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Abstract: The Internet of Things (IoT) is a technology that can connect billions of devices or “things” to
other devices (machine to machine) or even to people via an existing infrastructure. IoT applications in
real-world scenarios include smart cities, smart houses, connected appliances, shipping, monitoring,
smart supply chain management, and smart grids. As the number of devices all over the world is
increasing (in all aspects of daily life), huge amounts of data are being produced as a result. New
issues are therefore arising from the use and development of current technologies, regarding new
applications, regulation, cloud computing, security, and privacy. The blockchain has shown promise
in terms of securing and preserving the privacy of users and data, in a decentralized manner. In
particular, Hyperledger Fabric v2.x is a new generation of blockchain that is open source and offers
versatility, modularity, and performance. In this paper, a blockchain as a service (BaaS) application
based on Hyperledger Fabric is presented to address the security and privacy challenges associated
with the IoT. A new architecture is introduced to enable this integration, and is developed and
deployed, and its performance is analyzed in real-world scenarios. We also propose a new data
structure with encryption based on public and private keys for enhanced security and privacy.
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1. Introduction

The Internet of Things (IoT) has gained significant recognition and popularity since
its inception as a network model by Ashton and Gamble in 1999. Its widespread adoption
has been driven by the vast number of interconnected nodes, networks, and protocols that
offer convenience and efficiency in various industries. However, the growing scale and
complexity of the IoT ecosystem have raised significant security concerns [1,2].

In the IoT, physical objects are connected to enable them to exchange data, which then
require analysis. Sensors in devices collect and store data in the cloud for examination,
which both offer possibilities and pose problems, such as the difficulty of data extraction
from devices with restricted capabilities. Privacy problems with the IoT have also emerged,
and industries with academics are striving to overcome them [3]. The number of IoT-
connected devices is expected to reach an astonishing number above 75 billion in the
coming years, and this has intensified the urgency of addressing the associated security
challenges [4].

At the core of the IoT ecosystem are fundamental elements such as sensors, computing
nodes, receivers, actuators, and devices [5]. The IoT framework consists of several layers,
each of which serves a distinct purpose: the business layer, the application layer, the middle
layer, the network layer, and the physical/sensor layer [6].

These interconnected components work together to collect, process, and exchange
data, thus enabling the seamless functioning of IoT systems. However, modern linked IoT
systems encounter difficulties in terms of efficiently allocating their limited energy resources
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while maintaining a strong focus on privacy and security. Although centralized security
solutions are commonly deployed, they may not fully meet the unique requirements of IoT
systems, leaving them vulnerable to potential threats [7].

Massive IoT refers to the potential scenario where networks support billions of con-
nected devices and applications that interact at extremely high data rates, facilitating a
major technological revolution with the implementation of diverse and advanced systems
such as telepresence, virtual-reality devices, swarms of drones, autonomous driving, and
biosensors. This extensive network of IoT devices, while enabling innovative services in
many domains, also raises significant security concerns due to the vulnerability of devices
and the importance of the information they carry, making protection against cyber threats a
crucial challenge [8].

To overcome these limitations, one emerging approach involves integrating the IoT
with cognitive environments by leveraging cognitive technologies such as artificial intelli-
gence and machine learning to enhance the capabilities of intelligent devices. Through the
incorporation of cognitive capabilities, IoT devices can adapt to changing environments,
optimize energy consumption, and offer advanced functionalities. Furthermore, this inte-
gration enables users to remotely monitor and interact with their IoT networks, resulting in
improved efficiency and effectiveness [9].

Ensuring safety and privacy via trust management is crucial [10]. In addition, in in-
dustries where asset tracking is necessary, data immutability becomes a major concern [11],
particularly in IoT applications that involve direct interactions with humans. Examples of
such applications include medical implants, smart gadgets, and autonomous cars, to name
a few. It is essential to establish trust in order to promote confidence in these systems and to
protect the privacy and safety of the user [12]. However, IoT networks face various security
and privacy risks, including distributed denial of service (DDoS) attacks, privacy breaches,
false data injection, and data integrity issues [1]. Previous researchers have proposed a
limited range of solutions due to the lack of trust and transparency in data processing,
which highlights the need for innovative approaches [13].

