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Abstract: The recurrent load shedding crisis in South Africa has highlighted the need to accurately
predict electricity consumption for residential buildings. This has significant ramifications for
daily life and economic productivity. To address this challenge, this study leverages machine
learning models to predict the hourly energy consumption of residential buildings in South Africa.
This study evaluates the performance of various regression techniques, including Random Forest
(RF), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), and Adaptive Boosting (AdaBoost)
machine learning models, using a national residential dataset that contains measurements collected
every hour. The objective is to determine the most effective models for predicting next-hour residential
building consumption. These models use historical patterns of energy usage to capture temporal
details such as seasonal variations and rolling averages. Feature engineering methods are further
employed to enhance their predictive capabilities. The performance of each individual model was
evaluated using criteria such as the mean squared error (MSE), mean absolute error (MAE), mean
absolute percentage error (MAPE), and coefficient of determination (R2). The results show that both
RF and DT achieve the best accuracy for the prediction of residential electricity consumption (because
the MSE, MAE, and MAPE for RF and DT are very close to 0). These findings offer actionable insights
for households, businesses, and policymakers. By enabling more accurate and granular energy
consumption forecasts, this can mitigate the effects of load shedding. This study contributes to the
discourse on sustainable energy management by combining advanced machine learning models with
real-world energy challenges.

Keywords: random forest; decision trees; extreme gradient boosting algorithm; AdaBoost; South
African energy consumption; residential buildings

1. Introduction

According to the International Energy Agency (IEA), the overall energy consumption
in Africa is expected to increase by 60% between 2019 and 2040, while the demand for
residential buildings has increased by 70% since 2010 [1]. South Africa has the highest
energy consumption in Sub-Saharan Africa [1]. South Africa’s electricity generation mix
is dominated by coal-fired power stations, which account for approximately 85% of the
total generation capacity. The remaining 15% comprises nuclear, hydroelectric, solar, and
wind power stations. This balance highlights the country’s reliance on coal for electricity
generation, which has implications for sustainability and the need for accurate energy
consumption forecasting. As reported by the South African Statistical Service, residential
and commercial buildings constitute the largest sector of primary energy consumption [2].
The availability of electricity has consistently served as a fundamental pillar of modern
society, providing the foundation for economic growth, technological progress, and over-
all improvements in the quality of life [3]. The management and provision of electricity
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encounter ongoing challenges, particularly in Africa, where load shedding has become a
significant issue in many regions. South Africa currently faces a significant challenge in
the form of recurring load shedding. This crisis has a detrimental impact on residential
buildings, causing disruptions to daily routines and prompting concerns regarding the
long-term viability of energy supply. In this context, the importance of accurate energy con-
sumption forecasting cannot be overstated. This holds significant potential for mitigating
the negative effects of load shedding and facilitating well-informed decision-making.

Load shedding in South Africa is a multifaceted issue that goes beyond interrup-
tions to the electricity supply. It encompasses economic ramifications [4], security con-
cerns [5], and the potential for a total loss of livelihood in any small- and medium-scale
businesses affected [6]. According to [4], load shedding is expected to have a greater
impact on economic growth (2.3%) than that initially predicted by banks (0.6%). Therefore,
innovative approaches are needed to ensure the resilience of residential buildings as con-
sumers and businesses navigate the uncertainty of electricity access. Electricity consump-
tion forecasting, supported by advanced machine learning models, presents a promising
approach for enhancing the ability of individuals and institutions to accurately predict
energy consumption.

Although there has been an increase in interest in using machine learning to reduce
energy consumption in residential buildings over the past few years, there are still a
number of difficulties associated with its application, including the quantity and quality
of the data collected (missing data, outliers, etc.), low prediction accuracy, and the choice
of the machine learning model. While substantial advancements have been made, the
methodologies employed exhibit a high degree of diversity, and the complexities inherent
in the problems pose formidable challenges, thereby consistently capturing the attention
of researchers.

This study adopts a well-established methodology for predicting the energy consump-
tion of residential buildings in South Africa. This study aims to improve the accuracy of
energy consumption predictions by adopting machine learning models such as Random
Forest (RF), Decision Tree (DT), Extreme Gradient Boosting (XGBoost), and Adaptive Boost-
ing (AdaBoost) models, which are widely used in the energy forecasting literature. These
regression models have varying prediction performances and interpretability. In general, it
is expected that boosted regression trees, which have high interpretability, will also perform
well (high prediction accuracy).

