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A B S T R A C T   

Storm surge and waves are responsible for a substantial portion of tropical and extratropical cyclones-related 
damages. While high-fidelity numerical models have significantly advanced the simulation accuracy of storm 
surge and waves, they are not practical to be employed for probabilistic analysis, risk assessment or rapid 
prediction due to their high computational demands. In this study, a novel hybrid model combining dimen-
sionality reduction and data-driven techniques is developed for rapid assessment of waves and storm surge re-
sponses over an extended coastal region. Specifically, the hybrid model simultaneously identifies a low- 
dimensional representation of the high-dimensional spatial system based on a deep autoencoder (DAE) while 
mapping the storm parameters to the obtained low-dimensional latent space using a deep neural network (DNN). 
To train the hybrid model, a combined weighted loss function is designed to encourage a balance between DAE 
and DNN training and achieve the best accuracy. The performance of the hybrid model is evaluated through a 
case study using the synthetic data from the North Atlantic Comprehensive Coastal Study (NACCS) covering 
critical regions within New York and New Jersey. In addition, the proposed approach is compared with two 
decoupled models where the regression model is based on DNN and the reduction techniques are either principal 
component analysis (PCA) or DAE which are trained separately from the DNN model. High accuracy and 
computational efficiency are observed for the hybrid model which could be readily implemented as part of early 
warning systems or probabilistic risk assessment of waves and storm surge.   

1. Introduction 

Hurricanes are among the most devastating natural hazards which 
can cause significant damage and loss of life and property (Chen et al., 
2008; Lin et al., 2010). Coastal communities are specifically extremely 
vulnerable to hurricane-induced surge and waves (Wamsley et al., 
2009). This vulnerability has been recently illustrated with several 
major and costly hurricanes (e.g., Harvey, 2017; Dorian, 2019; Ian, 
2022). With the increasing coastal population, sea-level rise, and climate 
change effects, both economic losses and human fatalities are expected 
to increase disproportionately over hurricane-prone regions (Zhang 
et al., 2000). For instance, an increase of the hurricane-induced annual 
losses in the United States is expected to reach $39 billion in the coming 
years compared to current values of $28 billion (Dinan, 2016). Hence, 
accurate and efficient modeling of storm surge and waves is critical to 
support effective risk-responsive decision-making and mitigation of 
hurricane-induced losses. 

Storm surge is driven by surface wind stress and pressure gradient. 

The magnitude of the storm surge is also affected by several parameters, 
including the storm size, basin geometry and bathymetry (Irish and 
Resio, 2010; Lin and Chavas, 2012). On the other hand, the waves are 
mainly driven by the momentum transfer through wind stress and are 
affected by several factors such as the ocean currents (Fan et al., 2009). 
Several modeling approaches have been proposed to simulate both 
storm surge and waves. This includes the simplified empirical and sta-
tistical approaches (e.g., Rao and Mazumdar, 1966; Bretschneider, 
1967). However, the use of preselected basis functions may not always 
guarantee accurate simulations especially for highly nonlinear systems 
(Sztobryn, 2003; Thomas and Dwarakish, 2015). In addition, these 
models are usually developed for restricted locations and are not 
applicable for other regions. 

To improve the accuracy of the simplified empirical/statistical 
models, considerable efforts have been made, over the past few decades, 
to solve numerically the nonlinear governing equations of both storm 
surge and wave. For instance, the Advanced CIRCulation (ADCIRC) is a 
high-fidelity high-resolution numerical model based on finite-element 
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which solves the shallow-water equations and provides the water levels 
along with the ocean currents values (Luettich and Westerink, 2004). 
The Simulating WAves Nearshore (SWAN) is an example of a 
high-fidelity phase-averaged numerical model for generating the ocean 
waves which solves the action balance equation (Booij et al., 1999). For 
practical implementation, the ADCIRC and SWAN models are simulta-
neously solved to account for the inherent coupling between storm surge 
and waves. Specifically, the SWAN model generates the radiation 
stresses which are passed to ADCIRC. The latter generates the water 
levels along with the currents which are required by the SWAN model. 
Other numerical models have also been developed such as the Sea Lake 
and Overland Surges from Hurricanes (SLOSH) (Jelesnianski, 1992) for 
storm surge prediction and the Steady-State Spectral Wave Model 
(STWAVE) (Smith et al., 1999) for wave modeling. However, although 
the high performance of the numerical models has been recognized 
widely, their high computational cost makes it difficult, and even 
impractical to use them for probabilistic analysis, risk assessment or real 
time/rapid predictions. 