Research scientists Stuart Haber and W. Scott Stornetta pioneered the development
of blockchain technology in 1991 [14]. In 2008, Satoshi Nakamoto introduced Bitcoin, a
decentralized virtual currency that resolved data privacy issues in economic transactions.
The blockchain, a distributed ledger offering security and transparency, has gained in
popularity and has begun to serve diverse industries worldwide. It stores distributed
records over a number of nodes, which allows users to access and verify transactions. Key
functionalities include routing, storage, wallet services, mining, and recovery [11,15].

Blockchain technology, which was initially introduced as a means to prevent double-
spending in digital currencies, has evolved to find applications in diverse fields such as the
IoT, logistics, and healthcare [16]. The inherent benefits of the blockchain, including the
immutability of append-only chained data, a decentralized and non-changeable ledger, the
absence of third-party involvement, transparency, and cryptographic security, make it a
promising solution to address the IoT security challenges described above [17,18].

Among the various types of blockchain frameworks, such as public, permissioned,
permissionless, and private, Hyperledger Fabric stands out as an enterprise-grade solu-
tion. Hyperledger Fabric is a private and permissioned blockchain that offers modularity,
scalability, and a flexible permission model and is suitable for IoT deployments. Unlike
public blockchains, permissioned blockchains such as Hyperledger Fabric restrict content
publication to selected nodes, where access is controlled by a third party that manages user
privileges [19,20]. This makes Hyperledger Fabric an ideal choice for meeting the specific
security and privacy requirements of IoT applications.

The authors of [21] introduced two new concepts:

1. The storage of sensor data off the blockchain, keeping only the sensor ID and the
transaction details on a local blockchain.

2. The use of “RESET” transactions that move local blockchain data to free up storage
and store the hash on the global blockchain (GB) for data integrity.
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These concepts can be used to connect local blockchains to the GB, which ensures data
integrity and has its own chaincode and policies. Overall, they can improve scalability and
efficiency in terms of data storage and transaction management.

The authors of [22] discussed a system configuration that included a root server,
Hyperledger Fabric, and multiple users. They outlined the registration and verification
process for users as agents and highlighted the roles of different certificate authorities.
Their system allowed for the creation and management of multiple groups, with periodic
monitoring and agent changes for stability and security purposes.

The article in [23] introduced a new architecture that used blockchain technology to
enable interactivity among IoT devices. This architecture had four blocks, consisting of the
sensors, the web service, the Ethereum blockchain (ETH), and the users and administrators.
This system was shown to operate successfully under various conditions, and the secure
and efficient use of the blockchain was showcased. However, its drawbacks included a
reliance on a private ETH blockchain with low transaction processing capacity, the high
cost of implementation in a public ETH blockchain, and a lack of encryption, privacy, and
security on the device side.

In [24], the authors focused on the integration of IoT systems with a private blockchain
deployed on an ad-hoc IoT network. The choice of a private blockchain was motivated by
its advantages, which include a lower node count and reduced power and resource con-
sumption. The study described the establishment of an Ethereum-based private blockchain
on top of the network, with each IoT device utilizing the Ethereum execution client (Geth
client) to form a full blockchain connection with other nodes. This research aimed to assess
the performance of an integrated IoT-private blockchain system, with a specific focus on
the connections between the IoT devices and the underlying network.

In another article [25], the authors examined the benefits of utilizing off-chain data
storage and conducted a comparative analysis of the associated gas costs in Ethereum (ETH)
for each transaction executed with a smart contract deployed on the Ethereum blockchain.
They highlighted the importance of pre-processing in the fog layer and described the
process of creating data chunks, which was governed by policies set by the administrator.
Users could access these chunks through the blockchain, and smart contracts were utilized
for validation purposes. However, several drawbacks were identified, such as the use of
the ETH blockchain, leading to a low TPS rate, and the absence of a specific data structure
for managing data chunks.

