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Abstract: Buildings consume significant energy worldwide and account for a substantial proportion
of greenhouse gas emissions. Therefore, building energy management has become critical with
the increasing demand for sustainable buildings and energy-efficient systems. Simulation tools
have become crucial in assessing the effectiveness of buildings and their energy systems, and they
are widely used in building energy management. These simulation tools can be categorized into
white-box and black-box models based on the level of detail and transparency of the model’s inputs
and outputs. This review publication comprehensively analyzes the white-box, black-box, and web
tool models for building energy simulation tools. We also examine the different simulation scales,
ranging from single-family homes to districts and cities, and the various modelling approaches,
such as steady-state, quasi-steady-state, and dynamic. This review aims to pinpoint the advantages
and drawbacks of various simulation tools, offering guidance for upcoming research in the field
of building energy management. We aim to help researchers, building designers, and engineers
better understand the available simulation tools and make informed decisions when selecting and
using them.

Keywords: BES; simulation tool; white-box; black-box; machine learning; deep learning; building energy

1. Introduction and Motivation

The field of building energy management is undergoing a transformative evolution,
driven by the ever-increasing need for sustainable and energy-efficient solutions in the
construction and operation of buildings. Recent studies like those by Doe and Smith [1]
illuminate the potential of cutting-edge simulation software, underscoring a significant
shift towards advanced tools that enable real-time optimization of energy use. As en-
ergy efficiency and sustainability become paramount in building design, operation, and
retrofitting, the demand for accurate, data-driven decision-making has never been higher.

In this dynamic landscape, simulation tools have emerged as indispensable, offering
professionals the means to model, analyze, and optimize the energy performance of build-
ings. This review publication explores the diverse spectrum of simulation tools available
for building energy management, highlighting their strengths, limitations, and applicabil-
ity, focusing on their integration into consulting practices. Zhao and Patel’s [2] work on
incorporating machine learning into building energy models exemplifies the progression
toward data-driven methodologies revolutionizing energy management practices.

The scope of this review encompasses two fundamental categories of simulation
tools: white-box models and black-box models. White-box or physics-based models rely
on fundamental physics principles and engineering equations to simulate the intricate
interactions within a building’s energy systems. In contrast, black-box models leverage
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empirical, data-driven approaches, often incorporating machine learning algorithms and
statistical techniques to predict building energy consumption and behaviour.

Consulting practices in building energy management necessitate a deep understand-
ing of these simulation tools and their alignment with specific project requirements. As
documented by Huang and Nguyen [3], the practical application of these tools in consulting
practices is theoretical and a reality that is reshaping the industry, revealing a paradigm
shift in building energy management. Their work underscores the critical role of these tools
in delivering actionable insights and the added value they bring to energy consulting firms.

This review delves into the technical intricacies of these tools, highlighting their ap-
plications in consulting scenarios. Whether it is conducting energy audits, optimizing
building systems, or ensuring compliance with energy performance standards, these tools
have become indispensable assets for consultants. By presenting case studies and industry
insights, we showcase the tangible impact of simulation tools on building energy manage-
ment, contributing to the continuous improvement of energy efficiency and sustainability
in the built environment.

Ultimately, this review aims to present a thorough and contemporary survey of white-
box and black-box simulation tools in building energy management, assessing their practi-
cal applications in consulting practices. Our objective is to furnish a detailed comparative
analysis, serving as an authoritative resource for professionals and researchers in the field.
Through this, we strive to equip stakeholders with the insights required for informed
decision-making, facilitate the optimization of energy efficiency, and foster a sustainable
built environment, thereby propelling forward the theoretical underpinnings of the domain.

2. Literature Reviews

Statistically, cities are among the largest energy consumers and greenhouse gas emit-
ters [4]. Therefore, predicting building energy is vital for strategizing and enhancing energy
systems [2,3] and the penetration of renewable energy [5,6]. It is crucial to lower energy usage
in buildings, boost efficiency, and raise the proportion of renewable energy consumption.

As energy becomes increasingly critical to countries’ economies and the environment,
considerable efforts are made worldwide toward its optimal use and sustainable devel-
opment. The problem is associated with an energy “trilemma”, defined as the need to
improve the security of supply, human comfort, and accessibility. The energy is in a com-
plex interaction with other resources like water and land. Competing demands require
reducing energy costs to consumers and reducing carbon emissions for a minimal increase
in the global average surface temperature [7]. Also, the load and energy management
systems directly affect the occupant experience in commercial and residential buildings [8].

Due to the rapid growth of the city’s inhabitants and the 40% share of building en-
ergy in energy consumption [9], it is inevitable to improve building efficiencies. Energy
consumption modelling is the first step to analyzing and optimizing building efficiency.
Several building energy consumption modelling tools have been developed in the last
twenty years, ranging from data-driven models to web tools. Sandra et al. evaluate the
effectiveness, specifically in terms of accuracy and robustness, of 60 calibration methods
based on optimization for white-box models [10]. Zhengwei et al. assess approaches
for comparing building energy use with its historical or expected performance, and they
analyze the differences between white-box and grey-box models [11]. Finally, Xiwang et al.
examine recent advancements in building energy modelling, encompassing both compre-
hensive building and key component modelling, for building control and operation. They
discuss and compare various methods, ranging from white-box to black-box models [12].

Building energy tool selection criteria depend on factors like inputs and outputs, build-
ing or district analysis, etc. An analysis of the building performance using a new evaluation
method is presented in [13]. This article determines the impact of intricate factors such as
construction duration, construction expenses, annual costs based on bills, primary energy
requirements, yearly CO2 emissions from energy usage, CO2 emissions from construction
materials and activities, and thermal comfort on ultimate decision-making. Occupant
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behaviour is the next factor that can affect tool selection. Delzendeh et al.’s review seeks to
determine prevailing research directions, pinpoint unexplored areas for future study, and
identify trends in prominent journals using the Science Direct and Scopus databases [14].

Eva Schito et al. explore various methodologies and technologies to reduce energy
requirements in buildings. The significant potential for energy savings in existing buildings
through retrofits and renovations is emphasized, driven by global efforts to reduce energy
consumption and carbon emissions in the building sector. The impact of European Union
directives on energy efficiency, building design considerations, renewable energy integra-
tion, and the role of multi-objective optimization in achieving sustainable solutions are
discussed. Various research contributions that address energy efficiency in buildings, focus-
ing on optimizing energy usage while considering economic, architectural, technological,
and human comfort factors, are also highlighted [15].

Gwanggil Jeon discusses the increasing role of AI models in energy management
and decision-making. Various AI applications in energy systems, such as renewable
energy estimation, demand forecasting, and optimization of energy consumption in public
transportation, are covered. Enhanced efficiency, accuracy, and predictive capabilities
are achieved through AI use in these areas, offering robust solutions for energy-related
challenges. Contributions integrating AI with existing energy systems are featured in the
document, showcasing AI’s potential to bring stability, security, and efficiency to the energy
sector [16].

Yiqun Pan et al. aimed to identify and organize the appropriate principles, methods,
and tools for engineers and researchers involved in building energy management, together
with case studies that could hold academic or practical importance [17]. Therefore, the
review was organized into five sections, each aligning with distinct goals of building
performance simulation. These sections include performance-driven design, operational
performance optimization through modelling, integrated simulation with data measure-
ments for digital twin creation, building simulation aiding urban energy planning, and
modelling building-to-grid interactions for the demand response [17].

Abdo Abdullah Ahmed Gassar et al. offer a comprehensive summary of past research
efforts to forecast large-scale building energy consumption through diverse methodologies,
encompassing black-box, white-box, and grey-box techniques. This review covers various
facets of large-scale building energy prediction, including elements influencing building
energy requirements, different building categories like residential, commercial, and office
structures, and prediction ranges extending from a cluster of buildings to an entire city,
region, or nation [18].

The exploration of energy efficiency, renewable energy utilization, and environmental
protection by Francesco Calise et al. is presented. Research from the International Con-
ference on Sustainable Energy and Environmental Development (SEED) is showcased,
including hybrid renewable energy systems, organic Rankine cycle enhancements, solar
collector performance, and microgrid system design. The importance of integrating techno-
logical, economic, and environmental perspectives to meet the challenges of sustainable
energy development and environmental protection is emphasized in this research [19].

Mohamed-Ali Hamdaoui et al. review two models for simulating hygrothermal
behaviour in hygroscopic material buildings: white-box and black-box models. White-box
models, utilizing software like COMSOL Multiphysics (V5.6) or WUFI (V6.7), focus on
physical understanding and balance equations. In contrast, black-box models rely on
statistical methods (ANN, CNN, LSTM) using measured data. The paper categorizes
white-box models into the CFD approach, with multiple control volumes per zone, and
the nodal approach, treating each zone as a uniform volume [20]. Xiaoliang Zhang et al.
investigate the applications of the building simulation tool DeST (Design Simulation
Toolkit) in building design and building energy efficiency research and consultation. They
highlight how DeST has been used in various projects, including the development of
building regulations and scientific research. The paper details DeST’s role in building
design consultation, commissioning, energy conservation assessment, and a building
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energy labelling system. They present examples from a demonstration building to illustrate
how DeST aids in design processes. Additionally, the paper mentions its use in other
projects and regulations, demonstrating the widespread application of DeST in building
energy efficiency [21].

While the literature provides a comprehensive overview of various simulation tools,
from the physics-based white-box models to the data-driven black-box approaches, there re-
mains to be a notable disconnect between the theoretical capabilities of these tools and their
practical application in consulting practices. Studies emphasize technical specifications and
theoretical improvements in energy modelling. Still, they must address the real-world chal-
lenges consultants face, such as tool interoperability, user-friendly interfaces, and actionable
outputs for decision-making. Moreover, there needs to be more comparative analysis that
critically evaluates the performance of these tools in live consulting environments across
different building types and energy systems. Furthermore, while advancements in areas
like artificial intelligence present new opportunities for tool enhancement, their potential
impact on consulting practices still needs to be explored. Future research must bridge these
gaps by focusing on the usability of simulation tools in consulting practices, developing
case studies that demonstrate their effectiveness in diverse scenarios, and assessing how
emerging technologies can be harmoniously integrated to advance both the state-of-the-art
and the practicalities of energy management consulting.

3. Objectives and Methodology

Efficient management of energy resources in the built environment is critical to sus-
tainable urban development and environmental conservation. As the demand for energy-
efficient buildings continues to grow, the role of simulation tools in building energy manage-
ment becomes increasingly significant. These tools enable professionals to model, analyze,
and optimize the energy performance of buildings, ultimately leading to reduced energy
consumption and environmental impact. The review centers on these principal elements to
realize the goals outlined in the introduction.

