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Abstract
Accurate wind pressure analysis on high-rise buildings is critical for wind
load prediction. However, traditional methods struggle with the inherent com-
plexity and multiscale nature of these data. Furthermore, the high cost and
practical limitations of deploying extensive sensor networks restrict the data col-
lection capabilities. This study addresses these limitations by introducing a novel
framework for optimal sensor placement on high-rise buildings. The frame-
work leverages the strengths of multiresolution dynamic mode decomposition
(mrDMD) for feature extraction and incorporates a novel regularization term
within an existing sensor placement algorithm under constraints. This innova-
tive term enables the algorithm to consider real-world system constraints during
sensor selection, leading to a more practical and efficient solution for wind
pressure analysis. mrDMD effectively analyzes the multiscale features of wind
pressure data. The extracted mrDMDmodes, combined with the enhanced con-
strained QR decomposition technique, guide the selection of informative sensor
locations. This approachminimizes the required number of sensors while ensur-
ing accurate pressure field reconstruction and adhering to real-world placement
constraints. The effectiveness of thismethod is validated using data from a scaled
building model tested in a wind tunnel. This approach has the potential to rev-
olutionize wind pressure analysis for high-rise buildings, paving the way for
advancements in digital twins, real-timemonitoring, and risk assessment ofwind
loads.

1 INTRODUCTION

Tall and flexible buildings are particularly vulnerable to
wind’s dynamic forces, often leading to glass and facade
damage (Chen & Kareem, 2004; Cui & Caracoglia, 2018;
Hu et al., 2019; Huang & Chen, 2007). To ensure the struc-
tural integrity and functionality (serviceability) of these
buildings (Kociecki & Adeli, 2014; Meena et al., 2022; Park
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& Adeli, 1997), the pressure distribution needs to be ana-
lyzed across their exterior surfaces. This information is
also instrumental in devising optimal control and miti-
gation strategies (Aldwaik & Adeli, 2014; Gutierrez Soto
& Adeli, 2017; Kim & Adeli, 2005; Wang & Adeli, 2015).
While computational fluid dynamics offers a versatile tool
for simulating pressure distributions across building sur-
faces (Bernardini et al., 2015; Wijesooriya et al., 2023),
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wind tunnel testing remains the established benchmark
for validation due to its ability to replicate real-world
wind conditions (Tanaka et al., 2012; Whiteman et al.,
2022). Wind tunnels allow for more accurate modeling
of wind’s impact on tall buildings and provide a tool for
optimizing the building’s aerodynamic performance. This
optimization can involvemodifying the building’s shape to
minimize wind pressure, with these changes being tested
directly in the wind tunnel (Elshaer et al., 2017; S. Li
et al., 2021; Sharma et al., 2018; Tse et al., 2009). Recent
advancements in pressure transducer design, data acqui-
sition systems, and data management have significantly
improved the experimental analysis of wind forces on tall
buildings. However, the analysis of wind pressure fields on
tall buildings is hindered by their inherent randomness,
high-dimensionality, noisy sensor data, and the wind’s
own fluctuating nature (Luo & Kareem, 2021). These fac-
tors make it difficult to analyze the pressure fields using
traditional statistical methods like correlation or coher-
ence functions (Carassale, 2012). In addition, the current
measurement capabilities are limited, making it challeng-
ing to separate the various physical phenomena occurring
at micro and macro scales within the pressure field. Accu-
rately predicting the behavior of complex systems, like
wind pressure on tall buildings, requires the ability tomea-
sure these multiscale phenomena across different scales.
This improved understanding is essential to develop con-
trol measures that mitigate wind effects. On the other
hand, sensor placement plays a central role in capturing
the pressure field dynamics and estimating the full state
of the system (Amezquita-Sanchez et al., 2018; Bai et al.,
2017; Nair & Taira, 2015). However, the cost and limitations
of deploying sensors, especially for real-timemonitoring of
actual high-rise buildings, pose a significant challenge. By
strategically placing sensors (Yuan et al., 2023), valuable
insights can be gained into the coherent structures within
the pressure field. Optimizing sensor placement becomes
critical to achieve accurate analysis while balancing cost
constraints (Ma et al., 2023).
The exploration of random pressure fields and their

impact on structures has been a topic of extensive research.
Among various established techniques, proper orthogonal
decomposition (POD) stands out as a powerful tool for
analyzing spatiotemporally varying randomwind pressure
fields (e.g., Bastine et al., 2018; Carassale & Brunenghi,
2011; Chen & Kareem, 2005; Tamura et al., 1999). The
core concept of POD lies in transforming the initial pres-
sure data into a set of uncorrelated and orthogonal spatial
modes. Importantly, POD ranks these modes based on
their energy content, with the first mode capturing the
most significant variations in the pressure field. Higher-
order modes capture features with progressively lower
energy, but these features can still contain valuable infor-

mation. While POD offers valuable insights, it is essential
to acknowledge its limitations. First, POD analysis focuses
solely on the second-order statistics of the pressure field.
Second, a single POD mode can encompass a combi-
nation of various frequencies within the pressure field,
therefore information about the specific frequency con-
tent of the pressure field might be lost (Muld et al.,
2012; Zhang et al., 2014; Zhao et al., 2019). For a more
comprehensive understanding of pressure field dynam-
ics, other techniques like dynamic mode decomposition
(DMD) have been explored. Unlike variance-based meth-
ods like POD, DMD is an equation-free technique closely
tied to the spectral analysis of the Koopman operator
(Bevanda et al., 2021). In DMD, spatial features and their
associated temporal characteristics are extracted from data
while both temporal correlation and frequency infor-
mation are preserved. This characteristic allows DMD
to provide interpretable features directly associated with
the system’s dynamics, making it useful for constructing
predictive models and comprehending complex physical
processes. Extensive research has demonstrated the effec-
tiveness of DMD in extracting flow structures and dynamic
features across various flow types (Fu et al., 2023; C.
Y. Li et al., 2022; Li et al., 2023; Luo & Kareem, 2021;
Zhou et al., 2021). However, standard DMD struggles to
approximate intermittent and transient phenomena with
noise because the modes it obtains might not be enough
to represent a broader range of dynamics (Benito et al.,
2011; Hwang et al., 2023; Kutz et al., 2016). To address
the limitations of standard DMD, a more advanced tech-
nique called multiresolution DMD (mrDMD) has been
developed (Kutz et al., 2016). This technique demonstrates
comparable performance to other advanced methods (Li
et al., 2017; Perez-Ramirez et al., 2016). It utilizes a hier-
archical temporal sampling framework similar to wavelet
decomposition. This framework breaks down the data into
a nested sequence of subspaces, each representing a spe-
cific timescale. Within each subspace, mrDMD uses the
DMD algorithm to extract dominant dynamical modes,
effectively capturing the system’s characteristic evolution
at that timescale. Through this recursive decomposition
and analysis,mrDMDenables the characterization of com-
plex phenomena governed by processes unfolding across
different temporal scales.
Extracting meaningful data from wind tunnel tests or

