
A Dataset Annotation System for
Snowy Weather Road Surface

Classification
MOHAMED KARAA1, HAKIM GHAZZAI2, AND LOKMAN SBOUI1

1Systems Engineering Department, Ecole de Technologie Supérieure (ÉTS), Montreal, Canada
2King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia

CORRESPONDING AUTHOR: Hakim Ghazzai (e-mail: hakim.ghazzai@kaust.edu.sa).

ABSTRACT In this paper, we introduce an artificial intelligence-based annotation system for a dataset
of snow-covered road images. We operate on a large dataset consisting of CCTV images and time and
weather metadata. The dataset is fed to a series of data processing techniques to automatically assign
each image one of four snow-cover categories aligned with snow removal operations. The processing
pipeline includes feature learning using convolutional autoencoders and graph clustering using the Louvain
community detection algorithm. The resulting dataset comprises over 41000 images automatically annotated
in different weather and time settings. We train and test multiple deep learning models to validate the
annotated dataset to classify snow-covered road images. We customize the models to consider the class
distribution within the dataset. We achieve precision and recall scores of 97% using an EfficientNet model
trained on separate day and night image datasets and using a class-weighted loss function.

INDEX TERMS Intelligent transportation systems, automated image annotation, road surface condition
estimation, clustering, classification.

I. INTRODUCTION
One of the primary purposes of Intelligent transportation sys-
tems (ITS) mitigating the difficulties of mobility in adverse
and unusual weather conditions [2], [3]. In this case, road
safety and traffic management are promising applications.
Artificial intelligence (AI) can be used to predict road
hazards, anticipate accidents by monitoring vehicles’ interior
and exterior conditions, and optimize the traffic flow [4],
[5]. One particular task that AI can perform is road surface
condition (RSC) estimation. RSC is important during winter
weather events such as rain and snowfall. In fact, many
metropolitan areas in the northern hemisphere experience
heavy snowfalls during the winter. In these severe weather
conditions, vehicle collisions are more likely to happen as
road surface becomes wet and slippery. Statistics from the
Canadian National Collision Database mention that 30% of
car accidents in 2020 occurred on snowy or icy roads. The
U.S. Federal Highway Administration records nearly one
thousand deaths in vehicle crashes during snowfall.

Multiple related studies were carried out in the context of
RSC in snowy weather to predict the snow-cover type and
depth. In [6], the authors combined both weather and surface
conditions estimation to identify three weather conditions

A part of this work has been accepted for presentation at the IEEE 18th
Asia Pacific Conference on Circuits and Systems (IEEE APCCAS 2022) [1].

(clear, light snowfall, and heavy snowfall) and three surface
covers (dry, wet, and snowy). They achieved a detection
accuracy of 97% for weather conditions and 99% for surface
conditions using ResNet18 architecture. However, this work
only includes images of interstate webcams and does not
discuss snow cover depth. Carrillo et al. compared the
performance of different deep learning models on classifying
images into bare pavement, partial snow cover, and full
snow cover [7]. They achieved an accuracy of 91% using
model trained on 14000 images collected from road weather
information systems. They also discussed the effect of model
fine-tuning and model size on the accuracy of RSC task.
Finally, the authors combined the model outputs with other
weather measurements (temperature, humidity, and pressure)
into machine learning algorithms to boost performance.
However, the work only focused on fine-tuning the fully
connected layers of the pre-trained models which were
trained on generic large datasets. This approach limits the
networks to learn more robust features from road images that
are fundamentally different from the pre-training datasets.
Similarly, Pan et al. used pre-trained models to distinguish
road surface conditions based on the percentage of the
covered surface [8], achieving an accuracy of 97% on an
other benchmark dataset of 33000 images. In this work,
the authors acknowledge the need to fine-tune the models
progressively to adapt more to the snowy road images. They
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refined the fully connected layers parameters first and later
a set of convolutional layers. In [9], the authors performed
the classification of snowy roads cover using the model
developed in [7]. The authors fine-tuned this model on a
novel dataset of urban images unlike the previous works
that only include rural areas. By refining classification head
layers and convolutional layers progressively, the model
reaches an F1-score of 98.4%.

