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Abstract: Sleep disorders can have harmful consequences in both the short and long term. They
can lead to attention deficits, as well as cardiac, neurological and behavioral repercussions. One of
the most widely used methods for assessing sleep disorders is polysomnography (PSG). A major
challenge associated with this method is all the cables needed to connect the recording devices,
making the examination more intrusive and usually requiring a clinical environment. This can have
potential consequences on the test results and their accuracy. One simple way to assess the state of the
central nervous system (CNS), a well-known indicator of sleep disorder, could be the use of a portable
medical device. With this in mind, we implemented a simple model using both the RR interval (RRI)
and its second derivative to accurately predict the awake and napping states of a subject using a
feature classification model. For training and validation, we used a database providing measurements
from nine healthy young adults (six men and three women), in which heart rate variability (HRV)
associated with light-on, light-off, sleep onset and sleep offset events. Results show that using a
30 min RRI time series window suffices for this lightweight model to accurately predict whether the
patient was awake or napping.

Keywords: sleep disorders; sleep–wake detection; central nervous system; heart rate variability; RR
interval; polysomnography; deep learning; derivative method; IoT; embedded medical device

1. Introduction

Sleep is a biological activity initiated and controlled by the human brain [1]. Sleep
helps preserve an individual’s physical and mental health [2]. The human body heals
and rebuilds itself during sleep, eliminating metabolic waste accumulated during wake-
fulness [3]. Sleep also reorganizes memory and promotes the formation of long-term
memory [4]. Sleep–wake and circadian disturbances [5] have been associated with in-
creasing the risk of developing serious health problems, including cardiovascular diseases,
cognitive impairments, and memory deterioration [6]. The prevalence of sleep-related
disturbances is on the rise [7]. It is estimated that roughly 70 millions (approximately
30%) of American adults suffer from various forms of sleep dysfunctions [8]. There is
also an increase in the rates of morbidity and mortality among individuals diagnosed
with sleep disorders [9]. The primary categories of such sleep disorders include insomnia,
sleep-related breathing disorders, central disorders of hypersomnolence, circadian rhythm
disorders, parasomnias and sleep-related movement disorders.

In clinical practices, the measurement of physiological signals is a critical step in
obtaining quantitative data for the identification of sleep-related disorders. The benchmark
for diagnosing such conditions is through polysomnography analysis. Nonetheless, the
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process of obtaining polysomnography data is laden with challenges [10]; it involves
the use of extensive wiring and electrode placement, which is not only time-intensive
but may also cause significant discomfort for the individual undergoing the test [11].
Moreover, polysomnography tests are often conducted within specialized sleep center
facilities, where unfamiliar surroundings may disturb a patient’s natural sleep patterns,
a phenomenon often referred to as the first-night effect, thus potentially skewing the
diagnostic results [12]. An alternative approach to circumvent these issues could be the
implementation of portable polysomnography devices allowing accurate testing within
the familiar confines of a patient’s home, thereby mitigating the first-night effect [13].
Moreover, the traditional manual analysis of polysomnography data can be a laborious
task that is susceptible to human biases between individual operators [14]. The push
towards automated detection of sleep disorders is driven by the need to overcome such
limitations, integrating systematic and objective analysis within the framework of remote
monitoring systems. This proposed approach can simultaneously streamline a human- and
environment-independent diagnostic process within the patient’s home.

In order to simplify measurements, various techniques have been developed to moni-
tor sleep and wakefulness states. EEG, eye blink, yawning monitoring, breathing rate and
heart rate are simple, inexpensive methods for assessing sleep and wakefulness [15]. This
information (heart beat) is crucial for parameters such as heart rate variability (HRV) [16].
HRV determination is based on the detection of the QRS complex, which is a group of
waves seen on an electrocardiogram, representing ventricular depolarization, allowing the
measurement of the interval between two R peaks (RRI) [17]. The entirety of these data
(HRV) can be analyzed both in the time and frequency domains, providing vital insights
into changes in the central nervous system (CNS) state [17,18]. The CNS regulates daily
rhythms, with sympathetic dominance during the day for arousal and parasympathetic
dominance at night for rest [19].

With the integration of the Internet of Things (IoT) for personal health and medicine,
emerging solutions can combine convenience and accuracy [20]. Many IoT-based devices
utilize an accelerometer sensor [21], which measures chest movements to assess respiration.
This approach measures the breathing rate [22] (RC), as well as pulse oxygen saturation to
determine heart rate and oxygen [23–25].

With the increasing adoption of deep learning and classification techniques [26,27], it
is now possible to integrate machine and deep learning models into these portable devices.
These models, when properly trained, can match or even surpass the accuracy of traditional
diagnostic methods, while reducing costs and improving the patient’s experience [28].
There have been technological advancements in portable devices dedicated to monitoring
sleep and wakefulness [29,30]. These devices have benefited from the integration of spe-
cialized microcontrollers for artificial intelligence (AI), optimizing measurements while
maintaining their accuracy and quality [31]. The accuracy of machine learning depends
on the feature engineering used [32]. When detecting sleep and wakefulness, machine
learning models generally use the EEG signals to achieve the best accuracy [33,34]. RRI is
also used, but often in conjunction with EEG waveform values that determine rapid eye
movements and indicators of bruxism movements [22].

Derivatives methods are often used to detect small or rapid variations in biosignals [35].
The concept of using the second derivative of the RRI in sleep and wake detection is based
on the premise that sleep and wakefulness are distinct physiological states that manifest
differently in cardiac activity [36]. The application of the second derivative in sleep and
wake detection aligns with broader trends in biomedical signal processing, where advanced
mathematical techniques are increasingly employed to extract meaningful information
from physiological signal [37].

