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Abstract

Remote sensing of spectral reflectance is a crucial parameter in precision agriculture. In
particular, the visual color produced from reflected light can be used to determine plant
health (VIS-IR) or attract pollinators (Near-UV). However, the UV spectral reflectance
studies largely focus on non-crop plants, even though they provide essential information
for plant-pollinator interactions.

This literature review presents an overview of UV-reflectance in crops, identifies gaps
in the literature, and contributes new data based on strawberry cultivars. The study
found that most crop spectral reflectance studies relied on lab-based methodologies and
examined a wide spectral range (Near UV to IR). Moreover, the plant family
distribution largely mirrored global food market trends.

Through a spectral comparison of white flowering strawberry cultivars, this study
discovered visual differences for pollinators in the Near UV and Blue ranges. The
variation in pollinator visibility within strawberry cultivars underscores the importance
of considering UV spectral reflectance when developing new crop breeding lines and
managing pollinator preferences in agricultural fields.

Introduction

Precision agriculture is a modern farming approach that aims to optimize crop
production by using advanced technologies and data analysis techniques. By
incorporating modern technology with traditional farming principles, farmers can now
manage fields with minimal inputs and human resources. One of the key tools used in
precision agriculture is remote sensing, which is based on electromagnetic radiation [[1,2].
Remote sensing is used to capture data from vegetal surfaces to generate field maps
that can be used to characterize biophysical features such as water and nutrient stress,

presence of infection/disease or overall growth of crops.

To capture data from vegetal surfaces, remote sensors are used to capture
electromagnetic reflectance in three key spectral regions 2] including ultraviolet (UV),
visible and near-infrared (IR). This data is then analyzed using vegetation indices (VI)
to derive insights into the health, growth and overall well-being of crops [3L|4].

With these insights, farmers can adjust their crop management strategies in
real-time to optimize crop yields, reduce waste and increase profits. This has led to the
development of new techniques for crop management, such as precision irrigation, soil
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mapping and crop yield forecasting, all of which are crucial for improving efficiency and
reducing waste in modern agriculture.

Since Darwin’s time (1876), researchers studying pollinator interactions have focused
on the diverse colors and patterns of flowers. Pollinating species, unlike many foraging
predators, have receptors for UV [5], leading plants to develop UV floral patterns to
attract beneficial insects visually while remaining cryptic to foraging species.
Compounds that absorb or reflect radiation are arranged in patterns on reproductive
structures like anthers and petals, signaling feeding locations and differentiating plants
from con-specifics even at the cultivar level [6].

Size, shape, and contrast can influence the visibility of these patterns, particularly
from the air, and affect how visible a plant is to its con-specifics. Floral signaling
strategies may respond to the perceptual constraints of pollinators, as Spaethe et al. [7]
observed that bumblebees favored high color contrast on the floral surface for large
flowers (e.g., UV pattern) but only favored high contrast with green foliage for small
flowers. This resulted in optimal foraging strategies and more accurate floral recognition
while in flight.

A typical signaling pattern of large flowers is the "bullseye" pattern, where flowers
consist of UV-absorbing centers and UV-reflecting peripheries. Previous studies found
that bees make their first antennae contact with the UV-absorbing part and untrained
bees preferentially visit bullseye-patterned flowers (e.g., [8,9]).

While these insights provide a glimpse into the realm of pollinator-plant relationships,
it’s imperative to recognize that the yield of strawberries is a complex outcome
influenced by a multitude of factors. Beyond the fascinating interplay of floral patterns
and colors, the overall strawberry production is shaped by variables such as climate
conditions, soil composition, and the general health of the plant. Therefore, to offer a
more holistic understanding, it is crucial to acknowledge and explore the diverse factors
that collectively contribute to strawberry pollination and, consequently, overall yield.