The goal of this research is to improve the security and efficiency of the Massive Inter-
net of Things (MIoT) by developing a cohesive, four-layered IoT blockchain infrastructure.
This method combines IoT devices with Hyperledger Fabric, a private and permissioned
blockchain, to provide a secure, decentralized ledger for data transfers. the aim is to
optimize data processing and secure storage inside this framework, solving issues like
latency by using proper chaincode through hyperledger fabric and scalability by adding an
off-chain data structure. To analyze the system’s scalability, security, and efficiency, we use
data validation through trials in diverse IoT domains. This strategy represents a big step
forward in solving the collective difficulties of MIoT security and data management.

In the next section, we focus on the connection between IoT devices and the blockchain.
We explore the best four-layered architecture for IoT deployment and resolve the prob-
lems associated with performance and storing IoT data on the blockchain. In Section 3,
we present the findings of the integration between the blockchain and the IoT platform,
elucidating its implications and consequences in the context. Section 4 presents an in-
depth assessment of the features of the proposed platform, highlighting its advantages and
beneficial outcomes. In the final section, we summarize the most important results and
conclusions of this study.

2. Materials and Methods

We developed a comprehensive four-layer architecture with the specific aim of es-
tablishing connectivity between various IoT devices and end users. This architecture can
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provide a robust and efficient framework for integrating IoT devices into everyday applica-
tions. In this simplified overview, we consider a wide range of such IoT devices, including
sensors, cars, smart city infrastructure, and even sensors from aircraft.

Table 1 briefly outlines the four essential layers of an Internet of Things (IoT) archi-
tecture, ranging from physical IoT devices and sensors at the first layer, through network
protocols, and data processing, up to end-user applications at the fourth layer. Each level
plays a vital role in ensuring integration and functionality within the IoT ecosystem.

Table 1. Proposed four-layered architecture.

Layer Examples

Fourth layer
(application/

end-user layer)

Smart home applications, industrial control systems, healthcare
applications, asset tracking and management systems

Third layer
(middle layer) Data storage, data management, data processing

Second layer
(network layer) WI-FI, Bluetooth, Zigbee, LoraWAN, cellular networks (3G, 4G, 5G)

First layer
(physical layer/

IoT device)

Temperature sensors, humidity sensors, light sensors, air quality sensors,
smart door locks, vehicles, aircraft

Figure 1 provides a comprehensive illustration of the four-layer architecture, detailing
the various technologies utilized to ensure its complete functionality.
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2.1. First Layer (Physical Layer)

The physical layer in an IoT architecture involves a wide range of devices that enable
the collection and sensing of data. In our specific implementation, we utilized the Laird
connectivity device combined with Nordic RF Silicon, the BL654 model as the sensor. For
the gateway functionality, we used the Pinnacle™ 100 DVK, devices from Laird Connec-
tivity manufacturing company in Akron, OH, USA, which is equipped with a SIM card
for connectivity.
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To facilitate data transmission within the physical layer, we employed Bluetooth
technology as the communication protocol. This allowed the sensors, represented by the
BL654 model, to send their data efficiently to the Pinnacle™ 100 DVK.

Table 2 provides a comparative analysis of devices considered for gateway purposes.
We selected the Pinnacle™ 100 DVK due to its low power consumption, inherent cellular
connectivity, and additional features.

Table 2. Comparison of devices used as gateways [26–28].

Features Raspberry Pi 4 Model B Pinnacle™ 100 DVK Arduino Uno

Power consumption 2.3 W (off)/3.3 W (idle) Power Save Mode (PSM), eDRX,
BLE–TX, low power consumption N/A 1

Processor Broadcom BCM2711, ARM
Cortex-A72 (64-bit)

Silicon Labs EFR32MG21, ARM
Cortex-M4F (32-bit) Microchip ATmega328P

Cellular connectivity Not natively included LTE-M/NB-IoT, release 13 GPP N/A

Clock speed 1.5 GHz 64 MHz (Cortex-M4F) 16 MHz

RAM Up to 8 GB 256 KB 2 KB

Storage MicroSD card slot 1 MB internal flash None (external storage required)

Performance Higher processing
power and capabilities

Optimized for low-power and IoT
applications

Limited processing
power and memory

Purpose
General-purpose
computing and

prototyping

IoT-specific
applications and

projects

General-purpose
prototyping and

embedded systems
1 Not Available.