The primary objective of this study is to bridge the divide between load shedding
management and residential adaptability. This study aims to equip households, businesses,
and policymakers with actionable insights to mitigate the effects of load shedding by
facilitating more accurate and granular forecasts of energy consumption. This study
contributes to the ongoing discourse surrounding sustainable energy management by
combining advanced machine learning models with real-world energy challenges.

The remainder of this paper is organized as follows. Section 2 presents an overview of
related work on predictive machine learning models of energy consumption in residential
buildings. Section 3 presents the proposed approach, including the dataset characterization,
methodological framework, machine learning models, and performance evaluation criteria.
Section 4 presents and discusses the results. Section 5 concludes the study, with directions
for future research. By revealing the potential for accurate energy consumption forecasting,
this research contributes to the search for a more resilient and adaptive energy landscape
in the face of complex and evolving energy challenges.

2. Related Work

Researchers have proposed different predictive machine learning models for energy
consumption, and potential applications of these predictive models in optimizing energy
consumption in residential buildings. For instance, Wahid et al. [7] used Multi-Layer
Perceptron (MLP) and Random Forest (RF) for the classification of residential buildings
in terms of energy consumption and reported that MLP outperformed RF in terms of
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prediction accuracy. Priyadarshini et al. [8] presented a machine learning-based ensemble
model for predicting energy consumption in smart homes using DT, RF, and XGBoost; while
the authors provided a useful contribution to the field of energy consumption prediction,
they did not discuss the quality of the data.

Mhlanga [9] highlighted the potential of Artificial Intelligence (AI) and Machine
Learning (ML) to transform the energy sector in developing countries, and provided
insights into the opportunities and challenges that need to be addressed to realize this
potential. Bohlmann and Iglesi-Lotz [10] investigated the energy characteristics of the
South African residential sector to enable future improvements in electricity accessibility.

Cao et al. [11] reported that buildings, whether residential or commercial, consume
more energy than any other major industry, such as manufacturing or transportation.
Olu-Ajayi et al. [12] explored various ML models that could be used to forecast potential
building energy consumption during the early design phase; although they found that
Deep Neural Network (DNN) outperformed Artificial Neural Network (ANN), Gradient
Boosting (GB), Support Vector Machine (SVM), Random Forest (RF), K-Nearest Neighbors
(KNN), Decision Tree (DT), Stacking, and Logistic Regression (LR), it is time-consuming
for training.

Rahman et al. [13] proposed a machine learning-based ensemble model based on the
Mahalanobis distance to predict the energy consumption of a smart home using a combina-
tion of Autoregressive Integrated Moving Average (ARIMA), Recurrent Neural Network
(RNN), and multivariate and univariate linear regression models. They reported that the
ensemble model performed well compared to individual prediction models. However,
since the authors used data collected from a single smart home system, the generalizability
of these findings to other smart home systems is limited. Moreover, the authors did not
report the quality of their data. Compared to the traditional approach, which relies solely
on time-series methods to forecast the maximum demand consumption trend without
considering other electrical parameters [14], machine learning models are more appropriate
for developing predictive models as they can consider other electrical parameters, which
leads to an improvement in the overall accuracy of the model [15,16].

Shapi et al. [17] developed a predictive model for the energy consumption of a com-
mercial building in Malaysia using SVM, ANN, and KNN. Entezari et al. [18] conducted a
comprehensive review of the AI and ML usage in the energy sector. Their findings revealed
that predictive analysis and IoT have emerged as prominent trends, attracting significant
interest within this domain.

Elbeltagi and Wefki [19] developed an ANN model to improve the accuracy of en-
ergy consumption predictions during the initial design phases of residential buildings
by employing parametric modeling techniques. Furthermore, they introduced an auto-
mated platform that enables the analysis, modeling, and simulation of building energy
consumption with accuracy and performance.

Hosseini and Farad [20] analyzed residential energy consumption with the objective of
forecasting the various factors that influence energy usage the most in buildings, including
the overall height, roof area, surface area, and relative compactness. To achieve this
prediction, they employed DT, RF, and KNN. Their findings showed that RF was the best
model compared with the DT and KNN models in terms of prediction accuracy.

Shi et al. [21] explored the utilization of machine learning models in building en-
ergy management based on studies published between 1998 and 2020. They presented
an integrated framework and highlighted the development trends in machine learning–
building energy management, making a valuable contribution to the existing knowledge in
this field. Konhäuser et al. [22] implemented 12 machine learning models, including stan-
dalone models, as well as both homogeneous and heterogeneous ensemble learning models,
with the aim of increasing the accuracy of predicting building energy consumption in the
residential sector.

