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A B S T R A C T   

Wave runup is a critical factor that affects coastal flooding, shoreline changes, and the damage to coastal 
structures. Climate change is also expected to amplify the impact of wave runup on coastal areas. Therefore, fast 
and accurate wave runup estimation is essential for effective coastal engineering design and management. 
However, predicting the time-dependent wave runup is challenging due to the intrinsic nonlinearities and non- 
stationarity of the process, even with the use of the most advanced machine learning techniques. In this study, a 
physics-informed machine learning-based approach is proposed to efficiently and accurately simulate time-series 
wave runup. The methodology combines the computational efficiency of the Surfbeat (XBSB) mode with the 
accuracy of the nonhydrostatic (XBNH) mode of the XBeach model. Specifically, a conditional generative 
adversarial network (cGAN) is used to map the image representation of wave runup from XBSB to the corre
sponding image from XBNH. These images are generated by first converting wave runup signals into time- 
frequency scalograms and then transforming them into image representations. The cGAN model achieves 
improved performance in image-to-image mapping tasks by incorporating physics-based knowledge from XBSB. 
After training the model, the high-fidelity XBNH-based scalograms can be predicted, which are then used to 
reconstruct the time-series wave runup using the inverse wavelet transform. The simulation results underscore 
the efficiency and robustness of the proposed model in predicting wave runup, suggesting its potential value for 
applications in risk assessment and management.   

1. Introduction 

The phenomenon of storm-induced wave runup poses significant 
risks of erosion, flooding, and damage to coastal infrastructures. Several 
factors affect the magnitude of wave runup, including wave character
istics, coastal topography, and the presence of engineered structures 
such as breakwaters (Muttray et al., 2007; Roelvink et al., 2009). As sea 
levels continue to rise and storm intensities increase due to climate 
change, wave runup is becoming an increasingly important issue since it 
is expected to exacerbate the effects of flooding events along coastal 
areas (Wolf, 2009; Didier et al., 2015; Snaiki et al., 2020; Safari Ghaleh 
et al., 2021). Consequently, accurate modeling of wave runup is crucial 
to support coastal engineers in designing and managing coastal infra
structure effectively, mitigating the adverse effects of extreme storm 
events (Ruggiero et al., 2001; Casella et al., 2014; Kijewski-Correa et al., 
2020; Hermawan et al., 2023). Additionally, by understanding and 
simulating the fundamental mechanisms of wave runup, stakeholders 
and planners can make judicious decisions to enhance coastal resilience, 

protect vulnerable areas, and minimize the potential risks posed by 
storm-induced flooding. 

Several approaches have been developed to simulate the wave runup 
mechanism, including the numerical models. These models can gener
ally be classified into phase-averaged and phase-resolving numerical 
approaches (Fiedler et al., 2018). While phase-resolving models effec
tively capture individual wave phases, leading to a higher level of pre
cision in simulating the wave characteristics, they come with a higher 
computational cost. On the other hand, phase-averaged models are 
faster and less accurate, as they provide an average representation of 
wave behavior over time intervals (Buckley et al., 2014; Lashley et al., 
2018). For instance, the Boussinesq equations, derived from the 
Navier-Stokes equations, can resolve wave properties and capture both 
the long-term effects of wave setup and the short-term effects of wave 
breaking (Chen et al., 2000; Kennedy et al., 2000). Several numerical 
tools and software applications have been developed based on the 
Boussinesq equations to simulate wave runup, such as BOSZ, FUN
WAVE, BOUSS-2D, BOUSS-1D and XBeach (Kennedy et al., 2012; 
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Stockdon et al., 2014; Quataert et al., 2015; Pearson et al., 2017; Lashley 
et al., 2018; Roelvink et al., 2018; Yao et al., 2018; Ning et al., 2019a, 
2019b; Pinault et al., 2020; Rutten et al., 2021; Li et al., 2021; Amini and 
Marsooli, 2023). For example, Hatzikyriakou and Lin (2018) assessed 
the vulnerability of structures and residential communities to coastal 
flooding from Hurricane Sandy along the coastlines of New York and 
New Jersey. They simulated the storm surge and waves over the Atlantic 
Ocean, spanning six days prior to and one day after Sandy’s landfall 
using the coupled Advanced CIRCulation (ADCIRC) and Simulating 
WAves Nearshore (SWAN) numerical models. The outputs from these 
models were subsequently utilized to simulate the wave runup, wave 
overtopping and inland flooding. This simulation employed the 
one-dimensional phase-resolving Boussinesq surf zone model 
(BOUSS1D), implemented using a sequence of 1D cross-shore transects 
with a 2 m grid spacing. On the other hand, De Beer et al. (2021) applied 
the short-wave resolving, Nonhydrostatic (XBNH) and short-wave 
averaged, Surfbeat (XBSB) modes of the XBeach numerical model to 
simulate wave runup and swash on an intermediate-reflective sandy 
beach in Duck, North Carolina. They concluded that XBNH effectively 
models the incident-band swash, infragravity-band swash, and runup 
compared to XBSB, which underestimates the incident-band swash and, 
to a lesser extent, the infragravity-band swash. 