At this layer, we considered three specific types of sensors: humidity, pressure, and
temperature; however, it is important to note that the versatility of IoT systems enables
the integration of various other types of sensors depending on the specific requirements of
the application. This flexibility allows for the incorporation of a diverse range of sensor
technologies that can cater to a wide array of use cases and scenarios. Figure 2 The
Pinnacle™ 100 is prominently featured on the left side, offering a sharp and detailed visual
portrayal. Concurrently, the BL654 sensors are presented on the right side of the image.
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2.2. Second Layer (Network Layer)

The network layer plays a crucial role in facilitating the transfer of data from the first
layer (IoT devices) to the third layer (middle layer). It serves as the communication bridge
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between these layers, and various technologies can be employed to ensure efficient and
reliable data transmission.

In our experimental setup presented in Figure 3, the second-generation Nutaq PicoLTE
was used as a software-defined radio-network-in-a-box. This served as a versatile and
powerful simulator, allowing us to create and emulate an LTE-based network environment
for our IoT experiments, and facilitating the simulation and evaluation of the proposed
IoT system. The Nutaq PicoLTE also allowed for the configuration and customization of
various network parameters, such as signal strength, bandwidth, and interference, meaning
that we could mimic real-world network conditions.
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One notable aspect of our experiment was the use of LTE-M technology for data trans-
mission from the IoT devices to the third layer, which served as the access network. This
offered efficient and reliable connectivity for IoT devices, enabling them to transmit data
over long distances while consuming minimal power. Table 3 shows a few characteristics
and supporting features of the Nutaq PicoLTE.

Table 3. Distinctive features offered by the Nutaq PicoLTE.

FDD/TDD
Support

Bandwidth
Support (MHZ)

eDRX
Support

PSM
Support

IP
Version

NB-IoT
Support

LTEENB Yes 1.4, 3, 5, 10, 15, 20 Yes No IPv4/v6 NB1 UE

LTEMME No 2 Yes Yes Ipv4/v6 NB-S1 UE

LTEUE Yes 1.4, 3, 5, 10, 15, 20 Yes Yes Ipv4 NB 1
multi-tone

2.3. Third Layer (Middle Layer)

In the proposed architecture, the middle layer is responsible for handling and process-
ing the data generated by the IoT devices. This layer will monitor and handle activities
such as data storage, administration, and processing. Data storage enables the effective
organization and retrieval of enormous volumes of IoT data, whereas data administration
includes the management of data input, translation, and aggregation while ensuring data
quality and dependability. Data processing entails leveraging technologies to execute
activities such as analytics, machine learning, and real-time decision-making. The middle
layer enables the smooth integration and use of IoT data for a variety of applications.

In this layer, it is proposed to use Kafka which would play a pivotal role as a powerful
real-time data streaming pipeline for smooth data transfer to the blockchain. Kafka’s
capabilities were leveraged to ensure that the data generated by the IoT devices were
efficiently collected and effortlessly transmitted to the blockchain network.
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The blockchain, which resides in this layer along with the database, serves as a
decentralized and secure ledger. It ensures the integrity and immutability of the data by
storing hashed representations of the transmitted information. We employed an off-chain
storage solution, with just the hash of this data maintained on the Hyperledger Fabric
blockchain. This method dramatically decreases ledger size while retaining the blockchain
network’s efficiency and speed. We assure data integrity and speedy verification processes,
since the on-chain hash may be used to authenticate the validity of the whole data stored
off-chain. Using Hyperledger Fabric’s features, such as private channels and chaincode,
enables greater optimization and control over data management, resulting in a balanced
and efficient system that adheres to security and decentralization principles.

