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Abstract

Warehouse design and planning involve complex decisions on receiving, storage, order picking and shipping products (i.e., stock-
keeping units - SKUs) and can affect the performance of entire supply chains. With the advancement of Industry 4.0 and increased
data availability, high-computing power, and ample storage capacity, Machine Learning (ML) has become an appealing technology
to address warehouse planning challenges such as Storage Location Assignment Problems (SLAP) and Order Picking Problems
(OPP) for intelligent warehousing management. This paper presents a state-of-the-art review of ML applied to Warehouse Man-
agement Systems (WMS) through the analysis of recent research application articles. A mapping to classify the scientific literature
in this new research area, including ML methods, algorithms, data sources and use cases of ML-aided WMS, as well as further
research perspectives and challenges, are introduced. Preliminary results suggest that the possible research areas in ML-WMS are
still incipient and need to be further explored.
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Nomenclature

AGVs  Automated Guided Vehicles

Al Artificial Intelligence

AMR Autonomous Mobile Robots

AS/RS  Automated Storage and Retrieval System
DSLAP Dynamics Storage Location Assignment Problem
14.0 Industry 4.0
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IIoT Industrial Internet of Things
K-NN K-Nearest Neighbors Algorithm
ML Machine Learning

NLP Natural Language Processing

opp Order Picking Problem

PRISMA Preferred Reporting Items for Systematic reviews and Meta-Analyses
RFID Radio Frequency Identification

RL Reinforcement Learning

SKUs Stock-keeping units

SL Supervised Learning

SLAP Storage Location Assignment Problem
UL Unsupervised Learning

WMS Warehouse Management System

1. Introduction

Warehouse management involves decisions on receiving, storage, order picking, and shipping and can affect the
performance of entire supply chains. With the advancement of Industry 4.0 (I4.0) and the digital transformation
of organizations, Machine Learning (ML) has become an appealing technology to address warehouse design and
planning challenges, such as Storage Location Assignment Problems (SLAP) and Order Picking Problems (OPP) for
intelligent warehousing and picking management [36, 33, 3, 29, 28, 48, 2].

Order-picking is the most resource-intensive process and highly depends on storage location policy [33]. SLAP
involves assigning products to locations in a warehouse to minimize total handling effort. OPP refers to the order in
which products are picked based on a routing strategy. These problems have a strong relationship—the SLAP solution
serves as an input for OPP—since routes can only be created once the locations of the products are known. At the
same time, a SLAP solution can usually only be evaluated when the strategy for solving OPP is known [36, 41, 48].

Different methods have been proposed to solve both problems—separately or in an integrated way. Model-based
approaches, such as mathematical models, require a set of assumptions and special knowledge due to the complexity
involved in the various instances of these problems, which makes it challenging to implement these solutions in real
cases. This scenario leaves a gap filled by the use of data-driven models, where parameters or inputs are estimated
based on historical data, significantly improving estimate accuracy and robustness. Also, data-driven models have
been used instead of model-based approaches because they do not require as much field expert knowledge [17].

Among the ways of conducting a data-driven process, ML uses methods and the development of algorithms capable
of learning from data and performing pattern recognition, which allows predictions based on data learning [24]. Some
research is addressing ML initiatives in solving OPP and SLAP and benefits from the volume and diversity of data
available in warehouse management systems (WMS) to recognize patterns capable of generating predictions that allow
the development of operational rules to reduce order processing times [12, 23, 40].

As the volume and complexity of data generated within supply chains continue to grow, harnessing the power
of ML has become essential for managing modern warehouse operations effectively to streamline order fulfillment
processes and ensure timely and accurate deliveries to customers. Although there are several reviews on warehouse
management practices [8, 13, 33,41, 42], they either do not explore the use of ML, emphasizing the use of optimisation
approaches, or address distinct warehouse management issues from the ones explored in this study.

Recognizing the potential contribution of ML to WMS and exploring the need to identify data-driven problem-
solving methods, we conducted a systematic literature review (SLR) on using ML for WMS, especially for OPP and
SLAP, in the context of 14.0. To the best of the authors’ knowledge, this is the first SLR in this research area. This
paper seeks to identify use cases of ML-aided WMS and the ML methods, algorithms and data sources used.

The remainder of the paper is structured as follows. Section 2 introduces the methodology. Section 3 presents the
results and an overview discussion of the articles mapped. Section 4 presents avenues for future research. Lastly,
Section 5 presents the conclusions.
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2. Materials and Methods

This study adopts the preferred reporting items for systematic review and meta-analysis (PRISMA) methodology
[25], which is widely used across different research fields in conducting an SLR [27]. Table | presents the search
protocol used to conduct the SLR.