In scenarios involving probabilistic analysis and risk assessment 
(Snaiki and Parida, 2023a, 2023b), the use of high-fidelity numerical 
models may not be efficient. As a result, alternative models, including 
empirical and machine learning techniques, have been developed to 
rapidly estimate wave runup in terms of important factors such as the 
wave height, wave period, beach slope and other beach characteristics 
(Didier et al., 2016; Vinodh and Tanaka, 2020). For example, the 
empirical models are usually based on simplified mathematical formu
lations to estimate some statistical parameters, including Rmax (the 
highest runup achieved at any given time) and R2 % (the elevation 
exceeded by only 2 % of the runup events) (e.g., Hunt, 1959; Holman, 
1986; Mase, 1989; Van der Meer and Stam, 1992; Hedges and Mase, 
2004; Ruggiero et al., 2004; Stockdon et al., 2006; Vousdoukas et al., 
2012; Park and Cox, 2016). These models often express the runup level 
in terms of the nondimensional Iribarren number, also known as the surf 
similarity parameter, which accounts for both beach and wave charac
teristics (Senechal et al., 2011; Blenkinsopp et al., 2016). The empirical 
models are usually developed based on numerical or observed data from 
field measurements or laboratory experiments (Atkinson et al., 2017). 
While these models are simple and practical, they may fail to capture the 
inherent nonlinearities within the model and can be limited in accu
rately predicting wave runup in extreme conditions (Guimaraes et al., 
2015; Cohn and Ruggiero, 2016; Di Luccio et al., 2018). Furthermore, 
the effectiveness of these models can vary depending on the particular 
coastal conditions and wave characteristics being considered. To over
come these limitations, advanced data driven techniques like machine 
learning have been developed (Wu and Snaiki, 2022). For instance, 
Power et al. (2019) compared the predictive ability of seven empirical 
models with the Gene-Expression Programming (GEP) model for esti
mating R2 %. The training/testing data were collected from both field 
and laboratory measurements corresponding to various beach configu
rations involving different sediment sizes and bed roughness. The ob
tained results revealed that the GEP model successfully captured the 
nonlinear effects of the wave runup mechanism and hence outperformed 
all other empirical models. Rehman et al. (2022) predicted Rmax over 
different arrays of rubble mound and caisson-type breakwaters using 
two techniques, namely a feed-forward artificial neural network (ANN) 
and a response surface methodology (RSM). The training dataset was 
retrieved from numerous experimental tests conducted within a labo
ratory flume. Although both ANN and RSM models effectively simulated 
the maximum wave runup, the statistical performance of the former 
exhibited a slight superiority. Tarwidi et al. (2023) trained an extreme 
gradient boosting (XGBoost) model based on experimental datasets to 
estimate the relative wave runup on a sloping beach. Furthermore, the 

XGBoost model was compared against three machine learning models, 
namely the multiple linear regression, support vector regression, and 
random forest. The XGBoost model demonstrated superior performance 
compared to all other machine learning methods in predicting wave 
runup. While various alternative machine learning approaches have 
been employed for wave runup modeling (e.g., Bonakdar and 
Etemad-Shahidi, 2011; Beuzen et al., 2019; Yao et al., 2021; Mahda
vi-Meymand et al., 2022), most of these applications focus on predicting 
a limited set of statistical measures such as Rmax and R2 %. 

Due to the intrinsic nonlinearities, transient nature, and nonsta
tionary characteristics of the wave runup process, predicting the tem
poral evolution of wave elevation remains exceptionally challenging, 
even with advanced machine learning techniques. As a result, innova
tive strategies are needed to help machine learning methods address 
these complexities. This study introduces a novel physics-informed 
machine learning-based approach for simulating time-series wave 
runup, which combines the efficiency of XBSB with the accuracy of 
XBNH mode. The training datasets for this approach are generated from 
both XBSB and XBNH wave runup simulations, corresponding to various 
storm scenarios. These scenarios are implemented as boundary condi
tions within the selected basin using a simplified representation based 
on the JONSWAP spectrum. In the proposed model, wave runup values 
generated by the XBSB mode are used as inputs to predict the corre
sponding wave runup values using the XBNH mode. Specifically, the 
signals from both the XBSB and XBNH models are initially transformed 
into the time-frequency domain using the Morlet wavelet transform 
technique, resulting in scalograms. These scalograms are then converted 
into images and fed into a Conditional Generative Adversarial Network 
(cGAN), which establishes a mapping between the image representa
tions of the scalograms derived from the XBSB and XBNH modes. Once 
the model is trained, it can predict the high-fidelity XBNH-based sca
lograms, which are used to reconstruct the time-series wave runup re
sults through the inverse wavelet transform. To demonstrate the 
proposed methodology, a simplified case study is conducted involving a 
1D basin profile with varying depths. Additionally, the performance of 
the model in predicting wave runup is assessed across multiple case 
scenarios. 

2. Numerical prediction of wave runup 

2.1. Wave runup simulation overview 

Wave runup refers to the maximum elevation reached by waves on a 
beach or shoreline and it is a critical factor affecting coastal inundation 
and erosion (Stockdon et al., 2006; Roelvink et al., 2009). During 
extreme conditions such as hurricanes (Snaiki and Wu, 2020a), the 
combination of high waves, storm surge, tides, and currents significantly 
influences wave runup, ultimately determining the extent of flooding 
(Kennedy et al., 2012; Marcos et al., 2019). The main factors affecting 
wave runup include the wave height, wave period, beach slope, bed 
roughness, tidal level, and wind set-up. Various methods are used to 
simulate wave runup, including empirical, numerical, and physical 
(experimental) models (Li and Raichlen, 2003; Liang et al., 2013; Gui
maraes et al., 2015). Physical models are valuable for understanding 
wave runup processes but are costly and time-consuming to set up. 
Empirical models are limited to simple applications due to their inability 
to capture the full complexity of wave runup. Numerical models, on the 
other hand, can solve complex fluid dynamics problems with high ac
curacy. To simulate wave runup on coastal areas, several numerical 
models have been developed. For example, ADCIRC is usually coupled 
with the SWAN model to simulate the storm surge and waves for shallow 
waters (Luettich et al., 1992; Booij et al., 1999). However, the high 
computational requirements of these models limit their ability to resolve 
small-scale coastal features (Saviz Naeini and Snaiki, 2023). As a result, 
these models may be accurate for simulating large-scale processes, but 
may not be able to capture the intricate details of nearshore dynamics 
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(Hatzikyriakou and Lin, 2018). To overcome these limitations, Boussi
nesq equations have been proposed to simulate the propagation and 
transformation of waves in shallow water, as well as to estimate the 
runup height and velocity of waves as they approach the coastline. These 
equations are derived from the Navier-Stokes equations and make 
simplifying assumptions, such as neglecting the vertical acceleration of 
the water and averaging the velocity field over a vertical layer. This 
allows them to resolve small-scale coastal characteristics that would be 
difficult to capture with other models (Yao et al., 2012; Su et al., 2015). 
Several numerical models and software have been developed based on 
the Boussinesq equations, including FUNWAVE, BOSZ, BOUSS-2D, 
BOUSS-1D and XBeach. The latter is one of the most widely used and 
recognized open-source models for simulating wave runup and other 
coastal processes. It has been rigorously applied and validated to 
simulate a wide range of wave phenomena, including wave propagation, 
wave breaking, and wave runup (Roelvink et al., 2009, 2018). Due to its 
robustness, XBeach model will be used in this study for the simulation of 
wave runup. Further discussion about the XBeach model is provided in 
the next section. 

