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Abstract: Traditional methods of supervision in the construction industry are time-consuming and
costly, requiring significant investments in skilled labor. However, with advancements in artificial
intelligence, computer vision, and deep learning, these methods can now be automated, resulting
in time and cost savings, as well as improvements in product quality. This research focuses on the
application of computer vision approaches to monitor the quality of welding in prefabricated steel
elements. A high-performance network was designed, consisting of a video capturing station, a
customized classifier based on a YOLOv4 detector and an IoU tracker, and a user interface software
for any interaction with quality control workers. The network demonstrated over 98% accuracy
in identifying steel connection types and detecting missed welds on the assembly line in real-time.
Extensive validation was conducted using a large dataset from a real production environment. The
proposed framework aims to reduce rework, minimize hazards, and enhance product quality. This
research contributes to the automation of quality control processes in the construction industry.

Keywords: computer vision; machine learning; weld inspection; quality control; object detection;
DNN; construction quality management; deep learning

1. Introduction

The fast-paced nature of industrial mass-production demands that a substantial quan-
tity of products be manufactured quickly while meeting the corresponding required quality
standards. To ensure products meet the targeted level of quality, a rigorous quality control
mechanism needs to be in place. Yet, if this process is inefficient, quality tasks may affect
production, for instance, by slowing it down or quality may suffer, for instance, errors
might go on undetected in the final product.

In the construction industry, steel joists are one of the most widely used structural
components. Steel joists are assembled using a Gas Metal Arc Welding (GMAW) process.
Because of the variety of steel joist types, the process uses manual welding, which is
somewhat error-prone and can lead to the omission of welds. If such defects go undetected
by the manual and visual quality control process, the performance and stability of the
structural element will be seriously affected, leading to possible hazardous safety issues.

Traditional methods of quality control based on visual inspection have proven to be
inefficient in terms of required time, accuracy, and cost. However, machine learning (ML)
techniques can potentially provide an efficient monitoring system in a fast, accurate, and
cost-effective way [1]. ML can be used to detect welding defects in various stages of the
welding process.

While most research in this domain focuses on identifying welding defects, our study
pivots to the critical task of detecting the absence of welded parts. This focus is vital for
ensuring structural safety, as missing welds pose significant risks to product integrity.
Furthermore, the study focuses on missing welds as detecting them involves a complex
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process that typically relies on extensive manual labor. Automating such detection can
enhance the efficiency of quality control process.

In this study, we present a novel deep learning-based framework for real-time detec-
tion of missing welds in steel joists during the shop fabrication process. Our proposed
framework integrates a comprehensive hardware setup, including a data-capturing sta-
tion that streams real-time assembly line videos. This hardware setup is integrated with
advanced computer vision algorithms and machine learning techniques that are utilized
to accurately detect, track and classify the various types of connections and nodes and
identify missing welds on prefabricated steel joists. Additionally, a user-interface alerts
workers in real-time when a defect is detected, enabling prompt corrective actions.

Research Objectives and Contributions

This research explores state-of-the-art methods and develops a deep-learning-based
framework, focusing on achieving high accuracy and reduced processing time in mon-
itoring welding quality during the shop fabrication process. The project focuses on the
detection of missing welds on prefabricated metal joists in a factory setting. The objectives
are to: (1) Investigate a method for automatic real-time detection of missed welds on the
assembly line, using video streams from the cameras in the data-capturing station and
machine learning algorithms, (2) Investigate and propose an innovative solution to tackle
challenges such as tracking, occlusion, and processing time, (3) Train and validate the
network on datasets provided by the partner company and test the developed network in
the real assembly line environment, and (4) Fine-tune the network parameters to further
increase performance and compare the proposed network results with existing procedures.

In our study, we have developed a deep learning-based framework to address the
challenge of detecting missing welds in steel joists during the fabrication process. This
framework incorporates a comprehensive hardware setup including a data-capturing
station for streaming assembly line videos in real-time. Our approach integrates advanced
computer vision techniques and machine learning algorithms to accurately detect, track,
and classify various types of connections and nodes in steel joists. This system also includes
a user interface to alert workers in real-time when a defect is detected, thus enabling prompt
corrective actions.

This research presents a significant advancement in the field by automating the process
of detecting missing welds, which traditionally relies on manual inspection. Our method
aims to reduce rework, minimize hazards, and enhance product quality in the construction
industry. The deployment of our framework is expected to yield high efficiency and
accuracy in quality control processes for steel joist fabrication.

Our work distinguishes itself by providing a holistic approach to welding quality
control. Our framework seamlessly integrates hardware, software, and machine learning
techniques for real-time defect detection in a factory setting. While recent advancements in
welding quality control have shown promising results, there remain significant challenges
and gaps in current methodologies. Our study aims to address these gaps by introducing
an innovative approach.

Furthermore, our framework is designed to achieve high accuracy and efficiency in
weld defect detection, representing a potential advancement in automated quality control
processes. Detailed comparisons and evaluations of our method in the context of existing
research will be presented in the results and discussion sections.

