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ABSTRACT The proliferation of wireless technologies and the escalating performance requirements
of wireless applications have led to diverse and dynamic wireless environments, presenting formidable
challenges to existing radio resource management (RRM) frameworks. Researchers have proposed utilizing
deep learning (DL) models to address these challenges to learn patterns from wireless data and leverage the
extracted information to resolve multiple RRM tasks, such as channel allocation and power control. However,
it is noteworthy that the majority of existing DL architectures are designed to operate on Euclidean data,
thereby disregarding a substantial amount of information about the topological structure of wireless networks.
As a result, the performance of DL models may be suboptimal when applied to wireless environments
due to the failure to capture the network’s non-Euclidean geometry. This study presents a novel approach
to address the challenge of power control and spectrum allocation in an N-link interference environment
with shared channels, utilizing a graph neural network (GNN) based framework. In this type of wireless
environment, the available bandwidth can be divided into blocks, offering greater flexibility in allocating
bandwidth to communication links, but also requiring effective management of interference. One potential
solution to mitigate the impact of interference is to control the transmission power of each link while ensuring
the network’s data rate performance. Therefore, the power control and spectrum allocation problems are
inherently coupled and should be solved jointly. The proposed GNN-based framework presents a promising
avenue for tackling this complex challenge. Our experimental results demonstrate that our proposed approach
yields significant improvements compared to other existing methods in terms of convergence, generalization,
performance, and robustness, particularly in the context of an imperfect channel.

INDEX TERMS Intelligent resource allocation, RRM, 6G, GNN, D2D, AI.

I. INTRODUCTION

THE sixth generation (6G) of wireless communications
is expected to feature heterogeneous networks capable

of supporting a vast number of connected devices while
delivering high data rates, low latencies, and energy effi-
ciency. Several technologies have been developed to meet
these requirements, including those referenced in [1], [2], [3],
and [4]. However, the increasing complexity of radio resource
management (RRM) has emerged as a significant challenge
with the proliferation of new technologies and diverse

demands [5], [6]. Previous RRM solutions are insufficient
in adapting to the novel heterogeneous wireless environment
in terms of convergence time, generalization to different
wireless contexts, and maintaining satisfactory performance
while scaling up the number of devices. Therefore, novel
approaches are required to address these challenges and pave
the way for the efficient management of wireless resources in
the upcoming 6G era.

The focus of our research is on the N-link interference
environment with shared channels, a wireless network
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architecture characterized by multiple communication links
sharing the same available bandwidth. In this setting, the
co-existence of multiple links causes significant interference
and performance degradation, which necessitate effective
management of transmission power control and spectrum
allocation. This network structure can be observed in
various wireless scenarios, including device-to-device (D2D)
communication [7], [8], [9], [10], where multiple devices
communicate directly without a network infrastructure, and
uplink/downlink [11], [12], [13], [14], [15] scenarios, where a
base station communicates withmultiple users using the same
spectrum, also known as non-orthogonal multiple access
(NOMA). To maximize the network’s sum rate, solving the
mixed-integer, non-convex optimization problem involving
power control and channel allocation is essential. However,
obtaining a globally optimal solution within the required time
is challenging. Therefore, researchers have proposed several
near-optimal solutions for specific cases [16], [17], [18], [19],
which tend to have high computational complexity and are
impractical for real-time scenarios.

In recent years, researchers have explored the use of
machine learning (ML) techniques to address wireless
network optimization problems. Specifically, there has been
interest in incorporating deep learning (DL) approaches,
which have shown promise in a variety of applications. Two
primary approaches have been pursued in this integration: (1)
constructing end-to-end learnable architectures that can cap-
ture complex relationships between inputs and outputs [20],
[21], [22], and (2) replacing computational blocks within
existing solutions with DL architectures to reduce compu-
tational costs [23], [24]. Despite promising results, existing
DL-based approaches have primarily focused on addressing
isolated RRM tasks such as power control, user association,
and link scheduling. Moreover, their scalability to large
wireless networks is a concern as they scale linearly with
respect to the size of the input data. Furthermore, techniques
such as multi-layer perceptrons (MLPs) and convolutional
neural networks (CNNs) can be subjected to overfitting and,
thus, require large amounts of training data. Additionally,
these methods rely on tabular data, such as channel state
information (CSI), which ignores the network’s underlying
topology. Therefore, there is a need for further research to
explore more effective ways to integrate DL approaches into
wireless network optimization problems. Recent research has
demonstrated the potential for improving the scalability and
generalization of DL-based RRM solutions by integrating
the target task’s structure into the neural network architec-
ture [25]. Given that wireless networks can be intuitively
modeled as graph topologies, there is a growing interest
in leveraging graph representation learning techniques to
enhance the performance of RRM algorithms [26]. One
such approach is Graph Neural Networks (GNNs), which
possess several attractive properties, including permutation
equivariance, scalability, generalization, high computational
efficiency, and the ability to train efficiently on relatively
small datasets [27]. The application of GNNs has yielded

promising results in various domains, indicating its potential
as an effective technique for enhancing the performance of
RRM algorithms in wireless networks.

The primary aim of this research is to propose a solution
that simultaneously addresses spectrum allocation and power
control tasks. Initially, we formulate a network mean rate
maximization problem, considering both RRM tasks and
the minimum Quality of Service (QoS) required for each
communication link. Subsequently, we create interference
graphs from the network’s CSI, enabling parallel processing
without information loss. Additionally, we develop an end-
to-end GNN-based framework that learns from these con-
structed graphs and embeds them into Euclidean space. This
embedding is used to compute power and channel allocation
solutions. In contrast to Deep Neural Network (DNN)
models, our framework is both scalable and generalizable,
requiring no retraining or architectural modification when
changing the input size. It also excels in computational
efficiency due to parallel execution. To enhance the model’s
generalization and training stability, we combine four loss
functions: the supervised mean squared error for power
control, the supervised cross-entropy for channel allocation,
an unsupervised loss to avoid constraining the model with
an upper-bound performance from supervised training, and
a regulation loss to ensure QoS constraints are met. Lastly,
we rigorously tested our approach, focusing on the training
convergence, generalization across different wireless setups,
network mean rate, QoS violation, scalability with input
size, and robustness in the presence of imperfect channel
estimation.

This paper is structured as follows. In Section II,
a comprehensive literature review is presented to explore
the previous work related to our research. In Section III,
we introduce the N-link interference environment with shared
channels, which is the problem setting that our proposed
solution is designed to address. In Section IV, we present
the optimization problem that we aim to solve. In Section V,
we provide a detailed description of our proposed end-to-end
solution architecture, which consists of various components,
including CSI preprocessing, the GNN feature extractor, the
MLP component, the loss function design, and the training
process. In Section VI, we conduct extensive simulations
to evaluate our proposed solution’s performance in terms
of stability, generalization, and robustness compared to the
state-of-the-art methods. Finally, in Section 7, we present our
conclusions and future research directions.