Factors affecting crop visibility in the UV spectrum are reducing UV light on crop
surfaces and decreasing UV-reflective pigments due to breeding efforts. Uv reflective
patterns become less visible under the physical conditions of greenhouses that
commonly employ UV-blocking coverings [10]. In a study by Morandin et al. [11], four
types of polyethylene greenhouse coverings, varying in their UV transmittance, found
that bees made twice as many foraging trips under low UV transmittance plastics.
Furthermore, 136 percent more bees remained within the greenhouse after ten days,
drastically affecting operation costs and crop production. Bee pollination of crops
results in heavier, more uniform crops, which fetch a higher market value. Therefore,
hives are often supplemented in agricultural settings (e.g. [12]). Another factor for
commercial growers to consider is the genetic component of UV patterns when breeding
new cultivars. Brock M. T. et al. [13] showed that UV patterning varied greatly among
Brassica rapa genotypes and that insects preferred flowers with UV patterns over those
without patterns, such as their wild relatives. Moyers et al. [14] found that the UV
pattern of sunflowers could be modified without affecting flower head size based on the
mapped genetic architecture. Flower head size is a critical trait for breeding this crop
and could have unintended effects on pollinator—flower interactions. Breeders need to
consider the genetic architecture of a crop when creating new cultivars. Research
supports that colour patterning in various crop families varies significantly with heredity
(e.g., |[15H17]). However, few studies have explored the use of UV floral reflectance of
plants, even fewer for crops specifically. Spectral reflectance studies have reported down
to 300 nm, but most species in reflectance databases (e.g., FReD [18]) are native species,
not crop species.

The Rosacea family includes several common orchard and berry crops like apples,
cherries, raspberries, and strawberries, making it one of the four primary crop families
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grown commercially in greenhouses worldwide [19]. Notably, members of the Rosacea
family, including blackberry and almond cultivars, display consistent and distinct peaks
in the near UV range, suggesting a potential role of UV patterning in pollinator
signaling within the family [20,21].

Strawberries are an extensively cultivated crop used widely in both greenhouses and
traditional fields worldwide. The global greenhouse production alone was a staggering
$34.8 billion industry in 2021, with North America holding the largest market share of
32.8 percent [22]. In terms of total global fruit production, strawberries and tomatoes
were the two leading crops, representing 25.4 percent and 56.7 percent of total vegetable
production, respectively. Notably, Rosacea crops, with strawberries comprising 75.4
percent of berry crops, constituted the majority of global fruit production in 2021 23],
competing with the likes of Musaceae(bananas and plantains), Rutaceae (citrus), and
Cucurbitaceae (melon) families.

Despite the widespread cultivation of strawberries, research on the UV floral
reflectance of strawberry cultivars remains scarce. Though most strawberry flowers
appear white to human eyes, Ceuppens et al. [24] found differences in pollination of two
related strawberry varieties when cultivated together, potentially due to discrepancies in
floral patterning rather than the presence of volatile floral substances. Thus, UV floral
reflectance differences may be a relevant factor here. Notably, there is a lack of
systematic literature reviews on UV floral reflection of crop species, which this present
study aims to address by documenting the current state of floral UV-reflectance of crops
in scientific literature and expanding on it with strawberry cultivars.

Literature review methodology

We followed the eight-step guide to conducting a meta-analysis by Hansen, C. et al. [25]
in this literature review. We analyzed scientific articles studying the UV-reflectance of
crops. We searched the electronic database Scopus (1969-2020) for the following
keywords: “UV*” OR “ultraviolet” AND “camera” AND/OR “Spectral reflectance”
AND “flo*” AND/OR “crop*” AND/OR “plant*”. In addition, searches were limited to
the English language, publication in a journal or conference proceeding, and fell within
the categories “agriculture”, “botany”, AND/OR “environmental sciences”. A total of
1013 articles met the search criteria and were screened for crop species and spectral
reflectance under 400 nm using a single reviewer. We excluded from this review papers
that dealt with the spectral reflectance of compounds derived from plants in chemical
isolation or studied UV spectral fluorescence rather than reflectance. UV Reflectance
measures a reflected wavelength in the near UV range (300-400 nm), often used by
flowering plants for pollinator signalling. In contrast, UV fluorescence is a visible
emission of wavelengths due to a substance or pigment’s absorbance of UV radiation.
Until recently, the terms were used interchangeably in literature; therefore, we carefully
examined the methodologies employed. In total, 170 papers related to botanical plants,
of which 149 covered spectral reflectances below 400 nm in some capacity. When filtered
for agriculturally relevant species, 52 records remained from 29 families and 73 crop
species, as listed in Tab.
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Analysis metrics

Articles meeting the above criteria had the following parameters noted: instrument
model used, the spectral range for measurements, floral part and species analyzed, and
year of publication.