The authors in [23] offered a novel deep learning approach to predict hourly energy
consumption in residential buildings based on occupancy rates. Their study stands out for
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its detailed multi-criteria analysis and the use of synthetically generated data to train an
eight-layer-deep neural network. The study achieved a high coefficient of determination
and low root mean square error, indicating excellent model performance.

In contrast, the study in [24] focused on the prediction of energy consumption across
multiple buildings. This research uses machine learning to enhance energy efficiency
and sustainability, implying a broader scope beyond just residential buildings. It also
emphasizes the applicability of machine learning in diverse building types for improved
energy practices.

Dinmohammadi et al. [25] investigated several machine learning models for residen-
tial buildings’ energy prediction, including KNN, Neural Networks (NN), LightGBM, RF,
CatBoost, XGBoost, and the Stacking model. The study found that the stacking model
outperformed other models in terms of accuracy. Although the study provides valuable
insights into the use of machine learning for residential buildings’ energy consumption
prediction, the authors did not explore various feature selection and dimensionality reduc-
tion algorithms. Furthermore, the dataset used in the study did not contain geographical
information. This could potentially affect the generalizability of the findings, as factors like
climate can influence energy consumption.

Mathumitha et al. [26] explored various deep learning methods used for predicting
buildings’ energy usage and found that the DNN model performed better.

Compared to other works, this study concentrates on the predictive modeling of
energy consumption in South African residential buildings using RF, DT, XGBoost, and
AdaBoost models with real-world data. While the authors in [23–26] proposed different
techniques for predicting the energy consumption of residential buildings, this study
investigates whether or not the models we propose outperform their models in terms
of prediction accuracy. This will include a detailed analysis of the performance criteria
(MSE, MAE, MAPE, and R2) and a discussion on how our findings align with or differ
from previous studies. This comparison will provide a broader context for our results
and will highlight the contributions of our study to the existing literature on energy
consumption forecasting.

Our study contributes uniquely by leveraging various regression techniques and
feature engineering, emphasizing historical patterns and temporal details like seasonal
variation. We aim to determine the most effective models for predicting next-hour con-
sumption, filling a niche in the current research landscape by applying these methods to a
specific geographical region with its own set of energy challenges.

In summary, researchers have proposed several machine learning models to predict
energy consumption in residential buildings. However, to the best of our knowledge, no
study has proposed a predictive model of energy consumption for residential buildings
in South Africa. Table 1 presents some of the recent literature on machine learning-based
predictive energy consumption, with strengths and gap analysis.

This study distinguishes itself by incorporating temporal trends within the dataset,
such as features like the day of the week, hour, month, day of the year, month quarter,
and year of consumption. This approach allows us to capture essential temporal details,
including seasonal variations and rolling averages, which are crucial for the predictive
accuracy of our ML models.

Moreover, we enhanced our machine learning models’ predictive capabilities through
rigorous feature-engineering methods. This enhancement is a key differentiator of our
study, as it allows our models to achieve higher accuracy in predicting residential buildings’
energy consumption compared to previous studies. Specifically, our models, particularly
Random Forest (RF) and Decision Tree (DT), demonstrated exceptional accuracy, with
metrics like mean squared error (MSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) very close to zero. This study contributes to the ongoing discourse
on sustainable energy management by leveraging advanced machine learning models to
address real-world energy challenges in South Africa.
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Table 1. Summary of the related work on machine learning-based predictive energy consumption in
residential buildings.

References Machine Learning
Models Strengths of the Study Weaknesses of the Study

Wahid et al. [7] MLP, RF Perform well with
small datasets.

The dataset is relatively small,
higher computational speed
required with large dataset,
lower prediction accuracy.

Priyadarshini et al. [8] DT, RF, and XGBoost Higher prediction accuracy.
The authors did not discuss
the quality of the data or time
needed for training.

Olu-Ajayi et al. [12] DNN, ANN, GB, SVM, RF,
KNN, DT, Stacking, and LR

Perform well with
large datasets. Time-consuming for training.

Rahman et al. [13]
ARIMA, RNN, Multivariate
and univariate linear
regression models.

Adapted for time series
forecasting and
regression tasks.

The dataset is relatively small.
The authors did not report on
the quality of the
data collected.

Wei et al. [15] DNN Higher prediction accuracy.

The dataset is relatively small.
The authors did not report on
the quality of the data
collected or the time needed
for training.