This study seeks to better understand the complex interrelationship between heart
rate variability and sleep patterns. In the specialized domain of electrocardiogram analysis,
the application of first and second derivatives is central to the extraction of distinctive
features and the identification of cardiac anomalies [38,39]. The second derivative, which
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represents the acceleration or deceleration of the RRI, can provide valuable insights into
rapid changes in heart rate that are indicative of transitions between sleep and wake states.

In our work, we demonstrated that it was possible to accurately determine wake-
fulness and sleep states from the RRI and its second derivative using a deep learning
model. Including the second derivative lets the model consider changes in the RRI’s ac-
celeration [36]. In this paper, the “sleep” label should be considered as “napping” and
corresponds to the time during a nap after sleep onset. It may include wakefulness (see
Section 2.2.1 for details). This helps ignore temporary states. Such states could cause errors
in identifying wakefulness or sleep. Therefore, it improves detection accuracy.

2. Materials and Methods
2.1. Dataset Details

The Circadian and Sleep Variation dataset serves as the benchmark for this study.
This dataset contains nine healthy volunteers (mean age ± SD: 24.6 ± 4.5 years) that were
selected for the study 6 men, 3 women and gave informed consent before joining [40].

2.2. Data Exploration

Details of the protocol can be found in Boudreau et al. 2011 [40]. Specifically, the
protocol for recruiting participants in the study involved a meticulous process. Healthy
participants with a normal body mass index provided informed consent before being
selected. These participants were required to maintain a regular 8-h sleep pattern for a
minimum of two weeks prior to the laboratory study. This adherence was verified through
daily telephone check-ins at bedtime (lights off) and wake times (lights on), supplemented
by sleep–wake logs and actigraphic recordings to confirm their healthy sleep patterns.
The initial phase of the laboratory study commenced in a time isolation suite with a
baseline 8-h sleep episode at each participant’s habitual bedtime under controlled lighting
conditions in a laboratory setting. Following this, participants underwent a 72-h ultradian
sleep–wake cycle in a time isolation suite, consisting of alternating 1 h wake episode
followed by 1 h nap opportunities. This design was used to assess circadian rhythms
and the impact of various sleep stages on heart rate variability. Throughout this period,
RRI and RC were continuously recorded either using a vest with built-in electrodes or
via the EKG channel of a polysomnographic recording system. During nap opportunities,
sleep was polsysomnograpically recorded and each 30-s epoch scored according to AASM
criteria [41]. The R-peaks were extracted from the electrocardiogram (EKG) signal using a
validated automatic detection software (VivoLogic, Vivometrics, Ventura, CA, USA) [42].
The EKG data were carefully analyzed to extract R-R intervals (RRI), which were then
visually inspected for accuracy and for ectopic beats and artifacts. If necessary, RRI were
manually corrected by linear interpolation. This process was carried out by the Centre
of Study and Treatment of Circadian Rhythm at McGill University. This preparatory
phase and the subsequent experimental procedures ensured that confounding factors were
minimized, enabling reliable assessments within the study’s framework. Throughout the
entire ultrarapid sleep–wake cycle procedure, 60-min nap opportunity and wake periods
were interspersed with events where the light was switched on or off. Some data are
missing from the 72 h recordings due to recording problems or noisy data (around 15%
of data).

Before applying deep learning to develop a model for classification, we pre-analyzed
the RRI for all subjects to determine the occurrence of these events. At this stage, the
breathing rate remained a feature included in our model. A correlation map was applied
to demonstrate the locality, spread, and skewness groups of the numerical data through
their quantiles [43]. The pair plot distributions in Figure 1 highlight the interrelationships
among the key variables in the dataset.
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Figure 1. The pair plot distributions highlight the cross-correlations and interrelationships among
the key variables such as RR interval, the breathing rate (RC), the classical derivative (∇2RRI) and
the Gregory–Newton (∇2RRI GN). It clearly shows that RRI and ∇2RRI are negatively correlated.

2.2.1. Napping and Awake Assessment

Protocol and sleep-related events (i.e., lights on, lights off, and sleep onset) were used
to label the RRI and RC signals. All RRI and RC data during wake episodes (i.e., from
lights on to the following lights off) were labeled as “awake”. If no sleep occurred during
a nap opportunity (i.e., no sleep onset identified), the RRI and RC data were also labeled
as “awake”. When sleep occurred during a nap opportunity, RRI and RC signals were
labeled as “sleep” from the sleep onset to the following lights on. During this later period
(from sleep onset to lights on), the participant could spontaneously wake. This period
was always labeled as sleep (see Section 4.1) and its percentage of wakefulness is reported
in Table 1. The data presented in Table 1 correspond to available PSG sleep recordings,
whereas RRI missing data could be different. We then applied a first- and second-order
derivative calculation using the Gregory–Newton method (GNm) and the Pandas library
derivative [44,45] on the RRI data. After testing these two methods, we found a high
correlation between both, which can be explained by the fact that the derived method
used in Python’s Pandas library uses a limited expansion of the Taylor series [45]. The first
or second derivative of heart rhythm obtained from an EKG is often employed to detect
cardiac anomalies [39,46]. Indeed, the first derivative concerns the rate of change of the
HRV parameter or the velocity at which the HRV changes from one moment to another.
A high first derivative indicates rapid changes in the intervals between heartbeats, which
could reflect a quick response of the autonomic nervous system (ANS) to various stimuli or
stress. Conversely, a low first derivative suggests a more stable and less reactive state of
the cardiovascular system [47]. The second derivative expresses the acceleration of the RRI
parameter. A high absolute value may indicate rapid and potentially unstable fluctuations
in cardiac autonomic control, while a low value may indicate greater regularity or stability
of these changes [44].
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Table 1. Duration of wakefulness (in min. and %) following sleep onset.

