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 Aerial robotics encompasses intricate kinematics and dynamics that govern 

the flight of quad-rotor systems. Among the various methods employed for 

flight control using microcontrollers like the ESP32 developed by 

ESPRESSIF; the proportional integral derivative (PID) controller stands out 

as a widely adopted approach. The ESP32 microcontroller offers a superior 

interface, delivering enhanced performance and response time, particularly in 

dynamic environments. This article delves into the implementation and 

viability of the ESP32 platform for communication with MATLAB/Simulink, 

as well as real-time data acquisition to control the attitude of quadcopter withe 

chassis F450. The PID controller was designed to specifically work with the 

ESP32 platform and rigorously tested on an actual quadcopter during flight 

operations. lastly, a comprehensive analysis of the data gained and empirical 

results from the physical model demonstrates that the proposed framework is 

effective. 
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1. INTRODUCTION 

The large-scale potential applications of drones  (unmanned aerial vehicle) in the military and civilian 

sphere have generated increased interest in them. Amongst all the drones, quad-rotors have emerged as the 

most popular choice, owing to their rotor configuration that greatly simplifies their analysis and control. The 

obligation to employ these vehicles in potentially hazardous conditions while ensuring their reliability has 

revived interest in control technology. 

However, quadcopters face the challenge of optimizing and fine-tuning the stability of attitude, 

altitude, and position through control commands or system design [1], [2]. For control, there are several 

methods and algorithms available for optimization, such as genetic algorithms, neural networks, control using 

fuzzy logic [3]-[8], and backstepping, sliding-mode control [9], [10]. Among the implemented controllers on 

microcontrollers like Arduino, STM32, or embedded microprocessor development boards such as Raspberry 

Pi [11], the proportional integral derivative (PID) controller [12]-[15] is the most commonly used. This is due 

to its practicality and ease of implementation based solely on the system tracking error [16], especially for 

quad-rotors given their configuration and control dynamics. 

https://creativecommons.org/licenses/by-sa/4.0/
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This article presents a demonstration of data acquisition and processing using the ESP32 

microcontroller implemented on a quad-rotor drone. We also present the experimental outcomes of the PID 

regulator executed in MATLAB Simulink. The communication between MATLAB Simulink and the 

quadrotor's F450 platform is established through a UART port configured to interface with XBee (a series of 

communication modules). The quadrotor drone (6-DOF) incorporates MPU6050 sensors (accelerometer, 

gyroscope) to determine attitude stabilization during control [17]. The contribution of this project lies in 

establishing real-time communication between MATLAB Simulink and the drone's brain (ESP32 

microcontroller) for the purposes of data acquisition, processing, and attitude control. 

 

 

2. QUADROTOR 

2.1. Quadcopter model 

In this article, the configuration chosen for the quad rotor is the cross shape "X" Figure 1, which has 

four propellers driven by brushless motor. The rotation of propellers (1,3) is counterclockwise (CCW), whereas 

propellers (2,4) rotate clockwise (CW). The Pitch includes the movements that make the drone move forward 

and backward by swiveling on the y-axis. The Roll encompasses the lateral movement of the drone, which 

includes both left and right motion by rotation around the x-axis, while the Yaw allows a horizontal rotation 

on the spot around the Z axis. For the drone to move forward and backward (pitch movement) or move laterally 

(roll movement) it is necessary to create an inclination of the drone with respect to the horizontal. To achieve 

these angles, it is necessary to decrease the power of the motors in the intended direction of movement and 

increase the power of the two opposite motors in parallel to maintain the same altitude. 

 

 

 
 

Figure 1. The quad-rotor model 

 

 

2.2. The Quadrotor dynamics model 

For the X model of the drone, the mathematical model can be divided into two parts, in (1) represents 

the translational dynamic model, while in (2) represents the rotational dynamic model [18]. In order to achieve 

control of the drone, the following equations were utilized these equations describe the motion of a rigid body 

and are derived from the Euler-Lagrange formalism [9], [18], [19]: 

 

𝑥̈ =
1

𝑚
𝑈1 (𝑆𝑖𝑛𝜓𝑆𝑖𝑛𝜙 + 𝐶𝑜𝑠𝜓𝑆𝑖𝑛𝜃𝐶𝑜𝑠𝜙)  

𝑦̈ =
1

𝑚
𝑈1 (𝑆𝑖𝑛𝜓𝑆𝑖𝑛𝜃𝐶𝑜𝑠𝜙 − 𝐶𝑜𝑠𝜓𝑆𝑖𝑛𝜙) (1) 

 

𝑧̈ = 𝑔 +
1

𝑚
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(𝐼𝑧𝑧− 𝐼𝑥𝑥)

𝐼𝑦𝑦
𝜓̇𝜙̇ −

𝐽𝑟

𝐼𝑦𝑦
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𝐿

𝐼𝑦𝑦
𝑈3   

𝜓̈ =
(𝐼𝑥𝑥− 𝐼𝑦𝑦)