field measurements requires strategically placed sensors
to capture the system’s complete state. However, a crit-
ical challenge lies in determining the optimal number
and location of these sensors. This is often constrained
by two factors: (1) Uncertainty—where the exact num-
ber of sensors needed is often unknown beforehand; (2)
cost—since the sensors can be expensive (Aldwaik &
Adeli, 2014; Gao et al., 2024; Xie et al., 2022), making a
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dense network financially impractical. For simple struc-
tures with well-defined geometries and few degrees of
freedom, engineers can often rely on experience and intu-
ition to place pressure taps strategically in wind tunnel
tests, effectively gauging pressure distribution. However,
for complex, large-scale structures, this approach becomes
insufficient. Determining the optimal sensor layout for
these structures remains a significant challenge (Jiang &
Adeli, 2007; Meo & Zumpano, 2005; Papadimitriou, 2004;
Tan & Zhang, 2020). While traditional optimization meth-
ods can be used to determine sensor locations, they can
be computationally expensive. To address this, researchers
have explored heuristic approaches like genetic algorithms
and monkey algorithms (e.g., Liu et al., 2008; Yao et al.,
1993; Yi et al., 2011). These techniques offer a faster
path to solutions. However, there is a trade-off. Heuristic
approaches rely on pre-defined hyperparameters that can
significantly impact the final results. Choosing the optimal
hyperparameters can be challenging, and these methods
may not always guarantee the absolute best solution com-
pared to traditional optimization techniques (Erichson
et al., 2020; Manohar et al., 2018; Yang, 2021). In essence,
these heuristic approaches offer a balance between speed
and optimality. They can be a valuable tool for initial sen-
sor placement, but further refinement might be needed
using more rigorous optimization methods (Gao et al.,
2023; Manohar et al., 2019) especially when constraints are
involved (Karnik et al., 2024).
In this study, the mrDMD technique is implemented

to separate complex wind-induced pressure dynamics into
a hierarchy of components across different timescales.
By leveraging a hierarchical sampling framework similar
to wavelet decomposition, mrDMD addresses the chal-
lenges posed by noisy, transient, and multiscale systems,
overcoming the limitations of standard DMD. Extracted
mrDMD modes are then used to determine the optimal
sensor placement while considering real-world system
constraints. The study proposes a novel adaptation of a piv-
oted QR factorization technique (Drmač &Gugercin, 2016;
Higham, 2000; Karnik et al., 2024; Manohar et al., 2018,
2022). This adaptation introduces a regularization term
that builds upon the algorithm’s existing constraints. This
novel term offers several advantages: It penalizes overly
complex solutions (promoting sparsity and informative
sensor locations), prevents overfitting by mitigating noise,
and reduces noise sensitivity in sensor placement deci-
sions. Furthermore, the term can be tailored to incorporate
additional real-world considerations, such as environmen-
tal factors. This innovative approach balances accurate
pressure field reconstruction with minimal instrumenta-
tion, adhering to practical limitations while offering flex-
ibility for diverse constraints. Due to the inherent trade-
off between spatial and temporal resolution, the study

investigates data augmentation approaches like time-delay
embedding and interpolation to address limited spatial
resolution and ensure effective sensor placement. The
effectiveness of the proposed framework will be demon-
strated through application to a scaledmodel of a high-rise
building tested in a boundary layer wind tunnel.

2 METHODOLOGY

DMD is a mathematical and data analysis technique used
to extract dynamic patterns and spatiotemporal features
from time-series data. Due to its simplicity and its ability to
assist in understanding the behavior of complex dynamical
systems, DMD has been widely applied to several applica-
tions including fluid dynamics, engineering, atmospheric
science, and neuroscience. DMD allows for the approx-
imation and understanding of the underlying dynamics
of a system from observed data without requiring knowl-
edge of the system’s governing equations. It is closely
connected to Koopman spectral theory (Lange et al., 2021)
and can be seen as a finite-dimensional approximation to
the Koopman operator, which is an infinite-dimensional
linear operator used to represent the evolution of nonlin-
ear dynamic systems. Specifically, DMD aims to extract
the dominant dynamic modes and eigenvalues from time-
series data. It provides a practical and computationally
efficient way to approximate the Koopman operator by
projecting the data onto a finite-dimensional subspace
spanned by DMD modes. DMD essentially linearizes the
system’s dynamic, making it more accessible for analysis.
Let 𝒙𝒊 ∈ ℝ𝑛 be a column vector containing 𝑛 data points

at a time 𝑡𝑖 and corresponding to the 𝑖th snapshot matrix.
Assuming that𝑚 snapshots of data are available, they can
be arranged into two data matrices as follows:

𝑿 = [𝒙1, 𝒙2, …, 𝒙𝑚−1] and 𝑿
′ = [𝒙2, 𝒙3, …, 𝒙𝑚] (1)

In this case, regularly spaced sampling in time was con-
sidered (i.e., 𝑡𝑖+1 = 𝑡𝑖 + Δ𝑡). However, the algorithm can
also be extended to allow for both sparse spatial (Brunton
et al., 2016) and temporal (Tu et al., 2014) collection of data
along with irregularly spaced collection times (Dawson
et al., 2016; Hemati et al., 2017). In DMD, time snapshots
of high-dimensional system states are used directly to con-
struct a spatiotemporal decomposition. Specifically, DMD
aims to find the best-fit linear operator 𝑨 ∈ ℝ𝑛,𝑛 such that
𝑿′ = 𝑨𝑿 based on the least-squares minimization of the
Frobenius norm (Kutz et al., 2016; Rowley et al., 2009;
Schmid, 2010; Tu et al., 2014) of the error:

𝑨 = argmin
𝑨

‖𝑿′ − 𝑨𝑿‖𝐹 = 𝑿′𝑿† (2)
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4 SNAIKI and MIRFAKHAR

ALGORITHM 1 Pseudo-code for the DMD algorithm.

Input: Time-series data matrix containingm snapshots
Output: DMD modes 𝝓 ∈ ℂ𝑚×𝑟 , eigenvalues 𝚲 ∈ ℂ𝑟×𝑟 , and
reconstructed dynamics 𝒙𝑫𝑴𝑫(𝑡)

1. Snapshot matrices
Construct two data matrices 𝑿 and 𝑿′ by shifting the original
data matrix by one time step, where 𝑿′ contains data from the
next time step (Equation 1).
2. Singular value decomposition (SVD)
Perform SVD on matrix 𝑿: 𝑿 = 𝑼𝚺𝑽∗ where𝑼 ∈ ℂ𝑛×𝑛,
𝚺 ∈ ℂ𝑛×(𝑚−1), and 𝑽∗ ∈ ℂ(𝑚−1)×(𝑚−1) are the left singular
vectors, singular values, and conjugate transpose of the right
singular vectors, respectively. The * denotes the complex
conjugate transpose.
3. Truncated SVD
Truncate the SVD to retain the top 𝑟 singular values and
corresponding columns of𝑼𝑟 ∈ ℂ𝑛×𝑟 , 𝚺𝑟 ∈ ℂ𝑟×𝑟 and
𝑽∗

𝑟 ∈ ℂ𝑟×(𝑚−1)

4. Dynamics matrix approximation
Construct the matrix �̃� = 𝑼∗

𝑟 𝑿
′𝑽𝑟𝚺

−1
𝑟 with �̃� ∈ ℂ𝑟×𝑟

5. Eigen decomposition of �̃�
Perform the Eigen decomposition of �̃� to obtain the
eigenvectors𝑾 and eigenvalues 𝚲 with elements 𝜆𝑘 :
�̃�𝑾 = 𝑾𝚲

6. Computation of DMDModes
Compute a DMDmode matrix whose columns are the
eigenvectors 𝝓𝑘 as: 𝝓 = 𝑿′𝑽𝑟𝚺

−1
𝑟 𝑾

7. Reconstructed dynamics
Reconstruct the dynamics at any time 𝑡 using the DMDmodel:
𝒙𝑫𝑴𝑫(𝑡) =

∑𝑟

𝑗=1
𝑏𝑘(0)𝝓𝑘 exp(𝜔𝑘𝑡) = 𝝓 diag(exp(𝝎𝑡))𝒃 with

𝑏𝑘(0) is the initial amplitude of each mode, 𝒃 is a vector of the
coefficients 𝑏𝑘 given as 𝒃 = 𝜙†𝒙1, 𝜔𝑘 = ln(𝜆𝑘)∕Δ𝑡 and Δ𝑡 time
step between consecutive snapshots.

where ‖.‖𝐹 =Frobenius norm; and † is theMoore–Penrose
pseudoinverse. Hence, DMD fits a linear approximation A
by using a pseudoinverse operation without explicitly
computing A. The pseudocode of the DMD technique is
presented in Algorithm 1.
It should be noted that DMD approximation as detailed

inAlgorithm 1 introduces systematic bias in the eigenvalue
computation of noisy data (Dawson et al., 2016; Hemati
et al., 2017). To correct for this, a weighted approximation
of𝑨 is constructed and used in this study that incorporates
both forward (𝑿′ = 𝑨𝑓𝑿) and backward (𝑿 = 𝑨𝑏𝑿

′) time

evolution (Dawson et al., 2016) such that 𝑨 = (𝑨𝑓𝑨
−1
𝑏
)
1∕2
.