This paper outlines an innovative approach to enhancing welding quality control
in steel joist prefabrication through the application of advanced computer vision and
machine learning techniques. The ensuing sections will delve into our methodology and
the specifics of our framework, detail its integration of hardware and software for real-time
defect detection and discuss its practical effectiveness in an industrial setting.
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2. Previous Works

To report on the state-of-the-art computer vision research on welding quality control,
the research project was divided into two parts, based on when the quality control occurred
in the welding process: In-Process welding quality control, and post-process welding
quality control.

2.1. In-Process Welding Quality Control

Using Machine learning techniques, weld quality can be monitored during the welding
process. Various types of data can be gathered from the welding pool, such as the welding
current, the arc spectrum, and Infrared images. Subsequently, this data can be used to create
a dataset to train an ML-based model and afterward, the trained networks can identify
possible defects that occurred in the welding process.

W. Jiao et al., 2020 [2] used a convolutional neural network (CNN)-based model to
predict the penetration of the GTAW process using the top-side image of the weld pool.
Additionally, a pre-trained model based on the residual neural network (ResNet) was
proposed to improve the predictions’ accuracy. By using transfer learning, they reduced
the training time. Zhao et al., 2019 [3] developed a framework based on a cooperative
awareness of the arc spectrum, vision data, and electrical parameters to control the quality
of the welding process in wire-arc additive manufacturing. They found that the self-emitted
radiation coming from the weld pool mainly consists of near-infrared light. Thus, to capture
a better-quality image, an 850 nm high-pass filter was utilized to block high-frequency arc
interference. Different classifiers were used depending on the welding current and wire
material. For the welding process features, they monitored welding speed, shielding gas
flow rate, and weld defects by analyzing multi-source data from the weld pool. Finally, a
K-Nearest Neighbor (KNN) classification algorithm was used to classify the weld features
extracted from vision and spectral data. Tang et al., 2020 [4] proposed a framework to detect
defects in the fiber laser welding of stainless steel. By capturing the image of the keyhole,
the features based on the shape and edges of the keyhole were extracted using grayscale
projection distribution and the Poisson matting technique. Then, a Hidden Markov Model
(HMM) was applied to correlate the geometry features of the keyhole and welding defects.
To obtain desirable weld characteristics, the information provided by the vision-based
model could be further utilized to adjust the significant welding variables. Xiong & Zou,
2019 [5] used a fuzzy logic-based controller to actively monitor and enhance the penetration
quality of MIG welding in a thin aluminum sheet by manipulating the welding current. In
a similar study conducted by Peng et al., 2019 [6], a proportional-integral controller was
proposed to provide feedback control over the penetration quality of the GTAW process by
adjusting the welding current.

2.2. Post-Process Welding Quality Control

The quality of the weld beads can be verified after the welding process is finished.
In this approach, information about the surface of weld beads is extracted by utilizing
devices such as profile sensors and cameras. Using machine-learning techniques, a model
is designed and trained to detect irregularities and defects on the weld surface by creating
a labeled dataset from the acquired raw data.