2.2. XBeach model overview 

XBeach is a numerical model that simulates hydrodynamic and 
morphodynamic processes on coastlines. It offers three distinct modes, 
each with different levels of computational efficiency and complexity, 
namely the Stationary mode, the Surf-Beat (XBSB) mode and the Non
hydrostatic (XBNH) mode (Bart, 2017; Ruffini et al., 2020). The Sta
tionary mode is the simplest model in XBeach since it solves the 
wave-averaged equations, focusing primarily on short waves and 
neglecting infragravity waves. This mode is computationally efficient 
and suitable for scenarios where the long-wave effects can be neglected. 
The XBSB mode, also denoted as the instationary mode, is more accurate 
than the Stationary mode because it averages the short waves (short-
wave envelope) and resolves the long-waves while accounting for the 
interaction between them. The XBNH mode is the most accurate mode, 
as it resolves both short and long waves by solving a combination of 
non-linear shallow water equations with a pressure correction term. This 
mode provides a comprehensive representation of wave dynamics but is 
computationally expensive, making it unsuitable for real-time risk 
evaluation (De Alegria-Arzaburu et al., 2011; Harris et al., 2018; Roel
vink and Costas, 2019). Since both the XBSB and XBNH modes will be 
used in this study, a brief description of their mathematical formulation 
is presented below. 

2.2.1. XBSB mode 
The XBSB mode solves the short-wave averaged wave action balance 

equations with time-dependent forcing. This mode also employs a roller 
model to represent the momentum stored at the water surface after wave 
breaking (Svendsen, 1984; Nairn et al., 1990). The wave action balance 
equation used in the XBSB mode is given by: 

∂A
∂t

+
∂cxA
∂x

+
∂cyA
∂y

+
∂cθA
∂θ

= −
Dw

σ (1)  

with the wave action: 

A(x, y, t, θ)=
Sw(x, y, t, θ)

σ(x, y, t)
(2)  

where Sw = wave energy density; σ = intrinsic wave frequency; h = local 
water depth; k = wave number; cx,cy = wave-action propagation speed 
in the x and y directions, respectively; cθ = wave-action propagation 
speed in the directional θ space; and Dw = dispersion due to wave 
breaking. The dispersion due to wave breaking can be modeled using 
several variations of the formulation proposed by (Roelvink, 1993). For 
example, it can be expressed as: 

Dw(x, y, t, θ)=
Sw(x, y, t, θ)
Ew(x, y, t)

(

2
α

Trep
QbEw

)

(3)  

Qb = 1 − exp
(

−

(
Hrms

Hmax

)n)

, Hrms =

̅̅̅̅̅̅̅̅
8Ew

ρg

√

,Hmax = γ.(h+ δHrms) (4)  

where α = calibration coefficient for dissipation; Trep = representative 
wave period; Ew = total wave energy; Hrms = root-mean-square wave 
height; ρ = water density; g = gravitational acceleration; Hmax =

maximum wave height; n = empirical coefficient; γ = breaker param
eter; and δHrms = fraction of the wave height. The radiation stresses can 
be calculated using the linear wave theory, given the distribution of 
wave action and wave energy in space: 

Sxx,w(x, y, t)=
∫ (

cg

c
(
1+ cos2 θ

)
−

1
2

)

Swdθ (5)  

Sxy,w(x, y, t)= Syx,w =

∫

sin θ cos θ
(

cg

c
Sw

)

dθ (6)  

Syy,w(x, y, t)=
∫ (

cg

c
(
1+ sin2 θ

)
−

1
2

)

Swdθ (7)  

where Sxx,w,Syy,w,Sxy,w,Syx,w = shear components of the radiation stress; 
cg = group velocity obtained from linear theory; c = phase velocity; and 
θ = angle of incidence with respect to the x-axis. The generated surface 
wave stresses are subsequently transmitted to the long-wave model, 
which is based on nonlinear shallow water equations. This model is 
utilized to simulate the currents and long-waves, such as surges. It is 
important to note that in the XBSB mode, the nonlinear shallow water 
equations solely consider the hydrostatic pressure. 

2.2.2. XBNH mode 
The XBNH mode is a phase-resolving model which resolves both the 

incident and infragravity wave motion. The depth-averaged flow is 
computed using the non-hydrostatic nonlinear shallow water equations 
which can be expressed for the two-dimensional case as: 

∂η
∂t

+
∂uh
∂x

+
∂vh
∂y

= 0 (8)  

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

− vh

(
∂2u
∂x2 +

∂2u
∂y2

)

= −
τbx

ρh
−

1
ρ

∂(q + ρgη)
∂x

(9)  

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

− vh

(
∂2v
∂x2 +

∂2v
∂y2

)

= −
τby

ρh
−

1
ρ

∂(q + ρgη)
∂y

(10)  

where t = temporal coordinate; u = depth-averaged velocity in x (cross- 
shore) direction; v = depth-averaged velocity in y (alongshore) direc
tion; vh = horizontal viscosity; ρ = water density; q = depth-averaged 
dynamic nonhydrostatic pressure; h = local water depth; and τbx, τby =

bed shear stresses in x and y direction. The XBNH mode is significantly 
more computationally demanding than the XBSB mode because it re
solves both the long and short waves. This requires high spatial reso
lution and smaller time steps, which increases the computational cost. 

3. Proposed wave runup model 

3.1. Proposed model overview 

As mentioned earlier, both XBSB and XBNH have their own strengths 
and limitations. XBSB stands out for its relatively low computational 
requirements, making it suitable for various applications like probabi
listic and risk assessment. However, its simplified assumptions, such as 
wave averaging, prevent it from achieving the same level of accuracy as 
XBNH. On the other hand, XBNH provides more precise simulations but 
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entails high computational costs due to the involvement of multiple 
nonlinear equations. Thus, the objective of the proposed study is to 
develop a new model that leverages the efficiency of XBSB along with 
the accuracy of XBNH mode. Specifically, a machine learning model will 
be developed to predict the time-series wave runup. This model will take 
as input the wave runup simulations generated based on the XBSB mode 
and will predict the corresponding wave runup simulations from the 
XBNH mode. The machine learning model will be trained on a dataset 
generated from XBSB and XBNH wave runup simulations corresponding 
to several storm scenarios. Once the model is trained, it can be used to 
predict the wave runup for any given set of input conditions. 