II. LITERATURE REVIEW
Numerous studies have focused on solving the power
control and spectrum allocation problems in different
network topologies, either independently or concurrently.
For example, in [16], the authors proposed a dual-based
iterative algorithm that allocates resources to D2D pairs while
maintaining the quality of service requirements. Another
study [19] developed a two-stage algorithm to maximize
the energy efficiency of D2D communication under cellular
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constraints, assuming that each D2D link could use one sub-
channel at most to decrease the computational complexity.
Conversely, this research [17] proposed a channel and power
allocation scheme with channel reuse based on the Hungarian
algorithm and a prioritizingmethod.Moreover, this work [18]
employed a game-theory approach to manage the reuse of
multiple channels by multiple D2D pairs. Despite the various
proposed solutions, most of them were heuristic approaches
or tended to convexify the RRM problems, resulting in
a high computational complexity. Additionally, they did
not provide complete flexibility in allocating multiple
channels to multiple links, mainly because of convergence
issues.

Given the limitations of model-based and heuristic solu-
tions, researchers have turned to learnable approaches by
integrating DL architecture to tackle RRM problems. For
example, these works [21], [28], [29] integrated a DL
component to learn the optimal pruning policy for the
branch-and-bound (B&B) algorithm to solve mixed-integer
nonlinear programming (MINLP) problems. While this
approach simplifies the problem significantly and reduces the
exponential computation of the traditional B&B algorithm,
intense sampling is required to train the DL architecture
since the training is supervised. To alleviate the need for
training data, unsupervised learning approaches have been
explored [30]. This work considers constructing a DNN
framework to solve beamforming problems over an imperfect
channel, which is trained in an unsupervised fashion using
the negative of the sum rate. Similarly, [22] constructed
a DNN that takes CSI and computes the power of each
user. However, this work did not integrate the minimum rate
constraints into the training process, which raises questions
about the solution’s feasibility. Another approach to training
DLmodels is combining supervised and unsupervised losses.
For instance, [31] proposed an end-to-end DL framework to
solve resource allocation in multi-channel cellular systems
with D2D links. Moreover, the approach can be implemented
in a centralized manner, with full knowledge of the CSI,
or distributed manner with partial CSI. However, the authors
transform the continuous power variable into a set of discrete
levels in order to use the cross-entropy loss. Following the
same training approach in [24], a CNN model is employed to
learn the patterns from CSI and output the power control that
maximizes the energy or spectrum efficiency of the network.
Despite the promising results achieved by the current DNN
and CNN approaches, their lack of flexibility with input
sizes is a significant limitation. Any alteration in input shape
necessitates architectural modification. Furthermore, they
prove inadequate in largewireless scenarios with a substantial
number of connected devices. This deficiency stems from
their heavy reliance on the quality of training data, which
can be challenging to obtain in real-life situations. Moreover,
the training process for these models is often time-consuming
and typically conducted offline. Another drawback of DNN
and CNN approaches is their disregard for the geometric
information inherent in the input data.

To facilitate the incorporation of input data structures into
DL models for RRM tasks, several solutions based on GNNs
have been introduced [26]. These approaches have exhibited
promise in tackling various RRM tasks, encompassing
channel allocation, power control, and user association.
For instance, in [32], a framework combining Deep
Reinforcement Learning (DRL) and Graph Convolution
Networks (GCNs) was proposed for channel allocation.
This method enabled the agent to learn optimal channel
assignments to access points using features extracted from
the wireless environment as a state space. However, the
model’s testing was confined to a wireless setting with perfect
channels and a relatively small number of devices. Similarly,
[33] introduced a GNN-based framework for learning
resource allocation strategies in wireless networks, offering
reduced training times and improved scalability compared
to conventional MLPs. Nonetheless, this framework was
not well-suited for heterogeneous wireless devices or
systems with single or multiple antennas. To address these
limitations, [25] presented a more flexible GNN-based
solution for constrained power allocation in a heterogeneous
MIMO-interfering environment. Leveraging the permutation-
invariant properties of RRM problems, this GNN architecture
demonstrated excellent generalization across different prob-
lem scales with minimal training data. In addition, in [34],
researchers aimed to find the optimal power control strategy
in an uplink multi-cell network by combining DNNs with
knowledge from the wireless network’s topology, reducing
training complexity and model parameters. However, this
approach was tailored exclusively to the power control
task. In contrast, [35] proposed employing GNNs to tackle
power control and beamforming issues in heterogeneous
D2D networks. Here, communication and interference links
were represented as vertices in the wireless graph, and
an unsupervised learning process was employed for the
graph convolutional model. This method demonstrated
favorable properties such as scalability and reduced execution
time compared to alternative approaches. Similarly, [36]
introduced an Access Point (AP) selection strategy for
massive cell-free Multiple Input, Multiple Output (MIMO)
systems based onGNNs. The authors constructed two graphs:
a homogeneous one representing only AP nodes and a
heterogeneous one containing both user equipments and
AP nodes. However, these methods modeled the wireless
network as a single graph, assuming that all communication
links interfered with each other. GNNs can serve as
end-to-end learnable solutions or feature extractors. For
example, [37] proposed a joint optimization framework
for user association and power control in a heterogeneous
ultra-dense network. Similarly, [38] improved the Itera-
tively Weighted Minimum Mean Square Error (WMMSE)
algorithm [39] by incorporating trainable components
parametrized by GNNs. Simulations illustrated that the pro-
posed method, unfolded WMMSE, delivered a comparable
performance to WMMSE but with significantly lower time
complexity.
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The work in [40] introduced a trainable resilient RRM
policy using an unsupervised primal-dual approach for power
control and user association. Another paper [41] presented
an edge-update empowered GNN architecture, enhancing
GNNs’ ability to handle node and edge variables and
validating its Permutation Equivariance in power allocation
scenarios. Additionally, [42] introduced Aggregation GNNs
for decentralized resource allocation in wireless networks,
utilizing amodel-free primal-dual approach for asynchronous
local information processing. The study in [43] proposed
a distributed spectrum allocation scheme for vehicle-to-
everything (V2X) networks using GNNs and multi-agent RL
to optimize the network capacity. Furthermore, [44] discussed
GNN-based frameworks for distributed power allocation in
wireless networks, aimed at minimizing signaling overhead
by incorporating Recurrent Neural Networks (RNNs) to
capture temporal dynamics. The work in [45] offered a
GNN framework to enhance power control and hybrid
precoding in wireless systems, demonstrating scalability and
efficiency. The work in [46] proposed a state-augmented
algorithm for RRM in multi-user networks, ensuring feasible
and nearly optimal decisions. In addition, [47] introduced
a Heterogeneous GNN model for resource allocation in
heterogeneous networks. The study in [48] presented a
GNN-based scheme for RRM in wireless IoT networks,
optimizing resources in D2D communications. Lastly, [49]
explored the expressive power of GNNs in learning wireless
policies, highlighting the limitations of Vertex-GNNs and the
advantages of Edge-GNNs in resource allocation tasks.