Soares et al., 2019 [7] presented a passive vision-based system to detect irregularities in
the weld bead texture. The Principal Component Analysis (PCA) technique was deployed
to acquire the main characteristics of each class while reducing the dimension of data. Then,
a Support Vector Machine (SVM) model was trained based on the class characteristics to
assess the weld surface quality. Han et al., 2020 [8] utilized a structured light sensor to
measure the geometry of the weld bead. The laser stripe was projected onto the weld bead
surface, and a camera captured the laser stripe through a narrow-band filter to decrease the
environmental noises. Through image preprocessing and baseline extraction, a laser strip
profile was extracted from the raw image data. Furthermore, the weld profile was classified
as the filling weld or the capping weld using a threshold-based method. By extracting
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features points from the stripe profile, the weld bead size could be measured. Additionally,
the bead shape data was compared with acceptable thresholds to detect geometrical defects.
Chu & Wang, 2017 [9] developed a passive machine vision-based framework to detect
the undercut on shell-tube welding. By applying preprocessing algorithms, the quality of
the image was enhanced, and the edges in the picture were extracted. Median [10] filter
and Otsu segmentation [11] were utilized to segment the metal tube, and morphological
operations were employed to improve the segmentation integrity. Finally, the undercut
was detected by counting white pixels in each angle inside the tube. Chu & Wang, 2016 [12]
presented an automated passive quality control system that used structured light to measure
bead size and detect corresponding defects such as undercut and plate displacement. The
laser centerline was determined in the image by applying preprocessing techniques such
as Median filter, thresholding, and morphological operations. Then, feature points were
extracted by fitting lines to the laser stripe reflecting from parent metal using the RANSAC
technique. Afterward, a sliding window was applied to determine the extremums of the
laser profile. Once feature points were calculated, the quality of welding could be controlled
by comparing them with thresholds. Sun et al., 2019 [13] proposed a vision-based defect-
detection system to inspect the welding quality of thin-walled metal canisters. They
developed a modified Gaussian mixture model to extract defect feature areas from gray
images. An area thresholding technique was applied to filter out false detections, which
mainly consisted of small areas. Finally, using the feature image as the input, three main
types of defects were classified by utilizing brightness thresholding and curve detection
algorithms. Hartl et al., 2019 [14] developed a deep-learning framework to monitor the
quality of friction stir welds. They utilized the one-stage object detector YOLOv2 [15] to
detect and localize the weld seam and compared several convolutional neural networks
such as DenseNet-121 [16] to classify the possible defects. They created 112 stir-weld
samples that were used in the dataset to train and test the framework. The proposed
framework input were RGB and topology images. Cruz et al., 2020 [17] designed a vision-
based system that used the convolutional neural network to detect the misalignment
of the metal parts before welding. In addition, the developed system could identify
geometrical nonconformities of weld beads after the welding process was completed using
laser triangulation and image processing techniques. Using image processing and deep
learning techniques, Muniategui et al., 2019 [18] proposed a framework to detect defects
such as Lack of Fusion (LoF) in mass-produced welded cylinder parts for flame sensors.
They developed 1D-pDFT and Gabor filters that help highlight features related to the defect.
Finally, a deep learning model utilized the output of the mentioned filters to detect defects.
Haffner et al., 2016 [19] developed a weld inspection system that relies on image processing
techniques to extract features such as weld edges. After feature extraction, the welds were
evaluated by neural networks. They ran the developed system on a single-board computer
(SBC) and employed a cloud-based solution to store the system output. Exploiting the
laser triangulation technique, Spruck et al., 2020 [20] proposed a deep-learning-based
inspection system to monitor the quality of weld seams. The laser scanner was mounted
to a robot providing profile data of the weld seam surface. After preprocessing, such as
gamma correction and normalization, a network based on Inception-v3 architecture [21]
is responsible for the classification task on the weld quality. Xue et al., 2019 [22] used
structured light to capture the weld surface profile. The 3d model of the weld seam was
reconstructed by applying image processing filters, extracting the center of the laser stripe,
and curve-fitting. After 3d model reconstruction, the weld geometry was measured and
compared with the manual measurement. Dong et al., 2021 [23] developed an unsupervised
approach to inspect weld quality in the aerospace industry using unannotated real and
synthetic X-ray images as input. The unsupervised process is based on the U-Net [24]
segmentation encoder-decoder and a k-means clustering technique. Finally, the random-
forests (RF) classier was trained on the features extracted by the encoder.

In all the previously mentioned research projects, the goal was to monitor the existing
or in-process welding quality. However, the present research does not focus on the quality
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of existing welds. The purpose of this research is to detect missing welds in specific areas
of prefabricated joists (i.e., nodes) that require precise assessment. By leveraging detailed
engineering drawings and the expertise of the industrial partner’s quality control team, we
aim to specifically determine if any segment of a weld is absent. This approach is essential
for accurately identifying incomplete welding in these critical areas, thus ensuring the
reliability and safety of the construction. Additionally, none of the available open datasets
was suitable for the target elements of this study, hence, a targeted dataset needs to be
created.

3. The Proposed Method

The proposed solution aims to automatically monitor the quality of the welding
process on steel joists moving at a slow speed and to identify the missing welds and
report them in real time to the quality control agents. Our proposed method employs two
industrial IP cameras accompanied by LED ring lights that are placed at the end of the
assembly line to provide a live video feed of the finished steel joists (as shown in Figure 1)
as they are passing. The video data is then retrieved by the developed framework for
processing. The final results are streamed on a screen and serve to notify the quality control
agents when any welds have been missed in the final product.
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3.1. Framework Architecture

As illustrated in Figure 2, the framework consists of three core modules: (1) detector:
identifies welded nodes and provides details about their class and location based on the
YOLOv4 technology [25], which is an advanced object detection algorithm that uses a deep
convolutional neural network to detect and localize objects in real-time with high accuracy
and speed; (2) tracker: utilizes information from the detector module to keep track of the
welded nodes and their identity in the camera field of view (FoV) using an Intersection over
Union (IoU)-based technique [26] which calculates the ratio of the intersection area between
bounding boxes of objects in the current frame and the previous frame; and (3) classifier:
receives the detection scores and the number of frames and identifies the final classification
by ruling out the weak detections and giving an average score corresponding to the total
number of remaining frames. Additionally, the framework utilizes four asynchronous
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input/output modules responsible for reading, writing, and streamlining the data. An
SQL database [27], which is a structured collection of data that can be easily accessed,
manipulated, and queried using the SQL programming language, is used to store the
framework predictions, while Ignition® [28], a web-based industrial automation software,
is employed to develop the User Interface (UI).

1 
 

 
Figure 2. Framework architecture.

3.1.1. Video Capture Module

Pypylon 1.7.2 (2021) [29] the official python wrapper for the Basler pylon Camera
Software Suite, is used to communicate with the IP cameras. Using the Python multi-
threading feature, the video stream is grabbed every 1/FPS second from the cameras by an
async module. On an ongoing basis, the agent returns the captured frame along with the
camera connection status and stores it in a shared memory buffer. The content of the buffer
is the input for the detector module.