Shapi et al. [17] SVM, ANN, and KNN

Perform well with large
datasets, capable of learning
complex and
non-linear patterns.

Time required to run the
algorithms, limitations of the
data collection.

Elbeltagi and Wefki [19] ANN Can handle non-linear data.
The authors did not report the
quantity and quality of the
data collected.

Hosseini and Farad [20] DT, RF, and KNN Perform well with
large dataset.

Lower prediction accuracy.
The dataset is relatively small.

Konhäuser et al. [22]
SVR, MLP, KNN, RCV, DT,
ABR, BGR, RF, ETR, XGB, STR,
and AVR

Large dataset; the authors
discuss the quality of the
data collected.

Lower prediction accuracy.

3. Proposed Approach
3.1. Dataset Characterization

We used the Domestic Electrical Load (DEL) dataset, which is recognized as the largest
and most extensive study on residential energy consumption in Africa and covers diverse
geographic regions, climatic zones, income groups, and dwelling structures in South Africa
and Namibia, providing a representative sample for analysis. The DEL dataset covers a
diverse range of urban, informal (township), and rural environments, as well as various
climatic zones and income groups. The DEL dataset was curated to ensure its represen-
tativeness and accuracy at a national level [27,28]. The diversity of residential buildings,
environments, climatic zones, and socio-economic groups covered [27,28], combined with
the long-term temporal coverage, make this dataset a valuable resource for understanding
and modelling energy consumption patterns in South African residential buildings.

Using the DEL study dataset for South Africa [27,28], this study tested four differ-
ent machine learning models to predict hourly consumption in residential buildings. A
multi-party joint academic–public–private collaborative effort on the National Rationalised
Specification (NRS) load research program, the dataset contains metered household electric-
ity consumption data and socio-demographic survey data for a diverse sample population
spanning urban, informal and rural environments, five climatic zones, a large spectrum of
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income groups, newly to long-term electrified households, and different dwelling structures
in South Africa and Namibia [27,28].

During data collection and preprocessing, we encountered challenges such as missing
data and outliers. These were addressed by implementing a rigorous data processing
regime that removed invalid readings and missing values (approximately 11 million records
were deleted). Additionally, the dataset was aggregated to hourly values, which helped in
reducing noise and improving data integrity. The diverse nature of the residential buildings
and energy usage patterns was accounted for by including features such as the type of
dwelling, geographic location, and socio-economic status, ensuring that the model captures
the variations in energy consumption accurately.

This study considers the DEL metering hourly data (where the consumption current
data are aggregated to one hour), as this comprehensive 20-year dataset has undergone
several validations and testing following an annual data collection cycle to ensure its
reliability [27]. The DEL dataset stands as by far the largest and longest study of residential
energy consumption in Africa and provides a unique insight into energy consumption,
spanning a diversity of demographic and climate zones across Southern Africa. Figure 1
presents the map view of DEL study data collection sites and the number of households
metered per year from 1994 to 2014.
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The dataset is a subset of the 5 min interval electricity metering containing all current
(Amps) observations aggregated to hourly values [27]. This study focuses on hourly
consumption; thus, the granularity at the 5 min interval will not necessarily be relevant.
Furthermore, rather than considering the whole dataset, only data from 2004 to 2014 were
extracted because in May 2004, the president of the Fédération Internationale de Football
Association (FIFA) announced that South Africa would host the 2010 men’s football world
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cup. This sparked economic interest in South Africa, which led to an increase in demand
for electricity across the country. This increase in demand did not match the supply from
the national grid. The timeframe was chosen because it represents a period of significant
economic activity in South Africa, including the preparation and hosting of the 2010 FIFA
World Cup. This period also includes substantial variations in electricity demand and
supply, making it ideal for developing and testing predictive models. Whereas no newer
data are currently available, the chosen period provides a comprehensive dataset for robust
analysis and model validation.

3.2. Methodological Framework

The aggregation of the dataset followed a well-structured data processing regime
to remove all invalid readings and missing values [27,28]. Furthermore, the aggregation
model outlined in [27] provided various column fields in the dataset that ensured the
consistency of the converted integer and decimal temporal and observation values. Missing
row values were removed. For example, when dealing with invalid readings, 0 and 1
represent invalid and valid data, respectively. The mean valid values are set to 0 unless it 1
was in the aggregation regime (i.e., if at least one reading in an hour was marked as invalid,
the mean valid value would be less than 1, and the validity for that hour would thus be
marked as invalid) [27]. We considered converting the current reading (A) to energy values
using the formula A × 230

1000 = kWh, which provides an approximate energy consumption
and not an actual measured value.