Table 1. Search protocol
Data source: Web of Science (WoS) and Scopus
Search string: (“machine learning” OR “reinforcement learning” OR “deep learning” OR “artificial intelligence””) AND (“storage location”
OR “storage assignment” OR “order picking” OR “warehouse management” OR “WMS”)

Period: From 2011 (emergence of the term Industry 4.0) to December 31, 2022

Search fields: Title, abstract, and keywords

Language: English

Document: Journal articles

Subject area : [Scopus] Engineering; Computer Science; Mathematics; Decision Sciences; Business, Management and Accounting. [WoS]

Engineering; Computer Science; Operations Research; Management Science; Mathematics, Automation Control System.

The sampling process is summarized in Fig. 1. Initially, 143 articles were identified by applying the search protocol
in Tab. 1 and 26 were included in the final sample for the quantitative and qualitative analyses (See Fig. 1).

Records identified through
Identification database searching
WoS: 65; Scopus 78 (n=143)

|

After duplicates removed (n = 98)

Screening Records excluded
dueto E1 (n=53)

Records screened (n = 45)

Records excluded

Eligibility due to B2 (n = 11)

Full-text articles assessed for
eligibility (n = 34)

Records excluded
dueto E3 (n=8)

Studies inclued in qualitative and

Included quantitative synthesis (n = 26)

Legend: E1 - elements in the string are used only as a keyword or cited expression;
E2 - study out of scope of this research; E3 - only describes a research trend/recommendation.

Fig. 1. Systematic review strategy.
The data analysis was undertaken in two stages. First, a quantitative analysis based on descriptive statistics was
performed using the software VOSviewer to extract insights and identify emerging trends from the selected articles.

Second, a comprehensive content analysis was conducted to assess the use cases of ML-aided WMS and categorize
and classify the articles based on the problem addressed, and the ML methods, algorithms, and data sources used.

3. Results
3.1. Quantitative analysis
Fig. 2 presents the distribution of publications over time. This result allows us to infer a growth trend of scientific

publications on ML applications for warehouse management (OPP and SLAP). Nevertheless, we have not perceived
any publication preference since the 26 articles in the sample are spread over 23 different journals.
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Fig. 2. Number of publications per year.

Fig. 3 shows the density visualization by term occurrence (minimum 5) extracted from the title, abstract, and
keywords of the articles included in the final sample using the VOSviewer software. It highlights three clusters related
to ML with a focus on warehouse management in improving performance in the order processing process, WMS data
accuracy and technological challenges.
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Fig. 3. Density visualization of terms by occurrence.
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3.2. Content analysis

The articles were evaluated based on the problem addressed, ML methods, algorithms and data sources used to
solve the identified issues (see Table 2). ML methods are guides that assist in running models from available data
types. An ML algorithm uses precise and probabilistic techniques that empower computers to capture past reference
points and perceive patterns in data sets [32].

Table 2. Key publications are combining Machine learning with OPP and SLAP.

ML method Algorithm Data source Problem Reference
Artificial Neural Network Management OPP [11]
Support vector machines Equipment OPP [46]
Decision trees Atrtificial OPP [19]
Quantum machine learning Equipment OPP [4]
Bayesian neural network Artificial OPP [37]
Supervised learning Naive Bayes / Decision Tree Equipment SLAP [1]
Artificial Neural Network Equipment SLAP [21]
Artificial Neural Network Management SLAP [22]
Random Forest trees Equipment SLAP [47]
Artificial Neural Network Management SLAP [7]
Regression methods Artificial OPP / SLAP [35]
YOLO / Artificial Neural Network Management OPP / SLAP [5]
K-means / Clustering Artificial OPP [15]
Large neighborhood search algorithm / K-NN  Artificial OPP [14]
K-means Artificial SLAP [44]
Clustering Management SLAP [39]
Unsupervised learning  Clustering Equipment SLAP [6]
Association rules Management SLAP [26]
Clustering Artificial SLAP [18]
Clustering Artificial OPP /SLAP [20]
K-means / K-NN Management OPP / SLAP [40]
Timed Colored Petri Nets / Q-learning Artificial OPP [9]
Actor-critic learning Artificial OPP [10]
Reinforcement learning Q-learning Equipment OPP [45]
Learning algorithm embedding mechanism Management OPP [43]
Q-learning Management SLAP [31]

Legend: OPP - Order Picking Problem; SLAP - Storage Location Assignment Problem.

Regarding the WMS problem, given the definition of the strings, the proposal was to map the articles with the
primary objective of solving problems linked to OPP and SLAP using ML. During the detailed reading of the articles,
it was noticed in some cases that the issues are addressed simultaneously.