Nevertheless, most of the mentioned GNN-based works
are not adaptable to environments where multiple resource
blocks have varying CSI. Additionally, many of these
methods focus on addressing individual RRM tasks.

III. SYSTEM MODEL
We denote N = {1, 2, . . . ,N } a set of active (scheduled)
links distributed randomly in a two-dimensional environ-
ment. The distance between transmitter-receiver pairs varies
across links. We adopt a non-orthogonal scheme for all
communication links, where K = {1, 2, . . . ,K } is the set
of resource blocks (RBs) with constant bandwidth W that
can be assigned to any link (K ≤ N ). In this environment,
a centralized control unit (CCU) controls the transmission
power of each link and allocates the required bandwidth
to ensure effective communication, as illustrated in Fig. 1.
We operate in a time slot scenario where the CCU obtains
CSI from scheduled links, performs resource management,
and communicates decisions to all transmitters. Although the
CCU possesses full CSI knowledge, it may still be subject to
noise and errors, leading us to evaluate our approach under
noisy CSI conditions to assess its robustness in Section V.

We assume that the bandwidth W of each RB is
small enough to exhibit flat-fading channel characteristics.
Additionally, due to block fading, CSI values change
independently from one time slot to the next, requiring

FIGURE 1. N-link interference environment with shared channels.

independent resource allocation for each frame.We introduce
gkii ∈ R to represent the direct channel gain between the
transmitter and receiver of the k-th RB in the i-th link, and
gkij ∈ R to denote the channel gain between the transmitter of
the j-th link and the receiver of the i-th link. To represent all
channel gains, we define G = [G1, . . . ,GK ] ∈ RN×N×K as
the CSI tensor of all links in all resource blocks, where:

Gk =


gk11 gk12 · · · gk1N
gk21 gk22 · · · gk2N
...

...
. . .

...

gkN1 gkN2 · · · gkNN

 . (1)

Taking into consideration the most common types of fading,
the channel gain formula can be expressed as:

gkij = β
k
ijα

k
ij|h

k
ij|
2
∀k ∈ K, ∀(i, j) ∈ N ×N . (2)

where βkij is the path loss proportional to the inverse of
the distance, αkij is the shadowing following the normal
distribution, and hkij represents the small scale Rayleigh
fading.

Each transmitter is equipped with a single antenna, and
we represent the power allocation for all links as P =
[p1, p2, · · · , pN ], where pi is the transmission power of the
i-th link. We also consider a maximum transmission power
limit, denoted as Pmax , i.e., pi ≤ pmax . For RB assignment,
we use binary variables ψk

i ∈ {0, 1}, where ψ
k
i = 1 indicates

that the i-th link uses the k-th RB, and ψk
i = 0 otherwise.

We denote the RB assignment for the i-th link as 9i =

[ψ1
i , · · · , ψ

K
i ]. We assume that each link can use at most one

RB per time slot, i.e.,
∑K

k=1 ψ
k
i ≤ 1.

In our analysis, we focus on the dedicated mode, where
links experience no interference from other users. This
means external interference is not considered in our calcula-
tions. We evaluate the signal-to-interference-plus-noise ratio
(SINR) for the k-th RB in the i-th receiver, which is defined
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as:

SINRki =
gkiipi∑N

j̸=i ψ
k
j g

k
ijpj + N0W

,∀(i, k) ∈ N ×K. (3)

where N0 is the noise density per unit bandwidth. Conse-
quently, using the defined variables, we can calculate each
link’s achievable rate as:

γi = W
K∑
k=1

ψk
i log2

(
1+ SINRki

)
,∀i ∈ N . (4)

Our objective is to find values for the variables P and 9 that
maximize the average network rate while ensuring quality of
service, power constraints, and bandwidth limitations. This
leads us to formulate the optimization problem as follows:

max
P,9

1
N

N∑
i=1

γi

s.t γi ≥ γmin ∀i ∈ N
K∑
k=1

ψk
i ≤ 1 ∀i ∈ N

0 ≤ pi ≤ pmax ∀i ∈ N
ψk
i ∈ {0, 1} ∀(k, i) ∈ K ×N (5)

In (5), the first constraint ensures a minimum required data
rate is met, the second constraint limits each link to using
only one channel, and the third and fourth constraints restrict
transmission powers within the defined maximum power and
enforce binary channel indicators.

The problem at hand presents significant challenges due
to the complexity of the objective function and the inclusion
of mixed variables in the optimization process. Furthermore,
the presence of time constraints, specifically related to the
channel state, necessitates the adoption of a solver with a
convergence time that is shorter than the coherence time to
ensure the validity of the obtained solution. As such, we seek
a universal approach capable of producing efficient solutions
within the necessary timeframe while adhering to the
imposed constraints. In the subsequent section, we introduce
our novel GNN-based model, which offers a generalizable
solution and yields promising outcomes, thereby fulfilling the
aforementioned objectives.

IV. SOLUTION ARCHITECTURE
In this section, we present a detailed exposition of our
proposed model, including a description of the training pro-
cess. Fig. 2 provides an overview of the model architecture.
Essentially, the model takes the processed CSI, which has
been transformed into separate interference graphs, as input
and produces power levels and channel matrices as output.
The model consists of two primary components: a feature
extractor based on the GNNs and a CNN block that learns
from the embedding vectors while simultaneously preserving
the constraints inherent in the problem. The training process
comprises two phases: a supervised phase that enhances the

learning process and an unsupervised phase that maximizes
our objective function while also mitigating overfitting.

FIGURE 2. Model architecture.

A. CHANNEL STATE INFORMATION PREPROCESSING
In this subsection, we describe the process followed to
transform the CSI tensor G into multiple graph structures
to gain insights into their geometric properties. Our system
model operates under specific constraints where each link
is allocated a maximum of one RB, leading to potential
interference only when multiple links share the same RB.
Consequently, RBs are considered independent regarding
interference, which simplifies the management of interac-
tions between links. To effectively represent the CSI within
this framework, we construct interference graphs for each
RB, depicted as distinct subgraphs. This approach mirrors the
uncorrelated flat fading characteristic of our system,where no
correlation exists between different RBs. Since interference
arises only when multiple links utilize the same bandwidth,
we construct K separate complete graphs (N nodes and
N (N − 1)/2 edges) without any loss of information, where
K is the number of resource blocks. Specifically, we denote
Gk (V, E) as the interference graph of the k-th RB, where
the nodes denote the communication links and the edges
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represent the interference links. Each node is labeled by
ni = Gkii ∀i ∈ N , indicating the signal strength or
quality at each link, and each edge is labeled by eij =
Gkij ∀(i, j) ∈ N ×N , representing the interference between
links. This representation allows for a simplified yet effective
understanding of the interactions and interference patterns
within the network, leveraging the geometric properties of
the graphs to facilitate analysis and optimization. Fig. 3
illustrates an example of a three-interference graph for three
communication links.