Despite its widespread success in various applications,
DMD often struggles to approximate intermittent and
transient phenomena (Kutz et al., 2016).

2.1 mrDMD

The mrDMD is an algorithm that addresses the inherent
limitation of standard DMD in handling data exhibiting

F IGURE 1 Schematic representation of the multiresolution
dynamic mode decomposition (mrDMD) procedure.

multiscale dynamics. It leverages a hierarchical temporal
sampling framework analogous to wavelet decomposi-
tion as illustrated in Figure 1. This framework decom-
poses the data into a nested sequence of subspaces, each
corresponding to a specific timescale. Within each sub-
space, mrDMD employs the DMD algorithm to extract
the dominant dynamical modes, effectively capturing
the characteristic evolution of the system at that par-
ticular timescale. Through this recursive decomposition
and analysis that continues until a desired or prescribed
decomposition level has been achieved, mrDMD facili-
tates the characterization of complex phenomena gov-
erned by processes unfolding across disparate temporal
scales.
mrDMD employs an iterative decomposition strategy

to capture multiscale dynamics. In the first iteration, it
analyzes the entire data sequence, represented by the
largest sampling window. The DMD algorithm is then
applied to extract the dominant low-frequency modes,
which capture the slow-evolving features of the system.
These modes are subsequently separated from the data,
leaving a residual containing the higher-frequency com-
ponents. Subsequent iterations progressively refine the
analysis by halving the sampling window size. Within
each window, DMD again identifies and extracts the slow
modes. This recursive process isolates dynamical behavior
across a range of timescales until a desired or prescribed
decomposition level has been achieved. The final resid-
ual signal incorporates the fastest dynamics, characterized
by a time resolution determined by the number of itera-
tions. The mrDMD solution expansion can be expressed
as

𝑥𝑚𝑟𝐷𝑀𝐷 (𝑡) =

𝐿∑
𝑙=1

𝐽∑
𝑗=1

𝑚𝐿∑
𝑘=1

𝑓𝑙,𝑗 (𝑡) 𝑏
(𝑙,𝑗)

𝑘
𝜙
(𝑙,𝑗)

𝑘
exp

(
𝜔
(𝑙,𝑗)

𝑘
𝑡
)
(3)

where 𝐿 is number of decomposition levels; 𝐽 is the num-
ber of time bins per level (𝐽 = 2(𝑙−1)); 𝑚𝐿 is the number
of modes extracted at each level. The indicator function
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SNAIKI and MIRFAKHAR 5

𝑓𝑙,𝑗(𝑡) is typically defined as

𝑓𝑙,𝑗 (𝑡) =

{
1, 𝑡 ∈

[
𝑡𝑙
𝑗
, 𝑡𝑙
𝑗+1

]
0, elsewhere

with 𝑗 = 1, 2, … , 2(𝑙−1)

(4)

where tlj,tlj+1 ∈ ℝ+ determine the interval of the 𝑗th time
bin at the 𝑙th decomposition level. This function is only
nonzero in the interval, or time bin, associated with the
value 𝑗. However, since the sampling bin has a hard cut-off,
it might introduce artificial high-frequency oscillations.
To address this, one could consider using wavelet func-
tions for the sifting operation. This would allow the time
function fl,j(t) to be represented by various wavelet bases,
such as Haar (Haar, 1910), Daubechies (Waqas et al., 2020),
and Mexican Hat (Lindeberg, 2015), among others. In this
study, a Haar-like windowing in time is employed due to
its simplicity and efficiency.

2.2 Optimal sensor placement

This study introduces an advanced framework for ana-
lyzing and predicting multiscale dynamical systems by
employing a combination of mrDMD and spatial sam-
pling while incorporating system constraints. Although
localized time-frequency analysis offers a powerful tool for
studying such systems, it presents a significant hurdle for
future state prediction. This challenge arises because the
dominant modes within a new time window are unknown
a priori. To overcome this limitation, the study incorpo-
rates additional information in the form of real-time state
observations or sensor measurements. By leveraging these
data, the problem of future state prediction can be refor-
mulated as the reconstruction of high-dimensional states
from the acquired observations. This essentially translates
to estimating the appropriate temporal coefficients within
the library of modes obtained through mrDMD. The dis-
cussion begins by examining the unconstrained case of the
pivoted QR decomposition technique. Subsequently, the
discussionwill focus on the constrainedQRdecomposition
technique.
Based on the mrDMD procedure, a library of dynamical

modes can be obtained which can be represented as

𝚽 =
[
𝜙
(1,1)

𝑘
𝜙
(2,1)

𝑘
𝜙
(2,2)

𝑘
𝜙
(3,1)

𝑘
… 𝜙

(3,4)

𝑘
… 𝜙

(𝑙,𝑗)

𝑘
…
]

(5)

For a given (𝑙, 𝑗), 𝜙(𝑙,𝑗)
𝑘

might include more than one
mode. Therefore, the state 𝒙(𝑡) can be approximated using
a linear combination of the columns of 𝚽 leading to
𝒙(𝑡) = 𝚽𝒂(𝑡) where 𝒂(𝑡) represents the time-dependent
coefficients. Predicting future states poses a challenge in

identifying the active components of 𝒂(𝑡) at a given time.
This difficulty stems from the fact that mrDMD modes
are localized in the time-frequency domain and do not
enforce globally periodic temporal behavior. The informa-
tion required for state estimation can often be obtained
from point observations of the underlying state vector.
These observations can be conveniently represented as a
vector, denoted by 𝒚 ∈ ℝ𝑝 (𝑝 ≪ 𝑛). A key assumption
in this approach is the existence of a linear relationship
between 𝒚 and the time-dependent coefficients which can
be expressed as

𝒚 = 𝑪𝒙 + 𝜼 = 𝑪𝚽𝒂 + 𝜼 (6)

where 𝑪 ∈ ℝ𝑝×𝑛 is the measurement matrix; and 𝜼 is
the additive white noise. The high-dimensional states can
be directly recovered from measurements using the max-
imum likelihood estimate of the basis coefficients, �̂� =

(𝑪𝚽𝑟)
†
𝒚:

�̂� = 𝚽𝑟(𝑪𝚽𝑟)
†
𝒚 (7)

where 𝚽𝑟 is the identified mrDMD modes whose
amplitudes exceed a given threshold 𝜀 such that
𝑟≔{𝑖 ∈ [1, … , 𝑟] | |𝑏𝑖|⟩𝜀}. It should be noted that the
strategic selection of sensor measurements allows for an
extremely small number of deployed sensors to be used.
The optimal solution to this problem involves placing
sensors at limited points in the domain to reconstruct
the pressure field over the entire domain accurately.
Therefore, the design of experiments aims to optimize the
sensor selection 𝑪 to optimize statistics of the estimation
error 𝒂 − �̂� by minimizing some scalar measure of the
“size” of the error covariance:

𝚺 = Var (𝒂 − �̂�) = 𝜎2
[
(𝑪𝚽𝑟)

𝑇
(𝑪𝚽𝑟)

]−1
(8)

The optimal design criterion for sensor placement is
expressed as (Candes & Wakin, 2008; Candès et al., 2006)

𝛾∗ = argmax
𝑪

log det
[
(𝑪𝚽𝑟)

𝑇
(𝑪𝚽𝑟)

]
(9)

The measurement matrix 𝑪 is further assumed to
encode point measurements with unit entries in a sparse
matrix such that:

𝑪 =
[
𝒆𝛾1 𝒆𝛾2 … 𝒆𝛾𝑝

]𝑇
(10)

where 𝛾 = {𝛾1, 𝛾2, … , 𝛾𝑝} ⊂ {1, 2, … , 𝑛} denotes the index
set of sensor locations with cardinality 𝑝; eγj is the canon-
ical basis vector with a unit entry in the component 𝑗
(where a sensor should be placed) and zeros elsewhere.
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6 SNAIKI and MIRFAKHAR

In this study, an efficient and greedy strategy for opti-
mizing sensor selection (Equation 9) is used, which is
based on the pivoted QR factorization technique (Drmač
& Gugercin, 2016; Manohar et al., 2018, 2022). The QR fac-
torization with column pivoting decomposes a matrix 𝑨 ∈

ℝ𝑚×𝑛 into a product of an orthogonal matrix 𝑸 (or a uni-
tary matrix in the case of complex matrices) and an upper
right triangular matrix 𝑹, such that 𝑨𝑪𝑻 = 𝑸𝑹, where 𝑪
a column permutation matrix. With the QR factorization
applied to𝚽𝑻

𝑟 , the following determinant can be simplified
as

|||det𝚽𝑇
𝑟 𝑪

𝑇||| = |det𝑸| |det 𝑹| = ∏
𝑖

|𝑹ii| (11)

This results in the following diagonal dominance struc-
ture in 𝑹:

|𝑹𝑖𝑖|2 ≥ 𝑘∑
𝑗=𝑖

|||𝑹𝑗𝑘
|||2, 1 ≤ 𝑖 ≤ 𝑘 ≤ 𝑟 (12)

where 𝑹𝑖𝑖 is the diagonal entries in the upper-triangular
matrix 𝑹. Using the results of Equation (11), the
log det[(𝑪𝚽𝑟)

𝑇
(𝑪𝚽𝑟)] can be simply expressed as

log det
[
(𝑪𝚽𝑟)

𝑇
(𝑪𝚽𝑟)

]
= log

(
𝑟∏

𝑖=1

𝑹2
ii

)
= log𝑹2

11

+ log𝑹2
22
+⋯+ log𝑹2

rr (13)

With this approach, 𝑝 point measurement indices (piv-
ots) are generated that best characterize the dominant
dynamical modes 𝚽𝑟. Although the minimal allowable
number of sensors𝑝 = 𝑟 can be considered, additional sen-
sors can be added for redundancy and robustness through
oversampling optimization (Peherstorfer et al., 2020). The
pseudocode of the QR pivoting without constraints is
presented in Algorithm 2.
To accommodate the imposed system constraints, the

optimal design criterion for sensor placement is revised as
follows:

𝛾∗ = argmax
𝛾,|𝛾|=𝑝 log det

[
(𝑪𝚽𝑟)

𝑇
(𝑪𝚽𝑟)

]
− 𝜆Rg (𝛾) (14)

where 𝑅𝑔(.) is the regularization function; and 𝜆 is the
tuning parameter that controls the strength of the reg-
ularization. The pivoting procedure yields the following
decomposition at the kth iteration:

𝚽T
𝑟 𝑷 = 𝑸𝑹 = 𝑸

⎡⎢⎢⎣
𝑹
(𝑘)
11

𝑹
(𝑘)
12

𝟎 𝑹
(𝑘)
22

⎤⎥⎥⎦ (15)

ALGORITHM 2 Pseudo-algorithm for the QR pivoting
without cost constraints

Input: Dominant mrDMDmodes 𝚽T
𝑟

Output: Sensor indices (𝜸)
1. Procedure QR Pivoting (𝚽T

𝑟 , 𝑝)
2. 𝛾 ← []

3. for 𝑘 = 1,… , 𝑝 do
4. 𝛾𝑘 = argmax

𝑗∉𝜸
‖𝑎𝑗‖2

5. Find Householder �̃� such that �̃�.

⎡⎢⎢⎢⎢⎢⎣

𝑎𝑘𝑘
.

.

.

𝑎𝑛𝑘

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣

𝑹𝑛𝑧

0

.

.

0

⎤⎥⎥⎥⎥⎥⎦
where 𝑹𝑛𝑧 represent nonzero diagonal entries in 𝑹.

6. 𝚽T
𝑟 ← diag(𝑰𝑘−1, �̃�).𝚽

T
𝑟

7. 𝜸 ← [𝜸, 𝛾𝑘]

8. end for
9. return 𝜸

10. end procedure

where 𝑹
(𝑘)
11

∈ ℝ𝑘×𝑘 is an upper triangular matrix, 𝑹(𝑘)
12

∈

ℝ𝑘×(𝑛−𝑘), 𝑹(𝑘)
22

∈ ℝ(𝑚−𝑘)×(𝑛−𝑘), and 𝑷 ∈ ℝ𝑛×𝑛 is a permu-
tation matrix that encodes information about the first
k-selected sensors. As established in the unconstrainedQR
decompositionwith pivoting, the (k+1)th iteration selects a
column from the submatrix𝑹(𝑘)

22
with themaximumnorm.

This column is then swapped with the (k+1)th column
and the permutation indices are updated accordingly (𝑙 =
argmax
𝑖=1,….𝑛−𝑘

‖𝑟(𝑘)
22(𝑖)

‖
2
). To incorporate system constraints and

the regularization term (introduced in Equation 14) into
the QR decomposition with pivoting, the column selec-
tion process is modified (Karnik et al., 2024). Unlike the
unconstrained case where the column with the maximum
two-norm from 𝑹

(𝑘)
22

is chosen, the constrained scenario
restricts the selection to a subset of allowable indices that
adhere to the imposed limitations. This ensures the cho-
sen column satisfies the constraints while still prioritizing
columns with large two-norms. Furthermore, by restrict-
ing the selection process in the final 𝑟 − 𝑠 steps of pivoting
(with 𝑠 representing the indices allowed in the constrained
region or total predetermined sensors), this method keeps
the largest contributing terms in the objective function
expansion from being significantly affected. Therefore,
Equation (13) for the constrained case becomes:

log det
[
(𝑪𝚽𝑟)

𝑇
(𝑪𝚽𝑟)

]
− 𝜆Rg (𝛾) = log

(
𝑟∏

𝑖=1

𝑹2
ii

)
−𝜆Rg (𝛾) = log𝑹2

11
+ log𝑹2

22
+⋯+ log𝑹2

(𝑟−𝑠)(𝑟−𝑠)

+ ⋯ + log𝑹2
rr − 𝜆Rg (𝛾) (16)

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13304 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [08/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SNAIKI and MIRFAKHAR 7

