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Abstract: In engineering, the stress state of expanded tubes is crucial for ensuring structural integrity
and preventing stress corrosion cracking. The analysis of stresses and strains in tubes subjected to
mechanical expansion using an ogive bullet is essential, yet existing theoretical methods for estimating
the stress distributions, especially with spherical and ogive shapes, are sparse. This study explores the
expansion of 3/8 inch copper and stainless-steel tubes using an expanding bullet, where tangential
and longitudinal strains are measured. A novel analytical approach is introduced to evaluate the
stresses and strains, segmenting the tube into three zones, each analyzed with a distinct theory.
Validation is achieved through an axisymmetric finite element model that employs a multi-linear
kinematic hardening material behavior. The analytical model also estimates the expanding mandrel’s
push force, which is then compared with the results from numerical simulations and experimental
data, showing good agreement across methods.

Keywords: tube expansion; finned tubes; deformation energy; beam on elastic foundation; elasto-
plastic material behavior

1. Introduction

Tube forming, a mechanical process involving plastic deformation, encompasses
expansion, reduction, bending, die forming, and hydroforming. These work-hardening
processes, essential for generating residual stresses, are widely used in the production of
joint assemblies in heat exchangers, steam generators, boilers, and other pressure vessels.
The manufacturing of tube-to-tubesheet and tube-to-fin assemblies, where joint stiffness is
achieved through plastic deformation, often relies on empirical trial and error [1].

The tube expansion forming process, particularly crucial in heat exchanger produc-
tion and assembly of tube-to-tubesheet and tube-to-fin parts, utilizes mechanical rolling,
hydraulics, and expansion with mandrels. These methods are vital in the fabrication of
tubular heat exchangers and gas coolers. However, if not properly controlled, tube expan-
sion can result in high residual stresses and the potential for micro-cracks. Studies on the
elasto-plastic behavior and estimation of residual stresses in tube-to-fins assemblies are
limited, especially those involving the analytical modeling of the tube’s various expanded
zones during the mechanical expansion process with mandrels.

In the literature, the stresses and deformations of the expanded tub-to-fin assembly
are analyzed using experimental and numerical methods, predominantly using the finite
element method [2–5]. This process, characterized by elasto-plastic material behavior with
different strain hardening exponents, involves expanding the tube to close the gap between
the tube and fin hole, ensuring proper adhesion for increased joint stiffness, structural
integrity, and heat transfer [6]. Although tube expansion forming is an age-old process,
research in this field is limited. Sawczuck and Hodge’s comparative study in 1960 on
yield conditions for circular cylindrical shells under axisymmetric radial pressure initiated
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a series of investigations [7]. The expansion process impacts four zones: residual stress,
contact, transition, and unexpanded zones [8]. These zones, especially those undergoing
work hardening and experiencing stresses beyond yield, warrant closer examination.

Bouzid et al. proposed a methodology for estimating stresses in hydraulically ex-
panded tube-to-tubesheet joints, accounting for similar zones produced by the expansion
process and modeling the joint loading and unloading phases separately [9]. Departing
from traditional theoretical methods, Liu et al. developed a new theoretical model for tube
expansion based on energy dissipation theory [10]. With recent applications requiring more
durable materials like stainless steel for CO2 cooled exchangers, there is a growing need for
research on the mechanical expansion process, especially for ACR steel tubing, despite its
similarities to copper tube expansion [11,12].

Studies by Almeida et al. and Alves et al. have evaluated tube thickness reduction and
the impact of mandrel shapes on expansion forming, incorporating numerical models and
experimental tests for validation [13,14]. Tube expansion has also been applied to plastic
pipes, as investigated by Alves in PVC tube expansion with mandrels [15]. An analyti-
cal model predicting the push force required for tube expansion, based on Hoop stress
reaching yield, uses a rigid–linear strain hardening material behavior [16]. Bouzid et al.
proposed an analytical model for estimating residual stresses in hydraulically expanded
tube-to-tubesheet joints, highlighting the impact of reverse yielding on residual contact
stresses [17,18]. The kinematic versus isotropic material behaviors of tube expansion of
finned tubes were explored in theoretical studies, addressing stresses in the transition zone
but not the high stresses in the contact zone where the expander meets the tube [19,20].
The significance of stresses in curved components in industrial piping systems is also
emphasized in the article by Fonseca et al. [21], who present a semi-analytic method to
calculate flexibility factors in curved pipes with end restraints.