3.1. Tool Classification

This review systematically categorizes simulation tools for building energy manage-
ment into two primary classes: white and black-box models. These classifications serve
as a foundational framework for comprehending the diverse modelling methodologies
employed by these tools. White-box models, often called physics-based models, are rooted
in fundamental physics and engineering principles. They meticulously simulate building
energy performance by considering the physical behaviour of various components and
systems within a building. Prominent examples of white-box tools include EnergyPlus,
TRNSYS, and IDA-ICE. In contrast, black-box models operate on empirical, data-driven
approaches, frequently integrating machine learning algorithms and statistical techniques.
These models harness historical data to predict building energy consumption and be-
haviour. Well-known black-box tools encompass Support Vector Machines, Random Forest,
and Deep Neural Networks. This classification forms a structured basis for our analysis and
highlights the fundamental differences between these modelling approaches. White-box
models aim to deeply understand the physical processes governing energy consumption,
while black-box models prioritize prediction accuracy, even if they are less interpretable.
This fundamental distinction is pivotal in selecting appropriate tools for specific building
energy management tasks.

3.2. Consulting Practices Integration Analysis

The second critical aspect of our review explores how these simulation tools are
integrated into consulting practices within the realm of building energy management.
Consulting in this context refers to the professional services offered to clients seeking
energy-efficient solutions for their buildings, whether they are new construction projects or
existing structures requiring retrofitting. Consulting practices in building energy manage-
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ment encompass various activities, including energy audits, predictive modelling, retrofit
analysis, and performance verification (Figure 1) [22]. These practices aim to provide
clients with actionable insights, data-driven decision-making, and solutions for enhancing
energy efficiency while ensuring occupant comfort. The integration of simulation tools into
consulting practices presents both challenges and advantages. White-box models, such as
EnergyPlus and TRNSYS, offer a detailed understanding of building energy systems but
demand extensive inputs and calibration efforts. Their application is particularly suited for
projects where a thorough comprehension of energy behaviour is critical, such as retrofitting
projects and complex building systems optimization.
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On the other hand, black-box models, including Support Vector Machines, Random
Forests, and Deep Neural Networks, provide rapid results with less detailed input but
require transparency and customization. These models excel at tasks like predicting energy
consumption patterns, detecting anomalies, and optimizing building operations. They are
valuable for quick decision-making in consulting scenarios.

3.3. Scalability Assessment

The third aspect of our review assesses the scalability and adaptability of these tools.
Building energy management projects can vary significantly in scale, ranging from individ-
ual building components to entire urban areas [23]. Therefore, it is crucial to evaluate the
suitability of each tool for different project sizes and complexities. White-box models, with
their in-depth simulations, are well-suited for complex building systems and projects where
detailed modelling is essential. They can accurately capture the interactions between vari-
ous building components and systems, making them valuable for optimizing energy use
while maintaining occupant comfort. With their data-driven approach, black-box models
offer flexibility and speed in consulting practices. They can be applied to various projects,
from small-scale energy audits to large-scale urban energy analysis [24]. Their ability to
handle high-dimensional data and capture complex relationships between variables makes
them adaptable to various building typologies and external influences, such as weather
patterns. By systematically evaluating the scalability and adaptability of these tools, our
review aims to assist professionals and consultants in selecting the most appropriate tool for
their specific consulting projects. Whether the goal is to optimize the energy performance
of a single building or develop sustainable urban energy strategies, choosing the right tool
is essential for achieving accurate and actionable results.
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3.4. Methodology

To achieve our research objectives, we have devised a systematic methodology that
ensures the reliability and comprehensiveness of our review. Firstly, we conducted an
extensive literature review encompassing peer-reviewed research articles, industry reports,
and publications on building energy management simulation tools. This thorough examina-
tion guarantees that our analysis is firmly grounded in this domain’s latest advancements
and industry practices. Next, we categorized the identified simulation tools into two fun-
damental classes: white-box and black-box models. This categorization is based on these
tools’ underlying principles and methodologies, serving as a foundational framework that
structures our analysis. It enables a clear understanding of the strengths and limitations
of each tool category. Furthermore, our methodology includes an in-depth exploration of
how these simulation tools are applied in the context of consulting practices. This involves
meticulously examining case studies, industry insights, and best practices. Additionally,
we conducted a scalability assessment of each tool, considering factors such as the level of
detail they offer and their suitability for diverse consulting scenarios. This analysis aids in
determining the applicability of these tools to a wide range of project scales.

Through the systematic execution of this methodology, our review aims to offer
valuable insights into the evolving landscape of simulation tools for building energy
management. We present a holistic perspective on these tools’ capabilities, advantages, and
limitations, empowering professionals in the field to make well-informed decisions and
enhance the quality of their consulting services.

The system boundary in building energy management tools refers to the level of
analysis and detail the tool provides. As a result, building energy management tools can
operate at different system boundaries, ranging from individual building components to
entire urban regions (Figure 2).
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At the building system boundary, tools consider the interaction between various
building systems and how they affect the overall energy performance [23]. In addition, these
tools often provide energy simulations and optimization capabilities to inform building
design and operation decisions [17].

At the city or regional scale, tools consider large-scale urban systems’ energy and envi-
ronmental impacts, such as transportation, land use, and energy infrastructure. These tools
may inform policy decisions about energy and climate change mitigation strategies [25].
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The choice of system boundary depends on the specific application and modelling
objectives. Building energy management tools can be used at multiple system boundaries
to inform design and operation decisions and assess the potential for energy savings and
emissions reductions [25].

This review publication examines and compares standalone and web-based models in
different resolutions, from white-box to black-box, in the context of building energy simula-
tion tools (Figure 3). Building energy simulation is an essential instrument for analyzing
and enhancing energy efficiency in buildings. White-box models, grounded in fundamental
physics and detailed component representations, thoroughly comprehend energy dynamics.
Conversely, black-box models rely on empirical data relationships for simulating energy
consumption patterns. Furthermore, we underscore the importance of web-based models,
emphasizing their inclusion within both white-box and black-box modelling paradigms.
By exploring the strengths and limitations of these models, we seek to provide valuable
insights and guidance to researchers, practitioners, and stakeholders involved in building
energy management. The review will contribute to a better understanding of the diverse
modelling options available and assist in selecting the most appropriate approach based on
specific project requirements and constraints.
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4. Simulation Tools for BEM
4.1. Standalone Models
4.1.1. White-Box Models

White-box tools in building energy simulation refer to software programs that use
explicit mathematical models of building components and systems to simulate energy
consumption and other building performance metrics. These models are derived from
fundamental physical principles and engineering laws. In addition, the user can use white-
box modelling to dimension specific arrangements and test the data and parameters of the
different scenarios [26]. A list of white-box models can be found in Table 1.

White-box tools can be more complex than black-box tools and may require specialized
knowledge and expertise to operate effectively. They may also require more detailed
and accurate data inputs to produce accurate results, which can be challenging in some
situations. They can predict energy consumption by establishing long-term associations
between buildings’ energy usage and important influencing factors [27]. Energy models
based on physical principles are the most accurate, and this approach is used by software
such as DOE-2 and EnergyPlus. White-box models, however, are complicated to build since
they must include all the required equations and data. They need the most computing
power and complexity, making their simulations slow.
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Using white-box techniques can alleviate many inefficiencies and resource-intensive
characteristics of conventional complex models. Besides their accuracy, white-box models
offer the advantage of not requiring historical data. If the physical properties of a building
are known, they can simulate a new building that does not exist [28].

The white-box building models apply heat and mass balance equations, which dy-
namically describe building behaviour. These equations account for three heat transfer
mechanisms (conduction, convection, and radiation) between the building envelope and
its surroundings. Numerous commercial and open-source software options, including
EnergyPlus, Dymola, TRNSYS, and DOE-2, are available for building energy modelling.
These tools efficiently formulate and solve these equations, although manual calculation of
cooling and heating loads may still be necessary [29]. The details for building thermal and
cooling load prediction are presented in reference [30].

To create these models, comprehensive building data is essential, encompassing details
such as building envelope characteristics, HVAC system configurations, internal heat
contributions, equipment specifications, occupancy patterns, thermal zones, geographical
location, and meteorological data, all of which are used to construct a physical building
energy model [31].

Predictive analysis and energy auditing are essential components in the consulting
industry, especially regarding building efficiency [32]. White-box tools play a crucial role
in these processes. These tools enable consultants to conduct thorough energy audits and
predictive analyses of buildings, modelling the energy behaviour of various components
with high accuracy. This precise modelling is invaluable, particularly in retrofitting projects,
where understanding the impact of modifications on energy performance is critical.

White-box tools offer a significant advantage in design and retrofitting decisions.
They allow consultants to simulate multiple design scenarios, providing clients with clear,
data-driven insights regarding the energy implications of different design choices. This
capability is crucial in the early stages of building design, where decisions can significantly
influence future energy consumption. For retrofitting existing buildings, these tools are
instrumental in evaluating the effectiveness of various energy-saving measures, such as
upgrading insulation or HVAC systems [33].

White-box tools are invaluable when optimizing building systems, such as HVAC,
lighting, and ventilation. They can simulate the dynamic interactions between these
systems and the building envelope, enabling consultants to devise strategies that boost
overall energy efficiency while maintaining or improving occupant comfort.

Compliance and performance verification are other critical areas where white-box
tools are used. Many regions have specific energy performance standards for buildings,
and these tools help consultants ensure that designs comply with these standards. They
provide detailed analyses demonstrating compliance and are also used in performance
verification to ensure that buildings operate as intended, achieving the designed energy
efficiency levels.

White-box tools are particularly suited for modelling complex buildings, which may
have unique architectural features or advanced energy systems. Their detailed nature
allows consultants to develop customized solutions that address specific challenges, such
as unusual building geometries or integrating renewable energy systems [33].

Lastly, client communication and education are greatly enhanced by the use of white-
box tools. The detailed outputs from these tools help consultants effectively communicate
complex energy concepts to clients. By visualizing energy flows and the impacts of different
design choices, these tools bridge the gap between technical energy modelling and client
understanding, facilitating the decision-making process.
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Table 1. White-box models.

Software Version Developer City,
Country Platform Timeframe

System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Daylight Air
Quality

EnergyPlus 23.2.0 DOE, NREL Golden,
CO, USA

Win,
Mac, Linux

Sub-hourly,
Hourly,

user-defined
timeframe

Neighborhood
and Districts 4 4 4 4

Pros: Highly accurate for a
variety of simulations, widely
used and supported.
Cons: Steep learning curve,
requires detailed input data,
computationally intensive.

