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A B S T R A C T   

Obtaining accurate snow depth estimates under dense canopies using airborne lidar (light detection and ranging) 
techniques is challenging due to the under-sampling of ground and snow surfaces. Existing interpolation tech
niques do not adequately address this problem and they often result in an overestimation of under-canopy snow 
depths. To address this issue, we introduce and evaluate a new interpolation method that incorporates intra- 
canopy snow depth variability to provide more accurate estimations at unsampled locations. Four interpola
tion methods were tested, considering systematic trends (landscape trend, canopy vs. gap trend, and intra-canopy 
trend) along with spatial interpolation of the residuals. Our results show that spatial interpolation methods 
without consideration of trends are sufficient to capture and reconstruct the small-scale variability of snow 
depths below a separation distance of 1 m between sampled and unsampled locations, (i.e., ground surface point 
density > 1 pt. m− 2). However, beyond a separation distance of 2.5–3 m (point density < 0.33–0.40 pt. m− 2), 
spatial interpolation based on proximity alone becomes unreliable because point separation becomes larger than 
the snow depth spatial correlation scale. Within these limiting distances, the method that incorporates trends 
along with spatial interpolation techniques can resolve the small-scale variability and thereby reduce the likely 
overestimation of snow depths under the canopy.   

1. Introduction 

Airborne (both piloted and unpiloted) lidar (light detection and 
ranging) scanning has been increasingly used in recent years to monitor 
snowpacks in forested environments due to its strong penetration ability 
through the forest canopy to detect underlying snow cover and ground 
(Hopkinson et al., 2004; Morsdorf et al., 2006; Hopkinson et al., 2012b; 
Deems et al., 2013; Harpold et al., 2014; Zheng et al., 2016; Currier and 
Lundquist, 2018; Zheng et al., 2018; Mazzotti et al., 2019; Harder et al., 
2020; Jacobs et al., 2021; Dharmadasa et al., 2022; Koutantou et al., 
2022; Dharmadasa et al., 2023). Among the airborne techniques, in
terest in the use of unmanned aerial vehicle (UAV) laser scanning for 
small scale high-resolution mapping has been on the rise. This is due to 
its capability to produce dense, high-quality point clouds with reduced 
occlusion in forested areas compared with airborne laser scanning (ALS) 
(Broxton et al., 2015; Pajares, 2015; Glira et al., 2016; Michele et al., 
2016; Painter et al., 2016; Currier and Lundquist, 2018; Mazzotti et al., 

2019; Harder et al., 2020). In forested environments, ground returns 
point density depends on forest cover type, understory vegetation, laser 
spot size, laser pulse rate, and the scan angle of the laser sensor (Deems 
et al., 2013). As such, dense canopies, especially snow-laden conifer 
canopies, pose challenges for under-canopy snow depth detection by 
reflecting and attenuating larger amounts of lidar pulses and thereby 
preventing laser shots from reaching the ground/snow surface (Varhola 
et al., 2010; Hopkinson et al., 2012b; Harpold et al., 2014; Tinkham 
et al., 2014; Broxton et al., 2015; Zheng et al., 2016; Mazzotti et al., 
2019; Zheng et al., 2019; Jacobs et al., 2021; Koutantou et al., 2022; 
Dharmadasa et al., 2023). Consequently, this under-sampling of snow 
under canopies introduces errors upon averaging or interpolating snow 
depth points to a different resolution (Tinkham et al., 2014; Zheng et al., 
2016). Since forest openings (gaps) generally accumulate more snow 
than under canopies and have higher lidar point densities (Hopkinson 
et al., 2012a; Broxton et al., 2015; Revuelto et al., 2015; Hojatimalek
shah et al., 2021), aggregating or interpolating point snow depths can 
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results in an overestimation bias in the resulting averaged snow depth 
map (Zheng et al., 2016). For example, in a dense mixed-conifer forest in 
the southern Sierra Nevada, Zheng et al. (2016) found that 28% of the 
area had no lidar returns, which resulted in at least a 10 cm over
estimation error in average snow depth for the whole area when using 
snow depths in the open area as estimates of under-canopy snow depths. 
In addition, along with the influence of coniferous tree canopy inter
ception, sublimation, longwave emittance, and unloading of snow from 
the canopy lead to relatively lower snow depths closer to the tree trunk 
and a gradual increase in snow depth up to a distance coinciding with 
the canopy crown (Pomeroy and Dion, 1996; Musselman et al., 2008; 
Revuelto et al., 2015; Zheng et al., 2019), resulting in significant, but 
somewhat predictable, intra-canopy variability of snow depths in 
coniferous forests. Existing interpolation techniques such as inverse 
distance weighting (Burrough, 1986; Guo et al., 2010; Michele et al., 
2016), geostatistical methods (Isaaks and Srivastava, 1989; Guo et al., 
2010; Mazzotti et al., 2019; Koutantou et al., 2022), regression and tree- 
based methods (Winstral et al., 2002; Jost et al., 2007; López-Moreno 
et al., 2010; Lehning et al., 2011; Revuelto et al., 2014; Zheng et al., 
2018), or a combination of these methods (Erxleben et al., 2002) do not 
fully address the aforementioned caveats. Koutantou et al. (2022) 
emphasized the need for a more sophisticated gap-filling algorithm to 
avoid likely overestimation of under-sampled under-canopy snow 
depths. In this study, we address and explore the problem of biased snow 
depth distributions due to under-canopy under-sampling in coniferous 
environments, and introduce and evaluate a new interpolation method 