Previous analytical studies primarily focused on idealized material properties of thin-
walled tubes, often neglecting the complexities of nonlinear plastic deformation, applying
a maximum shear criterion and analyzing only the plastic zone. This paper outlines a
methodology for estimating the stresses and strains during expansion in the different
tube zones, supported by numerical finite element modeling and experimental data on
copper and stainless steel 316 tubes expanded with an ogive bullet. This research builds
on foundational work by extending an analytical model to incorporate nonlinear plastic
deformation of relevant materials to heat exchangers and gas coolers while applying
the von Mises criteria. This enhanced approach explores the impacts of mandrel shapes
and tube thickness on mechanical behaviors in high-stress industrial applications. This
approach, together with consistent findings in the analytical, numerical, and experimental
methods, advances the understanding of tube expansion processes and address significant
research gaps.

2. Analytical Model

The expanded tube region is categorized into three zones: the transition zone, the
contact zone, and the residual one, as depicted in Figure 1. Critical to this model are the
initial contact point of the tube with the expanding bullet and the radial expansion force,
both essential for estimating stresses and driving forces. A self-adaptive method assesses
the stress distribution within the transition zone, while the Prandtl–Reuss flow rule of
plasticity evaluates stresses in the contact zone.

The boundaries delineating the three expansion zones are characterized by distinct
demarcations. The transition zone encompasses the unexpanded portion of the tube up
to the point where the mandrel makes initial contact, encompassing the elastic, partially
plastic, and fully plastic regions. The boundary between the contact and residual stress
zones is defined by the onset of separation between the tube and the mandrel.

Expanding mandrel configurations typically manifest as spherical or ogival shapes
and are commonly delineated within a Cartesian coordinate framework. In Figure 1,
the boundary separating the transition and contact zones is depicted as tangential to the
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mandrel surface. At this juncture between the contact and transition zones, the tube exhibits
both a rotational angle (θc) and radial displacement (yc), as as illustrated in Figure 1. These
parameters are interconnected by Equation (1) that considers a curved mandrel shape with
a radius of curvature Rc. r is the inner radius of the tube and R is the outer radius of
the mandrel.

yc = Rc(cos θc − 1)− r + R (1)

The radial displacement and rotation of the tube can be obtained using beam on elastic
foundation theory for the transition zone.
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Figure 1. Different zones in an expanded tube.

2.1. Transition Zone Analysis

In Figure 1, the transition zone is delineated into two primary regions: the elastic
and plastic regions. The calculation approach for both regions within the transition zone
remains consistent. According to findings from a prior investigation [18], it was discerned
that the equivalent stress in the tube either reaches or exceeds the yield point, even with
minimal radial expansion. Consequently, the tube undergoes strain hardening to a certain
degree before coming into contact with the mandrel. Due to the relatively diminutive size
of this zone, its behavior can be approximated effectively using the secant modulus during
the loading phase. Moreover, the self-adaptive method is employed for stress estimation.
Consequently, the transition zone is subdivided into multiple sections of unequal lengths,
each characterized by a distinct radial displacement and rotation angle, as depicted in
Figure 2. While the rotation angle θc of the tube at the point of contact aligns tangentially
with the mandrel surface, it remains initially unknown for an ogive bullet. Therefore, the
rotation of each section is iteratively incremented by

θi = θi−1 + ∆θ (2)
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The stress σi and the corresponding secant modulus Ei for each section are derived
from the stress–strain curve. Achieving convergence for rotation and displacement necessi-
tates an iterative procedure. This iterative approach, known as the self-adaptive process, is
instrumental in estimating stresses accurately. The von Mises effective stress is employed
alongside a power-law strain hardening model. Material data conform to ASTM standard
E646, and the true stress–strain curve is fitted with a nonlinear hardening Ludwick equation
to ensure comprehensive representation.

σe = Eεe f or
(
εe ≤ εy

)
σe = σy + K

(
εe − εy

)no f or
(
εe > εy

) (3)

where σy and εy are the yield stress and strain and K and no are the stain hardening constant
and exponent, respectively, of the Ludwick power law. The stress condition for each section
of the tube is that the equivalent stress is equal to the current stress σi. The secant modulus
of the transition zone shown in Figure 3 is defined by:

Ei = E f or
(
εe ≤ εy

)
Ei =

σi
no
√

σi−Sy
K +εy

f or
(
εe > εy

) (4)
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The theory of a beam on an elastic foundation applied to a cylinder is used to obtain
the following four parameters as a function of the length, x: radial displacement yi; rotation
θi; moment Mi; and shear force Pi [3]:

yi =
2Piβi

ki
Dβx +

2Miβ
2
i

ki
Cβx (5)