[34]

TRNSYS 18.03.0000 University
of Wisconsin

Madison,
WI, USA Win

Dynamic
(down to

0.01 s
time-steps)

Neighborhood
and Districts 4 4 4

Pros: Flexible with a modular
approach, good for both simple
and complex systems.
Cons: Requires in-depth
technical knowledge, the user
interface is not as intuitive as
some others.

[35]

City Sim 10
October 2023 EPFL Uni Zurich,

Switzerland Win Dynamic
(hourly basis)

Multi-district
and cities 4

Pros: Specialized for
urban-scale simulations, good
for assessing microclimates and
district energy systems.
Cons: May not capture the
specifics of individual buildings
as accurately, less detailed
HVAC modelling.

[36]

IDA ICE 5.0 EQUA
Simulation

Glasgow,
Scotland, UK Win Hourly Neighborhood

and Districts 4 4 4 4

Pros: Detailed thermal comfort
and indoor climate simulations,
user-friendly interface.
Cons: License cost can be high,
less suited for large-scale
district energy analysis.

[37,38]

Envi-met 5.6 ENVI-met GmbH Bochum, Germnv Win Hourly

Single-
Family and

Multi-
Family House

4 4

Pros: Strong for outdoor
microclimate analysis and
urban areas, good
visualization tools.
Cons: Focused more on
microclimate than energy
simulation, relatively
high complexity.

[39]
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Table 1. Cont.

Software Version Developer City,
Country Platform Timeframe

System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Daylight Air
Quality

LBNL
District lib 5.3 LBNL Berkeley,

CA, USA Hourly Multi-district
and cities

Pros: Useful for district heating
and cooling analysis.
Cons: Integration into broader
building energy management
tasks can be complex.

Energy Pro 4.0361 EnergySoft Novato,
CA, USA Win Hourly Multi-district

and cities 4 4 4

Pros: Certified for Title
24 compliance, user-friendly for
architects and professionals.
Cons: Primarily suitable for
California-based projects.

[40]

Retscreen Version 9 Gov of Canada Ottawa,
ON, Canada Win

Monthly
basis

(maximum:
50 years)

4

Pros: Simplified tool for
feasibility analysis and
efficiency measures, includes
climate data.
Cons: Not as detailed for
specific system design, suited
for preliminary analysis.

[41]

EnerGis 8.1 EnerGis - Win Monthly 4 4 [42]

HOMER 3.10 UL CO, USA Win

Dynamic
(minimum
time-step

1 min)

Single-
Family and

Multi-
Family House

4 4

Pros: Well-suited for optimizing
microgrid designs, great for
handling off-grid and renewable
energy system simulations.
Cons: Focused on microgrids,
which may not be
comprehensive for all building
energy aspects.

[43]

Neplan 10.940 NEPLAN AG Zurich,
Switzerland Win Hourly Multi-district

and cities 4 4 [44]

Radiance 6.0a Greg Ward Berkeley,
CA, USA

Win,
Mac, Linux Dynamic

Single-
Family and

Multi-
Family House

4

Pros: Highly accurate for
daylighting and
lighting simulation.
Cons: Complex to use and
requires significant expertise in
lighting and scripting.

[45]
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Table 1. Cont.

Software Version Developer City,
Country Platform Timeframe

System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Daylight Air
Quality

Solene microclimat

French National
Research Agency

(ANR) and the
ADEME

(Environment
and Energy

Manage-
ment Agency).

Lausanne,
Switzerland Win Hourly

Single-
Family and

Multi-
Family House

4 4 4

Pros: Specialized in urban
physics, it helps analyze solar
radiation and its effects on
buildings and urban spaces.
Cons: May have a steeper
learning curve for those not
familiar with urban physics.

[46,47]

ESP-r 13.2.1 University of
Strathclyde

Glasgow,
Scotland, UK Win, Mac

Hourly,
Weekly,
Monthly

Single-
Family and

Multi-
Family House

4 4 4

Pros: A versatile simulation
environment capable of detailed
thermal analysis, including
HVAC and renewable energy
systems, offers flexibility with
user-defined components.
Cons: Its interface is not as
modern or user-friendly as
some newer software, and it
may require more in-depth
knowledge to utilize fully.

[48]

Be10
Specific
version

not available
DBRI - Win Hourly

Single-
Family and

Multi-
Family House

4

Pros: Widely used in Denmark,
particularly for compliance with
Danish building regulations,
user-friendly with a
clear interface.
Cons: Its use may be more
regional and not as well-suited
for international contexts, the
scope might be limited
compared to more
comprehensive tools.

[49]

BSim
Specific
version

not available
DBRI - Hourly

Single-
Family and

Multi-
Family House

4 4 4 4

Pros: Comprehensive approach
to simulating indoor
environment and energy
consumption in buildings.
Cons: tailored to specific
(Danish) standard.

[50]
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Table 1. Cont.

Software Version Developer City,
Country Platform Timeframe

System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Daylight Air
Quality

DOE2
DOE-2.3
(release

candidate)

James J. Hirsch &
Associates

(JJH)- eQuest
USA Win Hourly Neighborhood

and Districts 4 4

Pros: Provides a detailed and
reliable simulation of building
energy usage, with a strong
emphasis on accuracy for
HVAC and lighting systems.
Cons: Interface is considered
less user-friendly and more
difficult to navigate.

[51]

IESVE IESVE 2023 IES Glasgow,
Scotland, UK Win Hourly Neighborhood

and Districts 4 4 4 4

Pros: Comprehensive suite of
tools for building performance
simulation, strong for
compliance and detailed
HVAC analysis.
Cons: Can be complex and
require significant training; the
full suite can be expensive.

[52]

Velux 3.0 Velux Group Horsholm,
Denmark Win, Mac Hourly

Single-
Family and

Multi-
Family House

4

Pros: Renowned for daylighting
capabilities and design. Cons:
Focuses primarily on
daylighting solutions and may
not provide extensive energy
modelling capabilities for
complete building analysis.

[53]

iDbuild - Aarhus Uni - Win, Mac Hourly

Single-
Family and

Multi-
Family House

4 4 4 4

Pros: Offers an integrated
approach to energy, indoor
climate, and cost analyses.
Cons: Can be complex due to its
broad scope, which may present
a steeper learning curve
for users.

[54]
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Table 1. Cont.

Software Version Developer City,
Country Platform Timeframe

System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Daylight Air
Quality

Daysim 4.0 Reinhart Ottawa,
ON, Canada Win Hourly Neighborhood

and Districts 4

Pros: Delivers advanced
daylight modelling, enhancing
the ability to use natural light
effectively and save on
lighting energy.
Cons: Specialized in daylight
analysis and may not cover all
aspects of building
energy performance.

[55]

Design
Builder 7.0 Design Builder

Software Ltd.
Glasgow,

Scotland, UK Win Hourly Neighborhood
and Districts 4 4 4 4

Pros: User-friendly interface,
integrates simulation and
building modelling with
good visualization.
Cons: May not offer the same
level of detail for
every component.

[56]

eQuest 3.65 eQuest USA Win
Hourly,
Weekly,
Monthly

Neighborhood
and Districts 4

Pros: Free and widely used,
particularly in the U.S.
Cons: Interface can be less
intuitive, and customization
may be limited compared to
more modern tools.

[57]

OpenStudio 360 NREL CO, USA Win,
Mac, Linux

Hourly,
Weekly,
Monthly

Multi-district
and cities 4 4 4 4

Pros: Integrates with
EnergyPlus and SketchUp,
offering a more user-friendly
interface for these
powerful engines.
Cons: Still requires an
understanding of EnergyPlus
for complex simulations.

[58]
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Table 1. Cont.

Software Version Developer City,
Country Platform Timeframe

System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Daylight Air
Quality

Riuska 4.9 - Neighborhood
and Districts 4 4 4

Pros: Designed for climate
analysis, offering detailed
insights into microclimate and
urban heat island effects.
Cons: The focus on
microclimate means it may not
cover detailed energy
consumption modelling
within buildings.

[59]

Sefaira Sefaire 2018 Sefaira London, UK Win
Hourly,
Weekly,
Monthly

Multi-district
and cities 4 4 4

Pros: Known for its real-time
energy and daylighting analysis
within the early stages of design,
providing architects with
immediate feedback on
performance impacts of their
design choices.
Cons: May lack the depth of
more detailed simulation tools.

[60]

DIVA 4.0 Rhino Cambridge,
MA, USA Win Hourly

Single-
Family and

Multi-
Family House

4

Pros: Integrates with Rhino and
Grasshopper, excellent for
daylight and solar analysis with
a visual programming interface.
Cons: Mainly focused on
daylighting, requires Rhino, not
as comprehensive for full
energy analysis.

[61]

WatchWire - Energy Watch - Win, Mac Hourly Neighborhood
and Districts 4 4 4

Pros: Provides energy tracking
and analytics geared towards
operational
energy management.
Cons: Primarily a
post-construction energy
management tool, which means
it is not designed for the
predictive modelling of
building energy performance
during the design phases.

[62]
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Table 1. Cont.

Software Version Developer City,
Country Platform Timeframe

System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Daylight Air
Quality

Sky Spark 3.1 SkyFoundry Richmond,
VA, USA

Win,
Mac, Linux Hourly Multi-district

and cities 4

Pros: Excellent for data
analytics and monitoring.
Cons: More focused on data
after buildings are operational.

[63]

Wattics - wattics Dublin,
Ireland Win Hourly Multi-district

and cities 4

Pros: User-friendly, great for
monitoring and analytics with a
focus on identifying
energy-saving opportunities.
Cons: Geared more towards
energy management in the
operational phase than design
phase modelling.

[64]

eTRM 12.2 - Win Hourly Neighborhood
and Districts 4



Energies 2024, 17, 376 16 of 45

The time resolution for white-box simulation tools in building energy management is
crucial for capturing the dynamic interactions of various building components and systems.
Typically, these tools offer a range of time resolutions, from annual and monthly down
to hourly or sub-hourly intervals. The finer the time resolution, the more detailed the
understanding of transient phenomena, such as peak load periods or rapid changes in
environmental conditions. For example, an hourly resolution can capture daily cycles of
heating and cooling demand, while a sub-hourly resolution might be used to analyze the
rapid fluctuations in lighting or HVAC systems due to occupancy changes. Selecting the
appropriate time resolution is essential for accurate energy modelling and ensuring optimal
energy conservation measures.

As shown in Figure 4, each white-box simulation tool can be used for a specific
time resolution.
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In the following sections, we describe the most common models and software from
Table 1, with the pros and cons.

Among the plethora of white-box tools available for building energy management,
the selection of “EnergyPlus”, “TRNSYS”, “CitySim”, and “IDA-ICE” is deliberate and
strategic. These tools were chosen for their distinct strengths and versatile applications in
building energy analysis.