that incorporates the intra-canopy snow depth variability and thus 
providing more accurate estimations at unsampled locations. This 
method seeks to decompose and model the overall lidar snow depth 
variability into systematic components (landscape trend, preferential 
accumulation in gaps, intra-canopy variability) and remaining stochas
tic variability, for an optimal interpolation of lidar snow depths in 
coniferous forests and more accurate landscape-wide snow depth dis
tribution estimates. To determine the optimal method, four methods 
were assessed, which combined the systematic trends and spatial 
interpolation of residuals. We hypothesize that spatial interpolation 
methods that only exploit the spatial correlation of available lidar snow 
depths will be insufficient to fill the gaps in coniferous forests, where 
systematic variations in snow depth occur over beneath and among tree 
canopies. 

2. Study area 

The study site, Forêt Montmorency (hereafter Montmorency) is a 
dense boreal forest with a mean canopy density of 60–80%, located 
north on the Canadian Shield (47.3◦N, 71.1◦W) in southern Québec, 
eastern Canada (Fig. 1). Dominant tree species of the site are balsam fir 
(Abies balsamea), black spruce (Picea mariana), and white spruce (Picea 
glauca). The maximum canopy radius was found to be 7 m in Montmo
rency area (Dharmadasa et al., 2023). One of the characteristics of the 
area is forest gaps associated with clear-cutting and regeneration prac
tices (Québec Ministry of Forests, Wildlife, and Parks (MFFP)). Lidar 

Fig. 1. (a) Location of the Montmorency site, (b) 100 × 100 study area (demarcated in red) with land uses (adapted from MFFP) superimposed on satellite image, (c) 
frequency of total vs. ground lidar returns under canopies and gaps in the study area for winter and summer surveys, and (d) raw snow depth map of the study area at 
0.1 m resolution (see Methods). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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data acquisition of the site was conducted in winter for the snow-on 
surface (29 March 2019) and early summer 2019 for the snow-off sur
face (13 June 2019) with a GeoMMS system mounted onto a DJI M600 
Pro UAV platform. The VLP-16 lidar sensor on board the GeoMMS sys
tem uses 16 infra-red lasers with a wavelength of 905 nm, each pulsating 
at 18.08 kHz and retrieves measurements up to 600,000 points/s in dual 
return mode, with a 3 cm precision at 50 m above ground level (AGL) 
(VelodyneLiDAR, 2018). Post processing of lidar data was done in the 
Geodetics proprietary software LiDARTool (Geodetics Inc, 2019) with 
PPK (Post process kinematic) correction based on a local GNSS base 
station deployed at each survey site. A 100 × 100 m representative area 
(Fig. 1) from the broader survey conducted in Montmorency by Dhar
madasa et al. (2022) was used in this study. More details on data 
acquisition and equipment specifications are described in Dharmadasa 
et al. (2022). As observed on Fig. 1 and in the field campaign also, the 
sparse mixed forest area in Fig. 1 is mostly composed of forest gaps. 