To overcome the computational burden of high-fidelity numerical 
models, data-driven techniques offer another alternative for rapid 
assessment of hurricane-induced storm surge and waves. Data-driven 
techniques identify the inherent relationship between the predictors 
(e.g., storm parameters) and the predicted (e.g., storm surge and wave) 
based on the available historical or numerical (or a combination of both) 
data. In particular, machine learning (ML) techniques have drawn 
attention in recent years due to their efficiency and robustness (Wu and 
Snaiki, 2022). For example, Bezuglov et al. (2016) developed a 
feed-forward artificial neural network (ANN) for storm surge prediction 
in North Carolina. Lee (2006) trained an ANN algorithm to predict storm 
surge in Taiwan with a 1-h lead time based on meteorological data. Kim 
et al. (2015) trained an ANN based on synthetic hurricane data to predict 
the time-dependent storm surge at few locations in southern Louisiana. 
Hashemi et al. (2016) proposed two ML models, namely ANN and sup-
port vector machine (SVM), for the prediction of peak storm surge for 
Rhode Island. The ANN model outperformed the SVM algorithm. Several 
other studies have also employed the ANN algorithm for the prediction 
of peak or time-dependent storm surge (e.g., Bajo and Umgiesser, 2010; 
Chen et al., 2012; French et al., 2017; Al Kajbaf and Bensi, 2020; 
Ramos-Valle et al., 2021; Lockwood et al., 2022). Moreover, Kriging 
metamodels (also known as Gaussian process), have been successfully 
used in various studies to model storm-induced surge responses (e.g., Jia 
and Taflanidis, 2013; Zhang et al., 2018; Kijewski-Correa et al., 2020; 
Nadal-Caraballo et al., 2020; Plumlee et al., 2021; Kyprioti et al., 2021, 
2022). For example, Zhang et al. (2018) proposed a kriging model for 
storm surge prediction using the North Atlantic Comprehensive Coastal 
Study (NACCS) database. In addition, they have presented an adaptive 
sequential design of experiment for selecting storms to enhance the 
model’s predictive capacity. Similarly, Kyprioti et al. (2021) selected a 
Gaussian Process regression model to estimate the peak storm surge 
response around Delaware Bay based on synthetic storms retrieved from 
the FEMA Region 3 Coastal Storm Surge Study (Hanson et al., 2013). 
Other surrogate models (e.g., moving least squares and recurrent neural 
network) have also been proposed in other studies for the prediction of 
the peak or time-dependent storm surge (e.g., Irish et al., 2009; Tafla-
nidis et al., 2013; Tadesse et al., 2020; Igarashi and Tajima, 2021; Adeli 
et al., 2022; Bai and Xu, 2022). Similarly, hurricane waves have also 
been predicted (e.g., significant wave height) using ML techniques (e.g., 
Berbić et al., 2017; Callens et al., 2020; Fan et al., 2020; Meng et al., 
2021; Song et al., 2022; Gao et al., 2023). 

Although significant contributions have been made to develop 
advanced ML models, it is still extremely challenging to predict storm 
surge and waves over an extended region using a single ML model. 
Training several ML models corresponding to each location (or a group 
of locations) is an alternative approach, however, it is not practically 
feasible due to the high computational demand and storage cost 
required to handle such high-dimensional space. Therefore, 

dimensionality reduction techniques have been integrated to identify 
low-dimensional feature space from the original high-dimensional space 
(Van Der Maaten et al., 2009). For example, Jia and Taflanidis (2013) 
utilized first the principal component analysis (PCA) technique to deal 
with the high-dimensionality of the output vector (e.g., peak storm 
surge), then employed kriging metamodeling for the approximation of 
hurricane surge/wave responses. Similarly, Jia et al. (2016) proposed a 
kriging-based model to predict the peak and time-dependent storm surge 
over a large area where PCA has been used as a dimensionality reduction 
technique. Lee et al. (2021) combined a convolutional neural network 
(CNN) with PCA and k-means clustering to rapidly predict peak storm 
surge from landfalling and bypassing tropical cyclones. Other studies 
have also implemented the PCA technique as a dimensionality reduction 
tool combined with data-driven techniques (e.g., Bass and Bedient, 
2018; Kyprioti et al., 2021, 2022). Recently, Saviz and Snaiki (2022) 
used deep autoencoder (DAE) instead of PCA to effectively capture the 
nonlinearities within the data and combined it with several ML models 
including ANN, random forest regressor and gradient boosting regressor. 
The simulation results indicated that the DAE-based model out-
performed the PCA-based model since it is more suitable for nonlinear 
systems. Although, the use of a dimensionality reduction technique (e.g., 
PCA or DAE) alleviates the computational burden, it comes with no 
guarantee that the identified latent space is the optimal one for the 
data-driven technique. Therefore, the latent space might not necessarily 
preserve the intrinsic dynamics which the data-driven technique will 
seek to identify from the input to the output. Hence, training the 
data-driven and dimensionality reduction techniques separately has 
several limitations (Champion et al., 2019). 

In this study, a novel hybrid model is developed for the rapid pre-
diction of hurricane-induced storm surge and waves over an extended 
coastal region. Specifically, the hybrid model couples both a deep 
autoencoder (DAE) and a deep neural network (DNN) which are trained 
simultaneously. While DAE identifies a low-dimensional representation 
of the high-dimensional spatial system, the DNN maps the storm pa-
rameters (e.g., central pressure deficit and radius of maximum wind) to 
the obtained low-dimensional latent space. A unique weighted loss 
function is designed to train the hybrid model to encourage a balance 
between DAE and DNN training and achieve the best accuracy. A case 
study related to the simulation of peak storm surge/significant wave 
height over critical regions within New York and New Jersey is selected 
to demonstrate the high performance of the proposed model. The 
training/testing data is retrieved from the North Atlantic Comprehen-
sive Coastal Study (NACCS). Additionally, the proposed framework is 
compared with two decoupled models consisting of a dimensionality 
reduction technique (PCA and DAE) and a regression model based on 
DNN which are trained separately. 