θi =
2Piβ

2
i

ki
Aβx +

4Miβ
3
i

ki
Dβx (6)

Mi =
Pi
βi

Bβx + Mi Aβx (7)

Pi = PiCβx + 2βi Mi Aβx (8)

where

β =
4
√

3(1 − ν2)√
rt

, ki =
Eit
r2 (9)

The influence coefficients are given by
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Aβx = e−βx(cosβx + sinβx)
Bβx = e−βxsinβx

Cβx = e−βx(cosβx − sinβx)
Dβx = e−βxcos βx

(10)

The longitudinal and tangential stresses σli and σθi are given as a function of the edge
loads Pi and Mi for each section:

σli = ±6Mi
t2 (11)

σθi =
6νMi

t2 +
Eiy
r

(12)

σi =
√

σli
2 + σθi

2 − σliσθi (13)

For thin tubes, simplifying the analysis involves averaging stresses across the thickness.
Employing the theory of a beam on an elastic foundation, the process occurs in two
steps for each section: first, calculating stresses in section i considering its end conditions
and then, using information from the preceding step and conditions of section i − 1 for
length xi−1, determining the size of the current section xi, depicted in Figure 2. This
method offers an estimate of stress distribution in the transition zone. Its advantage
lies in integrating material hardening and stress theory previously applicable only under
elastic conditions, thereby offering a simplified solution to evaluate the stresses in the
elastic-plastic transition zone.

2.2. Contact Zone Analysis

The analysis of the tube’s plastic contact zone entails solving a system of six equations
with six unknowns. These equations stem from considerations of axial and radial equilib-
rium, the plasticity Prandtl–Reuss flow rule, the volume conservation equation of plasticity,
and the Von Mises equivalent stress–strain relationship. In this analysis, shear effects are
disregarded, rendering the normal radial, tangential, and longitudinal stresses σr, σθ , σ↕
principal stresses. Using membrane theory,

σ↕
Rc

+
σθ

r′
=

p
t

(14)

where p and t are the pressure and tube thickness and r′ is a radius given from the geometry
shown in Figure 4.

r′ = RC − Rc − R
cosθ

(15)
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The free-body diagram of the plastic region shown in Figure 4 gives the equilibrium
equation in the x-direction including the friction component as

dσ↕
dθ

+ σ↕sinθ
RC + r′

RC(cosθ − 1) + R
= p

RC
t
(µ + tanθ) (16)

The conservation of the volume due to the plastic behavior gives:

εθ + ε↕ + εr = 0 (17)

The tangential strain is given by

εθ = log
rc

r
= log

r′

rcosθ
(18)

The application of the Prandtl–Reuss flow rule of the plastic deformation region is

εθ

σθ − σm
=

ε↕
σl − σm

=
εr

σr − σm
(19)

The mean stress is given by

σm =
1
3
(σl + σθ + σr) (20)

The radial stress is assumed to be the average normal stress between the inside and
outside surfaces:

σr = − p
2

(21)

Using the Von Misses effective stress and strain,

σe =

√
1
2

[(
σθ − σ↕

)2
+

(
σ↕ − σr

)2
+ (σr − σθ)

2
]

(22)

The equivalent strain is given by

εe =

√
2
3

[(
εθ − ε↕

)2
+

(
ε↕ − εr

)2
+ (εr − εθ)

2
]

(23)

By substituting Equations (22) and (23) into Equation (3), and Equation (21) into
Equations (14) and (16), a system of six non-linear equations is derived with six unknowns:
εr, εθ , ε↕, σr, σθ , and σ↕. Utilizing Equations (14) and (16)–(19), this system is solved
using the Matlab 2019b solver with appropriate initial conditions. By iteratively adjusting
the radius r and solving the system, the stress distribution within the contact zone is
determined. Furthermore, the axial pull or push force is computed by integrating the
friction force over the plastic contact area expanded with the mandrel:

F = 2πRc

∫ θc

0
p(Rc(cosθ − 1) + R)(µcosθ + sinθ)dθ (24)

3. Numerical Model

The finite element method (FEM) serves as the validation framework for our analytical
approach, focusing on two types of tubes with a 3/8 inch outside diameter and a 0.035 inch
thickness: copper C122 and stainless steel SS316L. Copper C122 is widely utilized in manu-
facturing low-pressure gas cooler exchangers due to its excellent thermal conductivity and
corrosion resistance. Conversely, stainless steel SS316L is being explored for high-pressure
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applications, particularly in exchangers employing CO2 as a less polluting refrigerant,
owing to its superior strength and corrosion resistance.