FIGURE 3. Interference graphs of three communication links
using three resource blocks.

By modeling the CSI in this way, we enhance computa-
tional efficiency without sacrificing any essential informa-
tion. This graph formulation enables us to parallelize the
computation of our model, thereby reducing the model’s
training and execution time by approximately 1/K . Addition-
ally, handling relatively small graphs is more manageable in
terms of complexity and memory control.

B. GNN FEATURE EXTRACTOR
GNNs are a specialized type of neural network designed to
operate on graph-structured data [50]. They share a multi-
layer structure akin to DNNs, where each node within the
graph combines its individual features with an aggregation
of the features of its neighboring nodes. Furthermore,
GNNs update the embedding of each node through itera-
tive aggregation and combination operations. This iterative
process relies on a message-passing mechanism [51], where
information is exchanged among nodes in the graph through
their connecting edges to capture relationships between
nodes. In essence, the t-th GNN layer for a node v ∈
V can be succinctly summarized through two key iterative
equations (6):

mt+1vu = φ(z
t
v,w

t
vu, z

t
u)

zt+1v = σ (ztv, ρ({m
t+1
vu , u ∈ N (v)})) (6)

Here, ztv ∈ Rd1 represents the hidden state of node v ∈ V , and
wtvu ∈ Rd2 denotes the feature vector associated with the edge
(v, u) ∈ E at time t . In the (t+1)-th iteration, the edge features
wtvu are fused with the features of their incident nodes {z

t
u, z

t
v}

via themessage function φ. Subsequently, within each node v,
messages from all neighboring nodes inN (v) are aggregated
using the reduce function ρ. Finally, the node feature zt+1v
is updated using the update function σ . Different choices
for combining and aggregation functions can lead to various
types of GNNs [52], but the reduce function must always be a
permutation-invariant operation, such as sum, mean, or max,
to ensure that the input graph’s global structure is preserved.
Following a similar pattern, our computation equation (6) is
defined as:

mt+1vu = MLPt1(z
t
u, guv, gvu)

zt+1v = MLPt2(z
t
v,max{mt+1vu , u ∈ N (v))}) (7)

In this equation, the message function is represented as
an MLP block, named MLP1, which consists of layers
of neurons, non-linear activation functions, and batch nor-
malization. It operates on the concatenation of node u’s
hidden state and the features of edge (v, u). The reduce
function is essentially a max aggregation operation, which
combines messages received from all neighbors of node v.
The update function for node v is similar to MLP1 but with
a distinct number of neurons and is referred to as MLP2.
It learns patterns from the aggregation of messages mt+1vu
from neighboring nodes and the node’s previous hidden state.
Notably, as the size of the hidden state ztv of each node varies
for each iteration t due to the concatenation operations, each
message-passing iteration has its specificmessage and update
functions denoted as MLPt1 and MLPt2.
MLPs are preferred in our context for stability, efficiency,

and performance. CNNs are less suitable due to the lack
of spatial correlations in message function inputs in the
message function input (ztu, guv, gvu), and RNNs are limited
by the absence of temporal patterns. Upon completing T
iterations, the output of the GNN feature extractor comprises
the embedding vectors for each node within each graph,
represented as zTik ∈ RD

; i ∈ Vk , where Vk denotes the
node set of Gk . These vectors are then stacked to form a
global embedding tensor Z ∈ RN×K×D, where D denotes the
embedding dimension. Subsequently, the tensor Z is used for
computing the power vector and the channel allocationmatrix
in the next steps.

C. CNN COMPONENT
In this section, we detail the CNN component of our
approach, starting with the input of the embedding tensor
Z into a CNN block. This block executes a deconvolution
operation along the embedding axis, outputting a matrix with
dimensions N ×K . The CNN block consists of convolutional
layers that extract features by progressively reducing the
channel count, alongside ReLU activation functions, dropout
for regularization, and batch normalization for stability. The
result, denoted as X = CNNd (Z ), benefits from the CNN’s
ability to identify spatial patterns, augmenting the GNN’s
geometric insights.
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We apply dimension manipulation techniques to process
X for our desired outputs—power vector and a Resource
Block (RB) matrix. We treat X as a matrix for channel
allocation and use a softmax function across the relevant
dimension to calculate channel probabilities. For power
control, we condense X along the K -axis into an N ×
1 vector and apply a sigmoid function to normalize the power
values to a range between 0 and 1. We employ a softmax
operation along the channel axis to compute the probabilities
of selecting a channel. These probabilities are calculated as:

aki =
exik∑K
s=1 e

xik
(8)

Consequently, the channel allocation is calculated as follows:

9k
i =

{
1 if j = argmaxk ({a

k
i , k ∈ K})

0 otherwise
(9)

The current formulation of 9 is not differentiable and would
break the chain rule of backpropagation. Therefore, during
deployment, we utilize this formulation to ensure that the
output adheres to the constraints. However, during training,
we backpropagate with the probabilities. This initially
violates the constraint that each link can have at most one
channel. However, through supervised learning, the model
gradually learns to maximize the probability of selecting a
single channel until it approaches 1 and consequently the
other probabilities approach 0.

Regarding the power allocation, we first apply a sigmoid
function to X . This transforms X into values within the range
of [0, 1]. We then compute the average of these values across
the channel axes. Finally, we obtain the power allocation pi by
multiplying the averaged value by pmax . The overall process
is defined as follows:

pi =
1
K

K∑
k=1

pmax
1+ exik

(10)

It can be straighforwardly demonstrated that the values of
pi falls always within the acceptable range, where pi ≤
1
K (

∑
k 1) · pmax ≤ 1 · pmax .

Both the power vector and the channel allocation matrix
originate from the same matrix X . Afterward, we apply
different functions in the output layers to respect the
constraints of each variable. Rather than employing distinct
neural network blocks for each variable, we tackle the
problem jointly. The majority of the model’s parameters can
be learned by optimizing a specific criterion. The following
subsection will define the loss functions utilized to train our
model.