2. Methods 

2.1. Deep neural networks 

High-fidelity numerical models have significantly advanced the 
analysis of hurricane-induced hazards (e.g., wind, rain, and storm 
surge). However, these models are computationally expensive; there-
fore, it is challenging to apply them for either near real-time forecasts or 
risk analysis which requires many simulations. To overcome the 
inherent limitations of high-fidelity numerical models, machine learning 
(ML) algorithms could be used for such applications (Jia et al., 2016; 
Snaiki et al., 2020). ML algorithms aim to discover a mapping function 
between the inputs (e.g., hurricane parameters) and outputs (e.g., storm 
surge) by minimizing a cost function. The necessary data required for 
training and testing the ML model can be retrieved from various sources 
such as high-fidelity numerical simulations, experimental setups and 
field measurements. Among many ML models, artificial neural networks 
(ANN) are widely utilized due to their superior capabilities in capturing 
the inherent nonlinearities in the data (Grossberg, 1988). Further 
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discussion on the ANN models is provided in Appendix A. To improve 
the model predictions, and effectively represent the hidden nonlinear 
patterns within the data, deep neural networks (DNN) have been pro-
posed as illustrated in Fig. 1. Although DNNs are quite similar to ANN 
models, they are characterized by a deep architecture consisting of 
several hidden layers (Sze et al., 2017). In this study, DNN models have 
been utilized to predict the hurricane-induced storm surge and signifi-
cant wave height responses for both landfalling and bypassing storm 
scenarios. 

In this study, six hurricane parameters are taken as the DNN inputs, 
namely the reference latitude (LAT) & longitude (LON) as defined by the 
NACCS study for both landfalling and bypassing storms, heading angle 
(θ), central pressure deficit (Cp), translation speed (Vf ), and radius of 
maximum winds (Rmax). These parameters form the input x of the DNN 
model which can be written as the following: 

x=
[
Cp(hPa), θ(◦),Rmax(km), LAT(◦),LON(◦),Vf (km/h)

]T (1) 

It should be noted that the heading direction (θ) is measured clock-
wise from North, where 0◦ indicates a storm track heading North and 
minus sign representing storm directions towards the west. Further-
more, the output vector y represents the peak storm surge/significant 
wave height values over the selected locations (or a cluster of locations). 

However, even with the most advanced ML algorithms, it is 
extremely challenging to predict hurricane-induced hazards over a vast 
coastal region using a single ML model due to the high dimension of the 
output vector (e.g., storm surge) (Jia and Taflanidis, 2013). Training 
several ML models corresponding to each location (or a group of loca-
tions) is an alternative approach to improve the prediction accuracy. 
However, it is not practically feasible due to the high computational 
demand and storage cost required to handle the high-dimensional 
output vector. 

2.2. Dimensionality reduction 

Hurricane response (e.g., storm surge) is usually estimated over a 
large coastal region leading to a high-dimensional output vector. 
Therefore, it is impractical to train a data-driven model over this high- 
dimensional space. To deal with high-dimensional data, several 
dimensionality reduction techniques have been developed. Specifically, 
they identify a low-dimensional feature space from a high-dimensional 
space (Van Der Maaten et al., 2009). Therefore, the number of attri-
butes is usually significantly reduced, especially when a strong corre-
lation between the original features exists. Once a low-dimensional 
space is identified, reduced order models can be implemented over the 

low-dimensional representation. 
Dimensionality reduction algorithms can be generally classified into 

linear and nonlinear techniques. Linear dimensionality reduction tech-
niques map high-dimensional data to lower-dimensional space using 
linear functions (Portnova-Fahreeva et al., 2020). Principal component 
analysis (PCA) is one of the most popular linear dimensionality reduc-
tion techniques. It aims to identify orthogonal directions (also denoted 
as principal components) where the variance of the projected data is 
maximized (Abdi and Williams, 2010). Although linear reduction 
techniques are easy to implement, they do not properly handle complex 
nonlinear structures. Therefore, nonlinear dimensionality algorithms 
have been proposed in order to obtain representative low-dimensional 
spaces from the original high-dimensional data (Van Der Maaten 
et al., 2009). Among the nonlinear dimensionality reduction techniques, 
autoencoders have recently gained popularity given their ability to 
significantly compress highly nonlinear data. Autoencoders are unsu-
pervised artificial neural networks which consist of an encoder, a code 
(i.e., latent space) and a decoder (Liou et al., 2014) as illustrated in 
Fig. 2. The encoder ’φ(.)’ task is to transform the high-dimensional input 
space ’y’ into a lower-dimensional space ’z’, also denoted as the latent 
space. This leads to an l-dimensional latent output z ∈ Rl out of 
n-dimensional inputs y ∈ Rn such that z = φ(y) where l≪n. On the other 
hand, the decoder ’ψ(.)’ converts the identified latent space into the 
output space. The latter is given as ŷ = ψ(z) and should correspond to 
the reconstructed input space if the model is well-trained. 

Autoencoders are capable of identifying nonlinear patterns within 
the data based on the employed nonlinear activation functions. Hence, 
PCA can be considered as a special case of autoencoders in which linear 
activation functions are used (Wetzel, 2017). When autoencoders have 
several hidden layers, they are commonly referred to as deep autoen-
coders. In this study, the ’y’ vector which represents the peak storm 
surge (or significant wave height) response over an extended area is 
typically a high-dimensional vector, and ’z’ corresponds to its 
low-dimensional representation over the latent space. 

As indicated in Fig. 3, once a low-dimensional space ’z’ has been 
identified from a high-dimensional output space ’y’ (i.e., peak storm 
surge or significant wave height over a large area), a reduced order 
model (or several models) can be trained to map the input parameters ’x’ 

(i.e., hurricane parameters) to the low-dimensional output vector ’z’. 
Then, a reconstruction step is needed (e.g., decoder) to transform the 
obtained vector to the original space. 