To identify and classify the adopted ML methods, we used definitions based on the work of Jordan et al. [16],
which establishes three main types of learning: (1) Supervised Learning (SL): ML paradigm produces outputs based
on a learned mapping function, producing outputs for each input, or a probability distribution over each output given
the relationship with the input (labeled data); (2) Unsupervised Learning (UL): ML paradigm in which classifications
and clusters can be generated from the analysis of unlabelled data; (3) Reinforcement Learning (RL): ML paradigm
in which routine training data is mediated between supervised and unsupervised learning, and indicates only whether
an action is correct; if an action is incorrect, the problem becomes finding the correct action.

To facilitate the analysis of algorithms results, we grouped into families as proposed by Pedregosa et al. [30], which
defines the algorithms used in supervised learning, unsupervised learning and reinforcement learning. It must be noted
that the “Algorithms” column in Table 2 is not an exhaustive list and is limited to the algorithms identified in the SLR.

For Sharp et al. [34], ML uses data as raw material to develop autonomous knowledge. Consequently, choosing
the data source is an important dimension to be analyzed. In Table 2, the data source category was adapted from
Tao et al. [38], classifying data sources into two main categories: (1) Management data: historical data from company
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information systems; and (2) Equipment data: data from Industrial Internet of Things (IloT) technologies. The analysis
of the 26 articles indicated that some did not fit the data sources in [38], defined in this study as category (3) Artificial
data: data generated randomly according to business rules or generated data set used to evaluate ML applications.

Regarding the ML methods, the findings identify a greater concentration on the individual use of supervised learn-
ing in 12 mapped articles. In 9 articles, the benefit is directed towards unsupervised learning, and the remainder
(5) deals with reinforcement learning. The identified articles present frameworks that use specialized deep learning
libraries, such as TensorFlow, Keras, PyTorch, etc., which facilitate deployment of the proposed approaches.

Results concerning the algorithms are diversified, with a greater concentration in artificial neural network (5) in
supervised learning, clustering (5) for unsupervised learning, and Q-learning (3) for reinforcement learning.

The most used data sources were management data (9), artificial data (10) and equipment (7). This allows us
to make two inferences. First, researchers use mainly historical data stored in enterprise information systems (e.g.,
WMS). Secondly, issues are still related to the complexity of WMS problems and the types of data available. This
forces researchers to establish several levels of simplifications necessary in using artificial data. These issues are
mainly related to the difficulties in collecting data.

3.3. Use cases

According to the typology proposed in De Koster et al. [8], the use cases were classified according to problem
(e.g., OPP, SLAP), mechanisation level and dimensionality. Gu et al. [13] defines a framework for classifying ware-
house design and operation planning problems, where OPP is organised into three categories: (1) Batching - refers
to partitioning the set orders into batches. Each batch will be separated and accumulated for packing and shipping
during a specific time window or pick wave; (2) Routing and sequencing - determine the best sequence and route for
picking items in a given order; (3) Sorting - establishes a material handling system to classify items according to their
destination. SLAP is also classified into three categories: (4) SKU-department assignment - defines the dynamics of
stocking products between departments, in what quantities, and what the corresponding interdepartmental movements
are; (5) Zoning specifies different storage zones within a department and assigns products to the specified zones;
(6) Storage location assignment is to assign incoming products to storage locations in storage departments/zones to
reduce material handling costs and improve space utilization.

On dimensionality, the categories are: (7) one-dimensional warehouse is a carousel storage system with only one
vertical level or a round-robin conveyor; (8) two-dimensional storage is an automated single-aisle, multi-level auto-
mated storage and retrieval system (AS/RS); (9) three-dimensional warehouse has many aisles with several vertical
levels and many horizontal columns. For the level of mechanisation: (10) manual: implies that workers provide both
power and control; (11) mechanised: machines provide energy, but a worker provides managing; (12) semi-automated:
engines provide power and some authority; and (13) automated: devices give all power and control [8].

Table 3 summarizes the use cases for OPP and SLAP and presents the function objective of each identified paper.

No articles were identified that addressed the SKU-department concept or mechanized warehouses. There is a
predominance of articles that address OPP in the context of route definition and picking sequencing, as well as the
definition of product locations for SLAP. Most of the cases take place in semi-automated three-level warehouses.