The model is mainly composed of QuadShell8 elements, with a total of 9468 elements.
The QuadShell8 element offers several advantages, including an increased accuracy over
Quad4 or Triangular elements. A refined finite element mesh, detailed in Figure 5, models
the tubes and the expanding bullet based on dimensions and materials specified in Table 1.
A mesh refinement criterion of 1% based on the equivalent stress of the most highly stress
node was used. The stress–strain behavior, adhering to Ludwick’s material plasticity
model, is characterized by the hardening constants also listed in Table 1 For this simulation,
we employ a multilinear kinematic strain hardening model to accurately capture the
material’s response under varying load conditions. The stress–strain data are obtained by
interpolation using Formula (3) mentioned above. A friction coefficient of 0.29 is assumed
during the tube expansion process to account for the interaction between the tube and
mandrel surfaces.
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Table 1. Dimensions and material properties [22,23].

Property Tubes 3/8 in ×0.035 in Mandrel

Copper C122 SS 316L Steel M4

R (mm) - - 4.32
Rc (mm) - - 15
r (mm) 3.8735 3.8735 -
t (mm) 0.889 0.889 -
E (GPa) 112 206 214

ν 0.34 0.25 0.29
Sy (MPa) 69 175 800
B (MPa) 455 800 -

n 0.68 0.575 -
µ (friction) 0.28 0.29

The simulation constraints include preventing axial movement at one end of the tube—
where expansion initiates—while allowing for radial expansion and axial retraction at the
opposite end. This setup mimics the real-world application where one end of the tube is
fixed to a point, such as a tubesheet, while the other end can expand or contract freely. The
expanding bullet’s motion is modeled to traverse from one end of the tube to the other at a
speed of 2 mm/s, a parameter recommended by local industry experts and corroborated
by experimental data.
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4. Experimental Testing

To validate the analytical and numerical models, experimental tests were conducted on
3/8 in. SS316 and copper C122 tubes using an ogive bullet on a specialized test workbench
equipped with a hydraulic tensile/compression testing of an MTS machine, as shown in
Figure 6a. The setup involves fixing the mandrel with its rod to the upper grip of the test
machine, while the tube guide, specifically designed for 3/8 in. tubes and depicted in
Figure 6b, is attached to the lower grip. This arrangement ensures the tube is adequately
supported during the expansion process, whether being pushed or pulled, with the guide
restraining the tube at the appropriate end.
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Figure 6. Experimental set-up: (a) Hydraulic tensile compression machine. (b) Tube expansion set
and mandrel details (unit: mm).

Instrumented with strain gauges, the tubes are placed within the guide for expansion,
as illustrated in Figure 7. A tee rosette strain gauge, with a 2 mm width capable of measuring
up to 15% strain, is bonded to the tube’s external surface to monitor axial and Hoop
strains during the expansion shown in Figure 8. These strains are continuously observed
in a quarter bridge configuration, allowing for precise tracking as the expanding bullet
progresses through the tube. The experimental setup enables the simultaneous recording
of the driving force, axial and Hoop strains, and time at regular intervals, providing a
comprehensive dataset for validating the theoretical and numerical analyses.
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Figure 8. Comparison of copper C122 tube: (a) hoop strain outside surface, (b) stress distribution
along axial direction.

The MTS machine utilized in this experiment features a data acquisition system capable
of recording and monitoring relevant data in real time. This system is equipped to record
data at frequencies of 1, 10, or 100 times per second. Given the die’s slow movement speed
of 2 mm/s in our experiment, a recording frequency of 10 times per second is deemed
adequate for fulfilling the validation requirements. Before the experiment, the contact
between the mandrel and the inner wall of the pipe was lubricated using oil. During the
expansion process, the driving force, the axial and hoop strains and axial distance are
monitored through the data acquisition system.

5. Results and Discussion

This study introduces an analytical method designed to assess stress and strain dis-
tributions within the transition and contact zones of expanded tubes. By juxtaposing the
results derived from this analytical approach with those gleaned from numerical finite
element (FE) models and experimental investigations, the study aims to validate the efficacy
of the proposed method.