Although the previous methodology alleviates the computational 
burden, it comes with no guarantee that the identified latent space is the 

Fig. 1. Typical architecture of deep neural networks (DNNs) [further details are presented in Appendix A].  
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optimal one for the regression model which will map an input vector to 
the identified latent output vector. Therefore, the latent vector might not 
always preserve the intrinsic dynamics and nonlinearities which the 
regression model will seek to identify from the input to the output. 
Hence, training the autoencoder model and the regression model inde-
pendently has several limitations (e.g., Champion et al., 2019). 

2.3. Proposed model 

A novel hybrid model is developed in this study to simultaneously 
identify a low-dimensional representation of high-dimensional systems 
while mapping input parameters to the obtained low-dimensional latent 
space. This model determines the required low-dimensional latent space 
for the development of a suitable regression model to achieve the best 
accuracy. Standard approaches which decouple the dimensionality 
reduction and regression models are limited, and might even fail, 
because they do not necessarily provide the right low-dimensional space 
which will still ensure that the intrinsic nonlinear relationship between 
the input and output (i.e., latent space) is preserved. Therefore, by 
simultaneously optimizing the dimensionality reduction algorithm and 
the regression model, a robust, generalizable, and meaningful model can 
be obtained by promoting a balance between the capabilities of 
dimensionality reduction and regression techniques. The proposed 
model consists of a deep autoencoder (DAE) and a deep neural network 
(DNN), dubbed here as DAE-DNN. While the DAE model enables the 
discovery of low-dimensional representation from a high-dimensional 

space (i.e., peak storm surge or significant wave height over a large 
area), the DNN model identifies the nonlinear relationship between the 
input parameters (i.e., the six storm parameters of Eq. (1)) and the 
identified latent space (i.e., latent output). Once the model has been 
trained, the DNN model will predict the desired values (i.e., peak storm 
surge or significant wave height) over the latent space, then the decoder 
will reconstruct the full system to provide a prediction over the entire 
area. To train the hybrid model, a weighted loss function is designed to 
encourage a balance between DAE and DNN training to achieve the best 
accuracy while accounting for the system constraints. 

To illustrate the proposed hybrid model derivation, consider the 
following system which predicts a vector y (i.e., peak storm surge or 
significant wave height over a large area) given an input x (i.e., the six 
storm parameters of Eq. (1)) through a nonlinear function f (unknown): 

f (x)= y (2) 

Since the goal is to identify a function ̂f which approximates the true 
function f , several data-driven techniques could be used (e.g., DNN). 
However, the high-dimensional output vector y ∈ Rn makes it extremely 
challenging to identify a suitable model (where n denotes the number of 
geographical locations in this study). Therefore, a low-dimensional 
vector z ∈ Rl should be first determined. This latent output can be 
identified using the encoder part of the DAE model (z = φ(y)). A DNN 
model (g) can be then trained to map the input x to the latent output 
providing an approximation ẑ to the real z (i.e., g(x) = ẑ). In the last 
step, the decoder will reconstruct the original space ŷ = ψ(ẑ). The 

Fig. 2. Architecture of typical autoencoders.  

Fig. 3. Schematic implementation of a data-driven model and a dimensionality reduction technique.  

S. Saviz Naeini and R. Snaiki                                                                                                                                                                                                                



Coastal Engineering 190 (2024) 104503

5

architecture of the proposed hybrid model is illustrated in Fig. 4 where 
both DAE and DNN are trained simultaneously. 

As indicated before, a weighted loss function is introduced to pro-
mote a balance between DAE and DNN training. Specifically, the total 
loss function of the hybrid model (L net) is decomposed into three ele-
ments, namely the DAE loss function (L r), the DNN loss function (L z), 
and the DNN-decoder loss function (L x). The total loss function can be 
then expressed as: 

L net = λ1L r + λ2L z + λ3L x (3)  

where λ1, λ2, and λ3 =weight parameters of the loss function, considered 
as system hyperparameters. The first loss function L r is related to the 
DAE model and ensures that it reconstructs successfully the high- 
dimensional vector y given a predefined architecture which contains 
the low-dimensional latent space z. The L r can be expressed as: 

L r= ||y − ψ(z)||22 (4)  

where 
⃒
⃒
⃒|.||

2
2 = the L2 norm. The second loss function L z is related to the 

regression model (i.e., DNN model), therefore it ensures that the DNN 
model accurately predicts the latent outputs z generated by the 
autoencoder, given the input vector x (i.e., storm parameters). The L z 
loss function can be expressed as: 

L z= ||z − g(x)||22 (5)  

where g = regression function which is represented here by the DNN 
model. The third loss function L x which represents the DNN-decoder 
loss, ensures that the transformation of the DNN predicted values, 
through the decoder, are consistent with the actual values in the original 
high-dimensional space. The DNN-decoder loss function can be 
expressed as: 

L x= ||y − ψ(g(x))||22 (6) 

Finally, once the model is trained, the predictive model, as shown in 
Fig. 5, can efficiently predict the high-dimensional vector (i.e., peak 

storm surge/significant wave height) based on any given input scenario 
x (i.e., storm parameters). Therefore, only the DNN, which predicts the 
latent output vectors, coupled with the decoder, which predicts the high- 
dimensional output vector over the entire region, are required. 

3. Case study 

In this study, several locations along New York (NY) and New Jersey 
(NJ) states were selected to simulate both hurricane-induced storm 
surge and significant wave height. The coastal regions of NY and NJ are 
prone to hurricane-induced hazards especially storm surge and flooding 
since they have several low-lying areas. These locations are expected to 

Fig. 4. Architecture of the proposed hybrid model.  

Fig. 5. Architecture of the predictive model.  