The aforementioned studies employ labeled data to train
models as a necessary component for supervised learning
methods. In fact, unlabeled data is a major issue that faces the
evolution of AI models, especially when manual annotation
is difficult, as it requires more time as its size increases.
Furthermore, manual labeling requires domain knowledge
and reviews to generate accurate labels. Many research
works tried to develop new learning algorithms to perform
automatic image annotation tasks [10]–[12] with differ-
ent degrees of supervision. Some of these works focused
on unsupervised learning methods, specifically relying on
autoencoders (AEs) and clustering to discover underlying
representations within image datasets that separate different
classes. In [13], Jianwei et al. proposed a method that com-
bined image clustering and representation learning in training
a convolutional neural network (CNN), such as the forward
pass includes an agglomerative clustering step, and learning
is performed in the backward pass. The authors propose a
recurrent method where clusters are merged progressively
till reaching the target number of clusters. In addition, they
prove that the learned representations generalize well with
other clustering algorithms. This can be beneficial for more
complex clustering tasks. Similarly, Mathilde et al. [14]
implemented an iterative clustering method that learns the
CNN parameters and the cluster assignment of the extracted
features. The algorithm takes in images as input, extracts fea-
tures, performs k-means clustering on them, and iteratively
retrains the network in a supervised way using assigned
clusters as pseudo-labels compared to a classification head
predictions. In another study, researchers presented deep
autoencoder-based clustering (DAC) [15], a method that
leverages an autoencoder to learn robust representations of
input data and then uses the k-means algorithm to clusters
these representations. The model is trained using a cluster-
weighted mean squared error loss where the weights help
separate distant features and aggregate similar ones. How-
ever, the method is validated only for a simple datasets
such as MNIST that does not include complex or rich
classes. In [16], researchers extracted embeddings learned
by a convolutional variational autoencoder (VAE). The VAE
is able to learn complete and continuous latent space rep-
resentations that are suitable for clustering. Aljalbout et
al. [17] provided comprehensive insights of deep clustering
methods including autoencoder architectures, loss functions,
clustering algorithms, and training strategies.

The described works on winter RSC detection used dif-
ferent image datasets representing different locations and

classes. These datasets were specific to each work and were
not published as benchmark datasets. This approach makes
it hard to perform a fair comparison of the proposed models
performance. For these reasons, it is necessary to have a
benchmark dataset for RSC estimation in winter weather.
In [18], we have proposed a similar image dataset for snow-
covered roads in urban scenes. However, this large dataset
lacks image labels. We have proposed a benchmark problem
to automate the dataset annotation.

As mentioned earlier, the reviewed deep clustering meth-
ods used to explore classes within datasets are tested on
general and less complex datasets such as MNIST, ImageNet,
and YFCC100M, unlike the snow-covered road images that
represent more complex scenes. Therefore, we adopt a sys-
tem engineering approach to design an AI-based automated
framework to annotate the snow-covered road dataset into
four different categories. After defining the requirements, we
have decomposed the framework into modules and steps, i.e.,
data pre-processing, feature extraction using CAEs, and un-
supervised clustering. Afterwards, we perform a deep learn-
ing based classification to validate the content of datasets in
categorizing unknown images.

The contributions of this paper can be summarized as
follows:

• We solve the benchmark problem of snow-covered road
image dataset annotation by proposing an AI-based
annotation system.

• We leverage image processing and unsupervised learn-
ing techniques to build the annotation system and
generate a labeled image dataset of snow-covered roads.

• We develop deep learning models to estimate snow
level covering the roads from CCTV cameras.

The developed classification models are trained and tested
on on the benchmark dataset1. We show that a 97% of
accuracy, precision, and recall can be achieved using an
EfficientNet model.

In the remainder of the paper, we first present an overview
of the components of our developed system in Section II.
Section III provides the steps of the annotation system.
Section IV discusses the snow-covered road classification
method. Next, we benchmark both the annotation and clas-
sification results in Section V. The paper is concluded in
Section VI.

II. METHODOLOGY
A. OVERVIEW
In this work, we solve the benchmark problem proposed
in [18]. We build an unsupervised learning-based system for
snow-covered road image dataset annotation. The annotation
system takes iteratively image sets from different cameras
and explores clusters within these sets that correspond to four
different snow cover classes. These classes are the following:

1The annotated dataset is temporary available at:
https://github.com/mohamedkaraa/Snow-Covered-Roads-Dataset
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FIGURE 1: Overview of the annotation system and the classification model of snow-covered road images. The benchmark image
dataset goes through an AI-based annotation system. The annotated dataset is used to train a CNN model for snow-covered road
classification.

“clear surface”, “light-covered surface”, “medium-to-heavy-
covered surface”, and “plowed surface”. The framework con-
sists of a processing pipeline that includes transformations,
feature extraction, and clustering. Afterwards, we train a
deep learning classification model to test the effectiveness
of the dataset. Fig. 1 shows a step-by-step overview of the
annotation framework and the classification model.