3.1.2. Detector Module

Using deep-learning techniques, the detector module detects intended objects and pro-
vides information about their classes and locations accordingly. To achieve this capability,
the detector module needs to be trained on an annotated dataset consisting of adequate
images of the desired classes. As high speed and accuracy are necessary in such real-time
applications, the YOLOv4 (You Only Look Once, version 4) algorithm [25] was selected as
the frameworks detector module. YOLOv4 is a significant update in the YOLO series. It em-
ploys a convolutional neural network (CNN) optimized for speed and accuracy. YOLOv4
introduces several improvements over its predecessors, including better utilization of GPU
capabilities for enhanced performance. It uses features like Weighted-Residual Connections,
Cross-Stage Partial connections, and a more efficient backbone, which contributes to its
improved object detection capabilities. These technical advancements make YOLOv4 par-
ticularly suited for tasks requiring fast and precise image analysis, such as industrial quality
control [25]. YOLOv4 is a one-stage object detection algorithm that, unlike the two-stage
algorithms (e.g., R-CNN [30] or Fast R-CNN [31]), is suitable for real-time applications [32].
The selection of YOLOv4 in this study, despite other potentially more complex models, is
driven by its real-time detection capabilities, aligning with our study’s goal to demonstrate
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the feasibility of using computer vision for detecting missing welds, as a practical proof of
concept. The choice was also influenced by YOLOv4’s proven effectiveness in real-time
object detection, its compatibility with our industrial partner’s IT environment, and the
potential for future enhancements by the partner’s teams. In our proposed framework, the
corresponding Python wrapper for C-based Darknet, which is a framework for developing
deep neural networks in the C programming language, is used to Integrate the Darknet
implementation into our Python-based Framework.

Novel Enhancements for the Detector Module

If for any reason the production line stops for a period of time, the system will continue
creating multiple similar frames that do not add more helpful information, the static status
mentioned above can induce errors in the classification based on the average score. To
tackle this problem, a motion detection method is employed to enable the framework to
pause the detection and tracking whenever the line stops. Figure 3 shows the flow chart of
this motion detection technique.
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Within the frame, a region of interest is selected that has minimal environmental noise.
In grayscale mode, each frame is smoothed by a Gaussian blur filter to further reduce the
noise and differentiate it from the previous nth frame. Then, the sum of arrays on the
absolute-difference image is calculated and compared with a scalar threshold. A 12-frame
gap and a threshold value of 0.006 were obtained for the assembly line environment from
trial and error.

3.1.3. Tracker Module

Using label and bounding box information provided by the detector, an IoU-based [26]
tracker module is deployed to track the nodes on the camera field of view. By employing a
tracker module, the object” identities can be preserved while they are in the FoV. To track
objects in the video, each frame detection is compared with its corresponding previous
frame detection, and a metric called IoU [26] is calculated for each object by dividing the
overlapping area by the combined area for two consecutive bounding boxes. If the IoU
value is greater than a chosen threshold, the object in the current frame is considered the
same as in the previous frame.

Aside from providing object-counting capability, tracking the objects offers further
possibilities to develop postprocessing techniques to improve detection results and reduce
errors. Within the Tracker Module, to prevent making errors by relying on a single detection
score, the network scores for each node are averaged across the sequence of frames until
the node exits the field of view of the camera.

Novel Enhancements for the Tracker Module

To improve the accuracy of the framework, objects near the two sides of the FoV
are truncated as they may not be fully visible while entering or exiting the FoV. In the
mentioned zones, the detector module often has difficulties in successfully detecting and
classifying nodes. To resolve the above problem, three detection zones are defined in the
FoV (Figure 4).
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Thus, 15% of the frame width on either end is the area in which the framework detects
and tracks nodes, but its corresponding prediction scores are not considered in the average
score. The classifier module only receives the prediction score if the node occupies between
15% and 85% of the frame width; otherwise, the tracker will not pass the score to the
classifier. To determine where the node position is within the three mentioned zones, the
center point of the bounding box around the node is utilized.

It is possible that an object detected in the preceding frames is not detected in the
current one. This scenario happens when the detector module cannot identify the present
object in the current frame or simply because the object left the camera FoV. To resolve
the uncertainty of whether the object reappears in the FoV or not, a transitional phase is
designed to preserve object data for a certain number of object absences. Considering that
the object may reappear in the subsequent frames in the mentioned phase, OpenCV Median
Flow tracker is applied to increase tracking performance. Because the joists move slowly,
the Median Flow tracker can effectively update the bounding box information during the
frames in which the detector has difficulty finding the object. If an object is absent for more
than a specific number of frames, the object is considered to be outside the FoV, and its
corresponding detection data is removed from the tracker memory.

3.1.4. Streamer Module

If a web user demands to watch the result on the live video feed, using the Flask web
framework (Pallets Projects, 2021) [33] an async program will infuse the object detection
and tracking results with the raw frames and stream the output over the local network in
real-time.