The storm scenarios are first implemented as the boundary condi
tions of the selected basin using a simplified representation based on the 
JONSWAP spectrum. Subsequently, both the XBSB and XBNH models 
are run using these scenarios to generate the required database for 
model training and testing. The simulation results from the XBSB model 
are utilized as inputs for the machine learning model, while the simu
lation results from the XBNH model serve as the model’s outputs. Pre
dicting the time series wave runup, with its high fluctuations, is a highly 
intricate task. Even with advanced algorithms like the long short-term 
memory networks (LSTM), directly using the time series as inputs/out
puts for the machine learning model poses significant challenges (Liu 
et al., 2022). Therefore, an alternative approach is required to effec
tively handle this complexity. As indicated in Fig. 1, the signals gener
ated from both the XBSB and XBNH models are first converted to the 
time-frequency domain using the Morlet wavelet transform method. 
This transformation generates scalograms that visually represent the 
frequency content of the wave runup simulations as a function of time. 
These scalograms serve as a valuable visual representation, enabling an 
easy identification of interesting features and patterns within the data 
efficiently. The obtained scalograms are further transformed into images 
and used by the machine learning model. Specifically, the scalograms 
(images) derived from the XBSB simulations are utilized as the inputs for 
the machine learning model, while the corresponding scalograms (im
ages) generated from the XBNH simulations are treated as the outputs of 
the model. In this study, a Conditional Generative Adversarial Network 
(cGAN) is employed to establish a mapping between the image repre
sentations of the XBSB-based scalograms and the XBNH-based scalo
grams. The cGAN model is trained to generate XBNH-based scalograms, 
which are subsequently used to reconstruct the time-series wave runup 
results through the inverse wavelet transform as indicated in Fig. 1. A 
detailed discussion of the cGAN model is provided in the subsequent 
section. 

3.2. Machine learning methods 

In this study, a Conditional Generative Adversarial Network (cGAN) 
is employed to establish a mapping between the XBSB-based image and 
its corresponding XBNH-based image, representing the scalograms 
(Isola et al., 2017). The cGAN model is a type of GAN which generates 
data (similar to GAN) that satisfies certain conditions (Mirza and Osin
dero, 2014). A typical GAN model consists of two neural networks, 
namely a generator and a discriminator. The generator is responsible for 
creating new (synthetic) data that should resemble the real data, while 
the discriminator is responsible for determining whether the data from 
the generator is real or fake. The two networks are trained in an 
adversarial manner, engaging in a constant competition to outperform 
each other (Goodfellow et al., 2014). The key difference between the 
GAN and cGAN network lies in the input and output mechanisms. In a 
standard GAN model, the generator network takes random noise as input 
and generates synthetic data as output and the discriminator network 
tries to distinguish between real and fake data. On the other hand, a 
cGAN model introduces the concept of conditional input. Specifically, in 
addition to random noise, the generator in a cGAN also takes additional 
conditioning information as input which could be a specific label or 
some other form of auxiliary information that provides additional 
context for generating the output. Similarly, the discriminator, receives 
both real and fake data along with the same conditioning information. 
This conditioning mechanism enhances the control over the generated 
samples, making cGAN a promising approach for various applications, 
including image-to-image mapping. The typical architecture of the 
cGAN model is depicted in Fig. 2 (Isola et al., 2017; Ji et al., 2018). 

The objective function of a cGAN model can be generally expressed 
in terms of the generator loss and the discriminator loss. While the 
generator loss aims to minimize the discrepancy between the generated 
samples and the real samples, the discriminator loss aims to maximize 
the discriminator’s ability to correctly classify between real and gener
ated samples (Chrysos et al., 2018). The objective loss function for the 
cGAN model can be expressed as: 

L cGAN(G,D)=Ex,y[log D(x, y)] + Ex,z[log (1 − D(x,G(x, z))] (11)  

where x = input (observed) image; y = output (real) image; z = random 
noise vector; G = generator; and D = discriminator. The discriminator is 
trained to maximize this objective function, while the generator is 
trained to minimize it. In addition to the binary cross entropy loss term, 
an L1 loss term is added to the objective function to improve the results 
and decrease blurring (Larsen et al., 2016). This additional term affects 

Fig. 1. Schematic framework of the methodology for data generation and model training.  
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essentially the generator to constrain it to be near the ground truth 
output and is expressed as: 

L L1(G)= Ex,y,z
[
‖y − G (x, z)‖1

]
(12) 

Therefore, the total objective function can be expressed as: 

G∗ = argmin
G

max
D

L cGAN(G,D) + λL L1(G) (13)  

where λ = weighting parameter which penalizes the loss between the 
real image ‘y’ and the generated image G(x,z). 

In this study, the generator learns a mapping from the XBSB-based 
scalograms ‘x’ and random noise vector ‘z’, to the corresponding 
XBNH-based scalograms ‘y’. On the other hand, the discriminator is 
trained to distinguish between the real pairs from fake pairs. From this 
perspective, the positive samples consist of pairs of XBSB-based scalo
grams ‘x’ and their corresponding XBNH-based scalograms ‘y’. On the 
other hand, the negative samples are represented by pairs of XBSB-based 
scalograms ‘x’ and XBNH-based scalograms generated by the generator 
network ‘G(x,z)’. While the first term on the right-hand side of Eq. (11) 
represents the loss when training the discriminator with positive sam
ples, the second term represents the loss when training the discriminator 
with negative samples. The cGAN network contains a generator with a 
modified U-Net based architecture and a discriminator represented by a 
convolutional PatchGAN classifier which attempts to distinguish be
tween the real pairs from fake pairs. The U-Net consists of an encoder 
and decoder with skip connections between them (Isola et al., 2017; Li 
and Wand, 2016; Long et al., 2015). The L1 loss is designed as a mean 
absolute error (MAE) between the generated image and the target 
image. More details about the model architecture will be provided in the 
case study section. 