Initially, we sample images from cameras having a con-
stant view. Then, we split the images according to the
time (day and night) and according to a macro-categories
(clear and snowy surfaces) based on timestamps and weather
conditions. This operation simplifies the annotation process.
Next, we transform the images into a more representative
format of the road surface cover. We enhance the contrast to
accentuate details on the road surface. Then, we create binary
images that describe snow cover in white and reduce redun-
dant world details such as buildings, trees, and other static
objects. We later use a Convolutional Autoencoder (CAE)
architecture to extract features from the binary images. In
the CAE’s latent space, the input images dimensionality
is reduced and the extracted features are more suited for
clustering, i.e., representations of similar images are closer
to each other and well separated from those of different
ones. Finally, we use a community detection algorithm to
cluster a graph that describes the extracted latent features

and generates clusters corresponding to the defined labels.
Hence, we obtain an annotated dataset that describes four
snow-covered road classes in an urban context.

After the annotation step, we train different CNNs using
the generated dataset to classify snow-covered road images.
The purpose of the classification is to validate the usefulness
of the dataset, and to automate the identification of road
conditions. We notice that the models’ performance is limited
due to the imbalance of the dataset. We incorporate a weight
term within the loss function to solve this problem, and train
different models for day and night subsets.

III. AUTOMATED IMAGE DATASET ANNOTATION
This section details the process of the image annotation
system. First, we perform a preprocessing step on the
dataset hierarchy. Then, we apply an image transformation
that better represents snow cover. Next, we use a CAE to
extract latent features representing images. To generate the
labels, we cluster the extracted features using a community
detection method. We justify the technical choices based on
visual observation or defined constraints of the clustering
problem.

A. DATASET MANIPULATION
We simplify the dataset for clustering by performing pre-
processing manipulations. First, we sample cameras that
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kept a constant view during the image scraping. This step
enables focusing on the variation of snow cover rather
than the change of view. Images collected during the day
and night periods show notable differences. Illumination in
night images comes from artificial light, while day image
illumination depends on weather conditions. In addition,
day scenes display more traffic volumes. For these reasons,
we divide the image sets into day and night times, using
the metadata timestamps. A final manipulation would be to
extract “clear surface” images using weather information.
Clear roads coincide with periods of clear weather, absence
of snowfall, and periods with no prior snowstorms. These
conditions are determined based on the weather metadata
and prior knowledge of the collection period. This final
manipulation reduces the targets of the clustering to three
classes. From this step onward, we iterate through the camera
image sets and process them separately to achieve better
annotation results.

B. IMAGE TRANSFORMATION
We perform a transformation step to guarantee a better
representation of the images before using them as input for
the clustering algorithm. This transformation helps reflect
the snow cover, reduce irrelevant world details, and accen-
tuate the relevant features. We convert color images into
grayscale, then apply the contrast-limited adaptive histogram
equalization (CLAHE) algorithm for contrast enhancement
followed by images binarization. Fig. 2 depicts the result of
such transformation, where white areas represent snow cover
and black represents the bare road. The stripes represent the
plowing traces.

C. FEATURE EXTRACTION
After making images more representative of snow cover, we
would transform them into another feature space that is more
suitable for clustering. In such space, the representations of
similar images are close to each other and well separate
from those of different images. To do so, we leverage a
CAE to extract representations of the binary images in an
unsupervised way. In fact, AEs are neural networks designed
for unsupervised learning, with the goal of learning efficient
representations or encoding of input data. AEs are composed
of an encoder mapping the input data to a lower-dimension
latent representation, and a decoder network that reconstructs
the input data from that representation. CAEs are a variant
of AEs that uses convolutional layers to handle images.
Typically, input images are passed through convolutional
layers in the encoder network to capture spatial features.
In the latent space, the output of the encoder is a flattened
to create a compressed representation of the input data that
holds the most important features. Later, the latent vector is
passed through the decoder gradually increasing the spatial
dimensions in order to reconstruct the input image.

For each camera image set, we train the CAE using the
binary images as input. The reconstruction is equivalent to a

binary classification where each pixel is estimated as 0 or 1.
Hence, we aim to minimize the binary cross-entropy loss
defined as:

Loss = − 1

N

N∑
i=1

yi log(ŷi) + (1− yi) log(1− ŷi), (1)

where N is the output size of the CAE, yi is the input image
and ŷi is the reconstructed image.

We propose an asymmetric CAE architecture that extracts
relevant features characterizing the road’s snow cover while
reducing the dimensionality of the input images in half. The
input layer has a shape of 480×720×1 while the code size
is 172800 (120×180×8 being the shape of the last encoder
layer). Fig. 3 details the CAE architecture. Along with
the convolutional layers, we introduce batch normalization
layers to prevent the autoencoder from overfitting. We count
51313 total parameters, of which 50833 are trainable.