3.1.5. Classifier Module

Once a node is detected in the camera FoV, the tracker module sends the average
scores and corresponding total frame number to the classifier module. As a postprocessing
unit, the classifier module rules out weak detections by thresholding the frequency of
object appearance in the FoV. If a total frame number of object detection is less than a set
threshold, these frames will be filtered out and not considered for further processing. In
considering the production environment of the case study, the speed of the conveyor belts
and the FoV of the camera, the threshold was set to 30 frames (2 s) as it was determined
through trial and error that most ‘miss detections’ are achieved below this threshold.

Since finding missed welds is the main goal of the framework, class weights were
applied to the average score vector to increase the detection probability of the missed-weld
class in the classification phase. To implement this technique, the class score related to the
Missed-Weld class was multiplied by a factor of 2.5, that was obtained by trial and error
(Classes are explained in Section 4.1), and the classifier was carried out according to the
network weighted average score.
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3.1.6. SQL Inserter Module

Final classification results, stored in an SQL database by an async program, can be
retrieved to view the real-time quality control reports on a graphic user interface in addition
to the human checker.

3.1.7. Video Writer Module

To visually evaluate the defects detected by the framework, automatically expand the
dataset, and decrease the imbalance rate, the captured missed welds are saved in video
format. If any missed-weld class is detected, a batch of the previous 300 frames is recorded
locally in a different thread, to avoid increasing unnecessary corresponding processing
time on the main thread. The frames collected in this way are highly useful to enrich the
dataset and decrease the imbalance rate.

3.1.8. User Interface

The user interface retrieves prediction data and the computed relative position of the
missed welds from the database and displays them to the users. It thus simultaneously
streams the final results on the screen and informs the quality control agents of any missed
welds on the production line.

3.2. Modules at a Glance

Table 1 summarizes the characteristics of the developed framework modules.

Table 1. Framework modules.

Module Role Type
Video Capture - Grab image data from cameras - Async capturing

Detector - Detect objects in a frame - YOLOv4

Tracker
- Track detected objects in the video
- Assign ID to each object
- Average Detector score for each object

- Hybrid (based on IoU & Median Flow)

Streamer - Stream the predictions in video format - Async streaming

Classifier - Filter weak detections
- Classify detected objects based on average score

- Appearance thresholding
- Weighted voting

Video Writer - Save video of an object that belongs to a specific class - Async video writing

SQL Inserter and Database - Insert classification output into an SQL database
- Store the prediction data - Async inserting

UI Software - Retrieve prediction data from the database and show
them to the user

- Ignition®
- Web-based

3.3. Framework Validation Methods

A two-phase validation process is proposed in this research. In the first phase, the
performance of the Detector Module is evaluated using two separate validation methods:
(1) stratified k-fold cross-validation and (2) train-validate-test split (dividing the images
randomly into three sets: training, validation, and test dataset). The metrics for this
validation were average precision (AP) over different IoU thresholds (e.g., AP50, average
precision over IoU threshold value equal to 50%) and mean average precision (mAP) [34].
Additionally, as the final classification is based on the average detector score on the sequence
of frames, our framework as a whole should be validated on the unseen objects as well.
Metrics such as precision, recall, and confusion matrix are calculated for each class to assess
the overall framework performance.

For the second phase, in the case study, the framework was tested in real factory
settings for 17 working days in the production phase, where it monitored approximately
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3000 joists and a total of 111,492 nodes. The results of missed welds detections are compared
with the corresponding quality control reports in Section 6.2.4.

4. Case Study Dataset Preparation

The case study has been performed at one of the production lines of Group Canam
Inc., one of the major steel construction companies specializes in designing and fabricating
metal components for the North American construction industry. To train the detector
module, a dataset was created of 15,356 annotated images containing six object classes
(Table 2).

Table 2. Six classes of objects.

Class Name Image Note

Node-OK
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Marks the beginning and the end of the joists.

4.1. Classes

Node-OK: this class refers to fully welded nodes. Each node consists of one to three
orthogonal or diagonal welded connections to the main chords. The node welding is
considered OK only if all the required steel elements of the node are fully welded. There
are three types of fully welded nodes, depending on the number of connected elements
and they are shown in (Table 3).
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Table 3. Types of fully welded nodes.

Type Schematic Image Real Image

One-element nodes
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Missed-Weld: this class refers to a defect in the product, i.e., nodes whose welds
are missing a part essential for connecting steel elements. Table 4 demonstrates the most
frequent types of missed welds.

Table 4. Frequent types of Missed-Welds.

Type Schematic Image Real Image

One-element nodes

Type 1
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welds prevent creating intentional defects in the joist underside welds. Therefore, partially
welded three-element nodes cannot be artificially created.