The introduction of constraints within the QR pivot-
ing procedure depends on the specific type of constraint
being enforced (Karnik et al., 2024). The core principle is
to prioritizemaximizing the leading diagonal entries of the
𝑹 matrix during initial iterations. This ensures the estab-
lishment of a strong diagonal dominance property, crucial
for numerical stability and convergence. Domain-specific
constraints are then incorporated in the later stages (final
𝑟 − 𝑠 steps) to optimize the trailing sub-diagonal entries
(𝑹𝑖𝑖). By restricting pivot selection to allowable locations
that satisfy the constraints, this approach ensures adher-
ence to domain limitationswithout significantly impacting
the diagonal dominance property established earlier. This
study explores two primary constraint scenarios within the
QR pivoting framework.
The first scenario is “region-constrained” where either a

maximum of 𝑠 sensors or exactly 𝑠 sensors are required in
a designated region or set of regions. The remaining 𝑟 − 𝑠

sensors must be placed outside the constrained region. If
the maximum of 𝑠 sensors is requested, the number of
sensors in the constrained region should not exceed 𝑠. In
this case, a pivot column is selected from the set of all
columns until 𝑠 pivots are in the constrained region. Subse-
quent pivots are chosen from the remaining unconstrained
columns, maximizing their two-norms as well. If exactly
𝑠 sensors are required within the constrained region, the
algorithm follows the same procedure as the maximum
placement scenario as long as the current number of sen-
sors in the region is already 𝑠 ormore. However, if there are
fewer than 𝑠 sensors in the constrained region, the algo-
rithm forces the placement of the remaining sensors in the
constrained region at the end of the pivoting process. The
second scenario considered is the “predetermined case,”
where certain sensor locations are already specified, and
the goal is to optimize the locations of the remaining
sensors. Here, the algorithm prioritizes selecting pivots
(sensor locations) from all columns in 𝑹

(𝑘)
22

during the
first 𝑟 − 𝑠 iterations. Subsequently, during the final 𝑠 itera-
tions, the algorithmenforces the selection of the remaining
user-specified sensor locations.
Incorporating a regularization term (𝑅𝑔) into the cost

function for QR decomposition with pivoting enhances
sensor selection by mitigating overfitting and noise sen-
sitivity. It also prevents the selection of highly correlated
sensors that capture redundant information from specific
locations. By penalizing configurations where chosen sen-
sors have similar measurements (e.g., 𝑅𝑔 =

∑
𝑖≠𝑗

𝜌𝛾𝑖 ,𝛾𝑗 ),
the regularization term promotes diversity in sensor selec-
tion, ensuring that sensors capture information from
different aspects of the system. The regularization term
can also be designed to penalize configurations where
sensors are clustered together or to ensure sensors are

placed at a minimum distance from each other (e.g.,
𝑅𝑔 =

∑
𝑖≠𝑗

max(0, 𝑑min − 𝑑𝛾𝑖,𝛾𝑗 )) to ensure adequate cov-
erage. Additionally, the regularization function can be
tailored to consider environmental factors such as tem-
perature, humidity, and terrain, which may affect sensor
performance. This can be modeled by weighting sensor
placement based on these factors, where the weighting
factor can take the form:

∑
𝑖
𝜔𝑖𝑓𝑖 where 𝜔𝑖 is the weight

and 𝑓𝑖 is the environmental factor at sensor location 𝑖. By
minimizing the total cost function, the QR decomposition
with pivoting not only aims to minimize reconstruction
error but also takes into account the regularization term,
ensuring a more robust and diverse sensor placement.

3 CASE STUDY

This section investigates the application of mrDMD to
a case study. Subsequently, the potential for combining
mrDMD with pivoted QR factorization while considering
the system constraints for optimal pressure tap placement
is explored. To augment the dimensionality of the avail-
able data for analysis, two data augmentation approaches,
namely, time-delay embedding and interpolation, are
examined.

3.1 Wind tunnel experimental data

The wind pressure data for the selected high-rise building
geometry were obtained from the Tokyo Polytechnic Uni-
versity aerodynamic database. The data were derived from
tests conducted in an open-circuit wind tunnel with a test
section measuring 1.2 × 1.0 m. A scaled model (1/400) of
the high-rise building with dimensions 0.5 × 0.1 × 0.1 m
(height × breadth × depth), was exposed to a simulated
approach flow profile defined by a power-law wind pro-
file with an exponent of 1/4. The mean wind speed at
the top of the scaled building was fixed at 11 m/s with a
turbulence intensity corresponding to category III (subur-
ban terrain). For pressuremeasurements, the scaledmodel
was equipped with a total of 500 pressure taps, evenly dis-
tributed across all surfaces, resulting in a sensor density of
125 taps per surface, as illustrated in Figure 2. These taps
were arranged in a grid pattern of 5 × 25, corresponding
to the horizontal and vertical axes. The pressure data were
collected at a sampling frequency of 1000 Hz, with a total
recording duration of 32.768 s. Consistent with prior inves-
tigations that employed convergence analysis to identify
an optimal number of snapshots for subsequent analysis
(Luo & Kareem, 2021; Zhou et al., 2021), the present study
utilized the initial 2000 snapshots from the dataset. This
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8 SNAIKI and MIRFAKHAR

F IGURE 2 Schematic representation of the scaled building
model, highlighting the distribution of pressure taps for wind
tunnel testing.

selection strategy aligns with the established practice of
identifying a truncation point that balances the capture of
dominant dynamic modes with computational efficiency.

3.2 mrDMDwith time-delay embedding

3.2.1 Time delay-embedding

Due to the significantly lower spatial resolution, compared
to temporal resolution in the pressure field data, time-
delay embedding (Brunton et al., 2017; Takens, 1981; Zhou
et al., 2021) is employed in this section. This techniquemit-
igates data distortion caused by noise and augments the
spatial details within the input matrix. The accuracy of
DMD results is highly sensitive to the selected embedding
dimensions. In this case study, the spatial dimensionality
is directly related to the number of pressure measure-
ment points. Specifically, a Hankel matrix is constructed
by arranging the elements of time-delayed coordinates
(Frame & Towne, 2023) in a stacked manner such that:

𝑿aug = [𝑿1𝑿2⋯𝑿𝑚−𝑑+1]

=

⎡⎢⎢⎢⎢⎣
𝑥1 𝑥2 ⋯ 𝑥𝑚−𝑑+1

𝑥2 𝑥3 ⋱ 𝑥𝑚−𝑑+2

⋮ ⋮ ⋮

𝑥𝑑 𝑥𝑑+1 ⋯ 𝑥𝑚

⎤⎥⎥⎥⎥⎦
(17)

where 𝑑 is the embedding number. Consequently, a pair
of matrixes 𝑿 = [𝑿1𝑿2…𝑿𝑚−𝑑] and 𝑿′ = [𝑿2…𝑿𝑚−𝑑+1]

can be defined, and the DMD technique can be applied.
Figure 3 compares the distribution of DMD eigenvalues
within the real-imaginary plane for different embed-
ding dimensions. The eigenvalues located outside the
unit circle (i.e., the complex modulus is greater than 1)

F IGURE 3 Distribution of DMD eigenvalues on the
real-imaginary circle with different embedding numbers.

represent unstable states. Conversely, eigenvalues posi-
tioned on or near the circle’s perimeter signify stable
or neutrally stable modes. Points located inside the cir-
cle correspond to decaying modes that will eventually
vanish.
As can be concluded from Figure 3, as 𝑑 increases,

the number of modal points within the unit circle also
grows. This can be attributed to the fact that a larger
embedding dimension essentially expands the state space
of the reconstructed system, allowing for the identifi-
cation of a wider range of dynamic modes. When 𝑑 =