To understand the transformation undergone by the binary
image data space, we use a t-SNE projection to visualize the
initial data points (binary input images) and the extracted
representations. T-SNE is a helpful dimensionality reduction
technique for high-dimensionality data visualization. Fig. 4
shows an example of a single camera image set. In Fig. 4b,
we can observe the formation of clusters and dense point
regions separated from others, unlike in Fig. 4a, where data
points have a random distribution. This shows that the CAE
is able to transform the input images into a feature space
more suitable for clustering. This observation is yet to be
confirmed by a clustering algorithm.

D. CLUSTERING OF DIFFERENT SNOW LEVELS
Once we extract the features of snow-covered road images
at each camera image set level, we need to cluster them into
groups representing each class.

1) CONSTRAINTS
It is worth noting that the benchmark dataset imposes some
constraints. As we treat each camera image set separately, we
can not assume that all the target classes are present within
this set. Hence, the number of clusters is unknown before
clustering. Another constraint is the presence of outlier
images that may not hold any information about the snow
cover level, such as images from snow-covered cameras or
cameras not pointing towards the road. These outliers should
be detected and filtered out as their presence adds noise
to data, i.e., erroneous annotation. Having such constraints,
we can not use traditional clustering algorithms such as the
k-means algorithm, as it requires prior knowledge of the
number of clusters.

2) COMMUNITY DETECTION
To tackle the clustering with respect to the defined con-
straints, we propose using a community detection method to
cluster the extracted representations. Community detection
aims to identify groups of similar nodes within a weighted
graph such as a community has densely connected nodes,
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(a) Original image: plowed surface (b) Original image: light-covered sur-
face

(c) Original image: medium-to-heavy-
covered surface

(d) Transformed image: plowed surface (e) Transformed image: light-covered
surface

(f) Transformed image: medium-to-
heavy-covered surface

FIGURE 2: Examples of the transformation applied to sample images to better represent snow cover.

and different communities have sparsely linked nodes [19].
Community detection algorithms optimize the modularity
metric that measures the quality of detected communities.
In Section V.B, we will compare the performance of the
proposed community detection method to a conventional
clustering technique to validate our choice.

To detect communities (clusters) within the representa-
tions graph, we use the Louvain algorithm for community
detection introduced by Blondel et al. [20]. The algorithm
is based on modularity optimization, where each node is
initially assigned to a community. Each node i is moved
to the communities of its neighbors j. The node i is only
assigned to the community of which the move leads to a
positive gain in modularity. Resolution γ is an important
parameter in the Louvain algorithm that affects the number
of discovered partitions (communities). When γ −→ ∞, the
number of communities equals the number of nodes, and
when γ = 0, only one community is discovered containing
all the nodes.

In our case, we create a weighted graph representing each
camera image set. A first intuition would be to have the latent
representations, extracted by the CAE, as the graph’s nodes
and the Euclidean distance between the nodes as the vertice’s
weights. However, this approach generates a complete graph
that would be hard to explore communities within. Instead,
we create a simple graph linking each node to its k-nearest
neighbor nodes. Fig. 5 explains the selection of the k
parameter, where we plot the variation of modularity and the
number of detected communities with respect to the graph
resolution for different values of k. The figure shows the

results obtained for the same previously used camera image
set. However, similar behavior is observed for the other sets
of images. This approach is generalized to the other sets
as they have comparable instances number (as images are
collected within the same period for all cameras) and also
class instance number (i.e., same geographical locations that
imply similar road condition distribution at a given moment).
Smaller k values result in higher modularity values. For
k = 2, we score higher modularity values, yet the generated
graph is sparser and yields much more communities. For
k = 3, there is more balance between modularity and the
number of communities. Therefore, we set k = 3 for all the
camera image sets.

After setting the k parameter, We perform the Louvain
algorithm to cluster the latent representations extracted from
CAE. For every camera image set, we select the resolution
value from a value range such as it maximizes the modularity
to generate the best possible partitioning for every single
image set. Fig. 6 shows an example of discovered commu-
nities within a graph of latent representations. We observe
that nodes within a community are densely connected while
having sparse connections with other communities’ nodes.
We also notice that some communities (clusters) are closer
to each other, which may suggest their similarity.

E. CLUSTER AGGREGATION
The proposed community detection method detects clusters
often superior to the number of the desired clusters (target
labels). The generated communities are granular partitions of
the three snow levels. We explain the granularity by the fact
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FIGURE 3: The proposed convolutional autoencoder architecture for the extraction of the representations from camera image sets.

(a) Initial projection of input
binary images before applying
CAE.

(b) Projection of image repre-
sentation points after applying
CAE.