3. Methods 

The post-processed and classified lidar point clouds obtained from 
Dharmadasa et al. (2022) were used to produce the snow depth distri
bution map used in this study. A detailed presentation of lidar point 
cloud processing is given by Dharmadasa et al. (2022). The workflow 
presented in Fig. 2 depicts the sequence of steps that were used to 
produce the snow depths maps, extract tree canopies, and develop the 
new snow depth interpolation methods. 

3.1. Raw snow depth map 

A snow depth map (hereafter raw snow depth map) was produced at 
0.1 m grid resolution (Fig. 1d), following the same procedure described 
in Dharmadasa et al. (2022) and Dharmadasa et al. (2023), to account 

for the variability of snow depth within the canopy; i.e., bare surface 
points were aggregated to a grid resolution of 0.1 m using the binning 
method in Global Mapper (Blue Marble Geographics, 2020). Rather than 
interpolating, this method uses the average of the bare surface points 
within a grid cell, hence preserving the observation gaps in the data. 

3.2. Segmentation of individual trees 

We developed a canopy height model (CHM) at 0.5 m resolution and 
identified the treetops in the winter point cloud normalized by bare 
surface point elevations in the R package lidR (Roussel et al., 2020; 
Roussel et al., 2022). CHM at 0.5 m resolution was found to capture well 
the treetops and extract canopies. A lower grid size would risk intro
ducing topographic variability in the CHM, leading to complications in 
identifying treetops and delineating canopy polygons. A local maximum 
was detected to identify treetops using flexible window sizes ranging 
from 3 to 5 m. We used the region-growing algorithm developed by 
Dalponte and Coomes (2016) for tree segmentation on our data. Fig. 3 
shows the treetops and tree polygons (canopy crowns) identified by the 
tree segmentation algorithm. Note that, at times, for a cluster of trees 
with interlocking crowns, only a single treetop was identified. Zheng 
et al. (2018) found that the canopy surrounding within an 8 m radius of a 
tree has a stronger effect on the snow accumulation on the ground, so 
that a clustered canopy has a stronger effect on snow depths than a 
single tree canopy. It was also confirmed during field works that these 
clusters of trees act as a single unit which intercepts snow as a whole and 
reduces snow accumulation underneath. Therefore, identifying a single 
treetop for a cluster of interlocking trees was deemed acceptable for the 
purpose of the study. After the segmentation of individual trees, all snow 
depth grid cells within the tree polygons were defined as “under-can
opy”, whereas the snow depth grid cells outside the tree polygons were 
defined as “forest gaps”. A similar approach for tree segmentation was 

Fig. 2. Workflow adopted for the study. Each box shows the software used (bold) with the corresponding end product. 1 adapted from Dharmadasa et al. (2022). 2 

developed for this study. DEM = Digital elevation model and CHM = Canopy height model. 
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previously used by Hojatimalekshah et al. (2021) on terrestrial laser 
scanning data collected across Grand Mesa, Colorado, USA. 

3.3. Development of new interpolation methods 

We implemented four different interpolation methods on raw snow 
depth grid cells. The methods differed in which of the systematic trends 
(landscape trend, canopy vs. gap trend, and intra-canopy trend) were 
considered, or not, during the interpolation process. Method 1 only 
considered the landscape trend of the snow depths; method 2 considered 
the landscape trend and the canopy vs. gap trend; Method 3 considered 
the landscape trend and the intra-canopy trend in snow depths; finally, 
method 4 considered all systematic trends (landscape trend, canopy vs. 
gap trend and intra-canopy trend). For each method, the systematic 
trends were modelled and removed (Table 1), and the residuals were 
spatially interpolated using either local-inverse distance weighting 
(IDW) or the geostatistical ordinary kriging (OK) method, that are the 
most commonly used spatial interpolation techniques. With IDW, the 
weight of each point is inversely proportional to the distance between 
the samples (Burrough, 1986). With OK, a semi-variogram that sum
marizes the spatial structure of the snow depth grid cells is used to 
calculate the weighting factor that corresponds to each point to estimate 
snow depth at unsampled locations (Isaaks and Srivastava, 1989). Both 
methods were tested separately for the interpolation of residuals. In 
addition, spatial interpolation of raw snow depth maps using OK and 
IDW approaches was used as a reference to show the effect of modelling 
and including systematic trends. All analyses were done in R 4.0.2. Fig. 4 
summaries the methods interrelations and Table 1 outlines the different 
systematic trends considered in this study. 