1, the technique effectively reduces to standard DMD.
This scenario (i.e., 𝑑 = 1) results in a significant number
of modal points falling away from the unit circle. This
observation verifies the limitations of standard DMD in
accurately capturing the dynamics of high-dimensional,
nonlinear systems, particularly when dealing with noisy
data. On the other hand, when the embedding dimen-
sion reaches 𝑑 = 30, Figure 3 demonstrates a substantial
shift, with nearly all modal points located either on or
very close to the unit circle. This signifies that a suf-
ficient level of information has been captured to accu-
rately represent the system dynamics. Further increases
in the embedding dimension (𝑑 > 30) exhibit minimal
impact on the distribution of modal eigenvalues, suggest-
ing that a value of 𝑑 = 30 provides an optimal balance
between capturing essential dynamics and computational
efficiency.
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SNAIKI and MIRFAKHAR 9

3.2.2 mrDMD application

In this section, the mrDMD technique is employed to
analyze the pressure signals acquired from the selected
building geometry. The decomposition process involves
a hierarchical approach with five levels. At each level,
the slow spatiotemporal modes are extracted and only
the dominant modes with the highest amplitudes are
retained. Figure 4a visualizes the resulting modal ampli-
tude maps for the windward and leeward faces within
the time-frequency domain (a similar decomposition was
performed for the right and left sides, but the results are
omitted for brevity). Each bin within the figures is colored
according to the average modal amplitude of the corre-
sponding dynamics. It should be noted that Figure 4a
employs normalized frequency, defined as 𝑓𝑛 = 𝑓𝐻∕𝑉,
where 𝑓 is the frequency, 𝐻 is the building height, and
𝑉 is the incoming wind speed. The selection of decompo-
sition levels in mrDMD depends on the data’s frequency
content. Cut-off frequency, which separates information
captured at different levels, is determined by two factors:
the analyzed data’s timespan within each level (inherent
to the decomposition process) and an adjustable param-
eter called max_𝑐𝑦𝑐𝑙𝑒. This parameter sets the overall
frequency range for mrDMD analysis. In this study, the
data’s power spectral density (also shown in Figure 4b for
two locations) was examined to identify its dominant fre-
quencies. Based on this analysis, a value of 5 formax_𝑐𝑦𝑐𝑙𝑒
was chosen, ensuring that the decomposition captures
the relevant frequency content of the pressure data (𝑓𝑛 =

1.76).
Figure 4a clearly reveals prominent modal signatures at

specific decomposition levels. Lower levels capture slow-
moving spatiotemporal dynamics, while higher levels (e.g.,
fifth level) reveal the fastest modes. Notably, the first
decomposition levels effectively isolate the average pres-
sure field over the entire 2-s timeperiod. This demonstrates
mrDMD’s capability in accurately extracting the system’s
intrinsic modes. mrDMD offers a significant advantage
by simultaneously visualizing dominant modes within a
specific time-frequency range. This allows to focus on
intervals with higher amplitudes that cannot be done
with standard DMDunless appropriate sampling windows
are pre-selected. Additionally, even with carefully selected
windows in standard DMD, the previously extracted slow
modes could contaminate the data at the level of inter-
est. Therefore, mrDMD provides a principled algorithmic
approach that facilitates data-driven discovery in complex
systems. These identified modes directly contribute to the
feature selection process, informing the formation of the
index 𝑟 (𝑟≔{𝑖 ∈ [1, … , 𝑟] | |𝑏𝑖|⟩𝜀}) used for sensor training.
If higher frequency components are of interest, the number

of decomposition levels can be simply increased. A more
detailed analysis of the extracted modes will be presented
in the subsequent sections.

3.2.3 Pressure field reconstruction

To assess the reconstruction capability of mrDMD, the
pressure field across all four building surfaces was recon-
structed using the extracted high-energy modes obtained
up to the fifth decomposition level. The root mean square
error (RMSE) was employed to quantify the discrepancy
between the reconstructed pressure coefficients and the
observed data, defined over all time steps as follows:

RMSE =

√√√√ 1

𝑚𝑛

𝑚∑
𝑗=1

𝑛∑
𝑖=1

(
𝑃
𝑝𝑟𝑒𝑑

𝑖,𝑗
− 𝑃𝑜𝑏𝑠

𝑖,𝑗

)2
(18)

where 𝑃
𝑝𝑟𝑒𝑑

𝑖,𝑗
is the predicted pressure coefficient; and

𝑃𝑜𝑏𝑠
𝑖,𝑗

is the observed pressure coefficient. The mrDMD
reconstruction achieved RMSE of 0.026, 0.038, 0.073, and
0.072 for the windward, leeward, right side, and left side,
respectively; the corresponding mean percentage errors
are 15.6%, 12%, 8.1% and 8%, respectively. The results
demonstrate remarkably small RMSE values for the pres-
sure field reconstructed using the five decomposition
levels. This signifies the robustness of mrDMD’s recon-
struction capabilities, allowing for the reconstruction of
any pressure field snapshot at any given time instant.
The performance of the standard DMD procedure, on the
other hand, was suboptimal, yielding higher RMSE val-
ues (e.g., 0.31 for the windward case). Figure 4c presents
a comparison between the reconstruction and prediction
results obtained by mrDMD with the actual point-wise
pressure fluctuations measured on the windward face at
three distinct time points (𝑡 = 600Δ𝑡, 𝑡 = 1000Δ𝑡, and 𝑡 =

1600Δ𝑡 with Δ𝑡 = 0.001 s). Visual inspection of the results
reveals a high degree of agreement between the wind pres-
sure time series reconstructed by the mrDMD modes and
the wind tunnel data. Furthermore, the corresponding
RMSE values for these time instances were 0.030, 0.021,
and 0.027, further supporting the accuracy of the mrDMD
reconstruction.
Figure 4d illustrates the reconstruction of the spatial

pressure distribution across the leeward face, right side,
and left side of the building. Similar to the windward face,
good agreementwas achieved between themrDMD results
and the wind tunnel data. The corresponding RMSE val-
ues for the leeward face, right side, and left side were
0.018, 0.054, and 0.026, respectively. These results demon-
strate the generalizability of mrDMD’s reconstruction

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13304 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [08/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



10 SNAIKI and MIRFAKHAR

F IGURE 4 (a) mrDMD decomposition of the pressure fields for the windward (left) and leeward (right) surfaces using the
time-embedding approach; (b) power spectral density of two randomly selected pressure points; (c) time-series reconstruction results of the
windward face case at three-time instants using five decomposition levels with the time-embedding approach; (d) reconstruction of the
pressure field across the leeward face, right side, and left side of the test object at t = 1000Δt with the time-embedding approach; and (e)
mrDMD decomposition of the pressure fields for the windward (left) and leeward (right) surfaces using the interpolation approach.

 14678667, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/m

ice.13304 by E
cole D

e T
echnologie Superieur, W

iley O
nline L

ibrary on [08/08/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



SNAIKI and MIRFAKHAR 11

capabilities across various building surfaces. It is worth
noting that the slightly higher RMSE values observed
for the non-windward faces (leeward, right side, and left
sides), compared to the windward face likely stem from
two contributing factors. First, the flow patterns on these
surfaces tend to be more complex than those on the
windward face, potentially leading to higher discrepan-
cies between the reconstructed and actual pressure fields.
Second, the choice of using only five decomposition lev-
els limited the captured normalized frequency range to up
to 1.76 (as indicated in Figure 4a). High-frequency wind
pressure fluctuations, if present, could contain significant
modal information. Including these higher frequencies
by increasing the decomposition levels might improve
the reconstruction accuracy and lead to a closer match
between the simulated and wind tunnel data. However,
given the current results already demonstrate a good
capability in reconstructing the pressure patterns, further
refinement through additional decomposition levels may
not be necessary for the present study.