P. Mean (min.) SD (min.) Mean (%) SD (%)

S07 3.28 5.57 9.0 15.9
S08 3.03 5.96 8.8 17.9
S09 3.18 7.54 7.5 17.8
S10 2.08 2.57 5.6 6.5
S11 3.30 3.99 8.2 10.5
S12 9.16 12.85 28.5 35.1
S13 9.60 15.09 23.8 23.8
S14 8.65 9.65 21.3 26.3
S15 9.00 14.03 22.0 33.5

Indeed, the first derivative of the RRI, denoted by ∇RRI/∇t can be indicative of a
sudden shift in heart rhythm [48]. When the RRI is short, the HRV and the derived equation
are positive, meaning the RRI is increasing. On the other hand, when the RRI is long, the
HRV and the derivative are negative, explaining the trend of cardiac contraction for the
first derivative and the velocity of the trend variable for the second derivative, denoted
by ∇2RRI/∇t2 . These parameters allow the quantification of the heart’s response and
accurate detection of many abnormal behaviors [39]. When this derivative is applied to
the QRS complex, it becomes a more precise indicator of ventricular anomalies because
the contractile trend reflects ventricular regularity [49], while the second derivative shows
the speed of this trend. Excessive variability in this speed suggests a ventricular rhythmic
anomaly with the p-wave, which is the first amplitude of EKG having been absorbed by
the derivative calculation [50], thus offering an analysis that presently only pertains to
ventricular and contractile analysis. There is a difference in the mean and the standard
deviation for the sleep and awake states, as shown in Figures 2 and 3.

Figure 2. The box plot shows clear differences in the standard deviation and the mean of the RRI and
its second derivative (∇2RRI) for sleep and awake states.

2.2.2. Experiment Setup

For the analysis, we considered only two states, sleep and awake. We implemented a
neural network with five hidden layers, one input and one output layer for detecting the
state of the participant. The input for the neural network was the second derivative of the
RRI time series and the RRI time series. Each layer from our deep learning model used a
non-linear rectified linear unit activation (Relu). Furthermore, we normalized the input
data using min–max normalization [51]. We split the dataset into training, validation and
testing according to the ratio 70%, 5% and 25%. To train the neural network, we used a
binary cross entropy loss and an Adam optimizer. We kept a constant learning rate of 0.01
throughout the training.
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Figure 3. The box plot shows clear differences in the standard deviation and the mean of the
respiratory rate from chest and its second derivative (∇2RC) for sleep and awake states.

3. Results

We ran multiple experiments to measure the classification accuracy of the neural
network. All the experiments had the same model architecture and hyperparameters.
We used a three-hidden-layer neural network with eight neurons in each layer. We used
the Adam optimizer with a learning rate of 0.01. For each experiment, we used different
features or combinations of features. We observed that the model had a very low accuracy
for predicting the sleep state using only the RRI values. However, if we used RC, the model
exhibited an acceptable accuracy of 79% along with an F1 score of 79%. Using the RRI
along with the first derivative of HRV resulted in a marginal increase in accuracy. However,
an increase in accuracy (around 4%) was achieved when we used the second derivative of
the RRI along with the original RRI time series. Table 2 presents a comparative view of the
change in model accuracy as we change the input features. To measure the breathing rate,
we need to use two sensors, resulting in a complex architecture, while the measurement of
RRI uses only one sensor, thereby simplifying the equipment and reducing the cost. Most
importantly, previous research on the subject has been able to achieve an accuracy of only
66%, which is much lower than the accuracy achieved by our model [52].

Table 2. Effect of input features on the classification accuracy.

Classi f ication Metrics(%)

Accuracy Precision Recall F1 Score

RC 58.31 59 58 58
RRI 79.05 79 79 79

RRI +∇RRI 79.86 80 80 80
RRI +∇2RRI 83.28 83 83 83

4. Discussion

The breathing rate and heart rate variability are critical indicators for assessing the state
of the autonomic nervous system (ANS). The ANS, which encompasses the sympathetic
and parasympathetic nervous systems, is pivotal in regulating cardiovascular dynamics.
Indeed, the HRV reflects the heart’s ability to respond to a wide range of physiological
and environmental stimuli [53]. In this context, the use of HRV alone enables sleep and
wakefulness to be detected using a simple, low-cost method, without having to take into
account the measurement of respiration.

Previous research studies show that HRV varies significantly across different sleep stages
and wakefulness, reflecting changes in the autonomic nervous system (ANS) [40,54,55]. Deep
sleep, characterized by slower brain waves and reduced muscle activity, is typically associ-
ated with increased vagal (parasympathetic) activity [56], resulting in an increased HRV
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and suggesting a relaxed, restorative state [57]. In contrast, REM (rapid eye movement)
sleep, associated with dreaming and increased brain activity, suggests a dominance of
sympathetic activity, resulting in a reduced HRV and a state of heightened cardiac activ-
ity [58]. During wakefulness, sympathetic activity is more prominent, typically leading to
an increased heart rate and reduced HRV [55]. The RRI itself can be a valuable metric for
ANS assessment, and its analysis can become more informative when combined with the
second derivative of RRI, which helps capture rapid changes in heart rate dynamics and
provides a more sensitive and nuanced measure than the heart rate or HRV alone.