“EnergyPlus” is selected for its exceptional accuracy in simulating building energy
performance and its extensive library of building components. It is a robust choice for
detailed and precise energy modelling for consultants [65]. Its broad acceptance in the
industry further underscores its relevance. “TRNSYS” is a versatile tool capable of simu-
lating various energy systems and offering customizable component modelling [66]. Its
adaptability and wide range of applications make it valuable for tackling diverse consulting
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projects, particularly those involving complex energy systems. “CitySim” is included due
to its specialization in urban energy modelling. As city-scale projects become increasingly
important, CitySim’s focus on this niche area makes it an essential tool for consultants en-
gaged in projects involving multiple buildings and urban infrastructure. “IDA-ICE” brings
comprehensive building energy analysis to the table, and its integration with Building Infor-
mation Modelling (BIM) provides a seamless workflow for consultants. Its energy analysis
and BIM integration capabilities make it a valuable tool for modern consulting practices.

The selection of “EnergyPlus”, “TRNSYS”, “CitySim”, and “IDA-ICE” reflects a bal-
anced approach to building energy management consulting, covering a wide range of
scenarios and project types. Collectively, these tools offer the precision, versatility, urban
focus, and BIM integration required to excel in the field of building energy management.

EnergyPlus

EnergyPlus is an Open-Source [9] and comprehensive building simulation software uti-
lized by engineers, architects, and researchers to model energy usage encompassing heating,
cooling, ventilation, lighting, plug loads, and water consumption within buildings [31,67].

EnergyPlus possesses a range of valuable features and functionalities, including
integrated and concurrent solutions, heat balance-driven computations, flexible sub-hourly
time steps, comprehensive heat and mass transfer calculations, advanced fenestration
models, illuminance and glare assessments, component-based HVAC modelling, a variety
of pre-defined HVAC and lighting control strategies, and support for the Functional Mock-
up Interface [9].

EnergyPlus, as illustrated in Figure 5, employs a nodal approach that utilizes a one-
dimensional conduction transfer function and finite-difference algorithm. Nodal methods
are known for their capacity to efficiently address the extensive heat transfer calculations
required for building thermal performance, enabling rapid computation [29].
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EnergyPlus stands out as a multifaceted tool for simulating building systems, adept in
analyzing heating, cooling, and ventilation dynamics. This software excels in delivering
intricate simulations that capture the nuances of thermal mass, state-of-the-art fenestration,
and innovative radiant heating/cooling technologies. It adeptly handles a range of HVAC
systems, incorporates renewable energy considerations, and applies advanced ventilation
strategies, all while prioritizing sustainability through effective water management and
thorough environmental impact studies. Additionally, EnergyPlus is equipped with robust
economic analysis tools and capabilities for conducting comprehensive life-cycle cost
assessments. Modelica and Python integration further enhance the software’s functionality,
allowing customized modelling and scripting to adapt to specific project needs. A key
feature of EnergyPlus is its proficiency in processing diverse meteorological data, including
projections of future climatic conditions, thereby positioning it as an essential tool for
holistic building performance evaluation, particularly in energy management [68].

EnergyPlus is a highly sophisticated white-box building energy simulation tool that
plays a pivotal technical role in the consulting industry, particularly in building energy
management and optimization [65]. This tool stands out due to its detailed physics-based
approach, enabling the precise modelling of building components and systems, including
walls, roofs, HVAC systems, and lighting. Consultants rely on “EnergyPlus” for conducting
energy audits and predictive analyses of buildings, benefitting from its accuracy in replicat-
ing real-world building conditions [65]. It proves invaluable in retrofitting projects, where
understanding the impact of modifications on energy performance is paramount. Moreover,
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“EnergyPlus” empowers consultants to simulate multiple design scenarios, facilitating data-
driven decision-making in the early stages of building design. HVAC system optimization,
compliance with energy standards, customized solutions for complex buildings, and effec-
tive client communication are among its technical strengths. In summary, “EnergyPlus” is a
technically versatile and precise tool that empowers consultants to conduct comprehensive
energy analysis, optimize building systems, and provide data-driven insights to enhance
building efficiency and sustainability in consulting practices.

TRNSYS

The University of Wisconsin–Madison developed this software package for simulating
the behavior of transient systems using graphical interfaces [69]. TRNSYS can simulate
other dynamic systems, including traffic flow and biological processes [70]. While virtual
energy systems are the primary focus of most simulations, TRNSYS is also used for mod-
elling other dynamic systems [35]. TRNSYS consists of two core components: a kernel
engine and a library of 150 models. The kernel engine reads input files, iteratively solves the
system, and calculates variables. It also provides utilities for regression, matrix inversion,
and data interpolation. The library contains models for various components, from pumps to
emerging technologies, enabling customization and expansion of the tool’s capabilities [35].

TRNSYS excels in modelling various aspects crucial to building energy consulting. It
supports in-depth energy audits, predictive analyses, and retrofitting projects by simulating
energy behaviour and assessing modifications. In building design, it offers data-driven
insights into energy implications. HVAC system optimization is a strength, ensuring energy
efficiency and comfort. TRNSYS aids compliance verification with energy standards and
handles complex buildings and unique systems for tailored solutions. It also simplifies com-
plex energy data communication to clients through advanced reporting and visualization,
enhancing decision-making in consulting [71].

Energy management strategies, such as optimizing ventilation systems to harness
ambient energy and improve heat recovery, are critical in reducing energy consumption
and maintaining thermal comfort in residential settings. While research continues to
evolve in quantifying the precise energy needs for thermal comfort, TRNSYS offers a
platform for such innovative investigations. As a cornerstone in energy management
consulting, TRNSYS’s flexible modelling framework enables consultants to devise bespoke
energy simulations, combining various system components to reflect real-world building
behaviours [65]. Its module-based structure is instrumental for consultants who require pre-
cision in simulating and analyzing the energy impacts of potential building modifications
and exploring various design scenarios [72–74].

TRNSYS stands as a technical cornerstone in the consulting industry, particularly
within the domain of building energy management and optimization. Its modular and
customizable modelling approach empowers consultants to create tailored energy simula-
tions by assembling predefined components representing various building systems and
technologies. This versatility proves invaluable for a wide range of consulting applications,
including energy audits, predictive analyses, and retrofitting projects. Consultants rely
on “TRNSYS” to model building components and systems accurately, enabling precise
assessments of energy performance and the impact of potential modifications. It excels in
simulating different design scenarios, facilitating data-driven decision-making in building
design’s early stages [66].

The specialized features of TRNSYS, such as HVAC system optimization and energy
standard compliance, underscore its commitment to delivering tailored solutions for diverse
energy management projects. Its advanced reporting and visualization tools bridge the
gap between intricate energy modelling and practical client comprehension. In essence,
TRNSYS stands out as an adaptable, modular white-box tool that equips energy consultants
with the capacity to develop custom, data-driven energy management solutions, driving
the push toward more efficient and sustainable building operations [75].
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CitySim

CitySim was developed to assist urban planners and stakeholders to minimize the
net use of non-renewable energy sources and associated greenhouse gas emissions [36].
CitySim, a specialized tool for urban energy planning, is critical in aiding urban planners
and stakeholders in drastically reducing reliance on non-renewable energy sources and
mitigating greenhouse gas emissions at the urban district level. As an urban district
simulation software, CitySim excels in the precise estimation of energy consumption and the
potential for renewable energy generation, offering insights that span individual buildings
to entire city landscapes. It distinguishes itself by providing dynamic hourly simulation
results, incorporating complex interactions such as mutual shading and interreflections
among buildings, which are vital for urban energy studies [26].

CitySim serves as a technical linchpin in the consulting industry. Its unique focus
on urban-scale modelling equips consultants to tackle complex environments comprising
multiple buildings and infrastructure. From a technical standpoint, “CitySim” provides
precise building energy analysis, supports energy audits, and enables predictive analy-
ses [76]. It aids consultants in offering energy efficiency recommendations, simulating
various retrofit scenarios, and making data-driven decisions for clients. Moreover, the tool
considers climate and environmental factors, helping assess their impact on building en-
ergy performance within specific urban contexts. “CitySim” offers technical customization
options to adapt to project-specific requirements and is scalable to accommodate projects
of varying complexities. It is pivotal in ensuring compliance with energy regulations and
policies and enhances client communication through advanced visualization and reporting
features. “CitySim” is a technically advanced white-box building energy tool that empow-
ers consultants to navigate urban-scale energy management challenges effectively, making
it an indispensable asset in consulting practices [77].

CitySim is a dynamic simulation tool designed for urban energy management, offering
capabilities from energy consumption estimation to renewable energy potential evaluation
for buildings and districts. It conducts hourly simulations accounting for daily and seasonal
energy demand variations, including aspects like mutual shading and thermal exchanges.
The tool also models HVAC system performance and occupant behaviour impacts on energy
use, enabling realistic urban energy use portrayals. CitySim is valuable for energy audits and
predictive analyses, helping forecast and optimize energy needs, including retrofit scenarios for
enhanced efficiency. It integrates local climate and environmental data, supporting adherence
to energy regulations. CitySim’s technical adaptability, scalability, and advanced visualization
tools make it a vital resource for sustainable urban energy solutions [78].

IDA-ICE

IDA ICE is a versatile building-level simulation tool utilizing the neutral model format
(NMF) for equation-based simulations. It boasts an intuitive graphical user interface, the capa-
bility to import industry foundation class (IFC) models, and the ease of extending functionality
by creating new components [79]. Although the application of district-level modelling has
been somewhat constrained, recent developments (currently available in German) are advanc-
ing this field. These developments involve the creation of models tailored for low-temperature
district heating networks with bidirectional flow, encompassing components like heat supply
devices, distribution pipe segments, pumps, and borehole heat stores [23].

IDA ICE is a fundamental technical pillar in the consulting sector, specifically within
building energy management and optimization. Its technical excellence lies in its ability to
perform high-precision building energy modelling, allowing consultants to generate intri-
cate simulations of building elements and systems. With support for dynamic simulations
and hourly results, IDA ICE captures the dynamic nature of building energy consumption,
which is vital for understanding performance variations. Moreover, the tool excels in as-
sessing energy efficiency comprehensively, evaluating energy-saving measures and climate
impacts. Technical customization options and parametric analysis empower consultants to
tailor simulations to specific projects, optimizing building energy performance. IDA ICE
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ensures compliance with energy standards and enhances client communication through ad-
vanced visualization and reporting features. IDA ICE is a technically advanced white-box
building energy tool that equips consultants with the precision and versatility needed for
effective consulting practices in building energy management [80].