3.3.1. Interpolation method 1 
In method 1, we first removed the landscape trend in raw snow depth 

grid cells by fitting a second-order polynomial trend surface (Table 1; 
Eq. 1) using the spatial package in R (Venables and Ripley, 2002). Then, 
the snow depth residuals (raw snow depth – landscape trend: ‘residual 1’ 
on Fig. 4) were spatially interpolated using OK and IDW. The landscape 
trend is then added back to the interpolated residuals to obtain the 
estimated snow depths in unsampled areas. 

3.3.2. Interpolation method 2 
In method 2, the detrended snow depth data from method 1 (residual 

1) was used to calculate the canopy vs. gap trend. For this, the average 
snow depth under-canopy and within forest gaps were calculated and 
subtracted from residual 1 (Table 1; Eq. 2 and 3), yielding the 2nd-level 

Fig. 3. Results of tree segmentation. (a) treetops plotted as crosses (+) over the canopy height model (CHM), (b) tree polygons identified for each treetop.  

Table 1 
Overview of different systematic trends. The SD term in each trend equation is 
the snow depth modelled by the trends, and not the final interpolated snow 
depths.  

Trend Description Equation 

Landscape Second order 
polynomial 
trend surface. 

SD = a x2 + 2b xy + c y2 + 2d xz + 2e yz + f z2 

Eq. 1 
SD is the raw snow depth, x, y, z are cartesian 
coordinates and a, b, c, d, e, f are coefficients. 

Canopy 
vs. gap 

Average of the 
detrended snow 
depths under 
canopies and 
gaps. 

SDgap = Residual 1gap Eq. 2 
SDcanopy = Residual 1canopy Eq. 3 
Residual 1 is obtained by subtracting the snow 
landscape trend from the raw snow depths. 

Intra- 
canopy 

Weighted 
second order 
polynomial 
regression 
function with 
scaled distance 
(0 to 1) from the 
tree stem to tree 
canopy edge as 
predictor and 
tree height as 
interactive term. 
The weights 
correct for the 
decreasing point 
density towards 
the tree stem 
and are 
calculated with 
a kernel density 
function with a 
bandwidth of 
0.1 of scaled 
distance. 

SD =
(

a dis + b dis2
+ c H + d(H dis) + e

)

Eq. 4 
dis is scaled distance, H is tree height, a, b, c, d are 
coefficients, and e is the intercept. SD is either the 
residual of the landscape trend in method 3 
(Residual 1) or those from the canopy vs. gap 
trend in method 4 (Residual 2).  
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residuals (‘residual 2’ in Fig. 4). This operation thus removes the 
potentially systematic positive bias in gaps relative to canopies. Then, 
the 2nd-level residuals were spatially interpolated with OK and IDW. 
The landscape trend and the canopy vs. gap trends are then added back 
to the interpolated residuals to obtain the estimated snow depths in 
unsampled areas. 

3.3.3. Interpolation method 3 
In method 3, the detrended snow depth data from method 1 (residual 

1) was used to determine the intra-canopy snow depth patterns. A 
number of studies reported increasing snow depths with increased dis
tance from tree stems towards the tree canopy (Pomeroy and Dion, 
1996; Musselman et al., 2008; Revuelto et al., 2015; Zheng et al., 2019). 
As such, the correlation between snow depth under the canopy and the 
scaled distance from the tree stem was investigated. For each snow 
depth grid cell located within a canopy, the distance from the tree stem 
location (as identified by treetops) to the snow depth grid cell was 
calculated and then scaled by the total distance from the tree stem to the 
tree canopy edge. A scaled distance was used to account for the different 
tree canopy sizes. Then, a second-order polynomial function was fitted 
to snow depth residual 1 and corresponding scaled distances (Fig. 5) to 
estimate the intra-canopy trend (Table 1; Eq. 4). Since the point density 
tended to increase from the tree stem towards the canopy edges, the 
polynomial model was weighed according to point density over the 
scaled distance. The point density was estimated with a gaussian kernel 
window with a 0.1 scaled distance bandwidth (standard deviation =
0.1). An interaction term with tree height was included, to account for 
the different intra-canopy trends with tree sizes (Fig. 5). The fitted 
polynomial function showed an adjusted R2 of 0.70. Finally, the intra- 
canopy trend was removed from residual 1, and the residuals from the 

Fig. 4. Schematic illustration of the interpolation methods.  