By analyzing the patterns of the second derivative in RRIs, it becomes possible to
detect more subtle shifts in autonomic nervous system activity accompanying the tran-
sition between wakefulness and sleep events. This method could potentially provide a
more accurate and responsive means of determining sleep and wake states compared to
traditional methods, which usually rely on less dynamic measurement indicators.

Researchers often use the frequency domain analysis of HRV [17]. In this work, we
explore the use of the second derivative as a temporal comparison method with the Fourier
domain analysis [59]. Incorporating the second derivative of RRI introduces an additional
layer of time series analysis. The second derivative, a measure of the rate of change of
RRI acceleration, can provide more granular insights into rapid fluctuations of the heart
rate. These fluctuations can be indicative of transitions between sleep and wake states, or
between different sleep stages. The inclusion of this parameter in a machine learning model
for sleep/wake detection could significantly enhance the model’s accuracy. By adding
the variability in RRI acceleration in the temporal analysis, the model can become more
sensitive to the subtle physiological changes occurring during sleep transitions.

The scatter plot from Figure 4 shows that the second derivative and the RRI are
negatively correlated.

To test the stationary nature of the time series, we ran a Kwiatkowski–Phillips–Schmidt–Shin
(KPSS) test. KPSS is a common statistical test for evaluating whether time series data are
stationary [60]. The null hypothesis of the test is that the time series is stationary around a
mean. Table 3 shows the results of the KPSS analysis for all subjects. We notice a general
pattern; the RRI time series has a p-value of 0.01, which is lower than the established KPSS
threshold of 0.05. As such, we can reject the null hypothesis suggesting that the RRI series
is non-stationary. Meanwhile, the second derivative time series has a p-value of 0.1, which
means that we cannot reject the null hypothesis, suggesting that the RRI series is stationary.
The literature shows that statistical models perform better when we use a stationary series,
thereby improving the performance of the model [61]. The second derivative of the RRI
provides a stationary time series compared to the non-stationary results directly obtained
from the RRI, which improves the performance of the model.

These results suggest that the dataset captures measurements from various stages of
wakefulness and sleep within the RR interval data. Moreover, we believe this use of the
second derivative of the RRI alongside traditional HRV metrics can potentially offer a much
more comprehensive understanding of the underlying autonomic modulation, providing a
deeper understanding of the complex interplay between the cardiovascular system and
sleep physiology. It is a significant advancement in the field of biomedical signal process-
ing, where sophisticated analytical techniques are increasingly being employed to extract
meaningful insights from physiological data for clinical and research purposes. Future
work should focus on isolating these events. As a future scope of work, employing HRV
frequency domain analysis is recommended. This technique will help link the observed
results to validated drowsiness indicators. For a comprehensive understanding, readers are
referred to articles on HRV time and frequency domain measures, which provide essential
background and methodologies for this approach.
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Figure 4. The scatter plot shows that the second derivative and the RRI are negatively correlated.

Table 3. KPSS test results.

Statistical Metrics

Subject Data Statistic p-Value

RRI Series S07 1.636 0.01

S08 2.09 0.01

S09 2.012 0.01

S10 2.135 0.01

S11 1.916 0.01

S12 0.92 0.01

S13 2.41 0.01

S14 1.52 0.01

S15 1.63 0.01
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Table 3. Cont.

Statistical Metrics

Subject Data Statistic p-Value

∇2RRISeries S07 0.063 0.1

S08 0.074 0.1

S09 0.162 0.1

S10 0.087 0.1

S11 0.054 0.1

S12 0.267 0.1

S13 0.131 0.1

S14 0.132 0.1

S15 0.239 0.1

4.1. Strengths and Limitations

In this paper, we demonstrated that a neural network with a small number of parame-
ters can be used to detect the sleep or wakefulness states using the second derivative of
the RRI. Our approach is cost effective, non-invasive and can be deployed in embedded
devices using quantization. Moreover, we showed that the use of the second derivative
improves the accuracy of the model compared to using the raw RRI signal. During naps,
participants presented wake epochs after sleep onset, prior to lights on. These data were
also labeled as sleep, since sleep onset had occurred and napping conditions were in ef-
fect. This limitation could have affected the accuracy rate. In this study, we employed
a conventional machine learning approach to divide the data into training and test sets.
Consequently, it is possible for a single participant’s data to be included in both the training
and test datasets simultaneously. Thus, the samples in the test set could be from the same
sessions as those from the training set.

5. Conclusions

In this paper, we proposed a deep learning model to accurately predict the sleep and
awake states of a subject using only the RR interval measurements. We established that
the second derivative, which represents the acceleration or deceleration of the RR interval
velocity, provides valuable insights into rapid changes in heart rate variability that are
indicative of transitions between sleep and wake states. As such, including this information
as an embedded feature for the neural network yields significant improvements in model
performance.We believe that the use of such neural networks with sensors will potentially
allow a better monitoring of sleep patterns.

Author Contributions: The concept and methodology were planned and done by F.V., A.B., G.G.
and S.G.C. The first version of manuscript was written by F.V. The code was primarily developed by
F.V. The manuscript was reviewed and commented on by all authors. D.B.B. and P.B. provided the
dataset. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by l’Institut de recherche Robert-Sauvé en santé et en sécurité du
travail (IRSST), grant number 2020-0006.