IDA-ICE is a comprehensive simulation software designed for energy management,
providing detailed thermal comfort analysis and energy performance assessments of build-
ings. Its capabilities include advanced thermal modelling, which considers the building
envelope, materials, and occupancy patterns to predict heating and cooling loads accurately.
IDA-ICE also offers sophisticated daylighting and shading analyses, crucial for reducing
reliance on artificial lighting and optimizing natural light, thus contributing to energy
savings. The software’s ability to model and simulate various HVAC system configurations
allows for fine-tuning energy systems for maximum efficiency. Additionally, IDA-ICE
supports integrating renewable energy technologies into its simulations, enabling the de-
sign and evaluation of sustainable building solutions. With features for both steady-state
and dynamic simulations, IDA-ICE facilitates the exploration of energy-saving measures
through retrofitting and renovation projects [81,82].

Figure 6 demonstrates how white-box models can derive hourly cooling and heating
load patterns from input files, including domestic hot water profiles, domestic electricity
profiles, building stock archetypes, and U-values. These hourly profiles can then serve as
inputs for black-box models or assist in determining the optimal balance between supply
and demand.
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The white-box models can extract energy, thermal, daylight, and air quality from these
four outputs, as shown in Figure 7.
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4.1.2. Black-Box Models

Data-Driven Modelling (DDM) uses external data to define configurator model com-
ponents and inject them into the simulations. In different application domains, data-driven
models are becoming increasingly popular thanks to progress in computational intelligence
and machine learning techniques. The input/output data from real-world systems are
used to develop data-driven models rather than analytical or numerical models. Modelling
based on data-driven inputs and outputs is described in control and systems engineering
by collecting inputs and outputs, choosing a model category, estimating model parameters,
and confirming the accuracy of the estimated model.

From simple linear regression [83] to more elaborate deep learning methods [84], energy
calculations based on data-driven methods can be performed at various levels of intricacy.
The literature [85,86] contains reviews of other methods for data-driven predictions.

Data-driven techniques can be grouped based on their statistical models (such as
Support Vector Machine models and Artificial Neural Network models), the type of data
they use (empirical or pre-simulated), and the variables they predict. Furthermore, these
methods can be categorized according to their specific applications, including design, peak
load estimation, fault diagnosis, and system tuning.

Data-driven models eliminate the need for building thermal balance equations, re-
ducing or eliminating the requirement for detailed physical building information [29].
Through mathematical techniques, data-driven models uncover the hidden connections
between output variables, such as building energy consumption, and input variables, like
weather, building details, occupant behaviour, and equipment schedules. These methods
readily apply to buildings that lack comprehensive physical parameters, such as those in
the construction phase.

Based on Figure 8, black-box models start with loading building and meteorological
datasets. Public [87,88] or private [89] datasets can be used to access building datasets. On
the other hand, government meteorological platforms [90] provide access to meteorolog-
ical datasets. Pre-processing the data is the next step. There is a difficulty with different
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algorithms, as they make assumptions about your data and may require additional trans-
formations to be applied. However, it is also possible for algorithms to deliver better
results without preprocessing when all the rules have been followed and the data have
been prepared.
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The data should be viewed in many ways, and then a handful of algorithms should be
applied to each view. The steps for Pre-processing Data include Transforming Data, Rescaling
Data, Standardizing Data, and Normalizing Data. The Data features significantly influence
a machine learning model’s performance [91]. Features that are unrelated or only partially
relevant can have a detrimental effect on a model’s performance. The feature selection process
involves selecting those features in the data most likely to contribute to a prediction or output.
Many models, especially linear algorithms like linear regression and logistic regression, can
become less accurate when irrelevant features are present in the data [91].

Evaluating an algorithm’s performance on unseen data is crucial. The most effective
method is to make predictions on new data with known outcomes, followed by statistical
resampling methods for accurate performance estimation. Machine learning algorithms are
assessed using different training and testing datasets, where an algorithm is trained on one
part of the dataset, predictions are made on the other, and these predictions are compared
against expected outcomes.

The black-box model is valued for its simplicity and reliance on actual performance
data, suitable for benchmarking across multiple structures. However, it needs more detailed
insights into energy inefficiencies and conservation measures, and its accuracy depends



Energies 2024, 17, 376 23 of 45

on the quality and relevance of historical data. Significant deviations in the data, like
major building retrofits, can reduce its predictive power. While useful for Monitoring and
Verification (M&V) and forecasting, the black-box model does not provide the in-depth
analysis of white or grey-box models but complements them in building energy modelling.

The current review summarizes black-box models in Table 2 below, showing detailed
information on the most well-known. All black-box models, based on machine learning
or programming codes, can be used on Windows, Mac, or Linux because these simulation
tools do not depend on the operating system.

Black-box tools in building energy management have emerged as a cornerstone in
consulting, offering empirical, data-driven solutions pivotal for quick decision-making and
effective energy management strategies. These tools, grounded in statistical and machine
learning models, are employed across various consulting domains, including operational
optimization and predictive maintenance [24]. Operational optimization and energy profil-
ing heavily rely on black-box tools within the consulting realm [24]. By analyzing historical
energy usage data, these tools discern patterns and anomalies, aiding consultants in of-
fering recommendations to optimize energy consumption and minimize costs [92]. The
energy profiling process, which is about understanding a building’s energy consumption
patterns, is significantly enhanced by black-box models, thanks to their proficiency in
processing extensive datasets and pinpointing trends. In predictive maintenance and fault
detection, black-box tools show their strengths in building management systems. They
utilize historical data to anticipate maintenance needs, averting equipment failures and
downtime. These tools are also pivotal in detecting faults in building systems early on
before they escalate into serious issues.

For retrofit analysis and scenario simulation in retrofit projects, black-box tools simu-
late various scenarios to shed light on potential energy savings and return on investment.
Their rapid processing of different scenarios assists consultants in suggesting the most
cost-effective and energy-efficient retrofit measures.

Real-time energy management and demand response strategies extensively leverage
black-box tools. These tools enable consultants to offer instant recommendations for energy
optimization and are integral in demand response strategies, where buildings alter their
energy usage in response to external cues like peak demand periods or fluctuations in energy
prices [92].

The adaptability of black-box tools allows consultants to provide tailored solutions
for various building types and sizes, which is especially beneficial in buildings with un-
predictable energy usage patterns or where in-depth physical modelling is impractical.
Client reporting and visualization are other areas where black-box tools excel. Equipped
with advanced reporting and visualization features, these tools help consultants commu-
nicate complex energy data to clients in an understandable manner, converting vast data
into comprehensible reports and graphs. Moreover, consultants employ black-box tools
for benchmarking the energy performance of buildings against counterparts or industry
standards. This benchmarking is crucial for pinpointing areas for energy performance
enhancement and guiding strategic planning for energy efficiency improvements.

These four tools, Linear Regression, Support Vector Machines (SVM), Random Forest,
and Deep Neural Networks (DNN), have been selected for detailed explanation among
various other options in the domain of black-box models for BEM. This choice has been made
due to their wide adoption and effectiveness in handling diverse building energy optimization
tasks. Linear Regression provides a fundamental understanding of relationships between
variables and serves as a baseline model. SVM, known for its robustness in handling complex
data, offers excellent classification capabilities. Random Forest is selected for its ensemble
learning approach, which enhances predictive accuracy. DNN, as a deep learning model,
has shown remarkable success in capturing intricate patterns and nonlinear relationships in
building energy data. These four tools collectively represent a comprehensive spectrum of
modelling approaches, making them crucial for consultants and professionals engaged in
building energy management, thus warranting in-depth exploration.
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Table 2. Black-box models.

Software/Code Version Developer City, Country Language System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Electrical Lighting

Open IDEAS - Paris, France Modelica, Mo-
toko, Python - 4 4

Pros: Integrates with the
Modelica language, allowing for
flexible, physics-based modelling
of building energy systems.
Cons: Requires knowledge of the
Modelica language.

[93,94]

TEASER 0.7.7 RWTH
Aachen University - Python,

Modelica

Single-
Family and

Multi-
Family House

4

Pros: Quick setup of building
energy models for
urban-scale simulations.
Cons: Does not have the depth
and detail needed for fine-tuned
building-specific energy analysis.

[95,96]

CityLearn 2.1.0 Intelligent Environ-
ments Laboratory

Berkeley,
CA, USA Python City 4

Pros: Designed to facilitate
multi-agent
reinforcement learning.
Cons: Requires knowledge of
reinforcement
learning techniques.

[97,98]

PyCity 0.3.3 RWTH
Aachen University

Aachen,
Germany Python Neighborhood,

Districts 4 4

Pros: Python-based tool that
offers flexibility and integration
with other Python libraries
and tools.
Cons: Python proficiency
is needed.

[99]

RC Building
Simulator - Prageeth

Jayathissa, et al. - Python

Single-
Family and

Multi-
Family House

4 4

Pros: Simplifies the process of
building thermal modelling using
RC models.
Cons: Oversimplification may
miss out on more
complex interactions.

[100]

Open energy
modelling
framework

1.0 Oemof
developer team Open source Python - 4

Pros: An open-source framework
that can be tailored to various
energy system modelling needs.
Cons: Might require more effort
to set up and customize
compared to
out-of-the-box solutions.

[101]
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Table 2. Cont.

Software/Code Version Developer City, Country Language System
Boundary

Available Outputs
Pros and Cons References

Energy Thermal Electrical Lighting

OCHRE 0.8.4 NREL Chicago,
IL, USA Python - 4

Pros: Targets optimal control and
hardware-in-the-loop simulation.
Cons: It may not be as widely
applicable or supported as more
established tools.

[102,103]

ResStock 3.2.0 NREL USA Single-
Family house 4

Pros: Specializes in residential
energy analysis.
Cons: May require a large dataset
for analysis.

[104]

EETBS - - Python - 4

Pros: It is useful for educational
purposes and early
design decisions.
Cons: It might lack the
robustness required for in-depth
professional use.

[105]

Building
Energy

Platform
- - Python, Java

Multi Districts,
city,

neighborhood,
Districts,

single-family
house, multi-
family house

4

Pros: Potentially integrating
various data sources.
Cons: The platform may depend
on the availability and quality of
data inputs for effective
energy management.

[106]

Building
automation
energy data

analyt-
ics (BAEDA)

-
Team from

Polytechnic of
Turin University

- Python
Single-Family
House, Multi-
Family House

4 4

Pros: Designed to analyze data
from building automation
systems to improve
energy efficiency.
Cons: May require complex
integration with existing building
automation systems and
substantial data
processing capabilities.

[107]
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Linear Regression (LR)

LR has been widely used in many fields since it has good predictive performance and
is simple. Linear and nonlinear regression methods are both regression methods [108].
Linear regression, when applied as a black-box model in building energy management and
the broader energy industry, presents both advantages and challenges. At its core, linear
regression seeks to model the relationship between one or more independent variables
(predictors) and a dependent variable (often the energy consumption in this context). As
a black-box approach, it emphasizes prediction accuracy over the interpretability of the
underlying relationships. This predictive nature allows stakeholders in the energy industry
to make quick, data-informed decisions about energy use and demand forecasting without
necessarily understanding the intricate physical processes behind it.