Gaast and Weidinger [11] provides a support framework for designing an order-picking system using different
techniques and control mechanisms (based on fixed-path systems and warehouse conveyors) that were compared
in an artificial neural networks framework. After training, it can select an appropriate picking system for a given
order structure and design parameters to implement the best picking systems. Zadgaonkar and Chandak [47] explores
Bluetooth technology, and Weichert et al. [46] presents an actuator coupling system to collect packaging identification
data and group them using image processing in automated picking systems. Alfian et al. [1] also uses RFID readings
to identify product movements in warehouses, using the mapped paths as training data for a classification model
capable of indicating the shortest routes. It is worth highlighting in Chen [5] the clustering technique used to identify
similarities of specific product features based on the YOLO algorithm. In Lam et al. [19], an order-picking planning
system from structured data is proposed based on a series of reports on movements carried out within the warehouse.
Atchade-Adelomou et al. [4] optimised the automated picking process and defined the lot sizes based on historical
demand characteristics and warehouse structure. Suemitsu et al. [37] developed a training model to identify the best
sequences of activities considering an automated vehicle-picking system. Leung et al. [21] proposes a set of eight
models to improve order demand forecasting accuracy using an order history platform in a high-level warehouse.
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Table 3. Summary of uses cases

ML Ref. Objective Order picking Storage Dimensionality = Mechanization level

H @ 3 @ G G O ¢ O aqodan a2 a3

[11] Identifies the best picking sequence v v v v
[46] Identifies the best time for order picking
[19] Reduces order picking planning time
[4] Minimize the total travel distance v
[37] Minimize the makespan
SL [1] Reduce product picking loading errors
[21] Improve demand forecasting accuracy v
[22] Reduces the time travel
[47] Minimize the error in SKUSs locating
[7] Minimizing the total distance travelled
[35] Minimizes the route length travelled v
[5] Enhance parcel tracking accuracy v

v

<

v

SSRNENEN
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[15] Improve the process of grouping orders v’
[14] Minimize the total travel distance v
[44] Minimizes warehouse operating costs v
[39] Proposed metrics for effectiveness v

UL [6] Minimize material handling costs v
[26] Maximizes the fitness of SKUs v
[18] Minimize the total cost of travel v
[20] Minimize the total travel distance v v
[40] Predict the optimal storage systems

ASRNENEN

AN

[9] Reduces the makespan
[10] Minimize cost operating vehicle
RL [45] Maximizes agent (robot) collaboration
[43] Balanced task allocation
[31] Minimize cost operating vehicle v v

SSRNENENIEN

N N NN R N N NN N NN RN
SNENEN <

Legend: ML - Machine Learning; SL - Supervised Learning; UL - Unsupervised Learning; RL - Reinforcement Learning; (1) Batching; (2)
Routing & sequence; (3) Sorting; (4) SKU-Department assignment; (5) Zoning; (6) Storage location; (7) One-dimensional; (8) Two-dimensional;
(9) Three-dimensional; (10) Manual; (11) Mechanized; (12) Semi-automated; (13) Automated

When zoning is applied, additional effort is required to split the batch and consolidate items by customer order or
destinations, i.e. accumulation/sorting [7, 22]. Silva et al. [35] proposes an ML model to predict the ideal sizes of
product storage zones based on demand distribution data and operational policies for manual warehouses, considering
layout characteristics—cross aisle width and aisle length.

Huang et al. [15] proposes that unsupervised algorithms can improve the planning of order selection lists, using
them to demonstrate a clustering approach of orders with similar characteristics. Hu et al. [14] presents a set of
solutions developed for Alibaba in which decisions about order-picking routes trained on neural network models are
based on data related to the characteristic of the warehouse and demand variation. Wang et al. [44] explored hybrid
ML models to improve in-warehouse handling during the automated picking process. Tokat et al. [39] uses an ML-
assisted performance indicator to cluster products with shorter warehouse order load times. Choy et al. [6] develops
an ML-based solution for a medium-sized company with a manual warehousing system based on an RFID system
to collect data using clustering to define the best product position. Pang and Chan [26] develop a storage location
assignment algorithm that minimizes manual efforts in storage operations, optimising the total distance travelled in
both put-away and picking operations. Keung et al. [18] compared storage location strategies to group products with
similar characteristics. Leung et al. [20] presents a multi-objective approach to grouping incoming orders for batch
processing at distribution hubs, adjusting the maximum size of each order grouping at distribution warehouses that
function as third-party logistics service providers (3PL) for large online sales platforms. Tufano et al. [40] explored
the impact of the data tracking system by training classifiers that can predict the storage allocation strategy and the
collection policy from a learning table whose attributes are benchmark metrics applicable to any storage system.