4. Illustrative case study 

This section demonstrates the application of the proposed method
ology to a simplified case study involving a 1D profile with varying 

depths. The generation of the required training and testing datasets will 
be first covered. Subsequently, the training process will be explained in 
detail. Finally, the trained model will be applied to various scenarios to 
assess its effectiveness. 

4.1. Numerical model setup 

The numerical simulations were configured using a 1D (cross-shore) 
profile with bathymetry resembling the laboratory experiment con
ducted in a large-scale wave flume by Demirbilek et al. (2007). The 
domain size extends approximately 30 m in the cross-shore direction. 
The depth of the 1D profile ranges from − 0.5 m offshore to 0.4 m 
nearshore. The still water level (SWL) is set at 0.05 m as indicated in 
Fig. 3. 

A uniform grid size of 2.5 cm is utilized for XBNH, whereas for XBSB, 
the grid spacing varies from 5 cm offshore to 2.5 cm closer to the 
shoreline. The manning coefficient was set to 0.01 s̅ ̅̅

m3√ (Lashley et al., 
2018). The numerical models are forced by a spectral condition repre
sented by the JONSWAP spectrum. Six JONSWAP parameters are typi
cally required by XBeach, namely the significant wave height (Hm0), 
peak frequency (fp), peak enhancement factor (γ), main wave angle 
(mainang), directional spreading coefficient (dsc), and the highest 

Fig. 2. Typical architecture of conditional GANs.  

Fig. 3. Selected profile for the simulation of time-series wave runup.  
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frequency (fnyq). The generation of the storm scenarios was achieved by 
varying the first three JONSWAP parameters (i.e., Hm0, fp, γ) while the 
remaining parameters mainang, dsc and fnyq were set to 270 deg, 1000 
and 1 Hz, respectively for all of the simulations (Lashley et al., 2018). 
Specifically, a total of 100 experiments were conducted for each mode (i. 
e., XBNH and XBSB) to simulate 1800 s of wave runup with 0.05 ≤

Hm0(m) ≤ 0.085, 0.55 ≤ fp(Hz) ≤ 1, and 1 ≤ γ ≤ 3.3. It’s worth noting 
that, in this case study, the model has been trained using a wide range of 
parameters for waves. Some of these parameters were originally used in 
laboratory and numerical studies conducted by the US Army Corps of 
Engineers to investigate runup conditions over Fringing Reefs (Demi
rbilek and Nwogu, 2007; Demirbilek et al., 2007). However, the model is 
designed to easily incorporate additional scenarios when needed, 
requiring less training effort, possibly through techniques such as 
transfer learning. Furthermore, the initial 150 s of each numerical 
simulation were considered as the spin-up time, while the subsequent 
1650 s were used for the analysis. The spin-up time has been selected 
after analyzing the wave runup time-series for all simulated scenarios. 
This analysis indicated that a spin-up time of 150 s is appropriate across 
the different cases. On average, each simulation using the XBNH mode 
lasted approximately 5 min, whereas the simulations using the XBSB 
mode required less than 2 min and a half to complete. Using the 
generated database, the training of the proposed machine learning 
model can be conducted, as explained in the subsequent section. 

4.2. Training process 

As described in Section 3.1, the generated time series data from XBSB 
and XBNH undergo a series of transformations. Initially, they are con
verted into scalograms and subsequently transformed into images. The 
resulting spectrograms are structured as matrices with dimensions of 78 
× 1650, representing the frequency and time content, respectively. 
These generated scalograms are then saved as RGB images with a pixel 
resolution of 1024 × 1024. To prepare the training set, a preprocessing 
step is applied. This involves introducing random jitter to the images. 
Specifically, the 1024 × 1024 images are resized to 1100 × 1100 and 
then randomly cropped back to their original size of 1024 × 1024. 

Additionally, a random mirroring technique is implemented by hori
zontally flipping the images. The images are then normalized in the [− 1, 
1] range for better data representation and effective model training. 

The generator employed in the cGAN model is based on a modified 
U-Net architecture, featuring a convolutional symmetric encoder- 
decoder structure. The encoder comprises 10 blocks, where each block 
consists of a Convolution/Batch-Norm/ReLU layer with k filters denoted 
as Ck. The selected encoder architecture can be represented as 
C64–C128–C128–C256–C256–C512–C512–C512–C512–C512. Simi
larly, the decoder consists of 9 blocks, each consisting of a Convolution/ 
Batch-Norm/Dropout/ReLU layer with a dropout rate of 50 % and k 
filters denoted as CDk. The selected decoder architecture can be repre
sented as CD512-CD512-CD512-CD512-CD256-CD256-CD128-CD128- 
CD64. All convolutions in the architecture utilize 4 × 4 spatial filters 
applied with a stride of 2. The ReLU activations in the encoder are leaky, 
with a slope of 0.2, while the ReLUs in the decoder are not leaky. 
Following the last layer in the decoder, a convolution is applied to map 
to the number of output channels (3 in this case representing the number 
of channels for RGB images) followed by a Tanh function to constrain 
the pixel values in the generated image in the range [− 1,1]. To facilitate 
information flow and improve performance, skip connections are 
incorporated in the network architecture between encoding layers and 
the corresponding decoding layers, as depicted in Fig. 4. The output of 
the generator is an RGB image with a resolution of 1024 × 1024 pixels. 

The discriminator in the conditional Generative Adversarial Network 
(cGAN) model is designed to predict the likelihood of whether an image 
is real or a fake. It is constructed as a convolutional PatchGAN classifier, 
comprising four blocks of convolutional layers with ReLU activations 
and Batch normalization. The architecture of the discriminator can be 
represented as C64–C128–C256–C512. A distinctive feature of the 
PatchGAN classifier is its ability to determines whether each patch is 
real or fake and outputs the final result by averaging the responses of all 
the patches. It is important to note that Batch normalization is not 
applied to the first C64 layer in the discriminator architecture. All 
convolutions in the discriminator employ 4 × 4 spatial filters applied 
with a stride of 2. The ReLU activations in the discriminator network are 
leaky, with a slope of 0.2. After the last layer of the discriminator, a 

Fig. 4. Architecture of the proposed cGAN model.  
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convolutional layer is employed to map the output to a 1-dimensional 
representation, followed by a Sigmoid function. The architecture of 
the selected cGAN model, including both the generator and discrimi
nator is shown in Fig. 4. 