FIGURE 4: t-SNE 2D projections of binary images and their latent
representations.

that one class could be present in different conditions within
a camera image set, such as weather or illumination. Hence,
we aggregate the clusters to match the defined targets. We
assign a virtual center for every cluster by calculating the
mean of the representation vectors of its members. We opt
for this method because these centers would, to some extent,
represent their clusters as they result from all the points.

The cluster aggregation is based on the similarity measure
between the virtual centers. We calculate the cosine similar-
ity for every pair of centers, defined as the cosine value of the
angle between the two virtual center vectors. Then, we con-
nect each cluster with the one having the most similar center
to form larger clusters. At this point, the “light-covered
surface” clusters are often identified as “plowed surface”
or “medium-to-heavy-covered surface” clusters because of
their visual similarity. We solve this problem using the
timestamps associated with the images. Knowing the starting
time of snowstorms, we extract clusters corresponding to the
“light-covered surface” class, if they exist, before performing
aggregation. The aggregation is performed only for the two

remaining classes. Fig. 7 shows the resulting aggregated
clusters (communities) projection for the sample example
camera image set. The aggregation generates separate macro-
clusters. We also notice the presence of points that might be
misinterpreted at the cluster boundaries as other classes, due
to their very similar features.

IV. SNOW-COVERED ROAD CLASSIFICATION
In this section, we exploit the automatically annotated dataset
and put it into use to train a deep learning model for
snow-covered road classification. The model should learn to
accurately predict the road state based on training samples
that present many challenges.

A. DATASET PREPARATION
To train the model, we split the dataset into train and test
sets with proportions of 80% and 20%, respectively. We
randomly shuffle and split images of each class to keep the
same proportions for all classes.

As we mentioned earlier, the “light-covered surface” class
is the least represented during daytime as it has less occur-
rence than other states. To augment the number of instances
of this class, we leverage the camera image sets that were
unused in the annotation process, i.e., those with a changing
view by sampling “light-covered surface” images using the
timestamps during daytime.

B. SNOW-COVERED ROAD CLASSIFICATION MODEL
To perform the classification, we use pre-trained CNNs,
which we adapt to the snow-covered road context by exclud-
ing their top layers and replacing them with fully connected
layers and an output size corresponding to target classes.
The first CNN we use is a pre-trained ResNet50 [21] model
that we replace its final layers with two consecutive fully
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(a) Variation of the modularity measure with respect to the graph
resolution for different values of k.

(b) Variation of the number of detected communities with respect
to the graph resolution for different values of k.

FIGURE 5: Selection of the k parameter for building the image
representations graph.

connected layers and an output fully connected layer of size
4 to which we apply the softmax function. The second CNN
is an EfficientNet [22] to which we apply the same modifica-
tion as the ResNet to its network head. The ResNet50-based
model has ∼74 million parameters, and the EfficientNet has
∼11 million parameters in total (EfficientNetB3 variant).

The four road cover classes are naturally not present in
equal proportions. Hence, we expect having an imbalanced
dataset, i.e., some classes have an instance count much
higher than others. This might affect the classification model
performance if not taken into consideration. In fact, it will be
harder to predict minority classes when there are not enough
training samples. We introduce class weights to the loss
function while training to cope with this issue. Class weights
are coefficients that help consider the skewed distribution of
the classes while optimizing the loss function. The objective
is to penalize the misclassification of the minority classes by
setting a higher class weight. Usually, the majority classes
are assigned lower class weights, though in our case, we

FIGURE 6: Discovered communities by the Louvain algorithm
within the image representations graph.

FIGURE 7: 2D Projection of aggregated clusters resulting from
the community detection method.

keep them unweighted. For each class i, the class weight ωi

is given by:

ωi =

{
n

N×ni
if i ∈ [light, plowed]

1 else.
, (2)

where N is the number of classes, n is the total number of
dataset instances, and ni is the number of samples in class i.
The loss function is expressed as:

Loss = −
N∑
i=1

ωiyi log(ŷi). (3)

where yi is the ground truth label, ŷi is the predicted value
and N is the number of classes.

V. EXPERIMENTAL RESULTS
In this section, we evaluate the performance of the annotation
system by experimenting with different AE configurations,
comparing the community detection component to another
clustering method, and displaying the resulting dataset. We
also perform an empirical study to test multiple classification
models for different settings to validate the developed dataset
and its practical application.
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FIGURE 8: Evolution of the loss function for the three autoen-
coder architectures for a single camera image set.