In Drakaki and Tzionas [9], the authors used the storage system layout measurements to define the best picking
sequence for an automatic order picker, defined as an agent trained to choose the shortest distances between products.
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Estanjini et al. [10] integrated a least-squares time-difference learning method, and performance was demonstrated by
solving a forklift dispatch problem arising in warehouse management to reduce operating costs. Wang et al. [45] pro-
poses an innovative approach for robot training based on feedback sharing in an automated product-picking process.
Wang et al. [43] offers an order-picking model that considers the idleness of picking stations and the centre of gravity
of order items to solve the picking sequencing problem for an autonomous vehicle that receives many item orders
in real-time and in varying amounts. Waubert de Puiseau et al. [31] presents a case of a dynamic storage location
assignment problem (DSLAP) in which a reinforcement learning algorithm was used to train an agent (robot) with
historical storage and retrieval operations data to derive a suitable storage location assignment strategy to decrease
transportation costs within the warehouse.

4. Future research avenues

Below are the main research opportunities emerging from the review that could motivate future studies:

o Current state of the extract-transform-load process from the dataset: few articles address data processing tech-
niques and the use of data repositories.

e Development of integrated solutions for OPP and SLAP: few papers have developed ML solutions capable of
solving both problems in an integrated way.

o Solutions for warehouses with manual order picking processes and random product allocation systems: few
works propose ML solutions for these traditional warehouse formats.

e (Cases with real applications: several articles perform reductions and simplifications of real problems, which
makes it difficult to identify characteristics of the implementation process.

e Development of reinforcement learning approaches: very few articles adopted a reinforcement learning ap-
proach. This is a hot topic in the field of ML and can be applied to a wide variety of WMS problems, as it makes
it possible to train system agents to learn in an interactive and dynamic environment.

Besides the perspectives of future work already presented, other areas can be explored to enhance the use of
ML in WMS, including advanced ML algorithms, such as deep learning, genetic algorithm, swarm optimisation
algorithms and fuzzy logic-based algorithms, and applying natural language processing (NLP) techniques to analyse
unstructured data related to warehouse management. In addition, one can explore the integration of ML with other
emerging technologies, such as IIoT and robotics, to improve the efficiency and accuracy of warehouse operations. The
consideration of sustainability and energy efficiency aspects and the development of collaborative machine learning
approaches are also promising areas for future research in the context of ML in WMS.

It is worth mentioning that other areas to be explored are related to the optimisation of resources, such as labour,
equipment and physical space, using ML models. Few studies have addressed this area, and the exploration of ML ap-
proaches that consider the efficient allocation of resources in real-time can contribute to more efficient and economical
warehouse management. Furthermore, research on real-time data integration is another identified gap. While many
studies analyse historical data, real-time data analysis from sensors, [oT devices and monitoring systems still needs
to be explored. Investigating how ML can be applied to real-time data analysis can enable more agile and accurate
adaptation of storage operations. Other gaps include considering the uncertainties and variations inherent in deposit
operations, besides the need to conduct comprehensive comparative studies to evaluate and compare different ML
algorithms considering specific performance metrics for warehouse management problems.

5. Conclusions

This SLR contributes to identifying characteristics of ML applications to solve WMS problems (i.e., OPP, SLAP).
A total of 26 articles were identified and analysed in 4 axes: ML methods, algorithms, data sources, and use cases. Re-
garding the type of ML methods and algorithms, results showed that papers explore supervised—with neural networks
as the predominant algorithm—and unsupervised—with clustering as the principal algorithm—methods. Reinforce-
ment learning solutions have fewer occurrences. Concerning the problem type, results show that most articles mainly
deal with OPP, as it is highly complex and impacts several decisions in a warehouse. Some papers have proposed
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integrated ways to solve both problems (OPP and SLAP), indicating difficult situations that require step-wise learning
structures. Artificial data sets are still the most used data sources. The yearly increase in publications suggests that
the research topic/area grew sharply in 2023, adding crucial elements in the context of 14.0 as they present research
avenues for improving warehouse operational performances.

Like other studies, this review has limitations. First, this study focused mainly on warehouse storage and order-
pricking processes. Other important processes (e.g., receiving and shipping) were left out of the scope of this research.
Second, the search strategy only considers peer-reviewed journal articles, missing insights from other documents (e.g.,
conference papers). Future studies may consider expanding the scope of this research by exploring other warehouse
management processes (e.g., receiving, shipping) and additional facets of intelligent warehousing related to 14.0 prin-
ciples and enabling technologies, such as automated guided vehicles (AGVs), autonomous mobile robots (AMR),
wearable technologies, cloud/edge/fog computing, big data analytics, ML-based digital twins, horizontal and verti-
cal integration. Finally, despite its limitations, this systematic review contributes to both academics and practitioners
striving to understand the state-of-the-art research of using ML to enhance warehouse management operations.
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