Instrument models were grouped into 4 categories: Camera, Videometer,
spectrometer /spectroradiometer, and spectrophotometer. Cameras were defined as
self-contained, image-recording devices which relied on an external light source. This
included video, monochrome, multi-spectral, and hyper-spectral cameras which
employed CMOS or CCD sensors, as well as UV film cameras. Spectrometer and
spectroradiometer were grouped together as the terms are often used interchangeably. A
spectrometer measures the reflectance spectrum of an object or substance. Its sensor
array can separate out the light received at each wavelength and generate an amplitude
graph of the incoming signal. A spectroradiometer can also take calibrated readings of
power, intensity, and radiance of the incoming signal at each wavelength (International
Light Technologies Inc.,2019). On the other hand, Spectrophotometers measure the
light absorption or transmission of a sample. A reflectance curve can then be generated
from the absorption and transmission measurements using Kirchoff’s law [74].
Videometer was its own category as it utilizes an integrating sphere with a
light-emitting diode, similar to a spectrometer; however, the sensor captures a pixelated
image of an object at each wavelength (Carstensen, J. M.,2022). For all instruments,
spectral ranges were binned according to the following nanometer (nm) ranges: near UV
(300-380nm), Blue (381-520nm), Green (521-625nm), red/ IR (>625nm) in accordance
with the international society for optics and photonics [75].

Floral parts analyzed were grouped into 5 categories: flower, stem, leaf, fruit, and
root. Flower included the anther, stamen, petal, and sepal elements of a plant’s
reproductive structure. The stem encompassed dermal (cork & bark) , vascular (xylem
& phloem), and ground tissues (parenchyma, collenchyma,& sclerenchyma). Fruit
encompassed seed and/or ripened ovary of a flowering plant. Root included tubers as
well as roots themselves. Leaf category contained upper and lower sides of leaves. The
types studied were divided by plant family to assess trends in the literature.

Trends in research over time were assessed by cross-referencing the above parameters
with the publication year.

UV crop reflectance meta-analysis

Instrumentation

Most methodologies consisted of lab bench setups due to the size, weight, and
equipment cost (e.g., Spectrophotometer). Of the data collection methods in Tab.
less than a third (31.7%) used cameras. UV Film represented 20% of data collected and

occurred before 1980. After 1980 digital data collection using cameras became standard.

The average cost of the cameras was $772.50 CAN and varied in weight from 50g to 2.75
kg, averaging 302g across all species recorded. Of note: no studies performed aerial
remote sensing of UV reflectance. Fig. 1 depicts the trends in instrumentation.
Spectrometers/Spectroradiometers and Spectrophotometers comprise the bulk of
collection methods ( 36.8% and 27.4%, respectively) and have occurred consistently
since the early 1990s. These are lab-based, costly devices, often shared with other
departments, such as chemistry. They allowed for quantitative analysis using
spectrograms compared to qualitative analysis with film cameras, as illustrated by
Utech F.H. & Kawano S. |29].
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Fig 1. Trends in UV reflectance. Publications from meta-analysis ranging from 1960 to 2021
for crop UV spectral reflectance.

Spectral range

Though all publications in this study had to include the near UV range (300-380nm),
many also presented visible and near IR spectrums. Cameras presented narrower ranges
(Near Uv to blue) more often than any other instrument category, followed by
Spectrometer /Spectrophotometers (Fig. 2). We attribute this disparity to the nature
of the instrumentation chosen for the study. Digital cameras have a sensor that is more
sensitive to Red and Near IR wavelengths. Therefore, a narrow range (usually Near UV
to blue) must be captured using specialized lenses and filters to capture UV imagery.
Comparatively, Spectrophotometers, Spectrometers, Spectroradiometers, and
Videometers can capture data to the nanometer level without such interference.
Authors usually capture complete spectral ranges with these devices, even if the
publication only interests a particular region.

Videometer

Spectrophotometer
Red/IR(>625)

m Green(521-625)
M Blue(381-520)

m Near UV(300-380)
Camera

0 20 40 60 80 100
Percentage of publications

Fig 2. Spectral ranges (in nm) presented in Crop UV reflectance literature.
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Species and floral parts

As previously stated, 73 crop species from 29 families were included in this
meta-analysis, and are listed in Tab. [[] Compared to the global production of fruits and
vegetables in Fig. 3, we see an overlap in crop family representation from our
meta-analysis in Fig. 4. Four of the top five families in our literature review (Rosacea,
Solanaceae, Fabaceae, and Brassicaceae) overlapped with global production’s largest
fruit and vegetable families in 2021. The Rosaecea family was the largest in global fruit
production, whereas Solanaceae, Fabaceae/Leguminaceae and Brassicaceae were the top
three vegetable-producing families globally in 2021, respectively. The above four
families comprised 36.8% of the publications in our meta-analysis. The disproportional
representation of the above families in our review supports that research decisions for
crop species follow market trends.