The remaining hyperparameters were determined through a trial- 
and-error approach. The training process utilized the batch size of one 
with the Adam optimization technique, employing a learning rate of 
0.0002 and a momentum parameter β1 = 0.5. The weights of both the 
generator and discriminator were initialized using a Gaussian distribu
tion with a mean of 0 and a standard deviation of 0.02. The weighting 
parameter λ of Eq. (13) was set to a large value of 100 to encourage the 
model to produce more hard negative samples. A total of 11,000 steps 
(epochs) were selected to train the cGAN model. The decision to use 
11,000 training epochs was driven by the need for both the generator 
and discriminator to be effectively trained concurrently, as will be 
highlighted in the training process. The implementation of the entire 
framework is based on pix2pixGAN project (Isola et al., 2017). To 
evaluate the performance of the trained model, the dataset was 
randomly divided into a training set comprising 90 % of the data and a 
separate test set comprising the remaining 10 %. 

In general, a well-trained conditional Generative Adversarial 
Network (cGAN) model exhibits strong performance from both the 
generator and discriminator. The generator should be capable of 
generating realistic images that are indistinguishable from real images, 
while the discriminator should accurately differentiate between real and 
generated images. However, training a cGAN model can be challenging, 
and simply increasing the number of training epochs does not neces
sarily guarantee better quality. Monitoring the loss values can provide 
insights into the training progress. It is important to note that GAN 
models typically do not converge but instead reach an equilibrium 
where neither network dominates the other. Therefore, monitoring this 
equilibrium is crucial to ensure the optimal performance of both net
works. Although there is no definitive threshold for what constitutes a 
well-trained cGAN model, a general guideline is to assess the discrimi
nator loss around 0.8 and the generator loss within the range of 0.5–2.0 
(Brownlee, 2019). However, visual inspection of the generated samples, 
evaluation metrics, and domain-specific considerations are also impor
tant factors in determining the model’s overall quality. 

By examining the trained binary cross-entropy losses and visually 
inspecting the quality of the generated images, it can be concluded that 
the cGAN model has attained a satisfactory level of performance. Spe
cifically, the generator loss falls within the range of 0.5–1.2, indicating 
effective generation capabilities. The discriminator loss fluctuates 
within an acceptable range, with values even reaching close to 0.85, as 
demonstrated in Fig. 5. It should be noted that the variability in the loss 
function is expected since both the generator and discriminator are in 
constant competition during the training process. This variability could 

potentially be reduced by identifying an optimal model architecture and 
parameters using advanced techniques like Bayesian optimization, 
instead of relying solely on trial-and-error methods, and by training the 
model with a larger dataset. 

Similarly, the L1 loss term in Eq. (13) is illustrated in Fig. 6, showing 
a consistent decreasing trend. This decreasing pattern indicates 
improved simulation results and a reduction in blurring, resulting in 
sharper images. In the next section, multiple examples of image in
spection will be presented to provide a comprehensive assessment of the 
model’s performance. These examples will serve as a means to evaluate 
the generated images and gain a deeper understanding of the model’s 
capabilities. 

4.3. Application 

After training the cGAN model, it can be utilized to predict wave 
runup time histories. Specifically, the storm scenarios are selected from 
the testing set and employed as boundary conditions for the selected 
basin, as depicted in Fig. 1. The JONSWAP spectrum is utilized to define 
these storm scenarios as explained in Sect 4.1. Next, the XBSB model is 
executed with these storm scenarios to generate low-fidelity wave runup 
time histories. The simulation results obtained from the XBSB model are 
then transformed into scalograms using the Morlet wavelet transform. 
These scalograms are further converted into RGB images, which are 
subsequently fed into the trained cGAN model. The cGAN model pre
dicts high-fidelity images that represent enhanced wave runup simula
tions. To retrieve the time history of the wave runup, the generated high- 
fidelity images are transformed back into scalograms. An inverse 
wavelet transform is then applied to obtain the corresponding time 
history. Both the generated images and the time history of the wave 
runup are compared with those generated by the XBNH model. This 
comparison serves as an assessment of the cGAN model’s performance in 
generating high-fidelity wave runup simulations. Fig. 7 provides an 
illustration of the proposed methodology, outlining the steps involved in 
generating high-fidelity wave runup simulations using the cGAN model. 

Table 1 presents a summary of the three selected storm scenarios 
from the testing set, characterized by the JONSWAP spectrum. 

The XBSB-based scalograms, generated using the storm parameters 
listed in Table 1, were inputted into the cGAN model. This resulted in the 
generation of image scalograms, as shown in the third column of Fig. 8. 
A thorough visual inspection reveals a good agreement between the 
generated scalograms and the XBNH-based scalograms (second column 
of Fig. 8). However, some discrepancies can still be identified in the 
figure, which are attributed to the complex nature of the system under 
study, characterized by its high-frequency and time-dependent content. 
The mean squared errors (MSE) between the cGAN-based and the XBNH- 
based scalograms are 1.06e-06, 1.26e-06, and 2.37e-06 for the first, 

Fig. 5. Performance of the training process of the generator and the discrimi
nator models [the smoothed curves correspond to a 32-step moving average]. 

Fig. 6. L1 loss of the cGAN generator [the smoothed curve corresponds to a 32- 
step moving average]. 
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second, and third scenarios, respectively. On the other hand, the MSE 
between the XBSB-based and the XBNH-based scalograms are 1.91e-05, 
2.54e-05, and 5.21e-05 for the first, second, and third scenarios, 
respectively. The obtained results support the conclusion that the model 
was well trained. 