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Research Ethics Board of the CIUSSS de l’Ouest-de-l’île-de-Montréal
(protocol code 2022-558 approved on 2022-05-27)

Informed Consent Statement: Informed consent was obtained from all subjects involved in the study.



Sensors 2024, 24, 4317 10 of 12

Data Availability Statement: The data for the project were provided by the Centre for Study
and Treatment of Circadian Rhythms, Douglas Mental Health University Institute, Department of
Psychiatry, McGill University. The experimental data used to train the machine learning algorithms
cannot be shared publicly because participants did not agree. Therefore, for ethical and confidentiality
reasons, the authors cannot provide public access to them. Nevertheless, the authors agree to make
data and materials supporting the results or analyses available for the investigation of scientific
integrity if necessary. The code will be made available upon reasonable request.

Acknowledgments: F.V. thanks The IRSST and SAAQ for funding for this project. The authors
also thank CIHR and NSERC for supporting the original experimental study. F.V. also thanks the
Centre for Study and Treatment of Circadian Rhythms, Douglas Mental Health University Institute,
Department of Psychiatry, McGill University, Montreal, Quebec, Canada for their support.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chokroverty, S. Overview of sleep & sleep disorders. Indian J. Med. Res. 2010, 131, 126. [PubMed]
2. Coutts, L.V.; Plans, D.; Brown, A.W.; Collomosse, J. Deep learning with wearable based heart rate variability for prediction of

mental and general health. J. Biomed. Inform. 2020, 112, 103610. [CrossRef] [PubMed]
3. Brown, R.E.; Basheer, R.; McKenna, J.T.; Strecker, R.E.; McCarley, R.W. Control of Sleep and Wakefulness. Physiol. Rev. 2012,

92, 1087–1187. [CrossRef] [PubMed]
4. Diekelmann, S.; Born, J. The memory function of sleep. Nat. Rev. Neurosci. 2010, 11, 114–126. [CrossRef] [PubMed]
5. Vitaterna, M.H.; Takahashi, J.S.; Turek, F.W. Overview of Circadian Rhythms. Alcohol Res. Health 2001, 25, 85–93. [PubMed]
6. Zhu, L.; Zee, P.C. Circadian Rhythm Sleep Disorders. Neurol. Clin. 2012, 30, 1167–1191. [CrossRef] [PubMed]
7. Acquavella, J.; Mehra, R.; Bron, M.; Suomi, J.M.H.; Hess, G.P. Prevalence of narcolepsy and other sleep disorders and frequency

of diagnostic tests from 2013 to 2016 in insured patients actively seeking care. J. Clin. Sleep Med. 2020, 16, 1255–1263. [CrossRef]
8. Institute of Medicine, Board on Health Sciences Policy, Committee on Sleep Medicine and Research. Sleep Disorders and Sleep

Deprivation: An Unmet Public Health Problem; National Academies Press: Washington, DC, USA, 2006.
9. Neikrug, A.B.; Ancoli-Israel, S. Sleep Disorders in the Older Adult—A Mini-Review. Gerontology 2009, 56, 181–189. [CrossRef]
10. Rundo, J.V.; Downey, R. Chapter 25—Polysomnography. In Handbook of Clinical Neurology; Levin, K.H., Chauvel, P., Eds.;

Clinical Neurophysiology: Basis and Technical Aspects; Elsevier: Amsterdam, The Netherlands, 2019; Volume 160, pp. 381–392.
[CrossRef]

11. Alian, A.A.; Shelley, K.H. Photoplethysmography. Best Pract. Res. Clin. Anaesthesiol. 2014, 28, 395–406. [CrossRef]
12. Blaszczyk, B.; Wieczorek, T.; Michalek-Zrabkowska, M.; Wieckiewicz, M.; Mazur, G.; Martynowicz, H. Frontiers | Polysomnog-

raphy findings in sleep-related eating disorder: A systematic review and case report. Front. Psychiatry 2023, 14, 1139670.
[CrossRef]

13. Xu, S.; Faust, O.; Seoni, S.; Chakraborty, S.; Barua, P.D.; Loh, H.W.; Elphick, H.; Molinari, F.; Acharya, U.R. A review of automated
sleep disorder detection. Comput. Biol. Med. 2022, 150, 106100. [CrossRef]

14. Sosso, E.; Armel, F. Measuring Sleep Health Disparities with Polysomnography: A Systematic Review of Preliminary Findings.
Clocks Sleep 2022, 4, 80–87. [CrossRef] [PubMed]

15. Ghourabi, A.; Ghazouani, H.; Barhoumi, W. Driver Drowsiness Detection Based on Joint Monitoring of Yawning, Blinking and
Nodding. In Proceedings of the 2020 IEEE 16th International Conference on Intelligent Computer Communication and Processing
(ICCP), Cluj-Napoca, Romania, 3–5 September 2020; pp. 407–414. [CrossRef]

16. Stein, P.K.; Pu, Y. Heart rate variability, sleep and sleep disorders. Sleep Med. Rev. 2012, 16, 47–66. [CrossRef]
17. Yokobori, Y.; Nakane, H.; Uehara, C.; Nagasawa, T.; Mitsuyama, S.; Ohkawa, K.; Kario, K.; Ozawa, S. Temporal relationships

among changes in the RR-interval and the powers of the low- and high-frequency components of heart rate variability in normal
subjects. Physiol. Rep. 2023, 11, e15557. [CrossRef]