D. LOSS FUNCTION DESIGN
The loss function of our model is composed of three parts:
a supervised segment, an unsupervised segment, and a
regulation loss designed to maintain the required minimum
data rate. Initially, the neural networks in the model leverage
supervised learning to acquire a generalized strategy, drawing

from the diverse array of solutions within our dataset
generated by PYMOO. This dataset, rich in variety due
to alterations in minimum data rates, the number of links,
and link distance variations, equips the model with a wide-
ranging understanding of potential wireless configurations.
Such a broad perspective is crucial for the model’s ability to
effectively adapt and fine-tune to specific scenarios during the
inference phase. Following the supervised learning stage, the
networks further refine their ability to optimize the objective
through unsupervised learning, all the while adhering to
optimization constraints enforced by the regulation loss.
This holistic approach ensures that the model not only
learns generalizable strategies but also enhances its objective
maximization capabilities and compliance with necessary
constraints.

Specifically, power control is a supervised continuous
prediction problem; thus, we employ the mean square error
(MSE) to determine the prediction’s cost function. Moreover,
we consider the channel allocation as amulti-label supervised
classification problem. Thus, we use the categorical cross-
entropy (CCE) loss to calculate the cost of the sample’s
miss-classification.

Lsup(P̂,P, 9̂, 9) =
N∑
i=0

K∑
k=0

(
p̂i − pi

)2
+ ψk

i log(ψ̂
k
i ) (11)

We adopt the negative network’s mean rate as an unsuper-
vised loss. The value of the loss function decreases when the
data rate of each link, γi increases.

Lrate(9̂, P̂) = −
N∑
i=0

K∑
k=0

W ψ̂k
i

N
log2

(
1+ SINRki (p̂

k
i , ψ̂

k
i )

)
(12)

In order to ensure that every link retains the necessary
minimum capacity, we incorporate a regulation loss into our
model, strategically managing the rate of each link. Contrary
to the conventional approach that penalizes the model when
rates drop below γmin [31], our method imposes a penalty
when certain rates are excessively elevated, as expressed in
equation (13). This strategy pushes the model to generate
rates as near to γmin as possible. Consequently, while rates
that are excessively high are brought down, those that are
too low are also increased due to the shared radio resources.
Mathematically,

Lreg(9̂, P̂) =
1
N

N∑
i=0

max(0, γi − γmin) (13)

where Lreg computes the average extent to which each
rate, γi, surpasses the minimum, γmin, considering only the
excesses, due to the max function. This regulatory loss
aims to steer the model to adhere closely to the minimum
rate, preventing it from significantly exceeding it and thus
ensuring a consistent rate output across all links. When
paired with the maximization of the network mean rates,
it lends appreciable stability to our model. We note that
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while supervised training is preferred, it is not mandatory.
In the absence of a labeled dataset, the model can learn
unsupervisedly.

E. TRAINING AND DEPLOYMENT PROCESS
We employ supervised learning to guide the model toward
acquiring an optimal initial and generalized strategy derived
from the training dataset. During the deployment phase,
we alter the training direction with the objective of enhancing
the rates across all links and focusing on respecting the
minimum data rate by minimizing a combination of the rate
and regulation loss.

In both training and deployment, we first forward prop-
agate to compute the prediction of P̂ and 9̂ to assess
the loss value. Afterward, we back-propagate to calculate
the gradients and update the model’s weights accordingly
using the Adadelta optimization technique [53]. For each
epoch, we preprocess each sample’s CSI and construct K
interference graphs. Then, we parallelly compute the node
representations by evaluating (7) T times for all the K
graphs. This parallel computation decreases the execution
time by roughly 1/K . Following that, we calculate P̂ and
9̂ accordingly. Lastly, we evaluate the loss and update the
learnable weights of the model.

Algorithm 1 Supervised Training Process Overview
INPUT: Dataset D contains tuples of (G,P,9)
OUTPUT: Model’s optimal parameters 2
Initialize P̂, 9̂
for Epoch in

[
0, MAX EPOCHS

]
do:

for all samples (Gl,Pl, 9l) ∈ D (l = 1, . . . ,L) do:
PreProcess Gl
do in parallel: (k = 0, . . . ,K )

for all node iinVk (i = 1, . . . ,N ) do:
z0ki← gii
for t in

[
0,T

]
do: Compute ztki

Compute 9̂, P̂
Compute Lsup(9̂, P̂)
Update weights using ∇θLsup(9̂, P̂)

The supervised training procedure is thoroughly outlined
in Algorithm 1. Meanwhile, Algorithm 2 provides a detailed
description of the unsupervised deployment process, which,
operates with a notably reduced number of iterations
compared to the training phase.

While constructing the training dataset, we have the option
of utilizing any MINLP optimization technique to obtain
near-optimal solutions to our optimization problem. The
exhaustive search is not feasible taking into account the
number of possible solutions. Therefore in our case, we have
chosen to utilize PYMOO [54] due to its widespread applica-
bility and demonstrated efficacy in various fields. PYMOO
provides a range of flexible genetic algorithm techniques that
include evaluation features capable of assessing the solutions

Algorithm 2 Deployment Process Overview
INPUT: CSI G, pre-trained parameters 2∗

OUTPUT: P∗ and 9∗

for Epoch in
[
0, MAX EPOCHS

]
do:

PreProcess G
Compute Z
Compute 9̂, P̂ (8, 10)
Compute Lrate(9̂, P̂)+ Lreg(9̂, P̂)
Update weights using ∇θ (Lrate + Lreg)

Compute 9̂ (9)

obtained, as well as parallel computation functionalities that
serve to expedite the dataset construction process.

V. PERFORMANCE EVALUATION
In this section, we evaluate the effectiveness of our proposed
approach through a series of experiments and comparisons.
Initially, we delve into a training convergence analysis, eval-
uating both supervised and unsupervised learning across vari-
ous wireless network parameters. Subsequently, we showcase
that our model outperforms in diverse wireless network
setups by comparing it with the benchmarking schemes,
focusing on network mean rate, QoS violation probability,
and the level of QoS violation. Ultimately, we assess the
robustness of our model in scenarios characterized by an
imperfect channel.

A. SIMULATION PARAMETERS
We construct a rectangular 2D layout with width wx =
200 m and height wy = 100 m that represents a
wireless environment, and we randomly distributed the
N transmitters in the area. Consequently, we spread the
receivers to be randomly distant from their corresponding
transmitters in a range between dmin and dmax. We adopted
the channel model from the short-range outdoor model
ITU-1411 with a distance-dependent path-loss [55], with
2.4 GHz carrier frequency, 1.5 m antenna height and
2.5 dBi antenna gain. The transmit power’s maximum level
is 4 dBm, and the background noise level is −169 dBm/Hz.
We model the shadowing using the normal distribution, αkij =

10
S
10 , S ∼ N (0, σ ) where σ is the shadowing deviation in

dB. We consider an urban outdoor environment, where σ is
between 4 dB and 12 dB. As for the fast fading channel,
we use the Rayleigh fading model, hkij = R + jI ; I ,R ∼
N (0,1)
√
2

. The number of channels is K = 10, where each has
500 Hz of bandwidth.