Flower

20%

Leaf
54.7%

Fruit

14.9%

Stem

6.4%

Root

4.3%

Fig 3. Floral parts spectrally analyzed in our literature meta-analysis.

In agricultural remote sensing, the focal crop component indicates the physical
parameter being researched. Fig. 5 illustrates the distribution of research across floral
parts for our meta-analysis.

We found that papers containing leaf reflectance represented most of the published
research (55.7%), and these papers assessed growth rate, plant stress, or nutritional
deficiencies. Publications focused on stems (6.4%) and roots (4.3%) assessed the quality
of a given crop, e.g., lumber or tubers. Papers presenting the spectral reflectance of
fruits (14.9%) had contents that varied the most, from assessing fruit ripeness and
flavour quality to detecting disease or training detection algorithms for remote sensors.
Papers analyzing flowers (20%) comprised two categories: pollinator-plant interaction
and remote flower detection. However, it’s worth noting that over a third of all the
flowers documented (31.57%, Tab. [1)) were captured on UV film (Utech F.H. & Kawano
S., 1975). Since UV film, like any camera film, is prone to human error during
development, the reported reflectance pattern or intensity may not be accurate. For
instance, Utech, F. H., & Kawano, S. reported a pattern of central petal absorption
and UV reflecting anthers for two Rosaceae species Fragaria x ananassa 'Duchesne’ and
Rubus illecebrosus’ Focke. However, spectrophotometric readings of wild Fragaria did
not indicate this reflectance. Therefore, to fill the gap in the literature on strawberry
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Fig 4. Crop family representation in UV reflectance literature from 1969 to 2021.

Rosacea
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23.57
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170.3
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Fruit Vegetable

350

Fig 5. Global Fruit and Vegetable Production 2021 (data from )

(Fragaia) flower reflectance, one of the most significant contributors to the Rosaceae
family’s global dominance in the fruit industry, we assessed the spectral reflectance of a
variety of strawberry cultivars both quantitatively using a spectrophotometer and
qualitatively using a UV sensitive camera.
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Spectral analysis of Strawberry cultivars

The Rosacea family contains many orchard species, such as apples and cherries, and
berry species, such as strawberries and raspberries. Crops in the Rosacea family share
similar floral phenotypic traits, such as five radially symmetrical sepals and petals,
spirally arranged stamens, and a cup-like structure at the flower base known as a
hypanthium [77]. Due to their visual floral similarity, remote sensing and pollinator
vision studies involving these crops tend to extend findings to the whole family

(e.g., [78l|79]). However, only some studies have investigated the actual spectral
reflectance of Rosacea flowers.

Methodology
Plant material and growth conditions

Bare root plants of day-neutral Fragaria ananassa sp. cultivars ("Fort Laramie",
"Hecker", "Seascape"), wild ancestor Fragaria vesca, and Asian Fragaria ananassa z F.
comarium hybrid ("Berried Treasure Red") were purchased from ©2020 Vesey Seeds.
Plants were potted with a 2:2:1 ratio of acidic potting soil, shrimp compost, and sand in
7.5L containers and fertilized bi-monthly with 15-30-15 liquid feed. We removed flowers
for imaging within 12 hours of opening and imaged the petal(P), anther(A), sepal(S)
and upper leaf (L) from each flower. All plants used in this study were in good health
and grown outdoors under natural light.

Reflectance spectra of Fragaria sp. flowers

We collected spectral reflectance measurements with a Perkin Elmer’s Lambda 850
UV-VIS spectrometer at the University of Laval in Quebec City, Canada. All flowers
imaged were within 12 hours of first flowering and were intact. Each flower comprised
three ’samples’: full flower upper side, petal only, and central anther and stamen disk
only. We imaged the leaves of each cultivar on the upper and lower surfaces. At least
two flowers or leaves per cultivar plant were measured. The Spectrophotometer was
calibrated using Spectralon as suggested by the manufacturer. The measurement
interval was set to 1 nm with scans conducted over the 200-700 nm range and repeated
thrice per sample. Results were exported as an Excel spreadsheet of % reflectance
values.