18. Correia, A.T.L.; Lipinska, G.; Rauch, H.G.L.; Forshaw, P.E.; Roden, L.C.; Rae, D.E. Associations between sleep-related heart
rate variability and both sleep and symptoms of depression and anxiety: A systematic review. Sleep Med. 2023, 101, 106–117.
[CrossRef]

19. Piotrowski, Z.; Szypulska, M. Classification of falling asleep states using HRV analysis. Biocybern. Biomed. Eng. 2017, 37, 290–301.
[CrossRef]

20. Karthick, R.; Ramkumar, R.; Akram, M.; Vinoth Kumar, M. Overcome the challenges in bio-medical instruments using IOT–A
review. Mater. Today Proc. 2021, 45, 1614–1619. [CrossRef]

21. Saleem, K.; Bajwa, I.S.; Sarwar, N.; Anwar, W.; Ashraf, A. IoT Healthcare: Design of Smart and Cost-Effective Sleep Quality
Monitoring System. J. Sensors 2020, 2020, e8882378. [CrossRef]

22. Hung, P. Estimating respiration rate using an accelerometer sensor. In Proceedings of the 8th International Conference on
Computational Systems-Biology and Bioinformatics, Nha Trang City Viet Nam, 7–8 December 2017; pp. 11–14. [CrossRef]

http://www.ncbi.nlm.nih.gov/pubmed/20308738
http://doi.org/10.1016/j.jbi.2020.103610
http://www.ncbi.nlm.nih.gov/pubmed/33137470
http://dx.doi.org/10.1152/physrev.00032.2011
http://www.ncbi.nlm.nih.gov/pubmed/22811426
http://dx.doi.org/10.1038/nrn2762
http://www.ncbi.nlm.nih.gov/pubmed/20046194
http://www.ncbi.nlm.nih.gov/pubmed/11584554
http://dx.doi.org/10.1016/j.ncl.2012.08.011
http://www.ncbi.nlm.nih.gov/pubmed/23099133
http://dx.doi.org/10.5664/jcsm.8482
http://dx.doi.org/10.1159/000236900
http://dx.doi.org/10.1016/B978-0-444-64032-1.00025-4
http://dx.doi.org/10.1016/j.bpa.2014.08.006
http://dx.doi.org/10.3389/fpsyt.2023.1139670
http://dx.doi.org/10.1016/j.compbiomed.2022.106100
http://dx.doi.org/10.3390/clockssleep4010009
http://www.ncbi.nlm.nih.gov/pubmed/35225955
http://dx.doi.org/10.1109/ICCP51029.2020.9266160
http://dx.doi.org/10.1016/j.smrv.2011.02.005
http://dx.doi.org/10.14814/phy2.15557
http://dx.doi.org/10.1016/j.sleep.2022.10.018
http://dx.doi.org/10.1016/j.bbe.2017.02.003
http://dx.doi.org/10.1016/j.matpr.2020.08.420
http://dx.doi.org/10.1155/2020/8882378
http://dx.doi.org/10.1145/3156346.3156349


Sensors 2024, 24, 4317 11 of 12

23. Barnes, R.; Zvarikova, K. Artificial Intelligence-enabled Wearable Medical Devices, Clinical and Diagnostic Decision Support
Systems, and Internet of Things-based Healthcare Applications in COVID-19 Prevention, Screening, and Treatment. Am. J. Med.
Res. 2021, 8, 9–23.

24. Dias, D.; Paulo Silva Cunha, J. Wearable Health Devices—Vital Sign Monitoring, Systems and Technologies. Sensors 2018, 18, 2414.
[CrossRef]

25. Aliverti, A. Wearable technology: Role in respiratory health and disease. Breathe 2017, 13, e27–e36. [CrossRef] [PubMed]
26. Yue, H.; Chen, Z.; Guo, W.; Sun, L.; Dai, Y.; Wang, Y.; Ma, W.; Fan, X.; Wen, W.; Lei, W. Research and application of deep

learning-based sleep staging: Data, modeling, validation, and clinical practice. Sleep Med. Rev. 2024, 74, 101897. [CrossRef]
[PubMed]

27. Sekkal, R.N.; Bereksi-Reguig, F.; Ruiz-Fernandez, D.; Dib, N.; Sekkal, S. Automatic sleep stage classification: From classical
machine learning methods to deep learning. Biomed. Signal Process. Control 2022, 77, 103751. [CrossRef]

28. Korkalainen, H.; Aakko, J.; Nikkonen, S.; Kainulainen, S.; Leino, A.; Duce, B.; Afara, I.O.; Myllymaa, S.; Töyräs, J.; Leppänen, T.
Accurate Deep Learning-Based Sleep Staging in a Clinical Population With Suspected Obstructive Sleep Apnea. IEEE J. Biomed.
Health Inform. 2020, 24, 2073–2081. [CrossRef] [PubMed]

29. Birrer, V.; Elgendi, M.; Lambercy, O.; Menon, C. Evaluating reliability in wearable devices for sleep staging. NPJ Digit. Med. 2024,
7, 74. [CrossRef]

30. Kwon, S.; Kim, H.; Yeo, W.H. Recent advances in wearable sensors and portable electronics for sleep monitoring. iScience 2021,
24, 102461. [CrossRef] [PubMed]

31. Diab, M.S.; Rodriguez-Villegas, E. Embedded Machine Learning Using Microcontrollers in Wearable and Ambulatory Systems
for Health and Care Applications: A Review. IEEE Access 2022, 10, 98450–98474. [CrossRef]