S. Saviz Naeini and R. Snaiki                                                                                                                                                                                                                



Coastal Engineering 190 (2024) 104503

6

experience more devastating damage from hurricanes due to the effects 
of climate change and sea-level rise (Colle et al., 2010; Wang et al., 
2014). Hurricane Sandy is an example of a storm that hit several loca-
tions in NY and NJ leading to unprecedented damage due to storm surge 
and flooding. It caused 72 fatalities and more than $50 billion in losses 
by damaging critical infrastructures (Blake et al., 2013). Therefore, the 
rapid prediction of hurricane-induced hazards in these vulnerable re-
gions is necessary to advance hurricane risk assessment, management, 
mitigation, and improve our preparedness and climate resilience (Snaiki 
and Parida, 2023a, 2023b). 

Both storm surge and significant wave height will be predicted based 
on the proposed hybrid model which consists of a coupled DAE and DNN 
models trained simultaneously. To highlight the superior performance 
of the proposed model, it will be compared with a decoupled DAE and 
DNN model and another model in which the dimensionality reduction 
algorithm is carried out using the PCA technique along with a DNN 
model. 

3.1. Database 

The training/testing data are retrieved from the North Atlantic 
Comprehensive Coastal Study (NACCS) database which contains high- 
fidelity simulations corresponding to 1050 synthetic tropical cyclones. 
This large database is obtained from the Coastal Hazards System (CHS) 
v2.0 web-tool developed by the U.S. Army Corps of Engineers (USACE) 
which provides both storm-induced surge and significant wave height 
(Nadal-Caraballo et al., 2020). Specifically, the ‘Base Conditions’ were 
selected from the NACCS study (therefore, no tides are involved in the 
simulations). With this scenario and the selected save points, as 
geographically represented in Fig. 6, the peak storm surge and wave 
height have been retrieved from the database. In addition, the reference 
locations (in terms of latitude and longitude for both landfalling and 
bypassing storms) and the corresponding storm parameters related to 
the peak storm surge and wave height were also downloaded from the 
NACCS database. The storm surge and significant wave height responses 
are simulated using the ADvanced CIRCulation (ADCIRC) and the Steady 
State Spectral WAVE (STWAVE) models, respectively (Luettich et al., 
1992; Smith et al., 1999; Cialone et al., 2015). The data preprocessing 
step indicated that out of the 1050 storms, only 1031 synthetic storms 
were successfully recorded. A total of 289 coastal save points are 
selected in this study area, which are distributed along critical regions of 
NY and NJ as indicated in Fig. 6. It should be noted that the 289 points 
were randomly selected; therefore, the proposed methodology can be 
readily applied for other save points. The database provides the peak 
storm surge and significant wave height values (output vector) along 
with six hurricane parameters (input vector, Eq. (1)). It should be 
mentioned that the significant wave height (Hs) values were not re-
ported for 31 save points out of the 289 selected points, therefore, they 
were not included in the simulation of Hs. 

3.2. Training performance 

In this study, two models were developed corresponding to the 
prediction of the peak storm surge and significant wave height, 
respectively. The dataset (i.e., the storm scenarios represented by the six 
storm parameters with their corresponding peak surge [or significant 
wave height] values over all save points) was divided randomly into 
training (70%), validation (15%), and testing (15%) sets. In addition, 
only the storms entering a 250-km-radius subregion centered on the 
studied area were retained which has led to a total of 414 synthetic 
storms. The storms located outside this region have little or no effects on 
the storm surge and significant wave height values. 

As indicated in section 2.3, the loss function of the proposed DAE- 
DNN model is a weighted sum of three components, namely, the 
autoencoder loss function L r (Eq. (4)), the deep neural network’s loss 
function L z (Eq. (5)), and the reconstruction loss function L x (Eq. (6)). 
Training the proposed hybrid model implies the minimization of the 
weighted loss function. To achieve this goal, several tuning parameters 
need to be carefully selected. This includes the network architecture (e. 
g., number of hidden layers for both DNN and DAE, activation function, 
number of neurons per layer, and learning rate) along with the weight 
parameters of the loss function (i.e., λ1, λ2, and λ3). The trial-and-error 
technique is utilized in this study to find the best tuning parameters. 
The Xavier initialization technique is used for the weight initialization of 
the hybrid model and a Relu activation function is selected for both DNN 
and DAE models (except for the last layer where a linear function is used 
instead). In addition, the bias vectors are initialized to 0. Adam opti-
mizer and a value of 0.001 for the learning rate are selected for both 
storm surge and significant wave height models. The training of the 
former required almost 6000 epochs, while it required almost 8000 
epochs for the latter. One of the key hyperparameters is the number of 
latent neurons. To identify this number, a step-by-step approach is fol-
lowed here (Champion et al., 2019). First, the minimum number of 
latent neurons is determined based on a typical autoencoder model 
(without coupling with a DNN model). This number is then used for the 
proposed hybrid model and increased until an appropriate model is 
identified. 

The performance of the proposed hybrid DAE-DNN model is assessed 
through the mean squared error (MSE) and R-squared parameter (R2) 
which are defined as follows: 

MSE=
1
N
∑N

i=1
(yi − ŷi)2 (8)  

R2 = 1 −

∑N

i=1
(yi − ŷi)2

∑N

i=1
(yi − y)2

(9)  

where N = number of outputs; y = actual values given to the model; ŷ =
predicted values by the model; and y = mean of the actual (true) values. 
The results for training/validation for both storm surge and significant 

Fig. 6. Example of the selected NACCS synthetic tropical cyclones (left) and study area with the representation of save points (right).  
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wave height are presented in the next section. 