Fig. 9 shows the wave runup time histories corresponding to the 
three selected scenarios presented in Table 1. By comparing the output 
of the proposed cGAN model with the results based on XBNH, it can be 
concluded that a good agreement has been achieved for the simulation 
of the highly fluctuating wave runup process. The corresponding his
tograms have been generated, and the R2% along with Rmax values were 
calculated for the XBSB, XBNH and cGAN models. In the first scenario, 
the R2% (Rmax) values are 0.07 m (0.084 m), 0.07 m (0.080 m) and 0.07 
m (0.07 m) for the XBNH, cGAN and XBSB models, respectively. In the 
second scenario, these values are 0.08 m (0.093 m), 0.08 m (0.089 m) 
and 0.07 m (0.08 m), and in the third scenario, they are 0.09 m (0.115 
m), 0.09 m (0.118 m), 0.09 m (0.10 m) for the XBNH, cGAN and XBSB 
models, respectively. Overall, the statistical values obtained from the 
cGAN model align well with those from the XBNH model, although some 
discrepancies are noticeable, especially for Rmax. Specifically, the cGAN 
model demonstrates good predictive capabilities for wave runup in 
moderate and strong storms (e.g., third scenario), which are associated 
with significant flood risks compared to weaker storms. This observation 
has also been verified with other scenarios in the test set. This success 
can be attributed to the clear energy distribution present in the scalo
gram for moderate and intense storms, facilitating the model’s ability to 
capture these intricate patterns and produce accurate simulations. In 
contrast, weak storms present a different challenge. The identification of 
high-energy zones within the scalogram, typically located in the high- 
frequency range within limited range, is more complicated. To 

demonstrate this point, the average wave runup error as a percentage of 
the XBNH model for instances exceeding a given threshold (dashed lines 
in Fig. 9) is calculated and reported in Fig. 9. The results indicate that for 
the intense scenario (scenario #3), the average error is 11 %, lower than 
that of scenario 2 (15 %) and scenario 1 (22 %). Improved simulation 
results can be obtained with further training of the cGAN model using 
advanced optimization techniques. Alternatively, separate cGAN models 
corresponding to each category (i.e., weak, moderate and intense) can 
be trained to enhance the model performance. 

In order to evaluate the accuracy of the reconstructed signals, several 
metrics were used. The mean, and standard deviation (σ) were calcu
lated for the signals generated based on cGAN, XBNH, and XBSB. 
Furthermore, the MSE and the mean absolute error (MAE) were reported 
in Table 2. 

Based on the simulation results, it can be concluded that the mean, 
and standard deviation values obtained from the cGAN model are nearly 
identical to those from the XBNH-based simulations. Furthermore, the 
low values of MSE and MAE metrics suggest that the cGAN model ex
hibits good accuracy in reproducing the wave runup time history. 
Table 2 also includes the low-fidelity XBSB results, which evidently 
exhibit higher errors when compared to the proposed model. 

5. Discussion 

Wave runup is a complex process characterized by its inherent 
nonlinearity and transient, nonstationary nature. Therefore, predicting 
the temporal evolution of wave elevation remains highly challenging, 
even with the most advanced machine learning techniques. As a result, 
many current applications of ML for predicting wave runup focus on 
predicting specific statistical measures, such as Rmax and R2 %. This study 
introduces a new model based on the cGAN technique, which aims to 
predict the time-history of wave runup using available data from the 
physics-based XBSB model as input. Specifically, the proposed model 
maps the image representation of wave runup from XBSB to the corre
sponding image from XBNH. Utilizing the scalograms and their corre
sponding images allows the model to effectively identify and separate 
the most significant frequency components, such as low and high fre
quencies, thereby facilitating the training process. 

An essential part of the model training involved transforming the 

Fig. 7. Application of the proposed model for the prediction of high-fidelity time-series wave runup.  

Table 1 
Storm parameters for time-series wave runup prediction.  

Parameter Hm0 (m) fp (Hz) γ 

First scenario 0.056 0.918 1.418 
Second scenario 0.065 0.800 2.022 
Third scenario 0.084 0.554 3.276  
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time-series wave runup into scalograms and then into RGB images. This 
process was carefully examined to assess any errors introduced by this 
direct transformation and its inverse. In general, the induced errors were 
negligible. For instance, in the case of a benchmark data example (third 
scenario), the error has been investigated at two levels: firstly, in rela
tion to the initial transformation from time history signals to scalograms, 
and secondly, in relation to the subsequent transformation from the 
scalograms to the RGB images. In the first transformation, the error was 
calculated by comparing a given time history signal with the one ob
tained based on the scalogram using the inverse wavelet transform. The 
resulting MSE value between the two signals is 0.000434 (for the 
normalized signals). In the second transformation, the error was calcu
lated by comparing a given scalogram with the one obtained based on 
the corresponding RGB image. The resulting MSE value between the two 
scalograms is 1.37e-08. This indicates that the proposed approach does 
not alter the original signals, as they can be retrieved almost identically 
using the inverse transforms. On the other hand, despite training the 
model on a relatively large parameter range for waves (Demirbilek and 
Nwogu, 2007; Demirbilek et al., 2007), there are still other scenarios 
that could be important to explore. Therefore, these scenarios could 
potentially be included in the training set. Similarly, although the model 
can predict wave runup under various storm conditions, its applicability 
is restricted to a single coastal profile (Fig. 3). With a new basin 
configuration, it’s necessary to retrain the model to accommodate these 

changes. Several techniques like transfer learning can expedite this 
process by leveraging knowledge acquired from prior training on similar 
tasks or datasets. This approach can significantly reduce the training 
time and resources required for the updated model. 

Training a cGAN model is also very challenging since both the 
generator and discriminator are in constant competition during the 
training process. As mentioned before, cGAN models typically do not 
converge but instead reach an equilibrium where neither network 
dominates the other. Hence, it’s important to monitor the training 
process to assess the discriminator and generator’s performance in line 
with some established guidelines (Sect. 4.2). Additionally, a visual in
spection of the generated samples during the training process should 
complement these evaluations. Visual inspection provides a qualitative 
assessment that can offer valuable insights into the model’s performance 
and the quality of the generated samples. During the training process, 
numerous hyperparameters were fine-tuned to find the optimal model 
configuration through a trial-and-error method. However, more 
advanced techniques like Bayesian optimization could be employed to 
identify the best parameters. This approach could potentially enhance 
the training of the cGAN model by efficiently exploring the hyper
parameter space and finding configurations that lead to improved 
performance. 