32. Fan, C.; Sun, Y.; Zhao, Y.; Song, M.; Wang, J. Deep learning-based feature engineering methods for improved building energy
prediction. Appl. Energy 2019, 240, 35–45. [CrossRef]

33. Hassan, A.R.; Hassan Bhuiyan, M.I. Automatic sleep scoring using statistical features in the EMD domain and ensemble methods.
Biocybern. Biomed. Eng. 2016, 36, 248–255. [CrossRef]

34. Khalighi, S.; Sousa, T.; Pires, G.; Nunes, U. Automatic sleep staging: A computer assisted approach for optimal combination of
features and polysomnographic channels. Expert Syst. Appl. 2013, 40, 7046–7059. [CrossRef]

35. Addison, P.S.; Walker, J.; Guido, R.C. Time–frequency analysis of biosignals. IEEE Eng. Med. Biol. Mag. 2009, 28, 14–29. [CrossRef]
[PubMed]

36. Chatlapalli, S.; Nazeran, H.; Melarkod, V.; Krishnam, R.; Estrada, E.; Pamula, Y.; Cabrera, S. Accurate derivation of heart
rate variability signal for detection of sleep disordered breathing in children. In Proceedings of the 26th Annual International
Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 1,
pp. 538–541. [CrossRef]

37. Escabí, M.A. 10—BIOSIGNAL PROCESSING. In Introduction to Biomedical Engineering, 2nd ed.; Enderle, J.D., Blanchard, S.M.,
Bronzino, J.D., Eds.; Biomedical Engineering; Academic Press: Boston, MA, USA, 2005; pp. 549–625. [CrossRef]

38. Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [CrossRef]
39. Arzeno, N.M.; Poon, C.S.; Deng, Z.D. Quantitative Analysis of QRS Detection Algorithms Based on the First Derivative of the

ECG. In Proceedings of the 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York,
NY, USA, 30 August–3 September 2006; pp. 1788–1791. [CrossRef]

40. Boudreau, P.; Yeh, W.H.; Dumont, G.A.; Boivin, D.B. Circadian Variation of Heart Rate Variability Across Sleep Stages. Sleep 2013,
36, 1919–1928. [CrossRef] [PubMed]

41. Berry, R.B.; Brooks, R.; Gamaldo, C.; Harding, S.M.; Lloyd, R.M.; Quan, S.F.; Troester, M.T.; Vaughn, B.V. AASM Scoring Manual
Updates for 2017 (Version 2.4). J. Clin. Sleep Med. 2017, 13, 665–666. [CrossRef] [PubMed]

42. Heilman, K.J. Accuracy of the LifeShirt® (Vivometrics) in the detection of cardiac rhythms. Biol. Psychol. 2007, 75, 300–305.
[CrossRef] [PubMed]

43. Frigge, M.; Hoaglin, D.C.; Iglewicz, B. Some Implementations of the Boxplot. Am. Stat. 1989, 43, 50–54. [CrossRef]
44. Dunn, S.; Constantinides, A.; Moghe, P.V. Numerical Methods in Biomedical Engineering; Elsevier: Amsterdam, The Netherlands,

2005.
45. Kumar, A. Mastering Pandas: A Complete Guide to Pandas, from Installation to Advanced Data Analysis Techniques, 2nd ed.; Packt

Publishing Ltd.: Birmingham, UK, 2019.
46. Trardi, Y.; Ananou, B.; Ouladsine, M. Computationally Efficient Algorithm for Atrial Fibrillation Detection using Linear and

Geometric Features of RR Time-Series Derivatives. In Proceedings of the 2022 International Conference on Control, Automation
and Diagnosis (ICCAD), Lisbon, Portugal, 13–15 July 2022; pp. 1–6. [CrossRef]

47. Otzenberger, H.; Gronfier, C.; Simon, C.; Charloux, A.; Ehrhart, J.; Piquard, F.; Brandenberger, G. Dynamic heart rate variability:
A tool for exploring sympathovagal balance continuously during sleep in men. Am. J. Physiol.-Heart Circ. Physiol. 1998,
275, H946–H950. [CrossRef] [PubMed]

48. Kamath, M.V.; Watanabe, M.; Upton, A. Heart Rate Variability (HRV) Signal Analysis: Clinical Applications; CRC Press: Boca Raton,
FL, USA, 2012.

http://dx.doi.org/10.3390/s18082414
http://dx.doi.org/10.1183/20734735.008417
http://www.ncbi.nlm.nih.gov/pubmed/28966692
http://dx.doi.org/10.1016/j.smrv.2024.101897
http://www.ncbi.nlm.nih.gov/pubmed/38306788
http://dx.doi.org/10.1016/j.bspc.2022.103751
http://dx.doi.org/10.1109/JBHI.2019.2951346
http://www.ncbi.nlm.nih.gov/pubmed/31869808
http://dx.doi.org/10.1038/s41746-024-01016-9
http://dx.doi.org/10.1016/j.isci.2021.102461
http://www.ncbi.nlm.nih.gov/pubmed/34013173
http://dx.doi.org/10.1109/ACCESS.2022.3206782
http://dx.doi.org/10.1016/j.apenergy.2019.02.052
http://dx.doi.org/10.1016/j.bbe.2015.11.001
http://dx.doi.org/10.1016/j.eswa.2013.06.023
http://dx.doi.org/10.1109/MEMB.2009.934244
http://www.ncbi.nlm.nih.gov/pubmed/19775952
http://dx.doi.org/10.1109/IEMBS.2004.1403213
http://dx.doi.org/10.1016/B978-0-12-238662-6.50012-4
http://dx.doi.org/10.1109/TBME.1985.325532
http://dx.doi.org/10.1109/IEMBS.2006.260051
http://dx.doi.org/10.5665/sleep.3230
http://www.ncbi.nlm.nih.gov/pubmed/24293767
http://dx.doi.org/10.5664/jcsm.6576
http://www.ncbi.nlm.nih.gov/pubmed/28416048
http://dx.doi.org/10.1016/j.biopsycho.2007.04.001
http://www.ncbi.nlm.nih.gov/pubmed/17540493
http://dx.doi.org/10.1080/00031305.1989.10475612
http://dx.doi.org/10.1109/ICCAD55197.2022.9853910
http://dx.doi.org/10.1152/ajpheart.1998.275.3.H946
http://www.ncbi.nlm.nih.gov/pubmed/9724299