5.1. Copper C122 Tube Expansion

The expansion of a 3/8 in, gauge 20, copper C122 tube using an ogive is examined. De-
spite the high radius-to-thickness ratio of 4.35, which typically renders thin shell theory less
applicable, the analytical method still provides a reasonably accurate estimation of stress
and strain within the contact and transition zones. The hoop strain results, as illustrated
in Figure 8, reveal a good alignment between analytical and FEM predictions compared
to experimental data. The maximal hoop strain, identified at the ogive’s largest radius,
is measured as approximately 8% in experimental measurements. A notable discrepancy,
about 10%, between analytical and experimental values at this juncture is attributed to
the analytical model’s reliance on an average radius, whereas experimental measurements
target the tube’s outer surface. The stress distribution along the tube length, encompassing
both transition and contact zones, as depicted in Figure 8, demonstrates that analytical
and numerical stress distributions, averaged across the tube thickness, remain comparable.
While congruence is observed in the longitudinal, hoop, and equivalent stresses between
both methods, disparities emerge at the boundary of the contact and transition zones.
These differences likely stem from unaccounted bending stresses in the analytical model,
particularly at points where curvature changes occur between zones and at the maximum
ogive radius, where tube bending and stress release happen.
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5.2. Stainless Steel 316L Tube Expansion

Similarly, a stainless steel 316L tube undergoes expansion via the same ogive for
comparative analysis. The hoop strain, showcased in Figure 9, mirrors the pattern observed
in the copper tube, with the highest strain occurring at the ogive’s maximum diameter.
The experimental data indicate a maximal strain of about 8.6%, while the analytical model
predicts 9.3%. Despite some deviations, notably an 8% difference at the peak ogive diameter,
both analytical and FE results largely concur with experimental findings. A notable drop
in experimental strain at this peak suggests potential adhesion loss between the tube and
the strain gauge, a problem that might be mitigated by employing adhesives suitable for
high-strain scenarios.
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Figure 9. Comparison of stainless-steel 316L tubes: (a) hoop strain outside surface, (b) stress
distribution along axial direction.

The stress distributions within the stainless steel 316L tube’s expanded zones, outlined
in Figure 9, show good agreement between analytical and FE models in the transition zone.
However, less correlation is observed at the interface between the transition and contact
zones, and at the maximum outer diameter (OD) position, attributed to bending moments
not accounted for in the analytical model.

The expander driving force, evaluated through contact zone pressure distributions
and presented in Figure 10, exhibits initial spikes attributed to end effects, such as sharp
tube edges and inadequate lubrication, before stabilizing at lower values once the mandrel
is fully inserted into the tube. Although FEM results indicate similar stabilization, the
forces estimated by the analytical model slightly exceed those measured and averaged by
FEM, likely due to overestimations in radial stress or contact pressure and the model’s
inability to simulate bending effects accurately.
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6. Conclusions

This study has introduced an analytical model designed to accurately estimate stresses
and strains within the transition and contact zones of tubes undergoing tube expansion.
The robust alignment of results obtained from analytical, numerical, and experimental
evaluations underscores the reliability of the developed method. Specifically, the model
predicts strains with a deviation of less than 10% and delivers stress estimates that closely
mirror those observed, especially in regions where curvature changes are pronounced,
such as the interfaces between transition and contact zones and between contact and
residual stress zones. While there are some discrepancies in the contact zone between
numerical and experimental results, the model gives a relatively good estimate of the
stresses and strains. Nevertheless, the differences are likely due to the following factors.
Firstly, the thickness of the strain gauge adhesive and the bonding strength can affect the
curvature at maximum deformation, influencing the measurement results. Secondly, the
two-dimensional simulation does not fully capture the three-dimensional deformation
of the tube under high expansion and particularly the changes in the thickness. These
issues, while noteworthy, do not significantly detract from the overall effectiveness and
applicability of the model.

The application of beam-on-elastic-foundation theory, supplemented by the self-
adaptation method, has proven effective in modeling the low-plastic regions, exemplified
by the transition zone. This approach has demonstrated its versatility across different
materials, including copper and stainless steel, and has shown to be applicable even to
thin-walled tubes, despite the inherent challenges posed by a tube radius-to-thickness ratio
of 4.35 in the studied cases.

The stress levels within the contact zone, identified as reaching maximal values,
underscore this area as critically important for monitoring to prevent potential necking
during the expansion process. The findings affirm that the proposed analytical model is
a valuable tool for predicting stress and strain distributions in tube expansion scenarios,
offering significant insights for ensuring the structural integrity of expanded tubes in
practical applications.
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