3.2.1. Storm surge 
The deep autoencoder architecture consists of an input layer of 289 

nodes (corresponding to the number of save points), followed by 2 
hidden layers (both layers have 128 neurons). This part is also denoted 
as the encoder. It is then followed by the latent space which has 4 
neurons. The decoder also has two hidden layers (both layers have 128 
neurons) and an output layer with 289 nodes. On the other hand, the 
DNN architecture consists of an input layer with 6 nodes corresponding 
to the storm parameters (e.g., central pressure deficit), followed by two 
hidden layers (both layers have 64 neurons). The selected loss function 
weights λ1, λ2, and λ3 are 1, 0.6, and 0.6, respectively. Fig. 7 depicts the 
performance of the model training/validation in terms of the selected 
loss functions. Specifically, four loss functions were presented, namely 
the total loss of the hybrid model L net (Eq. (3)), the DAE loss L r (Eq. 
(4)), the DNN loss L z (Eq. (5)), and the DNN-decoder loss L x (Eq. (6)). 
The training results indicate that the loss functions are decreasing with 
increasing numbers of epochs for both training and validation. The total 
MSE values are 0.02 m2 and 0.06 m2 for training and validation, 
respectively. 

In addition, the obtained R2 values corresponding to the proposed 
hybrid model are 0.97 and 0.92 for training and validation, respectively, 
suggesting the good performance capacity of the model. To assess the 
performance of the proposed model, two additional models are 

implemented. The first model consists of a DAE and DNN which are 
trained separately (decoupled model). The second model is similar to the 
first one but PCA has been used for dimensionality reduction instead of 
the DAE algorithm. The simulation results are summarized in Table 1. 
Compared to the two decoupled models (i.e., decoupled DAE-DNN and 
decoupled PCA-DNN), the hybrid model has lower MSE values and 
higher R2 values for both training and validation. For instance, the R2 

(MSE) value for training has reached the value of 0.97 (0.02 m2) for the 
proposed model compared to 0.89 (0.07 m2) and 0.92 (0.06 m2) for the 
decoupled DAE-DNN and decoupled PCA-DNN, respectively. The com-
parison indicates clearly the superior prediction capabilities of the 
proposed model. 

3.2.2. Significant wave height 
The deep autoencoder architecture of the proposed hybrid model 

contains an input layer of 258 nodes which correspond to the number of 
save points, followed by two hidden layers (the first one has 128 neurons 
and the second one has 64 neurons). The latent space has 6 neurons. The 
decoder part also has two hidden layers (the first one has 64 neurons and 
the second one has 128 neurons). Additionally, the architecture of the 
DNN model consists of an input layer with 6 nodes corresponding to the 
storm parameters, followed by two hidden layers (both layers have 64 
neurons). The selected loss function weights λ1, λ2, and λ3 are 1, 0.7, and 
0.001, respectively. The model training and validation results are shown 
in Fig. 8. Similar to the surge simulation, the training results show that 

Fig. 7. Performance of the training process of the hybrid model for storm surge prediction for training (left) and validation (right).  

Table 1 
Comparison of the performance of the training process of different models for storm surge prediction.  

Models MSE (m2) R2 score 

Training Set Validation Set Testing Set Training Set Validation Set Testing Set 

DAE-DNN 0.02 0.06 0.07 0.97 0.92 0.91 
Decoupled DAE-DNN 0.07 0.09 0.16 0.89 0.85 0.75 
Decoupled PCA-DNN 0.06 0.08 0.12 0.92 0.90 0.85  

Fig. 8. Performance of the hybrid model for significant wave height prediction for training (left) and validation (right).  
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for both training and validation, the loss functions decrease with 
increasing numbers of epochs. The total MSE values are 0.02 m2 and 
0.03 m2 for training and validation, respectively. 

Additionally, the obtained R2 values for the proposed hybrid model 
are 0.90 for training and 0.85 for validation. Two models, previously 
defined in Sect. 3.2.1, were also trained to verify the superior perfor-
mance of the proposed hybrid model, namely the decoupled DAE-DNN 
and PCA-DNN. Table 2 provides a summary of the simulation results. 
The hybrid model clearly outperforms the two decoupled models for 
both training and validation since it has lower MSE values and higher R2 

values. For instance, the proposed model’s R2 (MSE) value for training 
has reached the value of 0.90 (0.02 m2) compared to 0.84 (0.06 m2) and 
0.84 (0.08 m2) for the decoupled DAE-DNN and PCA-DNN, respectively. 

Once the proposed model is trained, the latent space can be identi-
fied. Therefore, it is important to assess the performance of the predic-
tive model, which is formed as the combination of the DNN and decoder 
models, as shown in Fig. 5, using the testing (15%) set. As mentioned 

earlier, the predictive model takes the six hurricane parameters as inputs 
(i.e., Eq. (1)) and predicts the peak storm surge/significant wave height 
values over all save points. The testing results indicated a good perfor-
mance for predicting the peak storm surge (significant wave height) 
with R2 and MSE values of 91% (82%) and 0.07 m2 (0.04 m2), respec-
tively. In the next section, two randomly selected storm scenarios from 
the testing set are chosen to visualize the peak storm surge and signifi-
cant wave height values across all save points. 

4. Application 

Two case studies corresponding to storm surge and significant wave 
height prediction will be presented to highlight the accurate prediction 
capacities of the proposed hybrid model. The first scenario involves a 
relatively weak storm with a low-pressure deficit, while the second 
scenario features an intense storm with a high-pressure deficit. This 
selection enables an evaluation of the model’s performance across a 
wide spectrum of storm intensities, demonstrating its broad applicability 
and accuracy. The storm parameters of the two selected scenarios are 
summarized in Table 3. 