Quantifying contrast of floral parts

We quantified the visibility (AS )of strawberry flowers to pollinators using the
Normalized Segment Classification (NSC) vision model [80]. Unlike previous segment
classification models, the NSC model is 1) species independent and 2) considers
brightness in its calculation. The model calculates a value (AS) based on the Euclidean
distance between two spectrogram curves, indicating their contrast. The larger the
number, the greater the contrast.

Results

We present the spectrograms for Fragaria vesca (Fig. 6-a), the four Fragaria z ananassa
cultivars (Fig. 6-b to d) and their respective leaves (Fig. 6-f) in Fig. 6( DOI
10.5281/zenodo.7847476). Table 2| presents the NSC vision model contrast values (AS)
we obtained for each cultivar. We calculated AS values with leaves (L) and petals (P)
to test floral contrast with leaf background. A floral pattern (e.g. bull’s eye pattern)
was tested by comparing the outer floral part (petal, P) with the central floral part

February 14, 2024

14/23

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254



(anthers, s). We also tested sepals as they are visible when petals are damaged or a 255

cultivar has sparse inflorescence.

d ) Fragariavesca
50
g w0
£
T 30
o
20 —— el
)
B ves .
10 e, :
.......... ATy frrteesine
0
200 250 300 350 400 450 500 S50 600 650 700
Wavelength (nm)
— RV petal %R V.sepalfanther  +esses %R V.1leaf up.
c) Fragariax ananassa"Fort Laramie"
50
2
2 40
E 30
o 20
T

200 250 300 350 400 450 500 550 600 650 700
Wavelength (nm)

——— %R FLpetal SR FLsepal SR FLanther sesess %R FLleaf up
e) Fragaiax ananassa "Hecker"
50

w

3 40

S 30 .

7]

=

~ 20

10,

...‘UllcnolllL-""-I-.

0

200 250 300 350 400 450 500 550 600 650 700
Wavelength (nm)

%R H.anther ssssss %R H.leaf up

%R H.petal %R H.sepal

b) Fragariax ananassa'Seascape”
50 ; 5
y e ]
o k.‘

% Reflectance

200 250 300 350 400 450 500 550 600 650 700
Wavelength (nm)

%R S.anther «sesss %R Sleaf up

%R S.petal %R S.sepal

d) Fragariax ananassa (X comarum) "Berried treasure red"”

50

5
=]

2

3

% Reflectance

=

200 250 300 350 400 450 500 550 600 650 700

Wavelength (nm)

%R Panther sssess %R Pleaf up

%R P.petal %R P.sepal

f) Fragariasp. Leaves upperside

% Reflectance

10 _N

200 250 300 350 400 450 500 550 600 650 700

Wavelength (nm)

%R V.1leaf up. —iR Sleaf up %R FL.leaf up

R H.leaf up o 56R P leaf up

Fig 6. Reflectance spectrograms of Strawberry cultivars.

Leaves

256

257

Fig. 6-f demonstrates the minor variation in upper leaf reflectance across Fragaria sp. 258
and cultivars indicating that the main factor in differing floral contrast and visibility to s

pollinators is solely the factor of floral pigments. 260
Fragaria vesca 261
Fragaria vesca is a wild native strawberry specie that has well-documented 262

pollinator-flower interaction . Its spectrogram is published on the Floral Reflectance 3
Database (FReD) and was used as a control for variation between studies. Our spectral
reflectance curve showed the same pattern as previous reports . The flower shows a s

distinct flower petal peak in the Bee blue range (spectral peak 424nm ) and a 266
sepal/anther peak in the Bee green range (spectral peak 539nm ) A study by 267
Martinez-Harms, J. et al. found that bees could detect flowers 75% of the time with 26
a contrast value (AS) as low as 2.3. The contrast value for petal (AS=8.861) and 269
sepal /anther (AS= 5.261) support the observations made in previous behavioural 270
studies that this flower is visible to pollinators. o
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Fragaria x ananassa (x comarium) ’Berried treasure Red’

The red flowering cultivar, Fragaria z ananassa (x comarium) Berried treasure Red’
(Fig. 6-d), had floral peaks beyond 600 nm and showed no contrast values between floral
parts AS >1.34, indicating that bee pollinators would be blind to this cultivar. This
cultivar, in particular, was bred purely for aesthetic appeal, with little regard for yield
potential. It is not cultivated in fields and is a newer release to the consumer market.