Figure 2 shows the schematic outline of this research. For the purpose of training a
prediction model, the initial 80% of the data was chosen as the training dataset, while the
remaining 20% was used to assess the accuracy and effectiveness of the model.
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Feature Extraction and Engineering

Whilst the authors in [27] performed a lot of work on data pre-processing, we trans-
formed the data to suit our needs by combining the various years (2004–2014) together
and extracting the required features. The DEL dataset contains 48.3 million rows and five
columns. The first column indicates the ID of the recorder used, that is, RecorderID, and
the second column shows the profile of the recorder, that is, ProfileID. The third to final
columns give a date and time (Datefield), indicate units read (Unitsread), and indicate
whether the details captured are valid (Valid), respectively. After pre-processing, we re-
duced the number of rows to approximately 37 million. Pre-processing was performed
to further denoise the data before training the models. For the purposes of our study, we
extracted two columns: Datefield and Unitsread.

To understand the temporal dependencies within the data, we feature-engineered
lag1 and lag2 values. Using the features lag1 and lag2 as predictors allows the model to
consider the recent history of the time series when making predictions [7]. Engineering
these features is important because information such as weather conditions, which are
essential for predicting electricity consumption, is not captured in the data. As predictors,
lag1 and lag2 are known to track hidden temporal dependencies, which further enhances
the overall model performance.

Furthermore, we introduced a rolling mean feature and normalized all features in
the test and train split data. Normalizing these features can help maintain consistency
and facilitate the interpretation of feature importance, thus improving the overall model
performance. Because of brevity, we do not indicate the feature importance in this paper.
Table 2 provides a summary of the dataset indicating the spread and count of Unitsread
and ProfileID.

Table 2. Summary of the DEL dataset.

Statistics ProfileID Unitsread

Count 4.875 × 107 4.875 × 107

Mean 7.289 × 106 2.117
Standard deviation 5.44 × 106 1.968 × 101

Minimum 1.002 × 106 −5.461 × 104

25% 1.005 × 106 3.350 × 10−2

50% 1.200 × 107 8.580 × 10−1

75% 1.2001 × 107 2.367
Maximum 1.202 × 107 2.241 × 102

We considered the temporal trends within the dataset, such as features like the day of
the week, hour, month, day of the year and month, quarter, and year of consumption. The
training and testing of the models were carried out with these features.

We extracted temporal features like the day of the week, hour, month, day of the
year, month quarter, and year of consumption from the dataset. Including these tempo-
ral features as predictors allowed the models to capture essential temporal details and
seasonal variations in energy consumption patterns. Temporal dynamics, including sea-
sonal variations and rolling averages, were captured by engineering features such as lag
values (lag1 and lag2) and rolling mean features. These features allow the models to
consider the recent history of the time series when making predictions, capturing essential
temporal details.

We also observed that, after training, testing and validation, the predictions were
not as accurate: we thus employed feature engineering techniques to enhance the model
prediction. As mentioned in the study, lag features involved the inclusion of past values
of the target variable as features. In the code, the lag features “lag_1” and “lag_2” were
created by shifting the electricity consumption, Unitsread, by one time step. We further
considered moving average to capture trends and seasonality in the data that the initial
feature importance may not have captured. In the code, a rolling mean feature was
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calculated to smooth out fluctuations in consumption over time. These engineered features
after the validation aim to improve the models’ predictions results.

3.3. Machine Learning Models

As mentioned earlier, we tested the residential dataset using four machine learning
models. These models are briefly outlined as follows: Decision Trees (DT), Random Forests
(RF), Extreme Gradient Boosting (XGB), and Adaptive Boosting (AdaBoost).

3.3.1. Decision Trees (DT)

A Decision Tree (DT) for regression, often referred to as a Regression Tree, is a super-
vised machine learning algorithm used for predicting continuous target variables. Unlike
classification trees that partition data into classes, regression trees split data into subsets
and assign a continuous value (usually the mean or median) as the prediction for each
subset. The tree was constructed by recursively splitting the data into subsets based on
feature values to minimize the mean squared error (MSE) of the predictions. Figure 3 shows
an example of a DT trained for house price prediction which reaches a prediction decision
by evaluating the value of certain predictor variables at each split.
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3.3.2. Random Forest (RF)

Random Forest (RF) is a learning model that builds multiple decision trees and com-
bines their predictions to improve the accuracy and reduce overfitting. Each tree was
constructed using a random subset of the training data (bagging) and a random subset of
features (feature bagging). The final prediction was made by averaging or taking a majority
vote among the predictions of individual trees.