In the specific implementation described here, the InterPlanetary File System (IPFS)
was chosen as the database solution. IPFS offers a distributed and decentralized storage
system that complements the characteristics of the blockchain. However, it is important to
note that other proprietary databases such as MongoDB and MySQL could also be used
within this layer, depending on the specific requirements and preferences.

Apache Kafka acts as a bridge, receiving data from devices and efficiently transmitting
it through the pipeline to the database. We use a smart data transformation strategy to
manage the massive data volumes generated by IoT sensors. We start by collecting raw
data from sensors, which are typically vast in volume. This raw data is subsequently
processed, resulting in a considerable reduction in bulk. Finally, we produce the collected
data into usable insights, minimizing data quantity while maximizing value. This simplified
technique assures efficient storage, rapid data access, and relevant results, successfully
overcoming the issues of handling enormous data volumes.

Figure 4 provides a visual representation of the various data types being stored and
illustrates the corresponding volume of data at each stage.
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2.4. Fourth Layer (Application Layer)

In the IoT architecture, the responsibility of the application layer includes data vi-
sualization and processing, as well as supporting firmware upgrades. In a smart device
ecosystem, for example, the application layer may analyze sensor data, produce visual
representations of the performance of devices, and provide a user interface for initiating
firmware upgrades. Firmware upgrades guarantee that devices are equipped with the most
recent features, security fixes, and performance enhancements. Users can easily upgrade
firmware via the application interface, allowing for smooth device maintenance and feature
enhancement. In the IoT ecosystem, the application layer therefore helps with both data
visualization and firmware management.

User authentication is essential in this layer to enable communication with the blockchain
with the proper data owner. A two-layer authentication mechanism was used in this case
to ensure safe access. The first layer handles initial user authentication, which can securely
store user profiles and information such as usernames, passwords, email addresses, etc.
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The second layer relied on the blockchain’s built-in authentication procedures. It has been
specifically designed to interact with the blockchain. After the user’s credentials have been
verified by the first layer, the process advances to the second layer, which has the responsibility
to handle any requests from the blockchain. The built-in authentication method included in
our platform makes use of JSON Web Tokens (JWTs), which are produced securely utilizing a
pair of public and private keys. These keys are created randomly, resulting in a secure and
distinct key for each instance. The length of the phrase in our deployment varies from 13 to
17 words, providing enough complexity and security.

Each user is given a unique phrase to get their own keys, ensuring a safe and person-
alized experience. This method is critical to the operation of our crypto wallet. We took the
effort to create our own wallet, which has been rigorously built to store and preserve these
sensitive credentials, assuring the secure storage of user credentials. To authenticate the
user’s identity, both layers can execute authentication. The type of data shown to the user
is governed by their unique requirements and access credentials.

This layer acts as the user interface for communicating with the blockchain, letting
users submit and receive requests. The data are visualized on a web page to create a more
user-friendly experience, fully secured, decentralized and immutable.

2.5. Data Flow in the Proposed Architecture

In this section, we will discuss the data flow through the deployed massive IoT
platform.

Each user was assigned a unique public and private key, and RSA 2048-bit encryption
which is a robust encryption standard that ensures the security of the key pairs used. For
each public-private key pair, we used a JSON Web Token (JWT) with RSA-based encryption
that can be verified by parties who have access to the public key, ensuring the authenticity
of the token. The Hyperledger-Fabric Software Development Kit (SDK) was employed to
validate the JWT to ascertain the integrity of the data.

We developed a specialized data flow procedure that consisted of multiple phases to
assist in the secure and quick transfer of data from each sensor to the blockchain. The data
from all sensors of each user were then converted into larger blocks containing many bits
of information, such as the time of creation of the block, the processed data, and the IPFS
Content IDentifier (CID) of previously inserted blocks to IPFS.