It is important to note that our model is trained only once
with 10000 training samples over 30 epochs where N = 50,
dmax = 50 m, dmin = 5 m, γmin = 200 bps, and σ =
4 dB generated by PYMOO Single-Objective Optimization
With Mixed Variables API [56]. We have also generated
1000 samples for testing the convergence of the supervised
training following the same procedure. All the simulations
and training have been conducted on the same hardware,
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processor Intel Intel(R) Xeon(R) W-1270 CPU, 16.0 GB
memory, and 3.40 GHz. The code1 is implemented using
Python 3.9 with Deep Graph Learning library (DGL [57]) and
PyTorch as a backend.

Regarding network parameters, we configure the number
of GNN layers to T = 4, and the embedding dimension is
established at D = 10. We design MLP1 and MLP2 with
three hidden layers, between these layers, we apply a ReLU
activation function and incorporated batch normalization.
Our CNN block comprised 3 convolution filters, with ReLU
activation functions interposed. The parameters for the
convolution filters, including strides, padding, and dilation,
were all set to 1. The kernel size is defined as (3 × 3),
ensuring that the spatial dimensions of the input tensor remain
unchanged. The channel input-output pairs are configured
as (10, 5, 2, 1). For the training and the deployment process,
we opt for a fixed learning rate of 1.0 without any decay over
epochs, as Adadelta would adapt it accordingly.

B. COMPLEXITY ANALYSIS
Assuming sequential processing, the complexity of GNN
encoders is o(KTN [(N − 1)

(
(D+ 2)D+ AD2

)
+ BD2]),

where A and B denote the numbers of hidden layers in
the message and update functions, respectively. Moreover,
we process the sub-graphs in parallel, thus the complexity
is divided by K . Given the parameters we set previously,
the complexity is o(240N (7N − 2)). Moreover, the CNN
complexity is o([

∑
c∈C ci−1ci]9NK ) where C = {D, . . . , 1}

is the set of consecutive number of channels, which in our
case, is o(588NK ). Combining the two phases, the overall
complexity of a single feed-forward is o(240N (7N − 2) +
558NK ), which is roughly o(N 2).

C. BENCHMARKING SCHEMES
In our performance evaluation, we selected four distinct
approaches for comparison: randomized, heuristic, convex-
ification, and a learnable method. Since supervised training
data can be scarce, we refer to our model in the following
simulations as GNN when it is pre-trained in a supervised
manner before deployment, and DGNN when it is not.
We Benchmarking Schemes are explained as follows:
• RANDOM: We generate 40000 power and channel
allocation solutions at random. Subsequently, we select
the solution that minimizes QoS violations while
maximizing the mean network rate.

• PYMOO [56]: The problem is addressed utilizing a
genetic algorithm provided by PYMOO. Notably, this
solution is identical to the one used to generate the
training dataset.

• SLSQP [58]: Initially, greedy channel allocation [59]
is assigned to all links. Following this, we resolve the
power control task by employing the Sequential Least
Squares Programming (SLSQP) technique.

1https://github.com/mahermarwani/Graph-Neural-Networks-Approach-
for-Joint-Wireless-Power-Control-and-Spectrum-Allocation

• DNN [31]: The CSI is reshaped and fed into two DNN
architectures. The first DNN architecture is responsible
for power control, while the second DNN architecture
handles channel allocation. However, due to the DNN
architecture’s inflexibility towards variations in the
number of links, we adjust the number of neurons in the
DNN to be suitable for the selected N and retrain it with
an adequate dataset.

• REGNN [40]: The problem is addressed using a
Resilient GNN policy, trained using an unsupervised
primal-dual approach. We average and normalize the
CSI across resource blocks to construct a graph topology
similar to the one used in the paper.

D. TRAINING CONVERGENCE ANALYSIS
We present in this subsection convergence analyses for the
supervised phase and the unsupervised phases in different
wireless scenarios.

1) SUPERVISED CONVERGENCE
Fig. 4 and Fig. 5 illustrate the convergence patterns of the
Mean Squared Error (MSE) and categorical Cross Entropy
(CCE), respectively. Fig.6 shows the convergence pattern of
the supervised (SUP) loss, which is the sum of both MSE
and CCE losses. An exponential decrease is observed in the
initial iterations, followed by the stabilization of the loss
curves towards a minimum, which underscores the model’s
proficiency in emulating the RRM strategy inherent in the
training dataset. After the 5000-th iteration, a plateau in the
loss values is noticeable, suggesting that the model might
have reached a state where further learning is limited and is
potentially trapped in a local minimum. Meanwhile, Fig. 7
demonstrates the progression of the Average network rate
with respect to the number of epochs (10000 iterations per
epoch), emphasizing that the model continues its learning
trajectory to align the performance between testing and
training samples, hence toward generalization.

FIGURE 4. Convergence of MSE loss.

By the 30-th epoch, the test performance converges to the
train performance, demonstrating that the model is adept at
managing unseen samples. Such robust generalization capa-
bility can be linked to the permutation-invariant character of
the GNN architecture. When trained on graphs derived from
the CSI, the model naturally undergoes data augmentation,
enhancing the generalization performance.
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FIGURE 5. Convergence of CCE loss.

FIGURE 6. Convergence of SUP loss.

FIGURE 7. Training vs. test model’s average sum rate evolution
over supervised learning process.

2) UNSUPERVISED CONVERGENCE
Supervised learning typically results in an upper-bound
performance generated from the process used to create the
training dataset, i.e., PYMOO. Thus, we demonstrate the
impact of unsupervised learning to increase the model’s
performance by directly maximizing the mean network rate
while minimizing the QoS violations. We conduct several
tests across different wireless scenarios by adjusting the
minimum required rate γmin, the number of links N , the dis-
tribution of link locations dmax , and the shadowing deviation
σ . For every parameter change, we generate 100 samples
and analyze the average network mean rate evolution and
QoS violation probability over the unsupervised learning
iterations.

FIGURE 8. Model’s average sum rate and QoS probability over
unsupervised learning in different N values.

FIGURE 9. Model’s average sum rate and QoS probability over
unsupervised learning in different γmin values.