The third method to identify the dominant types of missed welds is by using the frame-
work itself. By processing the images captured by the cameras, the developed framework
can detect possible new missed samples and store them locally for further evaluation. The
human annotator verifies the predictions of the framework and includes them in the dataset
as the ground truth. This helps increase the accuracy of the framework by completing
data samples for the imbalanced types with true-positive samples such as partially welded
three-element nodes. Also, it can decrease the detector false-positive rate by including
objects previously detected as false-positive in the dataset with accurate annotation.

Moreover, although the precision may decrease, the framework recall can be improved
by applying a more significant weight factor to the missed-weld class score in the classifier
module. In other words, more missed welds are probably detected, but the rate of false
positives will also increase.

Node-Blocked: this refers to nodes being hidden from the camera. Sometimes two
joists are stacked to accelerate the welding process. Because the joists vary in length, the
camera view of the nodes can become blocked when a bigger joist chord covers the nodes
of a smaller one beneath. When this class is detected, the framework notifies the human
checker that it is unable to check the welding status due to a blocked view and quality
control is done manually.

Spacer: this class refers to small steel members used to prevent buckling in the main
chords of steel joists.

Seat: this class refers to the angular steel member typically used where the joist
connects to other structural elements, such as girders, to ensure the bearing connection
between the joist and the other structural components and to improve load distribution in
the connection area.

Endnode: to indicate the position of the missed welds, the framework calculates their
relative distance along the defective joist using the detection of the beginning and end of
the joists. The detection of the ends of the joists (endnode) can also be used to generate
various key performance indicators (KPIs), such as the number of joists produced per day
or to calculate the number of spacers in each joist.

Background: this class is added for the detector to detect anything behind the joists as
the background.

4.2. Dataset Creation Challenges and Mitigation Scenarios

To create a balanced dataset in our implementation, several plans were used to capture
missed welds. The first was to capture the image of nodes during the welding process.
As overhead welding is not used to connect steel elements in the factory because of the
poor quality it produces, the current welding procedure uses an overhead crane, after the
first welding station, to flip the half-welded joists so that the overhead welding position
becomes horizontal and the second welding station can complete the weld. In this scenario,
the camera can be between two welding stations to capture half-welded nodes.

However, in this method, not all types of missed or partial welds can be captured.
Also, the images obtained midpoint have different features than those obtained at the end
of the production line (e.g., backgrounds, illumination, camera angle, and distance due to
site restrictions) which results in decreasing the effectiveness if the collected samples are
included in the dataset.

The second plan classified all possible missed welds and the prominent types were
determined intentionally. For that, the images were collected at the end of the production
line to ensure homogenous image features.

4.3. Annotation

To create the dataset, the images were annotated using LabelImg (Tzutalin, 2015) [35].
The first 1000 images were labeled manually. An auto-annotating approach was deployed
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to automatically generate labels for new images. In this stage, network prediction consisting
of class and bounding box information is stored in a text file for each image. Later, the entire
raw labels go through quality control by a human agent. The processed batch is added to
the evolving dataset, and finally, the network is trained again on the updated dataset to
make better predictions for the upcoming batch. Using the above technique, the network
assists in the tedious process of labeling, and as the dataset grows, the auto-annotation
quality increases.

4.4. Developed Dataset Size

The dataset contains 16,147 annotated images. Node-OK, Missed-Weld, Node-Blocked,
Spacer, Seat, and Endnode appear 8873, 8902, 1493, 5973, 2901, and 4477 times, respectively.
Its total number of objects is 32,619 and 527 images were included to introduce background
elements to the network.

5. Data Collection Station and Hardware Setup

The camera parameters and specifications are shown in Table 5. Compared to Basler
acA1920-48gc, Basler a2A1920-51gcPRO can compress frames and downscale frame resolu-
tion at the camera.

Table 5. Comparison of Basler acA1920-48gc and Basler a2A1920-51gcPRO.

Property Basler acA1920-48gc Basler a2A1920-51gcPRO

Resolution 1920 × 1200 1920 × 1200

Max FPS 50 51

FPS 15 15

Exposure Time (µs) 6800 6800

Gain (dB) 8.21 18

Lens Focal Length (mm) 8.5 6

Sensor Size 2/3′′ 1/2.3′′

Camera-Joist Distance (mm) 300~500 300~500

The virtual machine (VM) runs on an industrial server at the edge of the network to
process the live camera feed. The VM consists of 16 virtual processors on Intel® Xeon®

Silver 4210R CPU. It has an NVIDIA GRID T4-16Q GPU with 16 GB of dedicated memory,
64 GB of RAM, and SSD storage.

A Lambda Workstation located at ÉTS university is utilized to train the model and
analyze the recorded videos. It has an AMD Ryzen Threadripper 3960X CPU, two NVIDIA
GEFORCE RTX 3090 as GPUs with 24 GB dedicated memory each, 128 GB of RAM, and SSD
storage. Additionally, there are two more servers involved which the framework utilizes
to store and visualize data. An SQL server is responsible for storing the prediction data
while a server running Ignition®, a web-based industrial automation software, visualizes
the results on the user interface.

6. Training and Validation
6.1. Network Hyperparameters

The network hyperparameters are presented in Table 6.
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Table 6. Network Hyperparameters.