3.3 mrDMDwith interpolation

3.3.1 mrDMD application

This section revisits the application of mrDMD to the pres-
sure signals. However, instead of utilizing the time-delay
embedding technique to augment the data matrix, a sim-
pler linear interpolation approach will be employed for
augmentation. While more advanced interpolation meth-
ods like kriging (Van Beers & Kleijnen, 2004) exist, this
study focuses on linear interpolation for simplicity. The
mrDMD algorithm remains applicable to this alternative
data augmentation strategy. The pressure sensor density is
significantly increased, going from a grid of five taps by
25 taps on each facade (totaling 125 sensors) to a denser
grid of 25 taps by 100 taps, resulting in 2500 data points.
Figure 4e presents the resultingmodal amplitudemaps for
thewindward and leeward faceswithin the time-frequency
domain.
While a direct comparison between the two mrDMD

approaches (time-delay embedding vs. interpolation) is
challenging due to themodification of the signal in the first
approach, some general observations can be made regard-
ing the modal signatures and features. Both approaches
exhibit similar characteristics in certain aspects. Just like
with time-delay embedding, the first decomposition levels
obtained using interpolation effectively capture the aver-
age pressure field over the entire 2-s duration.Additionally,
high-energy content is evident in the fifth level for both
windward and leeward faces. For instance, for the leeward
face, this high-energy region is particularly noticeable

between t = 1.5 s and t = 1.625 s. The mrDMD reconstruc-
tion achievedRMSEof 0.015, 0.028, 0.045, and 0.049 for the
windward, leeward, right side, and left side, respectively,
and the corresponding mean percentage errors are 4.2%,
3.7%, 4.4%, and 4.6%, respectively. Figure 5a presents the
reconstructed pressure distribution at a specific instant,
t = 1000 Δ𝑡. The RMSE between wind tunnel measure-
ments and simulations for the windward face, leeward
face, right side, and left side at t= 1000Δ𝑡were 0.017, 0.018,
0.056, and 0.023, respectively. These low values indicate
good agreement between the two methods.

3.3.2 Analysis of DMDmodes

In this study, the mrDMD capabilities in feature extrac-
tion for the pressure field will be prioritized along with its
combination with an advanced sensor placement method-
ology rather than conducting a comprehensive analysis
of the pressure field as seen in previous studies (e.g.,
Carassale, 2012; Luo & Kareem, 2021; Zhou et al., 2021).
In general, it is acknowledged that the dominant factor
influencing fluctuating aerodynamic loads on the build-
ing’s windward face is the turbulence characteristics of the
approaching flow. Furthermore, the aerodynamic loads
experienced on the side and leeward faces exhibit a strong
correlation with the dynamics of the wake region, partic-
ularly vortex shedding, which itself is influenced by the
upstream flow turbulence. Extracting the intrinsic features
of pressure distributions, particularly the high-frequency
components associated with turbulence, presents a sig-
nificant challenge for conventional DMD. This limitation
arises from the inherent analysis approach of standard
DMD, which operates by processing the entire pressure
signal. This holistic analysis can lead to spectral leakage,
where slower, dominant modes contaminate the faster
modes containing the crucial turbulent signatures. Con-
sequently, standard DMDs struggle to effectively isolate
and capture the essential fast dynamicswithin the pressure
field. In contrast, mrDMDovercomes this challenge by uti-
lizing a sophisticated, hierarchical decomposition similar
to wavelet analysis. This approach helps mrDMD sidestep
the limitations of clustering methods, which can struggle
with potentially contaminated modes from processing the
entire signal. Consequently, mrDMD facilitates the isola-
tion and analysis of importantmodes at various levels. This
decomposition reveals a clear structure within the dynam-
ics: Low-frequency, high-energy modes concentrated in
the first levels (often termed “macroscale” modes) capture
large-scale features. Conversely, high-frequency modes
residing in the upper levels (often called “microscale”
modes) represent small-scale turbulent eddies. In between
these extremes, “mesoscale” modes can potentially be
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12 SNAIKI and MIRFAKHAR

F IGURE 5 (a) Reconstruction of the pressure field across the windward face, leeward face, right side, and left side of the test object at
t = 1000Δt; (b) visualization of the dominant modes identified using mrDMD at each decomposition level for the pressure distribution on the
leeward face; (c) pressure sensor locations identified on the windward side of the building under several imposed constraints; and (d)
reconstruction of the pressure field across the windward face at t = 1000Δt under the selected constrained scenarios.

identified. The hierarchical decomposition of mrDMD
unveils an energy cascade within the pressure fluctu-
ations, mirroring the behavior observed in turbulence.
This cascade resembles the energy transfer mechanisms
in turbulence: energy injection, neutrally steady transfer,

and eventual dissipation. Additionally, the spatial patterns
observed in the pressure field exhibit a similarity to the dis-
tribution of eddy sizes (length scales) within the incoming
turbulent flow. Figure 5b showcases some of the dominant
modes extracted at different decomposition levels. These
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SNAIKI and MIRFAKHAR 13

modes visually depict the pressure fluctuations mimicking
the turbulence cascade, with stages representing energy
injection, transfer, and dissipation. The first decomposi-
tion level extracts large, low-frequency eddies with high
energy. As the level increases, smaller, higher-frequency
eddies become evident. This pressure pattern aligns with
the distribution of eddy sizes (length scales) in the incom-
ing turbulent flow. Notably, the spatial coherence within
the extracted DMDmodes progressively weakens from low
levels (macroscale) to high levels (microscale). Including
higher decomposition levels (beyond 1.76) would reveal
even more distinct microscale eddies. Macroscale DMD
effectively captures the global footprint of aerodynamic
pressure, reflecting the overall distribution of fluctuat-
ing pressures acting on the model. Consequently, these
macroscale modes can be directly linked to the energy
injected by the incoming flow, representing its spatiotem-
poral characteristics.Microscalemodes, on the other hand,
represent the high-frequency, small-scale eddies. These
eddies arise from instabilities due to local interactions
between different fluid motions. Furthermore, the ran-
dom distribution of peak values in most microscale DMD
modes aligns with the inherent randomness and small
size of these eddies. This randomness is further accen-
tuated by the exponential decay observed in the mode
amplitudes. This decay signifies the ultimate dissipation
of kinetic energy carried by the small-scale turbulent
motions.