Fig. 5. Variation of snow depth residual 1 with scaled distance. Points are 
colored by the tree height. 
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intra-canopy trend (‘residual 3’ in Fig. 4) were spatially interpolated 
using OK and IDW (Fig. 4). 

3.3.4. Interpolation method 4 
Method 4 removed both the landscape trend and the canopy vs. gap 

trend (yielding the 2nd order residuals in Fig. 4). The same intra-canopy 
polynomial model described in method 3 was fitted on the 2nd order 
residuals to obtain the intra-canopy trend (Fig. 4 and Table 1; Eq. 4), 
yielding an adjusted R2 of 0.70. Subtracting the intra-canopy trend from 
residual 2 yielded the 4th-level residuals (‘residual 4’ in Fig. 4), which 
were then spatially interpolated using OK and IDW. 

3.4. Cross-validation of the interpolation methods 

Cross-validation was used to estimate the prediction performance of 
the respective interpolation methods. One-hundred random snow depth 
grid cells were used as test data from the entire study area. The effect of 
the distance between the sampled and unsampled grid cells on the 
prediction (i.e., the effect of the local point density on the quality of the 
interpolation) was investigated in the following manner. All the sur
rounding training (sampled) grid cells within a distance D of each of the 
test (unsampled) grid cells were removed from the training set. Then, 
the models were trained on training data that are beyond the distance D 
from test data (Fig. 6) and these trained models were used to predict the 
snow depths at test locations. D varied from 0 to 5 m, with an interval of 
0.5 m. The whole procedure was repeated 20 times to reduce the sam
pling uncertainty. The root mean squared error (RMSE), bias, and 
Pearson correlation coefficient were used as validation statistics and 
reported as a function of the mean distance between the unsampled 
(test) grid cells and the three closest training grid cells to each test grid 
cell. The validation statistics were calculated for the four interpolation 
methods as well as for the trend models only, i.e., without spatial 
interpolation of the trend residuals, and compared with the reference 
method (spatial interpolation of raw snow depths using OK and IDW) to 
investigate the effect of incorporating trends in snow depth estimates. 

4. Results and discussion 

4.1. Interpolated snow depth maps 

Fig. 7 shows the interpolated snow depth obtained by the different 

methods. Since snow depth maps derived from the OK method showed 
negligible to no visible difference with the corresponding IDW snow 
depth estimates, only the results from OK are shown in the main text. 
IDW results are included in supplementary. The snow depth patterns 
obtained by the four interpolation methods are overall similar, but fine 
scale differences are apparent (Fig. 7a–d). For instance, the area west of 
the large gap is covered by a dense canopy (Fig. 3) and consequently 
shows more observation gaps due to few lidar returns in this area 
(Fig. 1c, d). The snow depths interpolated by method 1 in this area 
display smoothed spatial variability, notably between under-canopy and 
forest gaps (Fig. 7a). Consideration of the measured canopy vs. gap snow 
depth trend in method 2 shows some disruptions in the previously 
smoothed snow depth variability in this area, i.e., snow depth differ
ences between under-canopy areas and forest gaps (Fig. 7b). Compared 
to methods 1 and 2, the consideration of intra-canopy snow depth trend 
in methods 3 and 4 shows clear differences in snow depths between 
under-canopy areas and forest gaps and snow depth variability under 
the canopy (Fig. 7c, d). Snow depth maps produced by methods 3 and 4 
do not exhibit any visual difference, implying that it is rather the intra- 
canopy trend that causes most of the differences in snow depths between 
under-canopy and forest gaps, i.e., consideration of the canopy vs. gap 
trend in method 4, in addition to the other systematic trends considered 
in method 3, does not seem to produce visibly different results compared 
to method 3. 