𝐼𝑧𝑧
𝜙̇𝜃̇ +

1

𝐼𝑧𝑧
𝑈4  (2) 

 

The (x, y, z) represent the center of mass's position in the inertial coordinate system[20]. Where, (ϕ, 

θ, ψ) correspond to the vehicle's attitude, commonly referred to as (roll, pitch, yaw), while 𝑈1, 𝑈2, 𝑈3, and 𝑈4 
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denote the torques responsible for controlling roll, pitch, and yaw, respectively. Additionally, m, 𝐼𝑦𝑦, 𝐼𝑥𝑥 , and 

𝐼𝑧𝑧 represent the mass and moments of inertia, 𝐽𝑟 and Ωd are the moments of inertia and angular velocity of the 

propeller blades [21], and 𝑔 stands for the gravitational coefficient. Lastly, 𝐿 signifies the arm length [9], [22]. 
 
 

3. PID CONTROL 

3.1. The attitude controller 

Using PID in (3) [23] control for each rotational angle is the standard quadcopter drone stabilization 

method [2], [5], [24]. The controllers regulate the motor speeds to correct the drone's orientation. This involves 

using measurements of the current angles and their corresponding rates of change, followed by a comparison 

with the desired target values. 

 

𝑈𝑖 = 𝑘𝑃
𝑖 𝑒𝑖 + 𝑘𝐼

𝑖 ∫ 𝑒𝑖 𝑑𝑡 + 𝑘𝐷
𝑖 𝑒̇𝑖 (i = 𝜙, 𝜃, 𝜓) (3) 

 

Where 𝑒𝑖 = 𝑖𝑑 − 𝑖 and 𝑒̇𝑖 = 𝑖̇̇𝑑 − 𝑖̇̇ are the error and derivative error between the desired signal and actual 

signal, and 𝑘𝑃
𝑖  , 𝑘𝑃

𝑖  , 𝑘𝐷
𝑖  are the PID gains parameter [22]. Due to mathematical simplification and stabilization, 

we used a PD controller instead of PID for yaw (yaw). In this project, there is no need for an altitude controller, 

so we utilized the throttle as a direct input. The contribution of each controller to the speed of each motor is 

provided in (4), where 𝜔 is a speed of the motor. 

 

𝜔1 = 𝑇 + 𝑈𝜙 − 𝑈𝜃 − 𝑈𝜓  

𝜔2 = 𝑇 + 𝑈𝜙 + 𝑈𝜃 + 𝑈𝜓  

𝜔3 = 𝑇 − 𝑈𝜙 + 𝑈𝜃 − 𝑈𝜓  

𝜔4 = 𝑇 − 𝑈𝜙 − 𝑈𝜃 + 𝑈𝜓 (4) 

 

 

4. IMPLEMENTATION 

The controller-based flight control framework places high demands on computational resources, 

especially in the case of PID control, resulting in substantially increased hardware requirements. Therefore, 

the ESP32 microcontroller is responsible for communication and control developed by Espressif Systems. 

Small size, low weight, and controllable energy consumption make it a reasonable candidate for the proposed 

application. 
 

4.1. ESP32_S2 

ESP32_S2 is a series of system-on-chip (SoC) microcontroller systems, known as a celebrated 

platform for realizing robotics designs and projects Figure 2. The interface and characteristics of this 

microcontroller allow to connect with a wide variety of sensors and actuators. The ESP32-WROOM-32 Based 

Development board has two microprocessors Figure 3 (Tensilica Xtensa® Dual-Core 32-bit LX6, up to 600 

DMIPS [25] ) (32 bits each), namely core0 (“Protocol Core” or “PRO CPU'') and core1 (“Application Core” 

or “APP CPU''), SMP (symmetric multiprocessing) which can be individually controlled in addition FreeRTOS 

firmware is already installed on the ESP32 board, which makes it a powerful microcontroller and therefore 

distinguishes itself from its predecessors. The integration of Wi-Fi + Bluetooth + BLE functionalities, targeting 

a wide range of applications (IoT) and embedded applications, which aims to acquire data and control various 

objects remotely, in particular, by adding intelligence to the system. Several development environments can be 

used to program the esp32 (Arduino IDE, Espressif IDF, Micropython). 
 
 

 
 

Figure 2. Experimental platform 

https://synonyms.reverso.net/synonyme/en/celebrated
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Figure 3. Function block diagram 
 
 

4.2. Experimental platform 

The drone developed for this project is constructed using an F450-type X quadcopter model Figure 1. 

It is equipped with four 1000 kW A2212 brushless motors, each featuring 1045 fixed propellers that are 

attached to the ends of the arms. The motors are connected to the controller (ESC) 30 A in such a way as to 

ensure drone movement. Each ESC has a controller (ATMEG8A) that controls the MOSFET-based rapid 

frequency. 