With the values of the storm parameters listed in Table 3 and the 
trained hybrid DAE-DNN model, the peak storm surge and significant 
wave height can be obtained. The simulation results for peak storm 
surge under two scenarios are illustrated in Fig. 9. 

As shown in Fig. 9, an excellent agreement between the simulated 

Table 2 
Comparison of the performance of the training process of different models for significant wave height prediction.  

Models MSE (m2) R2 score 

Training Set Validation Set Testing Set Training Set Validation Set Testing Set 

DAE-DNN 0.02 0.03 0.04 0.90 0.85 0.82 
Decoupled DAE-DNN 0.06 0.07 0.12 0.84 0.82 0.78 
Decoupled PCA-DNN 0.08 0.12 0.16 0.84 0.78 0.72  

Table 3 
Storm parameters for storm surge and significant wave height prediction.  

Parameter Cp 

(hPa) 
θ(◦) Rmax 

(km) 
LAT 
(◦)

LON (◦)
Vf
(
km/h

)

First scenario 28 − 60 58 38.89 − 75.27 13 
Second 

scenario 
88 − 60 50 38.23 − 75.14 37  

Fig. 9. ADCIRC-based and simulated-based peak storm surge of the first storm scenario (left column) and second storm scenario (right column).  
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Fig. 10. STWAVE-based and simulated-based peak significant wave height of the first storm scenario (left column) and second storm scenario (right column).  

Fig. 11. Predicted values for storm surge (left) and significant wave height (right) given different values of central pressure.  
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peak storm surge and ADCIRC-based simulation results is observed with 
a difference (i.e., ADCIRC-based results minus model predicted values) 
that is not exceeding 0.2 m for both scenarios. Similarly, with the same 
storm parameters listed in Table 3, the peak significant wave height was 
predicted based on the two selected scenarios. The simulation results are 
depicted in Fig. 10. 

Excellent agreement between the simulated peak significant wave 
height and STWAVE-based simulation results were achieved with a 
difference not exceeding 0.35 m for both scenarios. 

A sensitivity analysis was also carried out in terms of the central 
pressure deficit parameter, which significantly affects the storm in-
tensity and hence the storm surge and significant wave height, to 
examine the validity of the obtained results. In this case, the first storm 
scenario as shown in Table 3 was selected. It is shown that, based on the 
base scenario (1st scenario) of Table 3 with three different central 
pressure values pc = 983 hPa (Cp ≈ 30 hPa), pc = 953 hPa (Cp ≈

60 hPa), and pc = 923 hPa (Cp ≈ 90 hPa), the predicted storm surge and 
significant wave height are substantially altered as indicated in Fig. 11. 
Specifically, for pc = 983 hPa, which corresponds to a category 1 hur-
ricane, the storm surge values do not exceed 0.6 m compared to 
maximum values of 1.4 m for category 3 hurricane (i.e., pc = 953 hPa). 
For the worst-case scenario (i.e., pc = 923 hPa which is nearly a category 
5 hurricane), the maximum storm surge values can reach a 1.8 m height 
in few locations as indicated in Fig. 11. Similarly, the significant wave 
height reaches a maximum value of 5 m (6 m) in a few locations for pc =

983 hPa (pc = 953 hPa), and increases to a maximum value of 7 m for 
the worst-case scenario (i.e., pc = 923 hPa). Those results are consistent 
with the inherent physics of storm surge/waves since intense storms 
usually lead to significant values of storm surge/waves. 

5. Discussion 

To address the critical need for rapid and accurate prediction of 
storm surge and wave height induced by cyclones, this study proposes a 
novel hybrid model. High-fidelity numerical models, despite their ac-
curacy, are computationally expensive, limiting their use in real-time 
applications. The proposed model combines the strengths of dimen-
sionality reduction via deep autoencoders and data-driven mapping 
with deep neural networks. It efficiently captures a low-dimensional 
representation of the coastal system while simultaneously mapping 
storm parameters onto this latent space. This enables rapid assessment 
of peak storm surge and significant wave height over large coastal re-
gions. Compared to standard decoupled approaches (Jia and Taflanidis, 
2013; Atteia et al., 2022), the hybrid model demonstrates superior 
performance, achieving high accuracy as highlighted in Figs. 7 and 8 as 
well as Tables 1 and 2. Furthermore, its generalizability allows appli-
cation to other geographical locations with necessary customization in 
terms of data and model structure. This methodology offers a promising 
solution for rapid and accurate prediction, contributing to coastal haz-
ard mitigation and preparedness efforts. 

While the proposed hybrid model exhibits impressive accuracy in 
peak surge and wave simulations, some limitations need to be addressed. 
For example, the identification of the model hyperparameters is based 
on a trial-and-error approach. Despite achieving good performance, this 
approach is inefficient and may not identify the optimal setup. 
Employing Bayesian optimization to explore the hyperparameter space 
could lead to improved configurations and training efficiency. Notably, 
the number of intrinsic coordinates in the autoencoder’s latent space 
significantly impacts interpretation and the associated dynamical 
model. In this study, identification of the minimum number required a 
two-step process: first, determining it for a standard autoencoder, then 
adapting it for the hybrid model. This approach, though effective, is 
tedious and does not guarantee optimal configuration. To address this, 
developing a hybrid model equipped with a suitable optimization 
technique to automatically select the optimal number of latent neurons 
would enhance the simulation results. To further enhance the model, 