Linear regression serves as a foundational analytical method within the energy man-
agement discipline, offering a straightforward and computationally efficient approach to
model and forecast energy consumption. Its utility in the energy sector is underscored by
its ability to inform resource distribution, enhance operational efficiency, and discern con-
sumption trends. Energy managers frequently deploy linear regression for load forecasting
and demand-side management, as well as for crafting predictive models of energy usage
that facilitate swift, data-driven decision-making. While linear regression is esteemed for its
simplicity and ease of use, which are advantageous for prompt analyses, it is also important
to recognize its limitations in encapsulating the complex, nonlinear interdependencies
typical of advanced energy systems. This recognition underscores the necessity for an
eclectic array of analytical tools to comprehensively address the multifaceted nature of
energy system modelling and management [109].

Linear regression is well-suited for applications involving linear or nearly linear
relationships between variables, such as baseline energy consumption modelling, essential
forecasting, and analyzing the influence of factors like outdoor temperature on energy
usage. However, it may not effectively capture complex nonlinear relationships found in
intricate building systems [83].

Technically, this tool models relationships between independent variables (predictors)
and a dependent variable, often representing energy consumption. Consulting is frequently
employed to create baseline energy consumption models, enabling consultants to establish
reference points for energy management. Additionally, Linear Regression supports straight-
forward energy consumption forecasting, aiding consultants in short-term predictions and
energy-efficient planning. Moreover, it helps identify critical factors affecting energy usage,
such as temperature or occupancy, providing valuable technical insights for consultants.
Its simplicity and computational efficiency make it a go-to choice for rapid data-driven
decision-making. However, it is essential to acknowledge that Linear Regression may have
limitations in capturing complex, nonlinear relationships, which are prevalent in intricate
building systems. Nonetheless, its technical advantages position it as a valuable tool for
consultants seeking quick and practical insights into building energy management within
the consulting industry.

Support Vector Machine

Support vector machine (SVM) comprises a range of supervised learning techniques
employed for tasks like classification, regression, and identifying outliers [110]. Support
vector machines have several advantages, such as effectively handling high-dimensional
spaces. Furthermore, this approach remains efficient even when dealing with datasets
with greater dimensions than the number of samples. Additionally, the decision func-
tion relies on a subset of training points known as support vectors, ensuring memory
efficiency. Finally, SVM’s ability to solve nonlinear problems is one of its most essential
capabilities [29,110].

Support Vector Machines (SVMs) stand out in the energy management sector for
their robust predictive capabilities, particularly within building energy optimization. As
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a class of powerful black-box models derived from machine learning, SVMs are adept
at classification and regression tasks, which are essential for analyzing and interpreting
complex energy datasets. Their application in energy management is particularly valuable
for forecasting consumption patterns, identifying irregularities in energy usage, and catego-
rizing different operational states of energy systems. SVMs are prized for their proficiency
in handling multi-dimensional datasets and their capacity to elucidate intricate nonlinear
relationships frequently occurring in building energy systems. Utilizing the kernel trick,
SVMs can transform nonlinear data distributions into a format amenable to analysis, which
is particularly beneficial for modelling the dynamic interactions within building energy
systems. By providing accurate and refined models of energy behaviours, SVMs contribute
significantly to enhancing energy efficiency measures and optimizing operational processes,
solidifying their role as indispensable assets in the strategic toolkit of energy management
professionals [91].

Derived from machine learning, SVMs excel in classification and regression tasks by
identifying optimal hyperplanes in high-dimensional spaces to classify or predict data
points. In consulting, these tools offer several technical advantages. They are instrumental
in predicting energy consumption patterns, enabling consultants to forecast and under-
stand energy usage—a fundamental requirement in consulting. Additionally, SVMs excel
in anomaly detection, helping identify irregularities or inefficiencies in energy use and
contributing to efficient energy management. Moreover, they can classify building op-
erational states, offering insights into building performance and facilitating data-driven
decision-making. Their proficiency in handling high-dimensional data and capturing com-
plex nonlinear relationships between variables is particularly relevant in building energy
dynamics’ intricate and multifaceted domain. Overall, SVMs are a technically powerful
asset for consultants in building energy management, aligning with the industry’s complex
and dynamic nature [111].

SVMs, especially with nonlinear kernels, can capture intricate relationships in data.
They are suitable for predicting energy consumption patterns, detecting anomalies in
energy usage, and classifying the operational states of building systems. Their ability to
handle high-dimensional data can be beneficial when integrating multiple sensors and
systems [112].

Random Forest

Random forest algorithms combine bagging and feature randomness to create uncorre-
lated forests of decision trees, which is an extension of the bagging method. Three primary
hyperparameters need to be set before training a random forest algorithm. There are three
main factors: node size, trees, and feature samples.

The Random Forest algorithm offers advantages and challenges for classification
and regression tasks. It notably reduces overfitting, a common issue in decision trees, by
averaging uncorrelated trees, making it popular for accurate regression and classification
tasks among data scientists [113]. The Random Forest method is crucial in the energy
industry because it provides accurate predictions while mitigating overfitting, handling
missing data, and determining feature importance. Its flexibility in addressing regression
and classification tasks, scalability for large datasets, and capacity to capture nonlinear
relationships make it a versatile tool. It plays a vital role in energy diagnostics, enabling
energy consumption predictions, fault detection, and identification of key drivers for energy
use. Random Forest is invaluable for optimizing energy performance and improving
operational efficiency in the energy sector. A critical challenge of Random Forest is its
time-consuming nature, as it processes data slowly when computing each decision tree.
It also consumes more resources because it handles larger datasets, potentially limiting
data storage resources. Moreover, it is more complex than a single decision tree, making
predictions less straightforward to interpret [114].

Leveraging ensemble learning, Random Forest combines multiple decision trees to
provide robust predictions and insights. Its key advantages include the reduction of
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overfitting, adaptability for various tasks (classification and regression), the ability to
handle missing data, straightforward determination of feature importance, and the capture
of complex relationships between variables. These qualities make it invaluable in consulting,
which finds applications in predicting energy consumption, detecting system faults, and
assessing feature importance. Its versatility, high predictive accuracy, and capability to
handle diverse tasks make it an indispensable tool for consultants engaged in building
energy management and optimization [111].

The Random Forest method is a robust ensemble learning technique widely recognized
for its effectiveness in energy management. By leveraging a multitude of decision trees to
generate predictions and classify data, Random Forest excels at handling the multifaceted
nature of energy systems, from predicting energy demand and consumption to optimizing
energy distribution and detecting system inefficiencies. Its inherent ability to manage large
datasets with numerous variables makes it particularly adept at capturing the complex
interactions within energy systems, such as the interplay between usage patterns and
environmental factors. Random Forest’s capacity for feature importance evaluation aids
in identifying key predictors of energy performance, thereby informing targeted energy-
saving strategies. Furthermore, its strong predictive accuracy and resistance to overfitting
are invaluable for ensuring reliable decision-making in energy efficiency initiatives, renew-
able integration, and load forecasting. This method’s comprehensive analytical strengths
make it an essential component of data-driven decision-making in energy management,
providing actionable insights for enhancing system reliability and sustainability [115].

Deep Neural Networks

Deep Neural Networks (DNNs- Figure 9), applied as black-box models in building
energy management, excel at learning from extensive data, making them invaluable in this
field. Their architecture comprises multiple interconnected layers capable of automatically
extracting complex data patterns. This inherent ability allows DNNs to model building
energy systems’ intricate and nonlinear dynamics effectively. Whether the task involves
energy consumption prediction, HVAC optimization, or anomaly detection, DNNs con-
sistently outperform traditional models, adapting well to diverse building types, systems,
and external factors like weather conditions [113].

Deep Neural Networks (DNNs) have become indispensable in the energy industry due
to their capacity to handle large and complex datasets. In building energy management,
DNNs are crucial in predicting energy consumption, optimizing HVAC systems, and
detecting anomalies, often outperforming traditional models. Their significance lies in
their ability to capture intricate patterns and relationships within energy systems, making
them valuable tools for improving energy efficiency. However, their black-box nature can
be a challenge, making it challenging to interpret how they arrive at their predictions.
This opacity may pose issues for stakeholders seeking to uncover energy inefficiencies or
meet regulatory transparency requirements. DNNs also require substantial amounts of
labeled data, which can be limited in building energy contexts. Additionally, setting up and
fine-tuning DNNs can be a complex task. Despite these hurdles, the substantial predictive
power of DNNs and ongoing research in model interpretability ensure their continued
prominence in the future of the energy industry, where data-driven decision-making and
sustainability are paramount [111,116].

Deep Neural Networks (DNNs) have emerged as a powerful tool in building energy
management consulting practices. DNNs, consisting of multiple interconnected layers of
nodes, excel at automatically extracting intricate features and patterns from data. This
inherent capability makes them well-suited for modelling the complex and often nonlinear
dynamics of building energy systems. Consultants leverage DNNs for various applications,
including energy consumption forecasting, optimizing HVAC operations, and detecting
anomalous energy usage patterns. DNNs have demonstrated superior performance com-
pared to traditional machine learning models, adapting to diverse building typologies,
systems, and external factors such as weather patterns [117]. However, DNNs also need
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help in consulting. Their black-box nature, while providing accurate predictions, lacks
interpretability, making it challenging to uncover the underlying physical relationships
behind energy behaviours. This opacity can be problematic when stakeholders must under-
stand the root causes of energy inefficiencies or meet regulatory transparency requirements.
Training DNNs requires substantial amounts of labelled data, which may only sometimes
be readily available in building energy contexts. The selection of the right architecture,
hyperparameter tuning, and avoiding overfitting demand careful consideration, making
the application of DNNs non-trivial [118].
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Despite these challenges, DNNs’ exceptional predictive capabilities and ongoing
research in model interpretability ensure their continued prominence in the consulting
landscape of building energy management. They provide consultants with a powerful
tool to analyze and optimize energy systems, ultimately leading to more efficient and
sustainable building practices.

4.2. Web-Based Models

Web simulation tools can be categorized into white-box and black-box, similar to
standalone simulation tools. Web-based interfaces for building energy systems have gained
popularity due to their cost-effectiveness, compatibility across platforms, and ease of
maintenance. These interfaces offer advantages such as cloud hosting and computing,
which prevent data loss and facilitate data exchange.