Fig. 8 illustrates the impact of varying the number of links
on the average sum rate and QoS probability. We set N =
{50, 75, 100, 125}, dmax = 50 m, γmin = 300 bps, and
σ = 4 dB. The top graph indicates a convergence trend
in average sum rates for all the considered N values, with
a rise of around 20% after 1000 iterations. Higher N values
produce lower rates since the radio resources are finite and
invariant. The bottom graph underscores the improvement
in QoS adherence over the iterations. For instance, N =
125 decreases its initial violation probability from 17.5% to
nearly 1%, while N = 50 reduces it from 5% to almost 0%.
This demonstrates that our approach can achieve improved
performances while maintaining strict QoS compliance for
various numbers of links. Fig. 9, on the other hand, evaluates
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the model’s performance against changing QoS values,
specifically at γmin = {250, 500, 750, 1000} bps, N = 50,
dmax = 50 m, and σ = 4 dB. We kept the same CSI
in this analysis for a fair assessment. The Average Sum
Rate displays an increased performance across the examined
values, stabilizing near 2500 bps, a boost of approximately
31% from the initial supervised outcome. Meanwhile, the
QoS Violation Probability segment reveals a sharp decrease,
especially for the γmin = 1000 bps curve, and by the 800-th
iteration, all curves converge to under 5%, with most nearing
zero. This observation underscores the model’s aptitude to
adjust to fluctuating QoS values, constantly optimizing rates
and reducing QoS breaches.

FIGURE 10. Model’s average sum rate and QoS probability over
unsupervised learning in different dmax values.

Fig. 10 explores the effects of different link distances,
where dmax = {50, 60, 70, 80} m, γmin = 300 bps,
N = 50, and σ = 4 dB. Similarly, we observe a clear
trend: the Average Sum Rate increases over iterations by
30 %, and higher dmax values produce lower rates due to
higher channel attenuations. However, although initially high,
the QoS Violation Probability for all dmax values declines
rapidly, converging to 2% by the 800-th iteration. This
emphasizes the model’s increased performance versatility
across varying link distances. Finally, Fig. 11 showcases the
influence of shadowing, where γmin = 300 bps, N =

50, dmax = 50 m, and σ = {4, 6, 9, 12} dB. The top
graph reveals that all curves consistently increase the Average
Sum Rate as iterations continue. Higher values of σ lead
to slightly higher rates. This observation can be attributed
to the fact that if shadowing results in a positive deviation
(i.e., the signal strength is higher than expected), the SNR
would increase, potentially leading to a higher Shannon
capacity. However, it’s important to note that this doesn’t
imply shadowing is inherently ‘‘beneficial.’’ Rather, the
random nature of shadowing can occasionally produce signal

FIGURE 11. Model’s average sum rate and QoS probability over
unsupervised learning in different σ values.

strengths that surpass deterministic predictions. The bottom
graph, depicting QoS Violation Probability, suggests that the
system is robust across diverse shadowing scenarios, with
higher and lower σ values witnessing significant violation
reductions over iterations, reaching nearly 0 violations. This
highlights the model’s increased performance across varying
shadowing deviations.

Overall, the supervised training provides a solid starting
point, yet it doesn’t achieve optimal results. Integrating
unsupervised training during the deployment phase shows a
notable improvement in the network’s mean rate. Simultane-
ously, the QoS violation probability reduces across various
wireless configurations. This underscores the effectiveness
of our methodology in enhancing both performance and
adaptability.

E. IMPACT OF QoS CONSTRAINTS ON PERFORMANCE
This subsection examines the model’s (GNN & DGNN)
performance by changing the QoS values and comparing it
with established benchmark schemes. For a fair comparison,
the CSI remained the same while changing γmin, as it
is done during the convergence analysis. The Cumulative
Distribution Function (CDF) plots presented in Fig. 12
provide a comparative analysis of the link rate performances
of five benchmark schemes for γmin = {300, 600, 1000} bps.
A noticeable rightward skew of the GNN curve in each plot
highlights its capability to achieve higher link rates more
often than other methods. Importantly, GNN consistently
surpasses other schemes in every scenario, even DGNN
which shows the importance of the supervised learning
phase. This superiority is especially evident at extreme γmin
values where most schemes find it challenging to uphold
the QoS requirements. It’s worth noting that consistently
maintaining extreme γmin can be unfeasible for various

VOLUME 2, 2024 727



FIGURE 12. Rate’s CDF of benchmarking schemes for different γmin values.

FIGURE 13. Performance of benchmarking schemes with respect to γmin.

channel realizations. Our model, as shown in (c), registers
approximately 5% QoS violations, whereas other schemes
hover around 50%, except for the PYMOO and REGNN
approach.

Next, we show the average sum rate of the links, the
probability of QoS constraint violation, and the level of
QoS violation, which is defined as the difference between
the QoS requirement and the rate when the QoS constraint
is violated, i.e., E [γmin − γ | γmin > γ ], as a function of
γmin in Figs. 13(a-c), respectively. In Fig. 13(a), the average
sum rate is observed to decrease as γmin increases. This
decline is attributable to the restrictions on all links’ transmit
power and channel usage, which are necessary to minimize
interference and, thus, to meet the QoS constraints. Notably,
the proposed scheme maintains superior performance even
as its average sum rate marginally declines. Moreover, this
behavior widens the performance disparity with the PYMOO
scheme as γmin escalates. In contrast, other benchmark
schemes consistently underperform relative to the proposed
strategy. Regarding Fig. 13(b), the QoS violation probability
for our model remains commendably low. Specifically,
it hovers close to 0 when γmin is minimal and reaches
approximately 5% at higher γmin values. This performance
is comparable with the PYMOO, REGNN, and DGNN
approaches. In contrast, the RANDOM, SLSQP, and DNN
schemes exhibit substantially elevated violation probabilities,
underscoring the efficacy of the proposed scheme. Lastly,
Fig. 13(c) highlights the proposed scheme’s performance in
terms of QoS violation levels. Although the QoS constraint

may occasionally be breached, the deviation of the link’s
rate from γmin is still minimal (around 10%). This ensures
that even when violations occur, their impact remains largely
inconsequential.

F. IMPACT OF THE NUMBER OF LINKS
In Figs. 14(a) - 14(c), we illustrate the average sum rate of
the network, the probability of QoS violation, and the level
of QoS violation against the number of links, N . Fig. 14(a)
highlights that as the value of N ascends from 50 to 200,
there is a marked decrease in the average sum rate across all
benchmark schemes. This downward trend can be attributed
to the intensified competition for available radio resources,
resulting from the addition of links to the network. Other
benchmark schemes consistently fall behind our proposed
scheme by margins of 15− 30%, highlighting the superiority
of our proposed model. On the other hand, we observe in
Fig. 14(b) and 14(c) a modest surge in both the probability
of QoS violation and its level as N proliferates. Despite this
trend, our proposed scheme consistently outperforms other
benchmark schemes, registering less than a 10% probability
of violation and maintaining the level of violation below
50 bps at higher N values. These metrics restate the scheme’s
adeptness at maintaining QoS requirements, even in denser
networks. These tests highlight the scalability of our GNN-
based model. It consistently delivers robust performance
across expansive networks without the need for retraining.
This characteristic emphasizes its capability to generalize
to larger graphs, while trained only on smaller graphs.
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FIGURE 14. Performance of benchmarking schemes with respect to N.