A. ANNOTATION SYSTEM EVALUATION
1) AUTOENCODER ARCHITECTURE SELECTION
To study the performance of the CAE for dimensionality
reduction and feature representation, we test different archi-
tectures based on their size. We denote d, the model’s depth,
as the number of pooling operations in the encoder and p
as the total parameters number. We distinguish three archi-
tectures A1, A2, and A3 having respectively the following
characteristics: (d = 2, p ≈ 51000), (d = 2, p ≈ 13000), and
(d = 3, p ≈ 13000)

We use a Tesla P100 GPU with 22Gb video memory for
the experiments. We train each autoencoder for 300 epochs
(per camera image set) using the Adam optimizer with a
learning rate of 10−3 and a batch size of 8 images. Fig. 8
shows the evolution of the binary cross-entropy loss function
for the three AE architectures on a sample camera image set.

Table 1 presents the average performance of the archi-
tectures A1, A2, and A3. We split the image sets into two
subsets (day and night) and measure the average accuracy
and loss for each set and architecture. Accuracy for the CAE
is defined as:

Accuracy =
number of correctly reconstructed pixels

total number of image pixels
, (4)

as it consists of predicting pixel values of 0 and 1 for
binary images. The model was trained for 249 camera
image sets with a standard deviation of the loss function
value of 0.024, 0.024, and 0.047 for autoencoders A1, A2,
and A3 respectively. The architecture A1 demonstrates the
highest accuracy and lowest error, with less depth and more
parameters. We select this architecture to perform the next
annotation steps. We proceed to hyperparameter tuning for
the selected autoencoder A1, specifically the learning rate
and batch size in order to select an optimal configuration for
the annotation framework. The fine-tuning is performed on
a randomly selected validation set of 20 camera image sets.
The results are reported in Table 2.

TABLE 1: Comparison of the convolutional autoencoders perfor-
mance averaged on all image sets.

Metric

Architecture
A1

(d = 2,

p ≈ 51000)

A2

(d = 2,

p ≈ 13000)

A3

(d = 3,

p ≈ 13000)

D
ay

Average accuracy 0.97 0.96 0.90

Average loss 0.05 0.07 0.20

N
ig

ht Average accuracy 0.97 0.96 0.91

Average loss 0.06 0.07 0.18

TABLE 2: Autoencoder learning rate (lr) and batch size (bs) tuning

Hyperparameters

Metrics
Average BCE loss Average MSE

(lr=10−2 , bs=4) 0.065 0.013

(lr= 10−3, bs=4) 0.058 0.010

(lr=10−4 , bs=4) 0.079 0.017

(lr= 10−3, bs=2) 0.045 0.007

(lr= 10−3, bs=8) 0.044 0.006

2) CLUSTERING PERFORMANCE
a: METRICS
We define three metrics used to evaluate the clustering
algorithms.
Modularity: a measure of the partitioning of a weighted
graph introduced in [23]. Multiple community detection
algorithms aim to unfold communities within graphs by
optimizing the modularity measure. Modularity values range
from −1 to 1, where values close to 1 indicate well-divided
partitions. Modularity is given by:

Modularity = (1− t)+
1

2m

∑
i,j

[tAi,j −
kikj
2m

]δ(ci, cj), (5)

where t is a resolution parameter, Aij represents the weight
of the edge between i and j, ki = ΣjAij is the sum of
weights of edges attached to vertex i, ci is the community
to which vertex i is assigned, the δ-function δ(u, v) equals 1
if u = v and 0 otherwise, and m is the total weight of the
edges.
Coverage: The coverage of a graph partitioning C, as
defined in [24], is the fraction of intra-cluster edges within
the complete set of edges. It is defined as:

Coverage =
m(C)

m
, (6)

where m(C) is the number of intra-cluster edges and m
is the number of edges in the graph. Larger coverage values
occur for fewer clusters with higher density, implying better
graph clustering.
Dunn index: It is an internal measure that depends on the
clustered data itself. It determines the compactness of dis-
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TABLE 3: Comparison of the community detection method and
the density-based clustering method.

Metric

Method
Community detection

based method

Density-based

clustering method

Day Night Day Night

Modularity 0.49 0.42 0.40 0.41

Coverage 0.97 0.99 0.84 0.85

Dunn Index 0.55 0.60 0.47 0.44

covered clusters, i.e., having a small within-cluster variance,
and their separation. A Higher Dunn index indicates better
clustering. Dunn index is defined as:

DIm =

min
1≤i<j≤m

δ(Ci, Cj)

max
1≤k≤m

∆k
, (7)

where m is number of clusters, δ(Ci, Cj) is an inter-cluster
distance metric, and ∆k is the size or diameter of a cluster.

b: COMPARISON METHOD
We propose to compare the performance of the developed
community detection algorithm to cluster our image dataset
to one of the typical density-based clustering techniques.
The latter is based on the assumption that a cluster is a
dense region of data points, separated from other clusters
by contiguous low density regions. We use the HDBSCAN
algorithm [25], [26] to extract dense point distributions in
the feature space. HDBSCAN is suitable for the problem as
it does not require to define the number of clusters as input.
In addition, HDBSCAN proved to outperform other similar
methods such as DBSCAN and OPTICS.