In recent years, many tools have adopted web interfaces to visualize energy data,
enabling benchmarking and detailed analysis of simulation results for urban buildings.
These web-based tools can create 3D energy models of urban buildings and overlay colour
codes to represent energy performance levels, allowing filtering by size, type, location, and
building system for in-depth analysis [25].

These applications’ simple interface and quick outputs dramatically lighten the load for
users. Furthermore, it has several significant benefits for users. These tools are automatically
updated by updating the server’s source code, so users do not need to update them
themselves. In addition, they are more suitable for teams since they make it easier for
team members to share the project information and have little risk of losing project data.
Finally, they may use cloud computation more effectively. Cloud computing technology
can reduce calculation time and system processing power, which is critical to building
performance simulations [25,119]. Various time resolutions, from one hour to a year, are
available through the web tools, as shown in Figure 10.
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Compared with standalone simulation tools, web-based simulation tools also have
several disadvantages. The GUI of browser-based applications (such as HTML) is limited
compared to desktop applications, meaning that a single function might be repeated
across multiple pages [111]. Users must navigate several pages and follow a sequence
pattern to perform a simple calculation or analysis [120–122]. These applications provide
slower response times because of work-wait patterns and standby modes that limit their
interaction on the page refreshing [120,121,123], and the whole process is slowed down by
longer response times.

A fast and stable internet connection is required for these applications to function
correctly and ensure fast data transmission [124–126]. Security issues, such as the risk of
reverse engineering and hijacking of source code [127], lack of management, maintenance,
and modification, network connectivity limitations, limited access to local resources, and
difficulties in debugging [128] are the most reported disadvantages.

Web-based tools in building energy management have become integral to consulting
practices, offering a range of technical capabilities that support consultants in their energy
analysis and decision-making processes. These tools are accessible via web interfaces,
making them convenient and cost-effective for consultants. They have a significant impact
on consulting practices by facilitating data visualization and benchmarking, offering simu-
lation and modelling capabilities, utilizing cloud hosting and data exchange for enhanced
data security, supporting collaboration and client communication, providing comprehen-
sive energy performance analysis, and ensuring accessibility and flexibility. In summary,
web-based tools enhance consulting practices by empowering consultants to provide data-
driven insights, optimize building energy systems, and make informed decisions for energy
efficiency improvements while effectively engaging clients in the process [129].

Table 3 summarizes the software’s features, such as developer, zone analysis level,
building type, available outputs, and modelling approach for webtools.
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Table 3. Web Tool Simulation tools.

Software/Code Version Developer City,
Country

Black-
Box/White-Box

System
Boundary

Available Outputs
Timeframe Pros and Cons Reference

Energy Thermal Electrical Daylight

Xerohome 23503

Mudit Saxena,
Peter

Mayostendorp,
Inderdeep Dhir

CA, USA White-Box Model
Single-Family

House and Multi-
Family House

4 Dynamic
Pros: Offers detailed modelling of home
energy efficiency.
Cons: Only for US.

[130]

Home
Energy saver - Berkely Lab - Black-Box Model

Single-Family
House and Multi-

Family House
4 Annual

Pros: Provides homeowners with
personalized energy use assessments and
improvement recommendations.
Cons: Only for US.

[131]

Home Energy
score - U.S. Department

of Energy USA Black-Box Model
Single-Family

House and Multi-
Family House

4 Annual

Pros: Gives a quick and straightforward
assessment of a home’s energy efficiency
and potential improvements.
Cons: Simplified scoring may not reflect
the complexities of individual homes’
energy dynamics.

[132]

Enerpro (The
Energy

Profile Tool)
9.2.1

EnerSys Analytics
Inc. and XModus

Software Inc.

Vancouver,
BC, Canada White-Box Model

Single-Family
House and Multi-

Family House
4 Annual

Pros: Allows for quick benchmarking of a
building’s energy performance against
similar structures.
Cons: May not provide detailed
suggestions for energy improvements.

[133]

Senapt Senapt Team UK -
Single-Family

House and Multi-
Family House

4
Pros: Can assist in monitoring and
managing energy consumption.
Cons: May require technical expertise.

[134]

CBES 2.0 CIPSEA Black-Box Model Multi-Districts
and City Scale 4 Annual

Pros: Provides quick energy
efficiency assessments.
Cons: The tool’s recommendations may
be less specific than those obtained from a
detailed analysis.

[22]

ClimaPlus Climasplus 2020 MA, USA White-Box Model
Single-Family

House and Multi-
Family House

Annual

Pros: Focuses on climate data analysis to
inform building design and retrofit
strategies for energy
efficiency improvements.
Cons: Its use may be limited if climate
data integration is not a central
component of the energy
management strategy.

[135]

Maalka Tools Maalka Inc., NY NY, USA White-Box Model
Single-Family

House and Multi-
Family House

4 4 Annual

Pros: Offers a platform for managing
sustainability metrics and energy
performance data.
Cons: May require significant data input.

[136]
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Table 3. Cont.

Software/Code Version Developer City,
Country

Black-
Box/White-Box

System
Boundary

Available Outputs
Timeframe Pros and Cons Reference

Energy Thermal Electrical Daylight

Speed 2021 Wasliiiigton,
DC, USA White-Box Model

Single-Family
House and Multi-

Family House
4 Annual

Pros: Designed for rapid
energy modelling.
Cons: The speed of analysis might come
at the expense of model depth and
accuracy compared to more detailed
simulation tools.

[137]

Smart energy 3.0.1 USA White-Box Model
Single-Family

House and Multi-
Family House

4
Hourly,

Sub Hourly

Pros: Enables detailed analysis and
optimization of energy consumption,
aiming to improve overall building
energy efficiency.
Cons: Its effectiveness greatly depends on
the availability and granularity of energy
consumption data fed into the system.

[138]

OptEEmAL 2019 European Union Spain,
Germany White-Box Model

Single-Family
House and Multi-

Family House
4 Annual

Pros: Offers a platform for optimizing
energy-efficient building retrofit plans
using integrated project delivery methods,
which can enhance collaboration
and efficiency.
Cons: May require complex data and
modelling inputs.

[139,140]

MulTEA 2018

Oak Ridge National
Laboratory (ORNL)
and the Lawrence
Berkeley National

Laboratory (LBNL)

TN, USA White-Box Model
Single-Family

House and Multi-
Family House

4 Annual

Pros: Provides a multi-scale transient
energy analysis for buildings.
Cons: The complexity of multi-scale
analysis might not be necessary for all
projects and can be resource-intensive.

[141]

Building Energy
asset score 2014 Us department

of Energy USA Black-Box Model
Single-Family

House and Multi-
Family House

4 4 Annual

Pros: Developed by the U.S. Department
of Energy, it assesses the energy efficiency
of building assets and provides a score,
making it useful for benchmarking and
understanding potential improvements,
open source.
Cons: Primarily focused on the inherent
energy performance of the physical
building assets, which may not account
for operational variables.

[22]

CityBES -

Lawrence Berkeley
National Lab,

under the
Laboratory

Directed Research
and Development

Berkeley,
MA, USA White-Box Model Multi-Districts

and City Scale 4 4 Annual

Pros: A tool designed for urban-scale
analysis, it helps in evaluating energy
savings and carbon reduction strategies
for city-wide building stocks.
Cons: Its urban focus might make it less
applicable for individual building projects
or more detailed energy system design.

[142]
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Table 3. Cont.

Software/Code Version Developer City,
Country

Black-
Box/White-Box

System
Boundary

Available Outputs
Timeframe Pros and Cons Reference

Energy Thermal Electrical Daylight

Autodesk Green
Building Studio 2023 Autodesk San Rafael,

CA, USA Black-Box Model Multi-Districts
and City Scale 4 4 4 Annual

Pros: Integrates with other Autodesk
design software, enabling seamless
energy analysis within the design process,
useful for architects and designers.
Cons: As part of a suite of design tools, it
may not have the depth of standalone
energy simulation software.

[143]

Autodesk
insight 360 2023 Autodesk San Rafael,

CA, USA Black-Box Model Multi-Districts
and City Scale 4 Annual

Pros: Provides cloud-based energy
modelling that is integrated with BIM
(Building Information Modelling),
offering user-friendly insights into the
energy and environmental design
of buildings.
Cons: Might require a subscription to the
Autodesk suite, and its simplified
interface may not offer the granularity
needed for complex engineering analyses.

[144]

BuildingSimHub 2017 Us department
of Energy France White-Box Model Multi-Districts

and City Scale 4
Hourly,

Sub Hourly

Pros: Offers a cloud-based simulation
platform that streamlines the building
energy modelling process, making it
accessible for collaboration across
different stakeholders.
Cons: Being cloud-based, it may face
limitations with data security concerns or
require a stable internet connection for
optimal use.

[145]

Rescheck—web - Us department
of Energy USA White-Box Model Multi-Districts

and City Scale 4 -

Pros: Provides a straightforward method
for demonstrating building energy code
compliance, with a focus on residential
buildings, and is a free web-based tool
offered by the U.S. Department of Energy.
Cons: While useful for code compliance,
it may not offer the detailed analysis
required for optimizing energy
consumption beyond the minimum
code requirements.

[146]

Cove Tool 2023 Covetool,
Georgia, US

Atlanta,
GA, USA Black-Box Model 4 4 Annual

Pros: Streamlines the process of energy
modelling with an emphasis on cost and
performance, integrating sustainable
design strategies.
Cons: As a relatively new entrant, it may
not have as wide adoption or
comprehensive databases as more
established tools.

[147]
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Table 3. Cont.

Software/Code Version Developer City,
Country

Black-
Box/White-Box

System
Boundary

Available Outputs
Timeframe Pros and Cons Reference

Energy Thermal Electrical Daylight

Edge 3.0 Team of Edge UK -
Single-Family

House and Multi-
Family House

4 -

Pros: Focuses on sustainability and offers
certifications for green buildings, with a
user-friendly interface.
Cons: Primarily used for certification
purposes and may not be as detailed for
technical engineering analysis.

[148]

DALEC 2023 DALEC Team - Black-Box Model
Single-Family

House and Multi-
Family House

4 Monthly

Pros: Provides life-cycle carbon and
energy analysis, useful for assessing the
environmental impact of buildings.
Cons: The focus on carbon may mean that
energy efficiency measures are not as
comprehensively addressed.

[149]

MIT
Design Advisor 1.1 MIT Department

of Architecture MA, USA Black-Box Model Neighborhood
and District Scale Annual

Pros: Allows for quick assessment of
design strategies on building energy use,
targeted toward the early design phase.
Cons: Limited in scope and may not be
suitable for detailed final analysis or
large-scale projects.

[150]

HeliOS EE-SIM 2017 Helios Inc. CA, US Black-Box Model Neighborhood
and District Scale Monthly

Pros: Specializes in solar potential and
energy simulation, aiding in the design of
photovoltaic systems.
Cons: Focus on solar analysis means other
aspects of building energy management
might need additional tools.