Snow depth differences between methods illustrate the relative effect 
of the different interpolation methods (Fig. 7 -bottom row). Negligible 
differences in snow depths between method 1 and the reference method 
(Fig. 7e) indicate that the landscape trend is not pronounced in the data. 
The larger snow depth differences between methods 2 and 1 (Fig. 7f) 
show the substantial impact of including the canopy vs. gap snow depth 
trend. Fig. 7g shows comparatively large differences in snow depths 
between methods 3 and 1 and adding the intra-canopy trend on residual 
1 tends to smooth the sharper gap vs. canopy pattern introduced by 
method 2. It further suggests that method 1 overestimates snow depths 
at some locations (negative values in Fig. 7g) and underestimates 
(positive values in Fig. 7g) at others compared to method 3. Similar 
patterns are observed in Fig. 7h, which shows the effect of adding the 
intra-canopy trend on residual 2. 

The different interpolation methods resulted in different probability 
density distributions of snow depths over the study area (Fig. 8). The 
higher raw snow depth observed in forest gaps compared to under- 
canopy in Fig. 8 corroborates results found in previous studies (Mus
selman et al., 2008; Revuelto et al., 2015; Uhlmann et al., 2018; Maz
zotti et al., 2019). This difference becomes more evident once the snow 
depths are interpolated, as the snow depth probability density distri
butions below the canopy become more skewed towards smaller values. 
The snow depth probability density distribution in full domain obtained 
using the raw (not interpolated) data appears to be biased by the higher 
snow depths in forest gaps. This is not surprising due to the over- 
sampling and under-sampling of snow depths in forest gaps and 
under-canopy, respectively (see snow depth map in Fig. 1). All the 
interpolated methods implemented here seem to rectify this issue. 
Moreover, the similar probability density distributions of snow depths in 
forest gaps obtained by all the interpolation methods indicate that these 
have the least effect in the forest gaps, where the point density is highest, 
than in the forest. In canopies, reference (spatial interpolation of raw 
snow depths using OK), methods 1 and 2 show noisier and tighter (less 
variable) distributions, whereas methods 3 and 4 show similar, 
smoother, and wider (more variable) distributions. These results show 
that estimating area-wide snow depth distributions and their summary 
statistics from sparse lidar snow depths in forested areas entails a sig
nificant error and interpolation is necessary to eliminate the bias due to 
canopy under-sampling. 

Fig. 6. Illustration of the cross-validation scheme. Selected test grid cells (blue) 
are chosen randomly and training grid cells within a separation distance (D) are 
eliminated to investigate the impact of lidar sampling density on the interpo
lation performance. (For interpretation of the references to colour in this figure 
legend, the reader is referred to the web version of this article.) 
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4.2. Cross-validation 

Of all the methods with spatial interpolation (trends + spatial 
interpolation of residuals; column one in Fig. 9), method 1 shows the 
lowest interpolation performance with higher RMSE, bias, and lower 
correlation coefficient. Moreover, method 1 exhibits negligible differ
ences with the reference method in which spatial interpolation tech
niques were directly applied to the raw snow depths (black vs pink 
graphs in Fig. 9a, c, e). This suggests an absence of pronounced land
scape trend in the study area; hence, removing or not the trend does not 
have a substantial effect on interpolation. However, in larger areas and/ 
or with more pronounced elevation ranges where temperature and 
precipitation lapse rate gradients start to impact snow accumulation, the 
landscape trend would be expected to be important and would need to 
be considered. Among the four methods, method 4 shows the highest 
performance with lower RMSE, bias, and higher correlation coefficient. 
Methods 3 and 2 scored second and third in terms of RMSE and corre
lation coefficient, though showing similar biases (Fig. 9c). The OK and 
IDW spatial interpolation techniques generally yield similar accuracies 
(Supplement Fig. S3). All methods show degrading accuracies with 
increasing distance between unsampled and sampled snow depth grid 
cells. 

Column two in Fig. 9 shows the prediction error when using only the 

systematic trends, without spatial interpolation of residuals, and allows 
seeing the effect of incorporating trends within the interpolation 
methods. Similar to when using spatial interpolation (Fig. 9, column 
one), methods 1 and 4 show the lowest and highest performances 
respectively, while methods 3 and 2 show intermediate performances. 
However, the noticeable bias in method 3 seen in Fig. 9d indicates that 
ignoring the canopy vs. gap trend in method 3 may lead to a positive bias 
in mean snow depth across the domain, due to lidar snow depth being 
biased towards the gaps (Fig. 1 and 8). However, the spatial interpola
tion of residuals in method 3 seems to largely compensate this problem, 
as the bias becomes comparable, albeit slightly larger, than method 2 
and 4 which both include the gap vs. canopy trend (Fig. 9c). In general, 
column two shows that incorporating trends within the interpolation 
methods slows the degradation of the prediction accuracy with 
increasing distance between unsampled and sampled points. 