Network Hyperparameters

Input size 480 × 480
Optimizer SGD

Learning rate 0.001
Momentum 0.949

Weight decay 0.0005
Batch 64

Subdivisions 16

Data augmentation Saturation, exposure, hue, flip horizontally,
mosaic

6.2. Training and Validation Metrics

Employing a transfer learning technique, a pre-trained model on the MS COCO
dataset [34] was used as the initial weight for our custom object model. K-fold cross-
validation and train-validate-test split techniques were used to validate the performance of
the detector module.

6.2.1. K-Fold Cross-Validation Results

The dataset was divided into ten folds (k = 10), each fold containing 1615 images.
The images were randomly assigned to each fold while maintaining a consistent class
distribution and number of node instances in each fold.

Ten models were trained and validated. Each training was done with 16,000 iterations
on one NVIDIA GEFORCE RTX 3090, in about 8 h. In each training, the best-performing
model based on the AP50 was selected. A metric was calculated using the average perfor-
mance of the ten models. Table 7 summarizes the metric results of AP50, AP75, and mAP as
the folds are averaged together.

Table 7. K-fold cross-validation metrics.

Class AP50 AP75 mAP

Node-OK 0.997 0.980 0.820
Missed-Weld 0.997 0.970 0.794

Node-Blocked 0.986 0.960 0.773
Spacer 0.997 0.977 0.807

Seat 0.998 0.972 0.809
Endnode 0.996 0.843 0.692
Average 0.995 0.950 0.783

The calculated average precision, recall, and F1-score values were 0.92, 0.99, and 0.96,
respectively, when the IoU threshold was set to 50%, and the confidence score threshold
was considered 0.25. The detector inference time was 0.0083 s (121 FPS).

6.2.2. Train-Validation-Test Results

In the train-validation-test method, the dataset was split into three sets. Sixty percent
of the dataset (i.e., 9689 images) was allocated to the training set, while validation and test
sets were granted twenty percent (i.e., 3229 images). The training process was done on one
NVIDIA GEFORCE RTX 3090, and 15,000 iterations were completed in 7 h and 50 min.

The best-performing model was selected using the validation set during the training
process. It was then validated on the test set. Table 8 shows metric results of AP50, AP75,
and mAP on the test set.
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Table 8. Train-validation-test metrics.

Class AP50 AP75 mAP

Node-OK 0.994 0.984 0.823
Missed-Weld 0.997 0.971 0.770

Node-Blocked 0.977 0.963 0.733
Spacer 0.995 0.976 0.793

Seat 0.994 0.962 0.802
Endnode 0.990 0.868 0.684
Average 0.991 0.954 0.767

The overall precision, recall, and F1-score were 0.92, 0.99, and 0.95, respectively, when
the IoU threshold was set to 50%, and the confidence score threshold was considered 0.25.

6.2.3. Framework Validation

The overall performance of the framework was validated using video samples cap-
tured while creating intentionally missed welds, that were unseen by the framework. The
framework predictions were compared with the ground truth. The detector confidence
score threshold was 0.25, and the non-maximum suppression (NMS) threshold was 0.3. As
presented in Table 9, the confusion matrix, precision, and recall were calculated for each
class as metrics. The framework inference time was 0.0167 s.

Table 9. Precision and recall.

Class Precision Recall

Node-OK 0.994 0.999
Missed-Weld 1 0.992

Node-Blocked 0.981 0.929
Spacer 0.996 0.989

Seat 0.981 1
Endnode 0.972 0.981
Average 0.9873 0.982

Additionally, the framework ability to track the objects was assessed. If the tracker
module could keep track of a node until it reached the last 15 percent of the FoV width,
we considered the tracking successful. The tracker module was successful for 6073 nodes
and it failed for 34 nodes in 20 h of production. Therefore, the success rate of the tracker
module was 0.994.

6.2.4. Performance Assessment in the Production Phase

The performance of the framework was further measured against the actual quality
control reports generated in the first stage of visual quality control in the production
line. Only the occurrence of missed nodes was reported daily, hence, the comparison was
only made on the missed-weld class prediction versus factory reports for three weeks of
production.

The total number of detected classes was 103,138. The Node-OK, Missed-Weld, Node-
Blocked, Spacer, Seat, and Endnode classes were detected 63,659, 116, 2135, 20,381, 5611,
11,236 times, respectively. Table 10 presents framework defect predictions versus the
actual classes.

Table 10. Match Rate of Automated Detection to Reported Missed Welds.

Actual

Class Node-OK Missed-Weld Node-Blocked Spacer Seat Endnode Back-Ground

Prediction Missed-Weld 9 103 21 1 2 0 0
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Regarding the data presented in Table 10, it is important to note that this table is
specifically added for assessing the detection accuracy of missed welds. The data acquired
from the job site during the first stage of quality assessment in the production phase
primarily includes precise figures concerning missed welds, with a scarcity of data for other
categories. Therefore, the table is intentionally structured to highlight the accuracy and
performance of our model in identifying missed welds. This focus aligns with our research’s
primary aim and addresses the critical aspect of quality control in welding processes.