3.3.3. Extreme Gradient Boosting (XGBoost)

The XGBoost is a gradient boosting framework that has gained popularity because of
its exceptional predictive performance. It essentially combines hundreds of decision trees
sequentially, where each tree is trained to correct the errors made by previous ones [29]. The
model minimizes the loss function using gradient descent and incorporates regularization
techniques to prevent overfitting.

3.3.4. Adaptive Boosting (AdaBoost)

The AdaBoost model combines the predictions of multiple weak learners to create a
strong learner. The AdaBoost algorithm is based on either weighted majority voting or
weighted averaging of the individual predictions. The weight αt assigned to the prediction
of the weak learner at iteration t was calculated as follows:

αt =
1
2

ln
(

1 − Et

Et

)
(1)
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where Et is the weighted error for the weak learner at iteration t. Furthermore, the final pre-
diction (F(x)) for a new input x is a weighted combination of the weak learners’ predictions,
given by

F(x) =
T

∑
t=1

αt × ht(x) (2)

where T is the total number of weak learners and ht(x) is the prediction of the weak learner.
Feature engineering methods included the creation of lag features (lag1 and lag2) and

rolling mean features to capture temporal dependencies and trends. These methods help
in preventing overfitting by smoothing out fluctuations and capturing essential patterns.
Additionally, the data were normalized, and only relevant features were selected for
training, reducing the risk of overfitting. Cross-validation techniques were also employed
to ensure that the models generalize well to unseen data, addressing potential issues
of underfitting.

3.4. Performance Evaluation Criteria

This section presents the four evaluation criteria recommended by Conte et al. [30] to
check the performance of the chosen models: the mean squared error (MSE), mean absolute
error (MAE), mean absolute percentage error (MAPE), and coefficient of determination (R2).
The Mean Absolute Error (MAE) is widely used in machine learning to measure the average
absolute deviation between the predicted and actual values, and it gives all errors an equal
weighting. The MSE measures the average scale of the squared differences between the
predicted and actual values. It penalizes larger errors more heavily than smaller ones (see
Equations (3) and (4)).

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (3)

MAE =
∑n

i=1|yi − ŷi|
n

(4)

Furthermore, the MAPE estimates the average absolute percentage difference between
the predicted and actual values. This measure is particularly valuable when errors are
expressed as a proportion of actual values. The R2 score measures the proportion of variance
in the dependent variable that is explained by the independent variables. It provides a value
between 0 and 1, where 1 indicates a perfect fit (see Equations (5) and (6), respectively).

MAPE =
1
n

n

∑
i=1

|yi − ŷi|
yi

(5)

R2 = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − yi)

2 (6)

where yi is the actual measurement, ŷi is the predicted value, yi the mean of the actual
target values, and n the number of measurements.

The relevance and limitations of MSE, MAE, MAPE, and R2 in this context are pre-
sented next:

1. Relevance:

• MSE and MAE both capture the difference between predicted and actual energy
consumption. Lower values indicate better prediction. MSE penalizes larger
errors more heavily, while MAE focuses on the average magnitude of errors.

• MAPE is useful when dealing with data containing significant fluctuations, as
it expresses errors as a percentage of actual consumption. This allows for fairer
comparisons across different consumption levels.

• R2 indicates how well the predicted values align with the actual trend. A higher
R2 suggests a strong correlation between predicted and actual values.
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2. Limitations:

• MSE is sensitive to outliers. A single large error can significantly inflate MSE,
potentially masking an otherwise good prediction.

• MAE does not consider the direction of the error. An underestimation by the
same amount as an overestimation will have the same MAE, which might not
be ideal.

• MAPE not suitable for cases where actual consumption values are close to zero,
as it can lead to division-by-zero errors.

• A high R2 can occur even with consistent under- or overestimation by the model.
It only reflects the strength of the linear relationship.

4. Results and Discussion

This section presents the results of the predictive models. Due to the size of the data,
we ran the algorithms for each model on the University of South Africa (UNISA) high
performance computing (HPC) system. Our consideration is mainly based on the fact that
the chosen models are widely used in the energy forecasting literature.

