295 13.5262

𝜖𝑛 1 2.3983

Table 6
Our proactive approach with vs. without oscillation mitigation with Worldcup 98’ and
NASA Datasets.

Dataset Metric OurProactive OurProWithGrid

NASA

𝜃𝑜 0.0493 0.0722
𝜃𝑢 1.1993 0.2543
𝑇𝑜 9.5947 0.2916
𝑇𝑢 11.6587 2.0095

𝜖𝑛 3.0659 15.2634

Worldcup’98

𝜃𝑜 4.4949 0.6567
𝜃𝑢 1.0628 1.0508
𝑇𝑜 9.0138 4.5799
𝑇𝑢 13.5262 9.8195

𝜖𝑛 2.3983 4.9919

Our grid-based mechanism can increase the over-provisioning met-
ic, 𝜃𝑜, as it can choose a higher value than predicted in the case of
ownscaling needs. For example, in the case of the NASA dataset, the 𝜃𝑜

metric is increased by about 46%. Moreover, against expectation, our
approach has reduced the time when the system is over-provisioning
(𝑇𝑜 metric). The dynamics of our grid and the predicted workload
explain this improvement. As a result, the overall performance of
auto-scaling is greatly improved.

8.6.3. Comparison of our oscillation mitigation approach with related work
This test category aims to compare our oscillation mitigation mech-

anism with the related work (Imdoukh et al., 2019; Dang-Quang and
Yoo, 2021) that both proposed oscillation mitigation strategies by
restricting the periodicity and rate of change. Work1 (Imdoukh et al.,
2019) used a cooldown timer (CDT) of 10 s with a scaling down
ratio (SDR) of 40 percent, while Work2 (Dang-Quang and Yoo, 2021)
selects 60 s for the CDT and 60 percent for the SDR. To neutralize the
forecasting effects of each approach, we utilized the same forecasting
data generated by our forecasting approach.

Interestingly, unlike other related work mechanisms, our oscillation
mitigation approach introduces a unique mechanism that is agnostic
to any parameters that need optimization (i.e., parameterless). Con-
sidering this originality, our approach slightly improved the overall
auto-scaling performance compared to established and widely used
mechanisms, as presented in Table 7.

These findings led us to explore the combination of these ap-
proaches for potential improvements, discussed in the subsequent eval-
uation section.

8.6.4. Combination of oscillation solutions
This test category investigates the feasibility and effectiveness of

combining our grid-based oscillation mitigation approach with the
cooldown time (CDT), commonly used in related work. The CDT in-
troduces a delay when a down scaling request is received to ensure the
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persistence of the need.
Table 7
Our proactive approach with our grid-based oscillation mitigation vs. related work.

Dataset Metric OurProWithGrid Work1
(Imdoukh
et al., 2019)

Work2
(Dang-Quang
and Yoo, 2021)

NASA

𝜃𝑜 0.0722 0.0828 0.0732
𝜃𝑢 0.2543 0.2565 0.2501
𝑇𝑜 0.2916 0.2954 0.2954
𝑇𝑢 2.0095 2.0202 2.0082

𝜖𝑛 15.2625 14.6498 15.2237

Worldcup’98

𝜃𝑜 0.6567 0.9125 0.8357
𝜃𝑢 1.0508 1.3457 0.9761
𝑇𝑜 4.5799 4.3529 4.6044
𝑇𝑢 9.8195 10.0019 9.8665

𝜖𝑛 4.9919 4.3572 4.7753

Table 8
Using our predicted data, a comparison of our grid-based approach (𝑂𝑢𝑟𝑃 𝑟𝑜𝑊 𝑖𝑡ℎ𝐺𝑟𝑖𝑑)
to its combination with 𝐶𝐷𝑇 mechanism (𝑂𝑢𝑟𝑃 𝑟𝑜𝑊 𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇 ).

Case Metric OurProWithGrid OurProWithGrid ⊕ CDT

Case1: CDT = 10 s 𝜃𝑜 0.0722 0.4526
𝜃𝑢 0.2543 0.0366
𝑇𝑜 0.2916 2.0167
𝑇𝑢 2.0095 0.5605

𝜖𝑛 15.2625 13.2899

Case1: CDT = 60 s 𝜃𝑜 0.0722 0.1539
𝜃𝑢 0.2543 0.0061
𝑇𝑜 0.2916 0.4268
𝑇𝑢 2.0095 0.0694

𝜖𝑛 15.2625 67.6469

Table 9
Using the predicted data of Imdoukh et al. (2019) approach, a comparison of our
grid-based approach (𝑂𝑢𝑟𝑃 𝑟𝑜𝑊 𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its combination with 𝐶𝐷𝑇 mechanism
(𝑂𝑢𝑟𝑃 𝑟𝑜𝑊 𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇 ).

Case Metric OurProWithGrid OurProWithGrid ⊕ CDT

Case1: CDT = 10 s 𝜃𝑜 0.0722 0.0336
𝜃𝑢 0.2543 0.5066
𝑇𝑜 0.2916 0.1973
𝑇𝑢 2.0095 7.0110

𝜖𝑛 15.2625 12.5497

Case1: CDT = 60 s 𝜃𝑜 0.0722 0.0119
𝜃𝑢 0.2543 0.1280
𝑇𝑜 0.2916 0.0480
𝑇𝑢 2.0095 2.2090

𝜖𝑛 15.2625 43.6019

Table 10
Using the predicted data of Dang-Quang and Yoo (2021) approach, a comparison of
our grid-based approach (𝑂𝑢𝑟𝑃 𝑟𝑜𝑊 𝑖𝑡ℎ𝐺𝑟𝑖𝑑) to its combination with 𝐶𝐷𝑇 mechanism
(𝑂𝑢𝑟𝑃 𝑟𝑜𝑊 𝑖𝑡ℎ𝐺𝑟𝑖𝑑 ⊕ 𝐶𝐷𝑇 ).