Sensors 2024, 24, 4317 12 of 12

49. Murukesan, L.; Murugappan, M.; Iqbal, M. Sudden cardiac death prediction using ECG signal derivative (Heart Rate Variability):
A review. In Proceedings of the 2013 IEEE 9th International Colloquium on Signal Processing and its Applications, Kuala Lumpur,
Malaysia, 8–10 March 2013; pp. 269–274. [CrossRef]

50. Jeyhani, V.; Mahdiani, S.; Peltokangas, M.; Vehkaoja, A. Comparison of HRV parameters derived from photoplethysmography
and electrocardiography signals. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), Milan, Italy, 25–29 August 2015; pp. 5952–5955. [CrossRef]

51. Niño-Adan, I.; Landa-Torres, I.; Portillo, E.; Manjarres, D. Influence of statistical feature normalisation methods on K-Nearest
Neighbours and K-Means in the context of industry 4.0. Eng. Appl. Artif. Intell. 2022, 111, 104807. [CrossRef]

52. Sridhar, N.; Shoeb, A.; Stephens, P.; Kharbouch, A.; Shimol, D.B.; Burkart, J.; Ghoreyshi, A.; Myers, L. Deep learning for automated
sleep staging using instantaneous heart rate. npj Digit. Med. 2020, 3, 106. [CrossRef]

53. Draghici, A.E.; Taylor, J.A. The physiological basis and measurement of heart rate variability in humans. J. Physiol. Anthropol.
2016, 35, 22. [CrossRef]

54. Kim, H.G.; Cheon, E.J.; Bai, D.S.; Lee, Y.H.; Koo, B.H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the
Literature. Psychiatry Investig. 2018, 15, 235–245. [CrossRef] [PubMed]

55. Fink, A.M.; Bronas, U.G.; Calik, M.W. Autonomic regulation during sleep and wakefulness: A review with implications for
defining the pathophysiology of neurological disorders. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2018, 28, 509–518.
[CrossRef] [PubMed]

56. Fattinger, S.; de Beukelaar, T.T.; Ruddy, K.L.; Volk, C.; Heyse, N.C.; Herbst, J.A.; Hahnloser, R.H.R.; Wenderoth, N.; Huber, R.
Deep sleep maintains learning efficiency of the human brain. Nat. Commun. 2017, 8, 15405. [CrossRef]

57. Bornemann, B.; Kovacs, P.; Singer, T. Voluntary upregulation of heart rate variability through biofeedback is improved by mental
contemplative training. Sci. Rep. 2019, 9, 7860. [CrossRef]

58. Jiryis, T.; Magal, N.; Fructher, E.; Hertz, U.; Admon, R. Resting-state heart rate variability (HRV) mediates the association between
perceived chronic stress and ambiguity avoidance. Sci. Rep. 2022, 12, 17645. [CrossRef]

59. Karlen, W.; Mattiussi, C.; Floreano, D. Sleep and Wake Classification With ECG and Respiratory Effort Signals. IEEE Trans.
Biomed. Circuits Syst. 2009, 3, 71–78. [CrossRef] [PubMed]

60. Chen, Y.; Pun, C.S. A bootstrap-based KPSS test for functional time series. J. Multivar. Anal. 2019, 174, 104535. [CrossRef]
61. Livieris, I.E. A novel forecasting strategy for improving the performance of deep learning models. Expert Syst. Appl. 2023,

230, 120632. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/CSPA.2013.6530054
http://dx.doi.org/10.1109/EMBC.2015.7319747
http://dx.doi.org/10.1016/j.engappai.2022.104807
http://dx.doi.org/10.1038/s41746-020-0291-x
http://dx.doi.org/10.1186/s40101-016-0113-7
http://dx.doi.org/10.30773/pi.2017.08.17
http://www.ncbi.nlm.nih.gov/pubmed/29486547
http://dx.doi.org/10.1007/s10286-018-0560-9
http://www.ncbi.nlm.nih.gov/pubmed/30155794
http://dx.doi.org/10.1038/ncomms15405
http://dx.doi.org/10.1038/s41598-019-44201-7
http://dx.doi.org/10.1038/s41598-022-22584-4
http://dx.doi.org/10.1109/TBCAS.2008.2008817
http://www.ncbi.nlm.nih.gov/pubmed/23853198
http://dx.doi.org/10.1016/j.jmva.2019.104535
http://dx.doi.org/10.1016/j.eswa.2023.120632

	Introduction
	Materials and Methods
	Dataset Details
	Data Exploration
	Napping and Awake Assessment
	Experiment Setup


	Results
	Discussion
	Strengths and Limitations

	Conclusions
	References