We chose to run the models for three, five, and eleven years of consumption data, that
is, 2004–2006, 2004–2008, and 2004–2014, respectively. Figures below present the energy
consumption data for the selected years. Figures 4 and 5 present the data for the 2004−2006
and 2004−2008 periods. Figure 6 presents the full dataset from 2004 to 2014, and Figure 7
presents the training and testing splits. In Figures 8 and 9, we present the weekly and
hourly consumption data for 2004.
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Tables 3–5 present the prediction performance (for hourly data) for the four models
presented in Section 3.4. Each table shows the performance for each model in relation to the
four criteria, MSE, MAE, MAPE, and R2, and the best score is marked in bold text. Table 3
presents the performance for three years of data, that is, from 2004 to 2006. From Table 3,
RF outperforms all the other three models in predicting the energy consumption under all
three criteria (MSE, MAE, and MAPE). The R2, of course, shows how well the model fits
to the data. We can observe that the values of MSE, MAE, and MAPE for DT and RF are
so small (exponent 10−4 to 10−7) as to be close to 0; this indicates that the models perform
well (very high prediction accuracy).
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Table 3. Performance of the prediction models for 3 years of data (2004–2006).

Model MSE MAE MAPE R2

DT 9.534 × 10−6 5.940 × 10−5 1.858 × 10−3 0.99
RF 3.965 × 10−6 3.667 × 10−5 1.334 × 10−3 0.99

XGBoost 2.174 2.871 × 10−1 5.557 0.93
AdaBoost 5.470 × 10−1 6.427 × 10−1 1730.190 0.98

Table 4. Performance of the prediction models for 5 years of data (2004–2008).

Model MSE MAE MAPE R2

DT 3.112 × 10−7 7.795 × 10−6 2.263 × 10−4 0.99
RF 3.561 × 10−7 5.885 × 10−6 2.582 × 10−4 0.99

XGBoost 8.324 × 10−1 1.741 × 10−1 5.317 0.97
AdaBoost 5.640 × 10−1 6.493 × 10−1 2451.138 0.99

Table 5. Performance of the prediction models for 11 years of data (2004–2014).

Model MSE MAE MAPE R2

DT 4.393 × 10−6 1.190 × 10−6 2.760 × 10−6 0.99
RF 7.254 × 10−6 1.296 × 10−6 2.652 × 10−6 0.99

XGBoost 5.676 × 10−1 9.927 × 10−2 2.123 0.98
AdaBoost 2.434 1.280 234 0.74

In Table 4, DT slightly outperforms RF with regard to MSE and MAPE. However,
the MAE of RF is better than that of DT, which shows how well RF performs as an en-
semble model. In general, the tree models outperform the boosted models for predicting
energy consumption. However, in Tables 3–5, there is a gradual improvement in the perfor-
mance of XGBoost. The model is known to perform well with increasing amounts of data.
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Figures 10–12 present the graphical representations for Tables 3–5. These figures provide a
clearer visualization of disparities and variations in the data, making it easier for readers to
interpret the results.
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The superior performance of Random Forest (RF) and Decision Tree (DT) models
can be attributed to their ability to handle the high dimensionality and complexity of the
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dataset effectively. These models are known for their robustness to overfitting and their
capability to capture non-linear relationships within the data. The interpretability of RF and
DT models, along with feature importance measures, allowed for the better understanding
and optimization of the models. On the other hand, boosting models like XGBoost and
AdaBoost, while powerful, may require more fine-tuning and larger datasets to achieve a
similar performance.

Limitations of the Study

The main assumptions of the predictive models developed include that:

(1) The historical data used are representative of future consumption patterns.
(2) The features used in the models sufficiently capture the factors influencing

electricity consumption.
(3) The models assume no significant changes in the energy infrastructure or major policy

shifts during the prediction period.

Although the proposed models showed promising results in predicting residential
energy consumption with the DEL dataset, there are some important limitations to consider
regarding the representativeness of this dataset and potential biases. The representativeness
of the DEL dataset of the entire South African population should be examined. The DEL
dataset covers a diverse range of urban, informal (township), and rural environments,
as well as various climatic zones and income groups. However, the specific sampling
methodology and the extent to which different demographic groups are represented in
the dataset are not clearly delineated. If certain regions or socioeconomic segments of the
population are underrepresented or overrepresented, the predictive models may exhibit
biases and fail to capture the consumption patterns accurately for those groups.

5. Conclusions and Future Work

This study investigated several machine learning models to predict the energy con-
sumption of residential buildings in South Africa. We applied RF, DT, XGBoost, and
AdaBoost models to help predict the consumption, and found that RF and DT models
outperformed the boosting models (XGBoost and AdaBoost). A reason behind DT and RF
models outperforming boosting models (XGBoost and AdaBoost) could be related to the
interpretability of DT and RF after feature engineering in the dataset. In this case, given
that the predictor variables and thresholds became directly observable in the splits, DT and
RF outperformed the boost tree models, which are known to be less interpretable.