Case Metric OurProWithGrid OurProWithGrid ⊕ CDT

Case1: CDT = 10 s 𝜃𝑜 0.0722 0.0337
𝜃𝑢 0.2543 0.4981
𝑇𝑜 0.2916 0.1973
𝑇𝑢 2.0095 6.9737

𝜖𝑛 15.2625 12.6064

Case1: CDT = 60 s 𝜃𝑜 0.0722 0.0119
𝜃𝑢 0.2543 0.1261
𝑇𝑜 0.2916 0.0480
𝑇𝑢 2.0095 2.1983

𝜖𝑛 15.2625 43.8206

To deduce general insights into the performance of the combina-
tion of mechanisms, we conducted extensive experiments considering
different contextual parameters, such as the predicted data and the CDI
values, as presented in Tables 8–10.
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Two CDT values were considered: 10 ms and 60 ms. In the case
of CDT = 10 ms, the combination is less efficient due to a small
value of CDT, leading to more auto-scaling operations exacerbating the
oscillation issue.

In contrast, the combination with the CDT = 60 case significantly
improved the performance of the auto-scaling. This improvement was
reflected in the overall performance metric (𝜖𝑛), which increased by
approximately 343%, 185%, and 187% considering the predicted data
used in Tables 8–10, respectively.

In addition, this fairly high value of CDT (i.e., 60 ms) can in-
crease the over-provisioning metrics, 𝑇𝑜 and 𝜃𝑜, as the case in Table 8.
Since the CDT mechanism adds a delay time, our approach reduces
the number of resources to shrink. However, despite this possible
increase in over-provisioning metrics, the combination significantly im-
proves the under-provisioning metrics, which is reflected in the overall
performance of the auto-scaling represented by Elasticity speedup (𝜖𝑛).

8.6.5. Finding and analysis summary of our oscillation mitigation approach
evaluation

Initially, our proactive approach, leveraging our featurization tech-
nique for improved workload forecasting, significantly enhanced the
auto-scaling performance compared to the reactive approach. The
proactive nature allows for better handling of workload fluctuations,
thereby reducing the likelihood of over or under-provisioning re-
sources.

Furthermore, the performance improvement is further amplified by
combining our featurization approach with our proposed oscillation
mitigation mechanism, referred to as OurProWithGrid. The overall
auto-scaling performance of our approach surpasses that of the related
works for both datasets. Notably, our grid-based oscillation mitigation
approach offers the advantage of being parameterless, eliminating the
need for tuning, in contrast to the common mechanisms employed in
related works.

Finally, we explored combining our grid-based oscillation mitiga-
tion approach with established mechanisms, particularly the Cool Down
Timer (CDT). With an optimized CDT value, this combination leads
to enhanced auto-scaling performance compared to using only the
CDT mechanism. However, it requires the CDT parameter, making it
not parameterless. Therefore, we plan to explore the utilization of
optimization techniques to determine the optimal CDT value as part
of our future work, as discussed in the conclusion section.

9. Conclusion

In this work, we addressed the challenge of resource management
in IoT systems, focusing on service auto-scaling in the edge computing
environment. Given the capabilities of edge devices, optimizing their
resource management is essential for enhancing service performance
and ensuring efficient resource utilization.

Our contributions are twofold. Initially, we employed the LSTM
machine learning model to predict upcoming resource change requests,
enabling a proactive adaptation to fluctuating resource needs. We fur-
ther enhanced our LSTM prediction model through a data featurization
technique inspired by the Japanese Candlestick concept. This enhance-
ment allowed for more accurate extraction of correlations within the
input data, significantly improving prediction accuracy compared to
existing literature.

Subsequently, we addressed the challenge of oscillation mitigation
inherent to auto-scaling. We introduced a novel grid concept in the ac-
tion generation phase, which effectively leverages historical workload
features to select the number of replicas efficiently during the planning
phase. In contrast to related works, our approach is parameterless, of-
fering the advantage of eliminating the need for parameter optimization
and demonstrating improved performance.

Combining these mechanisms considerably enhances the perfor-
mance of service auto-scaling, representing a significant advance over
15
the existing literature. The versatility of our solution also suggests po-
tential applicability across various domains (e.g., networks), fostering
improved autonomous and self-adaptive proactive resource manage-
ment.

In terms of future work, the promising results from our featur-
ization approach inspire further exploration into utilizing candlestick
patterns within our feature grid to refine our forecasting model. The
growing field of graph theory-based parametric machine learning al-
gorithms (Tutsoy, 2023) presents an attractive prospect. We intend to
incorporate the derived features into multi-dimensional data modeled
as a graph, aiming to enhance the understanding and modeling of com-
plex relationships, which might improve further prediction accuracy.
Furthermore, we plan to apply optimization techniques to enhance
the combination of our grid-based oscillation mitigation mechanism
with the commonly used CDT mechanism, as our experiments suggest
that such a combination holds substantial potential for performance
improvement.
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