HDBSCAN detects outlier points and does not assign
them to any cluster. In our case, images representing the
light-covered surface class, an underrepresented class, are
often detected as outliers. To keep these images within the
final output, we cluster the outliers only while reducing the
minimum cluster size parameter. Finally, we filter points
according to their cluster membership strength probability to
obtain homogeneous clusters. We use the same aggregation
step as in the community detection method.

We evaluate both clustering methods based on the de-
fined metrics for the three snowy classes, using the same
graph built for community detection. Table 3 showcases the
benchmarking of the two methods. Our proposed approach
achieves higher scores for modularity, coverage, and Dunn
index for the totality of 249 camera image sets with standard
deviation values of 0.069, 0.042, and 0.114 for the three
metrics respectively. We can conclude that the community
detection approach enables the generation of more cohesive
clusters with a better ability to separate different classes.

In addition to comparison with HDBSCAN clustering,
we compare our method to conventional clustering meth-

TABLE 4: Comparison of the proposed community detection-
based method and conventional clustering algorithms

Metric

Method Community

detection

Agglomerative

clustering

Spectral

clustering

Modularity 0.68 0.54 -0.01

Coverage 0.98 0.94 0.35

Dunn Index 0.52 0.61 0.32

FIGURE 9: Distribution of the classes in the datasets annotated
by both clustering methods.

ods, namely agglomerative clustering and spectral methods.
Unlike community detection and density-based clustering,
these methods require a number of target clusters as an input
parameter. We set this parameter to k = 3 corresponding to
the number of target classes within the snow categories. We
report the performance following the same previously used
metrics on a validation set of 20 camera sets in Table 4. Our
method shows superior performance compared to spectral
clustering, and comparable to agglomerative clustering for
the clustering metrics. However, when visualizing the re-
sulting clusters, we observe that the “light-covered surface”
class is not separated from the other classes. Adding to that
the constraint of k = 3 forces the resulting clusters to have
more assigned outliers.

3) FINAL ANNOTATED DATASET
The annotated dataset consists of 41346 images, distributed
over describing four classes as follows:

• Clear surface: 17422 images.
• Light-covered surface: 3726 images.
• Medium-to-heavy-covered surface: 14725 images.
• Plowed surface: 3512 images.
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TABLE 5: Classification results on the complete dataset with
unweighted and weighted

Model Accuracy (%) Precision (%) Recall (%)

ResNet50 (U) 83 86 81

ResNet50 (W) 91 92 90

EfficientNet (W) 90 91 90

Fig. 9 shows the class distribution for both clustering meth-
ods. The HDBSCAN-based clustering method demonstrates
information loss due to its outlier detection component,
especially for the “light-covered surface” class. It is also
clear that the resulting dataset is imbalanced, where we have
two majority classes and two minority classes. We performed
manual test by randomly selecting 100 images from both
minority classes and found out that 89% of the images have
correct annotations.

B. SNOW-COVERED ROAD CLASSIFICATION
EVALUATION
To classify snow-covered road images, we train and test
multiple deep learning models using the previously men-
tioned dataset. In the first test, we use the ResNet model
mentioned in Section IV.B and train it using the totality of
the training dataset (33661 images) for 60 epochs. We use the
Adam optimizer with an initial learning rate of 10−3 that we
gradually decay to 5×10−4 and 10−4 after 15 and 30 epochs
respectively. In this experiment, we compare the performance
of the model trained with two distinct loss functions. The
first one does not consider the dataset imbalance. We later
use the loss function defined in (3) to train the model while
taking into account the class imbalance.

Table 5 shows the model results on the test set after
training on the totality of the train set using the two ap-
proaches. The class-weighted loss function approach noted
as (W) delivers better performance than the model trained
with the regular unweighted loss function noted as (U) for all
accuracy, precision, and recall metrics. Nevertheless, the ob-
tained scores are not satisfying and need improvement. The
following models will use the class-weighted loss function
when training to penalize the misclassification of minority
classes. We proceed to fine-tuning the EfficientNet classifier
hyperparameters, specifically learning rate (lr), batch size
(bs), and weight decay (wd). We opt to fine-tune the model
as it has fewer parameters than ResNet50 with comparable
results. We report the resulting performance in Table 6 on
the totality of the dataset.