It employs a switching system to manage the on/off ratio, and this, in turn, governs the power supply, 

thus influencing the motor speed. Electronic speed controllers (ESCs) are linked to the ESP32, to obtain input 

signals derived from the PC (Simulink) after processing. The whole system is powered by a battery (LiPo) that 

delivers 12.6 volts and has a capacity of 2200 (mAh), capable of discharging with a maximum capacity of 30C. 

The block diagram of the quadcopter components, as illustrated in Figure 4, depicts the connections to 

the microcontroller and various instruments, as well as the signal processing workflow. The target values for (ϕ, 

θ, ψ) and thrust are established by the Simulink block (pc). Furthermore, the purpose of this signal is to compare 

it with the actual measured values obtained from the MPU6050 6DOF sensor. The MPU6050 sensor encompasses 

a 3-axis gyroscope and a 3-axis accelerometer, which are employed to determine the yaw, pitch, and roll attributes 

of the quadcopter. The ESP32 collects these measured and target signal values and transmits them to the PC for 

adjustments. The PC processes these signals and sends them back to the controller to handle the latest command 

PWM, which will subsequently be sent to the Electronic Speed Controllers (ESCs) of the drone. 
 
 

 
 

Figure 4. Block diagram of quadcopter components 
 
 

4.3. Acquisition block 

The acquisition diagram is implemented using the MATLAB-Simulink software. The control and 

processing structure is illustrated in Figure 5. The system we have created is divided into three sections:  
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i) Input blocks: They correspond to the system's setpoints (ch_1, ch_2, ch_3, ch_4) and play a similar role to 

that of an RC remote control. The reception block receives the angular velocity signals (𝜙̇, 𝜃̇, 𝜓̇) along with the 

roll and pitch angles; ii) Control block: This block is constructed based on (3) and (4), with a similar block for 

resetting the initial parameters during startup; iii) Output block: The PWM block converts the controller's 

output values into motor speed values (esc1, esc2, esc3, and esc4) to be compatible with the ESP32 

microcontroller. These values are then sent via the USB port, which is configured to interface with XBee. 

 

 

 
 

Figure 5. Block Simulink 

 

 

5. RESULTS ANALYSIS 

In this section, real-time acquisition and execution are performed to assess the performance of the 

drone using the ESP32 microcontroller and the PID controller defined in (3). Table 1 displays the PID 

parameters utilized in this experiment. The data was acquired using MATLAB/Simulink® R2017a with a 

sampling period of 5 ms. Subsequently, we evaluate the quadrotor's ability to hover with desired angles (ϕ, θ, 

ψ) = (0, 0, 0) degrees and control input [ch_1, ch_2, ch_3, ch_4] = [1.5, 1.5, 1.1,1.5] ms. The results are presented 

in Figures 6-9. 

The results obtained indicate that the PID controller tends to be more reliable. The parameters of the 

controller (roll, pitch, yaw) are presented in Table 1. The quadcopter quickly reaches the equilibrium state, 

with all coordinates (roll angle, pitch angle) reaching their target values in approximately two seconds, as in 

Figure 6. However, there are some minor fluctuations due to propeller vibrations. Regarding motor speeds, we 

can observe the throttle response in Figure 8 (in Appendix). There are no dips below 1.1 ms because we 

implemented a saturation block to ensure continuous operation of the brushless motors and prevent them from 

stopping, as their operating range is between (1.2) ms. We can notice a slight increase in speed (esc1, esc2) 

compared to (esc3, esc4) in Figure 8 to correct the roll error in Figure 7.  

The angular velocity error (𝜑̇, 𝜃̇, 𝜓̇) in Figure 9 is almost zero because we are in the equilibrium 

position in Figure 10. This result is deemed acceptable and more reliable compared to the conclusions presented 

in the article [19]. There is a delay of 2 seconds before starting the flight to ensure that the initial conditions 

are correct at startup. 
 

 

Table 1. PID parameters  
 Kp Ki kd 

Roll 
Pitch 

Yaw 

1.32 
1.30 

4.11 

0.05 
0.05 

0.03 

18.0 
18.0 

0.0 
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Figure 6. Angle roll, pitch 
 

 

  
 

Figure 7. Error angle pitch roll 
 

 

 
 

Figure 8. Speed motor   
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Figure 9. Angular velocity roll, pitch, yaw 

 

Figure 10. Experiment of drone 

 

 

6. CONCLUSION 

The experiment's findings reveal that the responses of the attitude control coordinate Roll, Pitch, and 

Yaw (ϕ, θ, ψ) are satisfactory, with all coordinates reaching their desired values in approximately 2 seconds. 

However, angular velocities exhibit a slight fluctuation of about 2 degrees per second, which is minor and 

deemed acceptable. This confirms the effective and efficient performance of the system control settings and 

the microcontroller ESP32. 
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