In contrast, the DNN approach, even with retraining at
each distinct N value, continually lags behind, revealing its
inherent limited scalability.

FIGURE 15. Execution time for different N values.

In Fig. 15, we assess the computation time required for
resource allocation as a function of N . The simulation results
focus solely on the computation time of the deployment
phase, mainly because the GNN’s training occurs just
once and can be conducted offline prior to its actual
implementation. It is essential to note that the execution
time is intrinsically linked to our hardware specifications,
leading to results being presented in seconds instead of
milliseconds. Analyzing the data from Fig. 15, it is evident
that the computation time for SLSQP and PYMOO increases
almost linearly. This trend suggests that these methods may
not be efficiently scalable for real-time operations. Contrarily,
our method’s computation time is marginally more than the
DNN’s, attributed to the unsupervised iterations involved,
with the benefit of a significant increase in the overall
performance. Moreover, the computation time remains unaf-
fected by N . This is because the size of the GNN remains
constant, irrespective of the number of links. For N =

200, the computation time stands at 2.3 seconds. However,
this duration can be substantially reduced with superior
hardware, indicating the viability of our proposed scheme for
more extensive networks. Furthermore, incorporating parallel
computing in graph embedding, stemming from our graph

modeling, has decreased the execution time by a factor of
K . As a result, considering a higher K value renders our
approach much more efficient than the other schemes.

G. IMPACT OF THE LINKS LOCATIONS
In Figs. 16(a) - 16(c), we illustrate the average sum rate
of the network, the probability of QoS violation, and the
level of QoS violation against themaximum distance between
each link, dmax . In Fig. 16(a), the GNN curve starts at
approximately 2200 bps at 50 m and sees a steady
decline, settling just above 2000 bps by 80 m. Notably,
the GNN approach consistently surpasses the performance
of the RANDOM, DNN, REGNN, and PYMOO algorithms
across the entire distance range. Moving to Fig. 16(b),
GNN demonstrates remarkable stability, ensuring a violation
probability below 5% throughout all distances. This stability
sets it apart from other methods, particularly DNN and
SLSQP, the latter of which sees a hovering rate near 50%.
Lastly, Fig. 16(c) underscores GNN’s efficiency, with its
curve initiating at around 50 bps at 50 m and registering a
slight surge to roughly 70 bps by 80 m. In this context, the
GNN outperforms most other schemes, with the exception
of PYMOO, which is precisely engineered to be resilient
against optimization constraints at the expense of an extensive
execution time.

H. IMPACT OF THE FADING EFFECTS
In Figs. 17(a) - 17(c), we demonstrate the average sum rate
of the network, the probability of QoS violation, and the level
of QoS violation against the shadowing deviation, σ . Among
the tested schemes, the GNN consistently outperforms its
counterparts, achieving the highest average sum rate across
all shadowing deviations, as seen in Fig. 17(a). Furthermore,
when it comes to ensuring the quality of service, the GNN
demonstrated resilience, exhibiting the lowest probability
and level of QoS violations, as shown in Fig. 17(b-c). This
consistent superiority of the GNN emphasizes its potential
as a highly reliable solution in environments with varying
shadowing deviations.

I. IMPACT OF NOISY CSI
In this subsection, we evaluate the resilience of our model
when subjected to channel imperfections. These imperfec-

VOLUME 2, 2024 729



FIGURE 16. Performance of benchmarking schemes with respect to dmax .

FIGURE 17. Performance of benchmarking schemes with respect to σ .

FIGURE 18. Performance of benchmarking schemes with respect to σe.

tions are quantified using a specific expression that defines
the discrepancy between the estimated and actual multipath
fading effects. The relationship between the estimated
multipath fading values, hkij, and their true counterparts, h̃kij,

is described by the first-order Gauss-Markov process [60],
expressed as follows:

h̃kij =
√
1− σ 2

e h
k
ij + σen

k
ij (14)

Here, nkij represents the error associated with the estimated
channel, hkij, which adheres to a complex Gaussian distri-
bution. The error coefficient σe characterizes the precision
of the CSI, where σe ranges from 0 to 1. A smaller value
of σe indicates a higher CSI accuracy, approaching perfect
accuracy as σe tends to zero. Consequently, we can express

the noisy channel with the following equation:

g̃kij = β
k
ijα

k
ij|h̃

k
ij|
2 (15)

To test the robustness, we first generate a clean CSI. We then
apply Equation (15) to introduce varying degrees of noise
to the clean CSI by adjusting σe within its defined range.
Using the noise-inflicted CSI, we proceed to determine the
power and channel allocation solutions for all benchmark
schemes, and our approach. Upon finalizing these solutions,
we calculate the actual link rates, employing the clean
CSI. This method allows us to measure the effectiveness
of our model in real-world conditions where channels are
infrequently perfect.

Fig. 18(a) to Fig. 18(c) demonstrate that the GNN scheme
excels in performance against a rising distortion coefficient,
σe. In graph (a), all benchmark schemes experience a reduced
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average sum rate as σe increases due to the distortion, yet
the GNN maintains the highest rates, indicating a strong
resistance to distortion. Graph (b) reveals that the GNN’s
probability of QoS violations stays under 10%, contrasting
with the marked vulnerability of other schemes under the
same conditions. Graph (c) shows the GNN’s QoS violation
level remains below 10 bps, surpassing by far other schemes,
which worsen with higher σe. GNN’s consistent robustness,
attributed to its permutation invariant features, showcases
its superior design in mitigating distortion and preserving
service quality.

VI. CONCLUSION
In conclusion, we presented a novel GNN-based framework
for jointly solving power control and spectrum allocation
in a non-orthogonal wireless environment. Our approach
demonstrated superior performance in terms of average
sum rate and Qos preservation in different wireless setups
compared to other heuristic and learnable approaches and
achieved robustness over an imperfect channel. Additionally,
our approach exhibited scalability, stability, and general-
ization, making it suitable for various network structures
with different setups, such as D2D networks and Downlink-
Uplink cellular scenarios. This study establishes a foundation
for advanced RRM in future wireless networks. Future
research should delve into GNNs’ capabilities for dynamic
spectrum allocation, interference management, and network
optimization in changing conditions. Additionally, in-depth
theoretical analysis is needed to pinpoint the best graph
representations of wireless networks and fine-tune the GNN
embedding layer. Lastly, incorporating temporal dynamics
into GNN training could further improve RRM outcomes.
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