In the proposed scheme, each block is connected to the CID of the preceding block
added to the IPFS, in order to guarantee the consistency and security of the data, and the
first block (or ‘genesis block’) is given a CID of zero. This procedure helps to maintain
the sequential order of the data and ensures that any changes or efforts to alter the data
are readily discernible. Figure 5 illustrates how data blocks are interconnected in a chain,
enhancing their immutability, and details the contents of each block.
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This creates a unique information chain for each user. Users may have several gate-
ways and sensors associated with these gateways, each with their own information chain.
Notably, this chain is stored separately from the main blockchain on IPFS. The CID of each
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block, on the other hand, is stored on the blockchain, connecting the two systems. Figure 6
shows every user maintains an individual chain, which is accountable for managing data
originating from that specific user.
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Once the blocks have been produced and contain all the required information, they are
sent to IPFS for storage. The data are then given a distinct CID with a length of 53 characters,
which remains unaffected by the volume of the data. This CID acts as a permanent record
of the data as it appeared at the time, allowing it to be readily traced and accessed. Here’s a
sample CID: Qmbt153PLWidJEv2PBMHDiLLBxQo3N14MbagEveQnK5EM5ZYv1. Each
block of data possesses the capacity to incorporate readings from numerous sensors. The
dimension of the data is directly proportional to the congestion observed within the
network. Figure 7 depicts real-world scenarios. In this example, the quantity of collected
data is 2.
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Finally, the entire CID is transmitted to the blockchain, which allows for efficient and
safe contact between devices. This data structure allows us to operate independently of the
number of users; it scales efficiently, focusing solely on the users’ count. We encrypt the
data throughout the entire transfer using the provided public and private keys for each of
the entries. This ensures the privacy of the data and allows us to verify its integrity.

Overall, this flexible data storage, which we may alter relying on the scenario and the
congestion of the network, also the transmission mechanism provides a secure and fast
transfer of data from sensors to the blockchain. This guarantees the security, anonymity,
and accessibility of data, maintains the network’s scalability, and helps us to handle large
volumes of data or massive IoT devices.
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3. Experiment, Results and Analysis

In this section, we present the results from the performance evaluation of the proposed
Massive IoT architecture using our blockchain and chain code. To assess these aspects, we
use Hyperledger Caliper (https://hyperledger.github.io/caliper/ accessed on 5 Septem-
ber 2023), a reliable benchmarking tool that was designed to measure the efficiency of
blockchain implementations using a predefined set of use cases.

Hyperledger Fabric’s performance is closely tied to the hardware utilized. Enhanced
equipment typically yields improved outcomes. For the purposes of this experiment, we
utilized a MacBook Pro featuring an M2 Pro chip, detailed by the following specifications:

• CPU: Apple M2 Pro chip (10-core).
• RAM: 16 GB unified memory.
• Storage: 512 GB.

Hyperledger Caliper operates through worker processes, each of which is responsible
for generating the workload independently of the others. This design allows for efficient
workload generation, even if a particular worker process reaches the capacity limit of its
host machine. By employing multiple worker processes across various machines, we can
further enhance Caliper’s scalability and overall workload rate.

The architecture has been designed to be independent of the number of devices,
focusing instead on the number of users. This means that each transaction is associated
with a user, who may have multiple devices linked to their account.

Figures 8 and 9 show that the throughput ranges from 366.4 TPS to a peak of 798.3 TPS.
As the TPS increases, there is a corresponding rise in the transaction failure rate, which
reaches 7% when the number of workers is increased to 20 and the network is handling
20,000 transactions.

To address this challenge, we can leverage the advantages of the data structure pro-
posed earlier. By regularly monitoring the performance over time, we can dynamically
adjust and optimize the data size within our data structure. This approach aims to strike
a balance between the throughput and transaction success rates, thereby ensuring more
stable and efficient overall performance.
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Figures 10–12 show the latency of Hyperledger Fabric, which is divided into minimum,
average, and maximum values. Minimum latency displays the network’s best efficiency,
maximum latency determines imaginable congestion, and average latency provides a
balanced perspective of general performance, administering in thorough Hyperledger
Fabric performance examination and optimization.
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Figures 13 and 14 show the resource utilization during a single round of transactions
performed by Hyperledger Caliper. The graphs allow for critical insights into CPU and
memory usage. These metrics offer a comprehensive view of how efficiently the system
manages its resources during transactional activity.