The predicted hourly national consumption can equip households, businesses, and
policymakers with actionable insights, including on national and local consumption
and peak identification, by facilitating more accurate and granular energy consumption
forecasts. This study contributes to the ongoing discourse surrounding sustainable en-
ergy management by combining advanced machine learning techniques with real-world
energy challenges.

The practical implications of this research are significant. By accurately predicting resi-
dential energy consumption patterns, stakeholders such as energy providers, policymakers,
and households can make informed decisions to optimize energy usage and mitigate issues
like load shedding. Accurate predictions enable energy providers to better manage supply
and demand, reducing the risk of grid failures and prolonged power outages. Furthermore,
households can leverage these predictions to implement energy-saving measures during
peak demand periods, potentially leading to cost savings and contributing to a more sus-
tainable energy landscape. Policymakers can also use these insights to develop targeted
initiatives and incentives for promoting energy efficiency in the residential sector, aligning
with national goals for energy security and environmental sustainability.

To leverage the strengths of individual models, mitigate their inherent limitations, and
provide enhanced predictive accuracy, we plan to implement ensemble learning models
including AdaBoost, Averaging, Stacking, and Voting models, with the aim of increasing the
accuracy of predicting building energy consumption in the residential sector. By combining
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the best features of individual ML models, ensemble models reduce the drawbacks of each
model and improve prediction accuracy.

Further comparisons based on other attributes (features), such as appliance usage,
features related to buildings (square footage, floors per building, etc.), weather conditions,
occupancy patterns, and energy tariffs will be added as part of the details of future work.

Furthermore, in future work, we also plan to analyze data related to load shedding by
identifying the type of data needed to take load shedding into account, including the na-
tional energy capacity to meet national and local consumption, peak identification, analysis
at load shedding time, and causes of load shedding. By analyzing historical load shedding
data, we can gain insights into how residents react to reduced power availability. This
knowledge can be incorporated into forecasting models to better predict how consump-
tion patterns might shift during peak demand periods or potential outages. Analyzing
historical load shedding data provides valuable insights into how electricity consumption
patterns change during periods of reduced power availability. This information can inform
the development of more robust and adaptive forecasting models by incorporating load
shedding events as features in the models. Understanding consumption patterns during
peak demand periods or potential outages allows for better demand response strategies
and optimization of energy distribution, ultimately leading to improved resilience of the
electricity grid.

Machine learning algorithms can also be used to predict electricity consumption
in real-time. The real-time prediction of electricity consumption is essential for various
applications, including energy management, demand response, grid optimization, and
renewable energy integration. The models presented in our study can assist in analyzing
the historical consumption data, time-of-day patterns, and other relevant factors to make
accurate predictions of future electricity demand as well as efficient usage. There are
several factors that would contribute to the feasibility of real-time prediction, including
data availability, the latency of models, and advanced feature engineering. The real-time
model will work as an integration into IoT systems and power stations, acting as a source of
real-time data collection. Integrating real-time prediction models into existing infrastructure
and systems is feasible but requires several challenges to be addressed. Data availability is
crucial; thus, real-time data collection mechanisms need to be established. Model latency
must be minimized to ensure timely predictions, which can be achieved by optimizing the
computational efficiency of the models. Advanced feature engineering techniques, such as
real-time normalization and the handling of missing data, are necessary to maintain model
accuracy. Potential challenges include ensuring data privacy, managing the computational
load, and integrating with legacy systems. Solutions involve deploying scalable cloud-
based infrastructures and developing robust data-handling protocols. In future work, we
plan to investigate whether or not this indeed works well.

We also plan to develop software based on the proposed predictive model. The
model can be implemented as part of an energy management system, providing real-time
predictions and insights to users. The software could include features such as real-time data
visualization, alert systems for peak demand periods, and recommendations for optimizing
energy usage.

An aspect of the DEL dataset that was not considered in the work is the appliances
each household had and how this impacted consumption. By using forecasting tech-
niques based on these data, residents can optimize resource utilization, prioritize critical
activities, and improve energy consumption within their homes. In addition, policymak-
ers and utility providers can utilize more accurate forecasts to coordinate load shedding
schedules that minimize users’ inconvenience while simultaneously maximizing energy
conservation efforts.
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