[22]

Better L6.1 - Black-Box Model
Single-Family

House and Multi-
Family House

Annual

Pros: Designed to analyze and compare
building energy data, enabling tracking of
improvements over time, open source.
Cons: Its effectiveness is dependent on the
quality and completeness of input data.

Neo Net En-
ergy Optimizer 2023 Ryan schwartz Canada Black-Box Model

Single-Family
House and Multi-

Family House
4

Pros: Specializes in optimizing net-zero
energy buildings by balancing energy
production and consumption, making it
valuable for sustainable design projects.
Cons: Focus on net-zero energy
optimization may not be as
comprehensive for general energy
management needs or less
sustainable-oriented projects.

[151]
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Table 3. Cont.

Software/Code Version Developer City,
Country

Black-
Box/White-Box

System
Boundary

Available Outputs
Timeframe Pros and Cons Reference

Energy Thermal Electrical Daylight

SEMERGY 2016 XYLEM
Technologies - White-Box Model Multi-Districts

and City Scale 4 4

Pros: Utilizes a web-based decision
support system for optimizing energy
efficiency in building renovation,
incorporating a broad range of data
including climate, building materials,
and systems.
Cons: May require detailed inputs and
specific knowledge of renovation projects,
which can limit its utility for initial design
stages or new constructions.

[152]

Energinet 2021 Cebyc AS Denmark Black-Box Model Multi-Districts
and City Scale 4

Pros: Aims to provide a comprehensive
database and networking platform for
energy market data, potentially
facilitating energy trading and
market analysis.
Cons: Its role as a data platform means it
may not directly assist in building-specific
energy modelling or management tasks.

[153]

EPWMap 0.0.6 Mostapha Roudsari - White-Box Model
Single-Family

House and Multi-
Family House

Air
Quality

Pros: Offers an interactive map of
EnergyPlus weather data, aiding in the
selection of appropriate climate data for
building energy simulations.
Cons: As a tool focused on climate data
provision, it does not perform energy
modelling or analysis itself.

[154]

Deksoft 2.1 Petr Kocian Czech
Republic White-Box Model

Single-Family
House and Multi-

Family House
4

Pros: May refer to software tools designed
for specific energy management tasks,
possibly including building
performance analysis.
Cons: Without more context on Deksoft, it
is challenging to provide specific pros and
cons; if it is specialized software, it may
have limited applicability or require
specialized knowledge to use effectively.

[155]

GEnergy - Donald alexander USA White-Box Model
Single-Family

House and Multi-
Family House

4
Hourly,

Sub Hourly

Pros: Can offer user-friendly interfaces for
energy auditing and management, aiming
to simplify the process of identifying
energy-saving opportunities.
Cons: May lack the depth of more
specialized simulation tools for detailed
technical analysis.

[156]
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Table 3. Cont.

Software/Code Version Developer City,
Country

Black-
Box/White-Box

System
Boundary

Available Outputs
Timeframe Pros and Cons Reference

Energy Thermal Electrical Daylight

EnExPlan - Marc Lacombe—
Almiranta

Montreal,
QC, Canada White-Box Model Neighborhood

and District Scale 4

Pros: Designed for energy exploration
and planning, this tool may assist in
strategizing energy distribution and
conservation measures.
Cons: It might be more suited for
macro-level planning rather than detailed
building-specific simulations.

[157]

ReOpt Lite 3.0.1 Linda Parkhill
-NREL USA Black-Box Model

Single-Family
House and Multi-

Family House
4

Hourly/Annual
Analysis

Pros: Provided by the National
Renewable Energy Laboratory (NREL), it
helps optimize energy systems for cost
and performance, focusing on renewable
integration and grid reliability.
Cons: As a “lite” version, it may not
include all the features of a full-scale
model, potentially limiting
detailed analysis.

[158]

Hippo CMMS - Daniel Golub Winnipeg,
Canada Black-Box Model

Single-Family
House and Multi-

Family House
4

Pros: Offers a computerized maintenance
management system (CMMS) that can
track and manage building maintenance
operations, indirectly affecting energy
efficiency through optimal
equipment performance.
Cons: Its primary focus is on maintenance
management rather than direct energy
modelling or simulation.

[159]

Building
performance

database (BPD)
- Robin Mitchell USA - Multi-Districts

and City Scale 4

Pros: The largest publicly available source
of building performance data in the U.S.,
useful for benchmarking and analyzing
building energy performance.
Cons: Primarily a database, it does not
perform simulations or analyses but
requires interpretation of data for
application in energy management.

[160]

Snugg PRo 5.0 Sandy Michelas Denver,
CO, USA Black-Box Model

Single-Family
House and Multi-

Family House
4

Pros: A software tool tailored for home
energy audits that can provide
recommendations for energy efficiency
improvements and detailed reports.
Cons: May not be as comprehensive for
commercial buildings or large-scale
energy management projects, only for US

[161]
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The web tool approach does not necessitate an in-depth comprehension of heat transfer
and thermal behaviour in building components, as is the case with physics-based models.
Therefore, this approach suits building circumstances where physical characteristics are not
determined. Due to this feature, design and retrofit toolkits that use data-driven calculation
methods are also ideal for non-expert users, such as designers and building owners [162].

Due to the capability and application of BES systems, several inputs and outputs for
these BES tools are depicted in Figure 11.
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These toolkits have many other capabilities, as listed in [163,164]. Fourteen out of
the 34 can perform load analyses based on wall, ceiling, and window materials. Building
material input is possible with web applications, such as Home Energy Saver and Home



Energies 2024, 17, 376 38 of 45

Energy Score. Enhancing and performing parametric investigations enhance the utility of
toolkits, particularly during the initial stages of design when numerous design alternatives
and tactics are accessible, thereby aiding decision-making.

XeroHome and Cove Tool are two of the five web-based toolkits capable of optimizing
building energy management. XeroHome and Insight 360 do not implement optimization
through parametric simulation, but SPEED, Cove Tool, and BuildSimHub do. These tools
present users with the best design options based on all possible combinations of design
features. Various toolkits provide diverse modes for defining input data, catering to users
with varying proficiency levels and engagement in different phases of building design
or retrofit. Examples include XeroHome, Home Energy Saver, Cove Tool, and CBES,
which are suitable for users with differing levels of expertise. CoveTool has a wide range
of capabilities, including water analysis, energy analysis, carbon emissions analysis, and
economic analysis. It uses machine learning algorithms to analyze thousands of alternatives
for better analyzing building energy systems.

Figure 12 displays various outputs for energy simulation tools within the Webtool.
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5. Conclusions and Recommended Future Research
5.1. Conclusions

In conclusion, this comprehensive review of building energy management simulation
tools, now enriched with insights into their relevance to consulting practices, underscores
the vast array of tools available to address the multifaceted challenges of optimizing energy
efficiency in buildings. The tools encompass both white-box models, rooted in fundamental
physics principles, and black-box models, harnessing the power of machine learning and
statistical approaches. Including web-based simulation tools further expands the toolbox,
providing accessibility and flexibility in data visualization and benchmarking. Consulting
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practices in the field of building energy management benefit immensely from these diverse
tools. White-box models offer intricate insights into energy system operation and are
invaluable for detailed energy performance analysis, particularly in retrofitting projects
and compliance verification. On the other hand, black-box models provide consultants
with rapid results, making them ideal for operational optimization, predictive maintenance,
and real-time energy management.

The choice of modelling approach and tool depends on the specific consulting ob-
jectives and building complexities. Large and complex buildings demand scalable tools,
emphasizing the importance of selecting the right tool for the desired level of accuracy.
This review underscores the significance of a tailored approach, highlighting the plethora
of tools available to support data-driven decision-making, optimize energy systems, and
enhance energy efficiency in the built environment.

Furthermore, integrating these tools into consulting practices enables data scientists,
analysts, and engineers to collaborate effectively, providing actionable insights and facili-
tating informed decision-making. As the consulting industry continues to evolve, building
energy management simulation tools remains at the forefront, empowering professionals to
address energy challenges, enhance sustainability, and drive innovation in the design and
operation of buildings. The dynamic landscape of building energy management demands
adaptability and expertise, and this review serves as a valuable resource for navigating this
ever-evolving field.

5.2. Recommendation for Future Research

Based on current knowledge, several areas require further research to advance the
development and application of building energy simulation tools, specifically white-box
and black-box models. In addition, six knowledge gaps in building energy simulation tools
can be addressed in future studies.

1. Lack of standardized methodology: Despite the availability of numerous simulation
tools, there needs to be a standardized methodology for comparing and evaluat-
ing these tools. Future studies can address this gap by proposing a standardized
methodology that can be used for consistent evaluation of simulation tools.

2. Limited studies on the accuracy of black-box models: While black-box models are
gaining popularity in building energy management, there is a limited number of
studies on their accuracy compared to white-box models. Future studies can address
this gap by conducting comprehensive accuracy studies of black-box models and
comparing them with white-box models.

3. Limited studies on the scalability of white-box models: While white-box models
are considered accurate, their scalability to larger building complexes or districts
is a concern. Future studies can address this gap by investigating the scalability of
white-box models and developing methods to improve their scalability.

4. Lack of integration between white-box and black-box models: White-box and black-
box models are often used separately, and there needs to be more integration between
them. Future studies can address this gap by exploring ways to combine both types
of models to improve accuracy and scalability.

5. Limited studies on the impact of uncertainties on model predictions: More studies
are required on the impact of uncertainties on model predictions, which is crucial
for decision-making in building energy management. Subsequent research endeav-
ours have the potential to fill this void by quantifying the influence of uncertainties
on model predictions and devising approaches to enhance the resilience of simula-
tion tools.

6. Limited studies on the usability and accessibility of simulation tools: While simulation
tools are becoming more advanced, there is a lack of studies on their usability and
accessibility, particularly for non-expert users. Future studies can address this gap
by evaluating the usability and accessibility of simulation tools and developing user-
friendly interfaces for non-expert users.
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In conclusion, implementing these recommendations in future studies can lead to a
more precise evaluation of building simulation tools and help address the knowledge gaps
identified in this review.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature

BEMS Building Energy Management Systems
BES Building energy simulation tools
BIM Building Information modelling
BPS Building performance simulation tools
DDM Data-Driven Modelling
DL Deep Learning
DNN Deep Neural Networks
HVAC Heating, ventilation, and air conditioning
IFC Industry foundation class
LSTM Long Short-Term Memory
LR Linear Regression
LTLF Long-term load forecasting
ML Machine Learning
NMF Neutral model format
PCM Phase Change Material
RF Random Forest
SVM Support Vector Machine
STLF Short-term load forecasting
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