As transaction volumes grow, we witness an increase in CPU and RAM usage, with
the CPU undergoing a significant pinpoint. This pattern implies that higher transaction
volumes set a powerful pressure on the CPU, potentially endangering system overload
and performance issues. To ensure smooth operations, it is important to regularly monitor
and optimize system resources, adopting a proactive approach to system maintenance. By
doing so, we can actually manage CPU usage and maintain stable performance, even as
transaction requests increase, potentially exploring scaling solutions to accommodate the
increasing load gracefully.
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4. Discussion

In this section, we will explore the numerous benefits and advantages of implementing
our proposed architecture, which enable organizations to unlock a range of valuable
outcomes and enhance their overall operations.

• Security: Robust security measures are implemented through multiple layers of
authentication. The first layer handles user authentication, while a public and private
key mechanism generates a JWT (JSON Web Token), thus fortifying the security of
the blockchain. One of the most notable features of blockchain is its inherent security
mechanism. Moreover, Hyperledger Fabric, as a private permissioned blockchain, can
establish trust within the community utilizing the platform.

• Integrity: The blockchain serves as an immutable ledger, which can ensure data
integrity. Once data are recorded on the blockchain, they become tamper-proof and
are virtually impossible to alter or modify. By applying encryption throughout the
entire process, we can ensure the integrity and privacy of the data.

• Privacy: User privacy is protected through data encryption. Only users with the corre-
sponding private keys can decrypt and access the data, thus ensuring its confidentiality.
Sensitive user data remains safeguarded from unauthorized access or viewing.

• Access control: Administrators have the authority to manage and access the analy-
sis and insights derived from the data. Controlled access allows administrators to
monitor and make informed decisions based on the analyzed data while preserving
user privacy.

• Scalability: Hyperledger Fabric, our chosen framework, offers exceptional scalability
with a high number of transactions per second. Our innovative data structure also
enables efficient management of the platform’s performance. The data block volume
can be dynamically adjusted to adapt to changing requirements, thereby ensuring
optimal scalability.

• Data preservation: By leveraging Kafka’s built-in database functionality, the platform
can retain data for as long as necessary. Even if there is a temporary increase in the
latency of the blockchain, the data are preserved within Kafka’s database until they
can be securely sent to the blockchain. No data are lost or destroyed, thus ensuring
comprehensive data retention and reliability.

5. Conclusions

This paper has presented a novel database-based blockchain using Hyperledger Fabric,
with a four-layer architecture, which can effectively address data security and privacy
concerns. The integration of Kafka as a streaming pipeline also gives enhanced overall
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system performance, and the introduction of a new flexible data structure has been shown
to be instrumental in improving the efficiency of the platform.

We have successfully linked an enormous amount of IoT devices with blockchain tech-
nology, creating a data structure that allows the platform to scale regardless of sensor count.
Instead, scalability is directly related to the quantity of users. We have 20,000 registered
users on the platform thus far. Despite current numbers indicating a high level of resource
consumption, the platform retains solid security, ensuring good device management and
monitoring. Our findings suggest that our solution, which employs advanced architectures
and data formats, effectively addresses Hyperledger Fabric’s scaling difficulties. This inte-
gration represents a significant advancement in the development of secure and scalable IoT
blockchain networks, and it contributes to greater scholarly conversation on this subject.

In the next phase of this study, we will focus on building an algorithm that allows
for easy performance verification and dynamic modifications to the volume of data that
is saved and communicated between the database and the blockchain. This dynamic
adaptability is essential for maintaining high performance and ensuring the long-term
success of the system.

We predict that by applying this technique, we will be able to achieve even higher
levels of efficiency, scalability, and reliability in database operations, thereby opening new
opportunities for real use cases in a variety of sectors. Our findings have the potential to
significantly enhance the field of blockchain-based databases and pave the way for future
advances in safeguarding sensitive data and improving system performance.
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