White-flowering cultivars

When compared to their wild counterpart (Fig. 6-a), the white flowering cultivars
“Seascape”, “Fort Laramie”, and “Hecker” (Fig. 6, b, ¢, and e, respectively) exhibit
higher petal reflectance, creating higher contrast and visibility for pollinators. These
cultivars demonstrate petal peaks in the bee blue and anther peaks in bee Green
(Spectral peak 539 nm [82]). Anther/ petal contrast values indicate a discernable Bull’s
eye pattern for all three cultivars in the bee blue/ bee green range (AS= 24.638, 24.651,
and 28.027, respectively). The highest contrast value for all three cultivars was between
petals and background leaves (AS= 27.463, 27.127, and 33.086, respectively). “Hecker”
had the highest contrast value with an L/P ~S = 33.086; 26.8% higher than its wild
counterpart. “Hecker” is noted for producing large berries with good flavour [84]. We
know that insect pollination has a direct, positive effect on fruit quality (e.g., [85H87]).
In selectively breeding for higher yield and better-quality fruit, breeders could have
inadvertently selected more visible flowers. As such, “Hecker” flowers would be more
visible from the air to nearby pollinators than their conspecifics. Bees preferentially
visit more visible targets when nectar rewards are equal [7]. The higher visitation rate
by natural pollinators would positively affect the outcome of yield assessments.

Strawberry flowers in the UV

Gyan, K. Y. & Woodell, S. R. J. [20] documented the spectrogram of the blackberry,
Rubus fructicosus, which indicated a ~ 35% reflectance around 360nm. Almond
cultivars, Prunus dulcis, have also shown a consistent, distinct peak at 350 nm [21].
Although the Fragaria genus shares the same family as Rubus, Fig. 6 does not indicate
any reflectance peaks around 350-360 nm (or Bee UV, spectral peak 347nm [82]) across
all study species. Incidentally, there is minimal spectral reflectance in the near UV
range (300-400nm). However, all the above samples exhibit an increase in reflection
below 250nm. In this way, the Rosacea family shows reflection diversity in the near UV
spectrum, indicating that findings from remote sensing or pollinator vision studies
should not extend beyond the specie or cultivar at hand.
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Table 2. Visibility of Fragaria sp. floral parts to trichromatic insect pollinators. *Indicates
above bee contrast detection threshold.

Floral parts | General trichromatic

Cultivar contrasted pollinator _ S
| | A/S | 1.165 \
‘ Fragaria x ananassa (x comarium,) ‘ A/P ‘ 0.255 ‘
| | S/P | 1.309 \
‘ "Berried treasure Red’ ‘ L/P ‘ 1.335 ‘
| | A+S/P | *5.261 \
‘ Fragaria vesca ‘ L/P ‘ *8 861 ‘
| | A/S | 0.616 \
| | A/P | *28.027 \
‘ Fragaria x ananassa "Hecker’ ‘ S/P ‘ *28.53 ‘
| \ L/P \ *33.086 \
| | A/S | *3.663 \
| | A/P | *21.001 \
‘ Fragaria x ananassa 'Fort Laramie’ ‘ S/P ‘ *94.651 ‘
| | L/P | *27.127 \
| | A/S | 2.204 \
| \ A/P \ *24.638 \
‘ Fragaria x ananassa ’Seascape’ ‘ S/P ‘ *99 441 ‘
| \ L/P \ *27.463 \

Conclusion

At this time, future floral reflectance studies should put more emphasis on crop species
than native species. Our results showed a need for lightweight camera models for in-situ
UV remote sensing. Current models are costly and cumbersome for automated
deployment. The representation of crop families in the literature reflects their economic
value in the global market. That being said, UV reflectance is still a tiny proportion of
all crop spectral reflectance studies. To add to the public database of crop spectral
reflectance, we spectrophotometrically analyzed five strawberry cultivars (DOI
10.5281/zenodo.7847476). We studied the data and noted that commercial
white-flowering strawberries produced a bull’s eye contrast pattern in the bee-blue/
bee-green, producing the highest contrast with background leaves. The most notable,
"Hecker," is prized for its production volume and high fruit quality. This may be due to
its greater visibility to pollinators, i.e. bees, leading to higher pollination rates. Further
studies presenting the spectral reflectance of crops across pollinator vision range (near
UV to blue) would benefit pollinator interaction research and the agricultural industry
and be an excellent resource for crop breeders.
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