In Table 7, we look into a more specific case of class
distribution within the dataset. We notice that the “plowed
surface” class is absent within night images due to the lack
of samples representing it during the dataset collection. The
second observation is that the models trained on the com-
plete dataset perform poorly, specifically on “light-covered

TABLE 6: EfficientNet classification model hyperparameter fine-
tuning

Hyperparameters

(lr, bs, wd)
Accuracy (%) Precision (%) Recall (%)

le
ar

ni
ng

ra
te

(10−3, 4, 0) 0.419 0.235 0.419

(5× 10−4, 4, 0) 0.425 0.238 0.425

(10−4, 4, 0) 0.815 0.823 0.815

ba
tc

h

si
ze

(10−4, 8, 0) 0.892 0.892 0.892

(10−4, 16, 0) 0.869 0.864 0.869

w
ei

gh
t

de
ca

y (10−4, 4, 10−5) 0.918 0.917 0.918

(10−4, 4, 2× 10−5) 0.923 0.921 0.923

TABLE 7: Benchmark of the test classification models.

Dataset Model Accuracy (%) Precision (%) Recall (%)

D
ay

ResNet50 (W) 97.2 97.3 97.2

EfficientNet (W) 97.3 97.3 97.3

N
ig

ht ResNet50 (W) 97.2 97.3 97.2

EfficientNet (W) 97.4 97.5 97.4

surface” images during the day. These images represent
a third of the training set, in which some are mislabeled
(limitations of the annotation system). For these reasons,
we split the complete dataset into day and night datasets
and then train the CNN models separately on each set
using the same selected hyperparameters from Table 6. For
each dataset, we compare two CNN architectures having
as backbone a ResNet50 and EfficientNet. We modify the
network head to fit three classes (“clear surface”, “light-
covered surface”, and “medium-to-heavy-covered surface”)
for the night dataset and four classes (“clear surface”, “light-
covered surface”, “medium-to-heavy-covered surface”, and
“plowed surface”) for the day dataset. Table 7 demonstrates
significant improvements reaching 97% on the test set for
the three metric scores. After training with more specific
datasets, the models can better distinguish the different
classes. Finally, we decide to use the EfficientNet model
since it less complex (fewer number of parameters) and
allows faster training and testing times.

Fig. 10 showcases examples of correctly annotated images
(rows 1 and 2) and mis-annotated images (row 3). The mis-
annotated images are described as “true label” predicted as
“false label”.

C. FRAMEWORK COMPUTATIONAL COST
In this subsection, we report the computational cost of
running the annotation framework and classification model
in terms of execution time. We used a setup of 2 x AMD
Milan 7413 @ 2.65 GHz CPU with 4 A100 GPUs (20Gb)
for training, and 1 A100 GPU (20Gb) for inference. The
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(a) Clear surface (b) Light-covered surface (c) Medium-to-heavy-covered
surface

(d) Plowed surface

(e) Clear surface (f) Light-covered surface (g) Medium-to-heavy-covered
surface

(h) Plowed surface

(i) Light as medium-to-heavy-
covered surface

(j) Medium-to-heavy as light-
covered surface

(k) Plowed as light-covered sur-
face

(l) Plowed as medium-to-heavy-
covered-surface

FIGURE 10: Examples of correctly annotated images (row 1 and 2) and mis-annotated images (row 3).

TABLE 8: Average execution time (seconds) for the framework
components (per camera image set for annotation blocks).

Component
Mode

Training time (s) Inference time (s)

Image transformation 19.79

Feature extraction 502 0.8

Clustering (Louvain) 0.38

Classification (EfficientNet) 6433 0.007

results are reported in Table 8 for each component of the
framework.

VI. CONCLUSION & FUTURE WORK
In this paper, we have solved the benchmark problem of the
annotation of a snow-covered road image dataset into four
categories that represent snow depth. We have developed a
generic system that automates the annotation of a bench-
mark dataset for snow-covered roads. The framework relies
on image processing and unsupervised learning techniques.
Images captured by each camera pass through a processing
pipeline that includes feature extraction with a convolutional
autoencoder, transformation into weighted graphs, and then

clustering into similar groups using the Louvain community
detection algorithm.

We have compared our clustering system to another one
using a density-based algorithm and have achieved higher
scores for graph-related metrics such as modularity and
coverage. We have validated the application of the generated
dataset by using it to classify snow-covered roads in a
supervised manner. We have designed customized CNN
models to fit the specificity of the dataset. We have trained
the developed models while optimizing a class-weighted
loss function to consider the imbalanced class distribution.
We split the task into day and night times to increase the
classification performance and trained separate models. We
have achieved precision and recall scores of 97% on both
day and night settings using an EfficientNet variant.

In future work, we plan to extract more complex cases,
such as two-way roads with different states, and separate
the medium and high snow level classes. We also plan to
integrate the proposed classification model to solve real-
world applications such as snow removal and winter public
transport trip planning.
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