4.2.1. Impact of lidar snow depth sampling density on interpolation 
Fig. 9 also provides an indication of two limiting distances (or 

sampling densities) within which the interpolation methods can be used. 
As observed from the first column, up to a distance of ~1 m between 
sampled and unsampled locations, all methods show similar and better 
performances compared to when the inter-grid separation distances in
crease by >1 m. This suggests that when the distance between 

Fig. 7. Interpolated snow depth maps: (a) method 1, (b) method 2, (c) method 3, (d) method 4; snow depth difference between methods: (e) method 1 – reference, (f) 
method 2 – method 1, (g) method 3 – method 1, and (h) method 4 – method 2. Canopy polygons are demarcated by grey lines. Note that Fig. 7e shows as white due to 
the very small snow depth differences (− 0.02–0.03 m). 

Fig. 8. Probability density distributions of snow depths interpolated by OK for (a) full domain, (b) under-canopy, and (c) forest gaps. The density distributions were 
computed using a gaussian kernel with a standard deviation of 0.01. The Raw snow depth distributions correspond to snow depths not interpolated (See section 3.1). 
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unsampled and sampled grid cells is <1 m, (i.e., ground surface lidar 
point density is >1 pt. m− 2) spatial interpolation techniques based on 
spatial autocorrelation like OK have sufficient information to resolve 
and reconstruct small-scale snow depth patterns. Above 1 m, the per
formance of the different methods is no longer similar and starts 
degrading, but at a slower rate than that below 1 m. Column one shows 
that past 1 m, incorporating trends slows the degradation of accuracies 
with increasing inter-grid cell distances, and canopy vs. gap and intra- 
canopy trends (method 2, 3, and 4) significantly improve the interpo
lation performances compared to the reference method that ignores 
these trends. This highlights the necessity of explicitly modelling trends 
past this distance as they are not well represented by OK interpolation 
when the inter-grid cell distance increases beyond 1 m (lidar ground 
point density is <1 pt. m− 2). 

A comparison of the two columns in Fig. 9 suggests another limiting 
distance at ~2.5–3 m. Past this distance, the interpolation of trend re
siduals with OK (Fig. 9 a, c, e) degrades the performance compared to 
using the trends alone for prediction (Fig. 9 b, d, f). This is particularly 
evident in the RMSE and correlation coefficient plots. This suggests that 
when the distance between sampled and unsampled grid cells is larger 
than 2.5–3 m (point density <0.33–0.40 pt. m− 2), the snow depth grid 
cells are too separated to inform each other, i.e., to provide meaningful 

interpolation based on spatial autocorrelation. The resulting interpo
lated snow depth maps thus suffer from high uncertainties. As such, 
when the ground surface point density is lower, the modelled systematic 
trends (landscape, canopy vs. gap, and intra-canopy) would provide 
more accurate gap-filled snow depth maps than using spatial interpo
lation methods. 

4.2.2. Comparison to previous studies 
The first, lower limiting distance found in this study (1 m, or ground 

point density of 1 pt. m− 2) is in agreement with the threshold ground 
surface point density found by Guo et al. (2010) and Zheng et al. (2019) 
for airborne lidar surveys in order to generate high-accuracy DEMs and 
to capture the tree wells in snow surfaces. Similar to Guo et al. (2010), 
we found an RMSE of <0.15 m for interpolated snow depths when 
ground surface point density is larger than 1 pt. m− 2. However, Zheng 
et al. (2019) emphasized that the effect of point density is more signif
icant in densely forested areas like Montmorency than in more sparsely 
forested areas, as with latter, low lidar point density can offset the 
overestimation in tree wells under canopies and underestimation at 
snow peaks in forest gaps. 