Following the model training, two critical metrics were examined: 
accuracy and efficiency. These metrics are essential for evaluating the 

Fig. 8. Predicted scalograms (right column) given the XBSB-based scalograms (left column) as the inputs to the cGAN model of the first scenario (first row), second 
scenario (second row), and the third scenario (third row) along with the XBNH-based scalograms (ground truth, middle column). 
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model’s performance and its computational effectiveness in producing 
accurate results. The analysis of the training and testing results (Sect. 4.2 
and 4.3) revealed that the cGAN model can generally make accurate 
predictions of time-dependent wave runup. However, some discrep
ancies were noted, as discussed earlier, which could potentially be 
addressed to further improve the model’s predictive capabilities. After 
the cGAN model has been trained, it can instantaneously generate the 
wave runup predictions. Yet, the cGAN model necessitates the use of 
low-fidelity simulations from XBSB mode as input to produce the cor
responding high-fidelity simulations, leading to a total simulation time 
comparable to XBSB. Generally, for the selected profile (Fig. 3), the 
entire process takes approximately 2.5 min for a single prediction 
(which corresponds to a wave runup simulation over 30 min). In com
parison, the same simulation would take nearly 5 min using the high- 
fidelity XBNH mode. Therefore, the proposed model reduces the time 
required for high-fidelity simulation by almost half. In real-time appli
cations, this effect will be even more significant because it is crucial to 
accommodate uncertain input parameters, which would necessitate 
more simulations for the same storm condition. Similarly, in probabi
listic and risk simulations, typically involving hundreds of thousands of 
scenarios (e.g., Snaiki and Wu, 2020b, 2022), the proposed approach 

will result in significant time savings. For example, with 1000 simula
tions, the proposed model would take approximately 1000 * 2.5 min, 
totaling around 41.6 h, compared to 1000 * 5 min, or roughly 83.3 h 
using the high-fidelity XBNH mode. This difference translates to saving 
almost 41 h of simulation time. To further reduce the computational 
cost, it is important to select a different model instead of XBSB, which 
dictates the prediction time needed for the proposed model. This can be 
achieved by using empirical methods or even machine learning tech
niques capable of generating low-fidelity simulations. 

6. Conclusion 

In this study, a physics-informed machine learning model is proposed 
to efficiently and accurately simulate time-series wave runup. Specif
ically, a cGAN model is used to generate high fidelity-based XBNH wave 
runup from low fidelity-based XBSB wave runup. By leveraging the 
physics-based knowledge from the XBSB mode as input, this conditional 
mechanism enhances the control over samples generated by the cGAN 
model, consequently improving its performance in image-to-image 
mapping applications. The storm scenarios were implemented as the 
boundary conditions of the selected basin using a simplified 

Fig. 9. Time-series wave runup based on XBNH and cGAN predictions along with their corresponding histograms for the first (top row), second (middle row), and 
third (bottom row) scenarios. 

Table 2 
Comparison of the wave runup results generated by XBNH (ground truth), XBSB and c-GAN for the three selected storm scenarios.  

Metrics XBNH cGAN XBSB 

Mean (m) σ (m) Mean (m) σ (m) MSE (m2) MAE (m) Mean (m) σ (m) MSE (m2) MAE (m) 

1st scenario 0.055 0.007 0.056 0.007 9.16e-5 0.0001 0.053 0.008 1.18e-4 0.008 
2nd scenario 0.055 0.008 0.053 0.008 1.12e-4 0.008 0.056 0.010 1.57e-4 0.010 
3rd scenario 0.061 0.013 0.058 0.012 1.64e-4 0.010 0.059 0.014 3.23e-4 0.015  
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representation based on the JONSWAP spectrum. The input/output 
images for the cGAN model were generated using the Morlet wavelet 
transform technique, resulting in scalograms that were subsequently 
saved as RGB images. Once the model was trained, the high-fidelity 
XBNH-based scalograms were predicted, which were then utilized for 
reconstructing the time-series wave runup based on the inverse wavelet 
transform. The mean squared errors (MSE) between the cGAN-based and 
the XBNH-based wave runup were minimal. For instance, for three 
scenarios that were selected from the testing set, the MSE values were 
9.16e-5, 1.12e-4, 1.64e-4 for the first, second and third scenario, 
respectively, which are lower than those generated by XBSB. Addition
ally, the mean and standard deviation values of the time-series wave 
runup signals obtained by the cGAN model closely match those from the 
XBNH-based results for the three selected scenarios. Furthermore, after 
training the cGAN model, it can instantly predict the time-series wave 
runup for a given storms scenario. As the proposed model relies on low- 
fidelity simulations from XBSB mode as input to generate the corre
sponding high-fidelity simulations, it leads to a total simulation time 
similar to XBSB, effectively reducing the time needed for high-fidelity 
simulation by nearly half. The obtained results indicate that the pro
posed model has the potential to serve as a tool for rapid risk assessment 
applications. Despite demonstrating a good accuracy and efficiency in 
simulating the time-series wave runup, some limitations have been 
identified. These are attributed to the complex nature of the system 
under study, characterized by its high-frequency and time-dependent 
content. Furthermore, even though the cGAN model has been trained 
on a relatively large parameter range for waves, there are still other 
scenarios that could be important to explore. Additionally, it’s worth 
noting that the proposed model is currently limited to a single coastal 
profile. Therefore, further refinement of the model is needed, specif
ically by including various coastal bathymetries and new storm condi
tions in the training dataset. In addition, the adversarial training process 
of cGANs, characterized by the dynamic interplay between the generator 
and discriminator, presents significant challenges for achieving optimal 
model performance. Therefore, exploring more advanced techniques 
like Bayesian optimization to train the cGAN model could potentially 
enhance its performance by efficiently exploring the hyperparameter 
space and identifying configurations that result in improved results. 
Moreover, the proposed model exhibits a computational cost compara
ble to the XBSB mode. Therefore, in order to further decrease the 
computational cost, it is suggested to choose an alternative model other 
than XBSB, which determines the prediction time required for the pro
posed model, and this can be accomplished by employing empirical 
methods or even machine learning techniques capable of producing low- 
fidelity simulations. 
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