The framework counts the defects based on nodes, while missed welds are reported
based on the welding path in the shop logs. So, in order to compare the framework output
with the shop logs, a conversion was done based on the number of missing welding paths.
The framework overall performance is reported in Table 11.

Table 11. Framework overall performance during 17 working days.

Missed-Weld Class

Predicted number
116(Node-based)

True Positive
103(Node-based)

True Positive
239(Path-based)

False Positive
13(Node-based)

Reported number
88(Path-based)

Precision 0.888

Detection rate 2.71

7. Discussion

The developed framework was trained to detect missed welds and it was validated
in the production phase. Although the resulting metrics are promising, there are still
limitations that need to be considered. The range of sizes of the joists assembled in the
production line is quite broad. In the proposed hardware setup, one camera on either side
of the joist was used, but in cases where the joist is very large, the setup cannot provide a
complete view of the nodes leading to possible blind spots. Additionally, it is common to
stack joists to accelerate the welding process. In such scenarios, one joist may cover part
of the other joist node. Currently, this problem is handled by introducing an additional
class, i.e., Node-Blocked. In the current production setup, the number of blocked nodes, for
which the network cannot predict whether the node is welded or not, is around 3% of the
total amount of nodes. To provide a clearer view of the assembly line and nodes, adding
cameras with varying angles and FoV to each side of the assembly line could be beneficial.
Another issue is that the distance between the camera and the joist is erratic because joists
are placed randomly. This can affect the quality of input images as the cameras are manually
focused. Employing laser scanners or depth measuring equipment to assess the distance
between the camera and the joists, along with cameras that can adjust their focus based on
the distance could eliminate this limitation in future. Furthermore, customized joists are
assembled in the production line and this may introduce new element types according to
the structural design needs. In the conditions of the production phase, the metrics drop
compared to the previously applied validation methods. Another reason for the difference
between the accuracy of our metric on the test dataset versus the production phase is that
balancing classes is considered in the dataset creation while in reality, the input data is
severely imbalanced. In the production phase, missed-weld class distribution, compared to
its counterpart Node-OK, is 1 to 500. The mentioned fact would put a lot of pressure on the
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minority class metrics. Even if the framework performance is satisfactory for the majority
class, a tiny percent of edge cases in the majority can generate significant false positives for
the minority class, decreasing its precision metrics.

Finally, the process developed in this research identifies missing welds on top and
bottom chords of joists. It cannot be used to identify missing welds on the other components
of the joist, such as wrapping webs, spacers, and bridging, as they are not within the FoV
of the camera. For such components, alternatives methods need to be investigated.

8. Conclusions and Recommendations

We developed a deep-learning-based framework that leverages an average-based
classification over a sequence of frames to identify missed welds on a steel joist assembly
line. Previous approaches monitor welding quality using different data sources, yet the
proposed framework can detect the absence of a necessary weld within the joist connections
using live RGB data.

The framework consists of multiple modules to detect, track, and classify the nodes of
the joists and it utilizes postprocessing techniques to remove weak predictions from the
final classification. Our input image source is the live camera feed, and the framework
results are both stored in an SQL database and displayed on a web-based user interface
in real-time.

To train the framework, a dataset of 16,147 annotated images was created with six
classes of objects. Several sampling techniques were used to adjust the severely unbalanced
class data, including intentionally making different configurations of missed welds. An
extra class was added to the dataset for a partially or fully blocked view of a node to notify
the human quality controller.

Dataset validations show accurate results with mAP of 0.783 and AP50 of 0.995 apply-
ing the k-fold cross-validation technique. The detector inference time was 0.0083 s and the
framework time was 0.0167 s. After framework implementation in the production phase, a
comparison was made between framework outputs and the factory logs for the first stage
of visual quality control, leading to a precision and recall of 0.884. The detection rate of the
framework versus human checkers was 2.71, meaning the developed system outperformed
humans in finding weld defects.

In future work, it is recommended that extra cameras be used to address the camera
blind spot issue. Also, other sources of data, such as depth and thermal cameras, should
be investigated.

Even if we created the main types of missed weld, the dataset still lacks some minor
types. This can be corrected by intentionally creating other types of missed welds. Alterna-
tively, techniques such as data augmentation and data synthesis can be used to generate
the absent types in the dataset artificially.

In the case study, joists are welded while moving, yet there are other lines in the
factory where the joists remain static in the welding process. Future work could focus on
redesigning the current hardware and software settings to enable the system to adapt to
the specifications of other lines.

The framework inference time could be further decreased if the wrapper were removed
from the framework. This would require that the framework architecture only use one
programming language.

To further improve the precision of minor classes (missed-weld), it is recommended
to utilize a deep-learning-based binary classification network to confirm the existence
of missed welds in the objects previously detected as missed-weld by our developed
framework. The mentioned reevaluation could decrease false positives in the severely
unbalanced data input.
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