The second, higher limiting distance of 2.5–3 m is in the same order 
of magnitude as the maximum canopy radius (7 m) found in 

Fig. 9. Error statistics with the distance between unsampled (test) and sampled (training) grid cells (a, b) RMSE (c, d) bias, and (e, f) correlation coefficient. Panels in 
the first column are for methods with spatial interpolation. Reference indicates spatial interpolation of raw snow depths with OK, without consideration of trends. 
The second column is without spatial interpolation, i.e., only using trends for prediction of the unsampled grid cells. 
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Montmorency, and half of the scale break distance (4.5 m in bare earth 
topography+trees and 6.5 m in snow depth) found for Montmorency by 
Dharmadasa et al. (2023). Therefore, when the distance between 
sampled and unsampled grid cells is larger than this threshold, we risk 
interpolating grid cells with little to no spatial correlation (i.e., grid cells 
within and outside the canopy), hence degrading the accuracy of gap- 
filling. Especially beneath the canopy, intra-canopy trends help preser
ving the variability of snow depths when ground point density is lower. 
This confirms our hypothesis that spatial interpolation methods that 
only exploit the spatial correlation of available lidar snow depths will be 
insufficient to fill the gaps in coniferous forests, where systematic vari
ations in snow depth occur over beneath and among tree canopies. 

5. Conclusions 

Given the typical under-sampling of lidar ground surface points 
under the canopy and limitation of existing interpolation techniques in 
accurately representing snow depth variability within canopy areas, the 
new interpolation methods introduced in this study exhibit promising 
potential. Our results suggest that the spatial interpolation method that 
incorporates systematic trends in snow accumulation at the landscape, 
canopy vs. gaps, and intra-canopy scales yield significant improvements 
for gap-filling when the distance between sampled and unsampled lidar 
snow depth grid cells is larger than 1 m (ground point density of <1 pt. 
m− 2). However, beyond a distance of 2.5–3 m (point density <
0.33–0.40 pt. m− 2), the point separation becomes larger than the snow 
depth spatial correlation scale, and spatial interpolation based on 
proximity alone becomes useless. Below a separation distance of 1 m, (i. 
e., ground surface point density > 1 pt. m− 2), spatial interpolation 
methods without consideration of trends are sufficient to capture and 
reconstruct the small-scale variability of snow depths. This suggests that 
consideration of the trends only becomes useful for areas with a ground 
surface point density of <1 pt. m− 2. Within these limiting distances, 
consideration of trends along with spatial interpolation techniques can 
resolve the small-scale variability and thereby reduce the likely over
estimation of snow depths under the canopy. In this context, within the 
prescribed distance range, method 4, which includes all systematics 
trends yielded the best performance followed by methods 3, 2, and 1, 
respectively. 

6. Recommendations 

The proposed interpolation method in this study can be easily 
applied to any area subjected to fine-tuning of the window size for 
treetop identification. While this approach primarily targets coniferous 
environments, its adaptability to deciduous settings is plausible. How
ever, given the limited intra-canopy and canopy vs. gap snow depth 
variations in deciduous environments, modelling these trends as part of 
the interpolation scheme may not yield significant improvements. It is 
worth noting that running the R script (Supplement) on a standard 
computer can be somewhat computationally intensive. For instance, on 
a Core i7 computer equipped with 32 Gb RAM and a 3.2 GHz processor, 
the R script took approximately 1.5 h to execute (excluding the cross- 
validation part) for a 100 × 100 m area. In contrast, on a Core i7 
computer with 64 Gb RAM and a 3.6 GHz processor, the same took 0.7 h 
to complete. Therefore, we expect that the computational demand of the 
method will be lower when implemented on a high-performance 
computing system. It is also expected that the areas larger than the 
study site tested here would cause increased computational time. 

Author contributions 

Conceptualization, C.K.; methodology, C.K. and V.D.; formal anal
ysis, V.D. and C.K.; data curation, V.D.; writing-original draft prepara
tion, V.D.; writing-review and editing, C.K. and M.B.; supervision, C.K. 
and M.B.; project administration, C.K.; funding acquisition, C.K. 

Funding 

This study was financially supported by the Canada Research Chair 
program (grant number 231380) and the Natural Sciences and Engi
neering Research Council of Canada (NSERC discovery grant CRSNG- 
RGPIN-2015-03844) (Christophe Kinnard) and a doctoral scholarship 
from the Centre de Recherche sur les Interactions Bassins Versants- 
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