3.4 Optimal sensor placement

This section employs an advanced framework leverag-
ing the mrDMD approach and pivoted QR factorization
with constraints (detailed in Section 2.3) for the optimal
placement of pressure taps in multiscale dynamical sys-
tems (Manohar et al., 2019). With this approach, 𝑝 point
measurement indices (pivots) are generated that best char-
acterize the dominant dynamical modes 𝚽𝑟. It should be
noted that this section will solely focus on the results
obtained from the mrDMD approach applied to the inter-
polated wind pressure field. Notably, a similar approach
can be extended to the time-embedding method. In addi-
tion, only the results for the windward case will provided
as a similar approach can be applied to the other building
faces (the results are omitted for brevity).
With a decomposition level (L) of 5, a total of 31 sen-

sors were selected on the windward face. This number
balances capturing the dominant mrDMD modes at this
level with the overall decomposition complexity. Figure 5c
illustrates the sensor locations for the unconstrained case.
The corresponding RMSE between the reconstructed and
observed pressure data at 𝑡 = 1000Δ𝑡 is 0.079. In addition,

the proposed sensor placement strategy can handle system
constraints. Three scenarios are explored:
1. First constraint (“1st constraint”): No sensors in

designated top and bottom regions (shaded in Figure 5c).
2. Second constraint (“2nd constraint”): Two sensors are

required in designated regions (one per region), and the
remaining 27 sensors are placed outside.
3. Third constraint (“3rd constraint”): Two predeter-

mined sensors at specific locations (Figure 5c) are selected
and the remaining sensor locations are optimized.
For each scenario, a regularization term is

added to the QR decomposition cost function
(𝑅𝑔 =

∑
𝑖≠𝑗

max(0, 𝑑min − 𝑑𝛾𝑖,𝛾𝑗 )). This term enforces
a minimum distance between sensors (𝑑min = 0.02 m)
and penalizes configurations where sensors are too close.
As discussed earlier (Section 2.3), this function can be
tailored for various application needs.
The proposed algorithm demonstrates successful

enforcement of the imposed constraints across all sce-
narios. This is reflected in the RMSE values for the
reconstructed pressures at 𝑡 = 1000Δ𝑡 (Figure 5d). These
values are 0.107, 0.087, and 0.106 for the 1st, 2nd, and
3rd constraints, respectively. The sensor layout changes
between configurations but preserves key locations
(especially outside constrained regions), indicating their
importance for capturing dominant features. Notably, the
unconstrained and 3rd constrained layouts are very simi-
lar, with only two sensors replaced by the user-specified
ones in the latter. It should be noted that reconstruction
quality could be improved with more mrDMD modes.
The final pressure sensor density is significantly increased
from a 5 × 25 grid per facade (125 sensors) to a denser
25 × 100 grid (2500 sensors), comparable to numerical
simulations. This density increase explains the perfor-
mance difference, compared to using fewer sensors.
While not shown here, the optimal sensor layout varies
by building face due to the need for capturing different
airflow patterns. More sensors are placed at corners and
edges due to their increased aerodynamic complexity.
This sensor placement strategy leverages the QR algo-

rithm to strategically position sensors that capture the
essence of complex, multiscale phenomena by focusing on
their dominant features. It further incorporates mrDMD
to account for the varying temporal/frequency charac-
teristics of the signal. By considering these multiscale
aspects, this method significantly outperforms random
sensor placement with the same number of sensors.

4 DISCUSSION

This study presents an advanced framework for optimal
sensor placement on building facades for wind pressure
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14 SNAIKI and MIRFAKHAR

analysis and prediction. The framework leverages the
strengths of two key components:

∙ mrDMDanalysis: This technique extracts themultiscale
features of wind pressure data, capturing both dominant
trends and higher-frequency variations.

∙ Constrained QR decomposition: This algorithm guides
sensor selection while considering real-world con-
straints on sensor placement. It incorporates a regular-
ization term to penalize undesired sensor configurations
and utilizes the leading diagonal entries of the R matrix
to prioritize informative sensor locations.

The mrDMD technique has been shown to outperform
other established methods such as DMD and POD (e.g.,
Jolliffe & Cadima, 2016). For instance, considering an
unconstrained scenario with full sensor access, the RMSE
for the pressure field reconstruction on the windward side
was significantly lower usingmrDMD (0.015), compared to
the POD technique (0.911).
The core analysis of this framework exhibits shape

independence. As demonstrated in Equation (1), data are
reorganized into a vector, making it independent of the
specific building geometry. This allows for the extension
of the method to various building shapes while maintain-
ing the effectiveness of mrDMD in identifying relevant
modes and the modified QR technique in finding opti-
mal sensor locations. However, highly intricate geometries
with complex details might require further investigation to
ensure accurate sensor placement in such scenarios. The
framework’s adaptability extends beyond building shapes.
The core methodology is designed to handle the complex,
multi-scale nature of wind pressure observed in real-world
scenarios. This includes the ability to accommodate non-
steady-state wind conditions. By analyzing time-varying
data with the mrDMD algorithm, the framework can cap-
ture transient wind pressure dynamics through pressure
data collected over multiple time steps. Adjusting decom-
position levels inmrDMDoffers a balance between captur-
ing high-frequencywind gusts and low-frequency pressure
variations. Future validation with real-world building
models under varying wind conditions will further solidify
the framework’s effectiveness in these practical situations.
As noted in Section 3, the choice of 2000 data snapshots

was based on established convergence studies (e.g., Luo
& Kareem, 2021) that determine the minimum amount
of data needed for accurate mrDMD decomposition. This
approach ensures sufficient information for capturing
the underlying aerodynamic characteristics, including the
dominant mean mode, quasi-periodic modes related to
vortex shedding, and some transient effects, while avoiding
unnecessary computational burden associated with using
excessively large datasets. The wind tunnel data employed

in this study captured these key features within the 2000
snapshots. However, the remaining data hold potential
for future investigations that might explore higher-order
transient dynamics.
It should be noted that this study employed an initial

grid of sensors to facilitate the identification of mrDMD
modes, a common approach for low-cost procedures like
wind tunnel tests or numerical simulations. While this ini-
tial grid is not necessarily optimal, it provides a foundation
for subsequent topology optimization using the extracted
modes. However, the ultimate goal lies in the application
for real cases where installing an initial grid on actual
buildings is impractical and computationally expensive.
This framework addresses this challenge by directly deliv-
ering the final, optimized sensor locations for installation
on the building facade.
Furthermore, while the QR decomposition technique

is generally efficient, exploring novel methods like con-
vex relaxation (e.g., Błachowski et al., 2020; Joshi & Boyd,
2009) could be an interesting avenue for further improve-
ment. This could potentially speed up the sensor selection
process, making the framework even more attractive for
real scenarios with massive datasets.

5 CONCLUSION

This study successfully demonstrated the effectiveness of
an advanced framework for wind pressure analysis and
reconstruction on high-rise buildings. This framework
combines the strengths of mrDMD and a constrained sen-
sor placement strategy. mrDMD effectively addresses the
limitations of standard DMD by characterizing the multi-
scale and transient dynamics of the wind pressure field.
Notably, mrDMD’s hierarchical decomposition revealed
an energy cascade in pressure fluctuations reminiscent
of the turbulence signature. This cascade reflects the
transfer of energy within the flow (injection, transfer,
dissipation). The decomposition process clearly distin-
guished low-frequency, energetic modes capturing large-
scale features (macroscale) from high-frequency modes
(microscale) representing small-scale eddies. Interestingly,
the spatial patterns of the pressure field displayed a strong
resemblance to the eddy size distribution observed in the
incoming turbulent flow. The proposed framework facili-
tates the identification of an optimal sensor configuration
for accurate pressure field reconstruction. With a decom-
position level of 5, a total of 31 sensors were selected
on the windward face, balancing the capture of domi-
nant mrDMD modes with overall complexity. The corre-
sponding RMSE between the reconstructed and observed
pressure data at t = 1000∆t was 0.079 for the uncon-
strained case. The framework effectively handles diverse
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SNAIKI and MIRFAKHAR 15

system constraints through a novel sensor placement
strategy as demonstrated by achieving good reconstruc-
tion accuracy (RMSE values between 0.087 and 0.107)
even when limited sensor placement options are avail-
able. In all cases, a regularization term was incorporated
into the QR decomposition cost function to enforce a
minimum distance between sensors and penalize overly
dense configurations, ensuring practical implementation.
This function can also be tailored to various application
needs. Overall, this approach paves the way for a more
efficient and cost-effective approach to structural health
monitoring and wind load analysis in high-rise buildings,
ultimately improving the safety and resilience of these
structures.
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