incorporating the effects of astronomical tides is recommended. While a 
linear addition to the model’s output is feasible, it may not fully capture 
the potential nonlinear effects of the tides (Xiao et al., 2021). Therefore, 
incorporating the tides as input to the DNN model is likely to result in a 
more accurate representation. In addition, expanding the model to 
simulate time series of both surge and wave height (Saviz Naeini and 
Snaiki, 2022) necessitates further adaptation. Replacing DNN with 
advanced surrogate models like Long Short-Term Memory (LSTM) and 
employing other dimensionality reduction techniques (e.g., convolu-
tional autoencoders) capable of capturing spatiotemporal patterns 
within data are essential. Additionally, exploring techniques such as 
knowledge-enhanced neural networks (Karniadakis et al., 2021; Snaiki 
and Wu, 2019, 2022) could circumvent the need for larger databases by 
leveraging both data and underlying physical principles. 

6. Conclusion 

In this study, a novel hybrid machine learning model has been pro-
posed for rapid prediction of peak storm surge and waves over an 
extended coastal region for both landfalling and bypassing storms. The 
proposed hybrid model trains simultaneously a deep autoencoder (DAE) 
and a deep neural network (DNN) based on a unique weighted loss 
function. While the DAE identifies a low-dimensional representation of 
the high-dimensional spatial system, the DNN maps the storm parame-
ters (e.g., central pressure deficit and radius of maximum wind) to the 
obtained low-dimensional latent space. To demonstrate the superior 
performance of the hybrid model, the peak storm surge and significant 
wave height were predicted over several coastal locations within NY and 
NJ. A total of 289 coastal locations were selected which serve as the 
input to the DAE model. In addition, six storm parameters have been 
selected as input to the DNN model, namely reference latitude, reference 
longitude, heading angle, central pressure deficit, translation speed, and 
radius of maximum winds. The proposed technique was further 
compared with two decoupled models consisting of a dimensionality 
reduction technique (PCA and DAE) and a regression model based on 
DNN which are trained separately. The hybrid model outperformed the 
decoupled PCA-DNN and DAE-DNN. For example, the R2 (MSE) for 
training of the storm surge-based model was 0.97 (0.02 m2), 0.89 (0.07 
m2), 0.92 (0.06 m2) for the hybrid model, decoupled DAE-DNN, and 
decoupled PCA-DNN, respectively. Similarly, the R2 (MSE) for training 
of the significant wave height-based model was 0.90 (0.02 m2), 0.84 
(0.06 m2), 0.84 (0.08 m2) for the hybrid model, decoupled DAE-DNN, 
and decoupled PCA-DNN, respectively. In addition, the testing results 
corresponding to the predictive model indicated a good performance for 
predicting the peak storm surge (significant wave height) with R2 and 
MSE values of 91% (82%) and 0.07 m2 (0.04 m2), respectively. Conse-
quently, high accuracy and computational efficiency are observed for 
the hybrid model which could be readily integrated as part of an early 
warning system or used for probabilistic risk assessment, and rapid 
prediction of waves and storm surge. 
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Appendix A 

The neural network algorithms were first inspired by biological neural networks to mimic human brain neural activity (Liu et al., 2021). Neural 
networks are typically composed of an input layer, several hidden layers, and an output layer as shown in Fig. 1. Each hidden layer consists of several 
neurons (Leung et al., 2003). The neurons are considered as a computational unit that receive one or more inputs and produce an output based on a 
specific activation function. The output of each neuron can be then obtained as follows: 

c=Φ

(
∑n

i=1
wiai + b

)

(10)  

where Φ = activation function which is a mathematical function that introduces nonlinear characteristics to the neuron’s output; b = bias; and wi =

weight associated with input ai. The activation function captures the nonlinearities within the data and can be selected from well-known functions 
including Hyperbolic-tangent, Sigmoid, Relu, among others (Zhang et al., 2018). In order to train a typical ANN model, its architecture should be 
initially defined. The weights and biases should also be initialized. Several methods are being used for weight initialization such as the random 
initialization, Xavier initialization, orthogonal initialization, etc. On the other hand, the biases are usually set to zero to make the training process 
simpler. The weights of the inputs are adjusted during the training process of the neural network in order to optimize the performance of the network 
(Larochelle et al., 2009). Specifically, the training process of typical ANN models consists of two major steps. In the first step, also denoted as the 
feedforward step, the ANN output is computed as a result of the aggregation of the neurons output (Eq. (10)). In the second step, also denoted as the 
backpropagation step, the derived output is compared to the target value, and the obtained errors are subsequently backpropagated through the 
network. The best weights and biases are found by minimizing the loss function using an optimizer algorithm (e.g., gradient-descent, stochastic 
gradient-descent or Adam) while repeating the feedforward and backpropagation steps for a certain number of epochs (the training can also stop once 
a given convergence criterion is met). The learning rate, an important hyperparameter in the ANN optimization, determines the size of the step taken 
during each training iteration (Rumelhart et al., 1986; LeCun et al., 1989; Ruder, 2016). Its magnitude affects the learning ability of the model based 
on the training data, with higher values resulting in faster convergence but a higher risk of overshooting the global minimum. On the other hand, lower 
values will lead to slower convergence due to smaller steps, but with the potential for better accuracy. The trained model should be evaluated on a test 
set to assess its performance. The performance of the ANN models depends on the selected hyperparameters including the number of inputs, number of 
hidden layers, number of neurons in each layer, weight initialization, activation function, learning rate, and the optimization algorithm (Bardenet 
et al., 2013). 
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