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A B S T R A C T

Game engines are tools to facilitate video game development. They provide graphics, sound, and physics
simulation features, which would have to be otherwise implemented by developers. Even though essential
for modern commercial video game development, game engines are complex and developers often struggle
to understand their architecture, leading to maintainability and evolution issues that negatively affect video
game productions. In this paper, we present the Subsystem-Dependency Recovery Approach (SyDRA), which
helps game engine developers understand game engine architecture and therefore make informed game engine
development choices. By applying this approach to 10 open-source game engines, we obtain architectural
models that can be used to compare game engine architectures and identify and solve issues of excessive
coupling and folder nesting. Through a controlled experiment, we show that the inspection of the architectural
models derived from SyDRA enables developers to complete tasks related to architectural understanding and
impact analysis in less time and with higher correctness than without these models.
1. Introduction

Game engines are tools to facilitate and accelerate video game de-
velopment. They provide out-of-the-box features that are broad enough
to be used to create a variety of video games, for example, graphics
rendering, sound management, and physics simulation. Developing a
game engine from scratch is expensive and time-consuming, an en-
deavour only large video game companies can afford. While risky,
such endeavour brings benefits such as the possibility of optimising the
tool for a specific kind of game or game genre. Moreover, by creating
their in-house solution, companies avoid paying licensing fees while
being free to license their technology to others, such as CryEngine1 and
IdTech2 have done recently.

However, the advantages of developing a game engine only last as
long as the understanding of its structure remains. Over time, devel-
opment teams change due to high turnover [1, p. 292], and the game
engine code base changes, which causes it to drift away from its original
structure, in a process known as architectural drift or erosion [2, p. 2].
Moreover, due to the need to innovate and experiment with different
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video games, companies sometimes decide to re-purpose their game
engines by developing new features on top of a legacy architecture. In
this scenario, the lack of understanding of the original architecture of
the core game engine code causes maintenance and evolution problems.
An example of this kind of problem was reported by developers of the
Frostbite game engine, used by Bioware to develop Anthem in 20193:

‘‘Frostbite is like an in-house engine with all the
problems that entails — it’s poorly documented, hacked
together, and so on — with all the problems of an ex-
ternally sourced engine’’, said one former BioWare em-
ployee. ‘‘Nobody you actually work with designed it, so
you do not know why this thing works the way it does,
why this is named the way it is’’.

The lack of understanding of the architecture of a game engine
hinders a developer’s capacity to maintain and evolve it, considerably
affecting the schedule of a game development project. For example,
vailable online 22 July 2024
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the re-purposing of Frostbite to Dragon Age: Inquisition ‘‘took up
about a third of the project’s development time’’.4 Similarly, developers
from Bethesda added multiplayer support to Creation Engine, originally
made for single-player games only. During the development of Fallout
76, this feature caused several bugs and ‘‘put additional time pressure
on the schedule’’.5 Therefore, we can claim architectural understand-
ing impacts both the technical and managerial sides of video game
development.

While the problems reported by Frostbite and Creation Engine
developers reflect the reality of closed-source game engine develop-
ment, similar problems can be observed in open-source game engines.
Even though game engines such as Unreal and Godot maintain official
documentation and support forums, these data sources mostly focus on
providing video game developers with a way to ‘‘get started’’6 by ex-
plaining how to use the game engine’s features, while hiding low-level
aspects of their implementation. Therefore, game engine developers
wishing to re-purpose a game engine or choose which best fits their
needs cannot rely solely on this documentation. They must plunge into
the code, study its structures, and finally compare them with those
of other game engines to make informed game engine development
choices.

In this paper, we use the Subsystem Dependency Recovery Approach
(SyDRA), described in our previous work [3], to help game engine
developers understand game engine architecture and therefore make
informed game engine development choices. By applying SyDRA to
10 open-source game engines, we obtain architectural models that can
be used to compare game engine architectures and identify and solve
problems such as high coupling and low cohesion. Through a controlled
experiment with 16 participants, we show that the inspection of the ar-
chitectural models derived from SyDRA enables developers to complete
tasks related to architectural understanding and impact analysis in less
time and with higher correctness than without these models.

The implementation and evaluation of SyDRA enable us to answer
the following research questions:

• RQ1: Does SyDRA help developers understand game engines more
effectively than by simply inspecting the code?

• RQ2: Does SyDRA help game engine developers perform game
engine impact analysis more effectively than by simply inspecting
the code?

We answer positively to these two questions and conclude that by
using SyDRA, developers can better understand game engine architec-
ture without increasing their perceived workload. Our experiments also
provide insights into how developers perceive workload in software
analysis tools and how it correlates with their professional experience.

The paper is organised as follows. Section 2 presents related work on
software architecture and game engines. Section 3 provides a high-level
description of SyDRA, our software architecture recovery approach,
and how it was used to generate an architectural model of 10 open-
source game engines. Section 4 describes how the architectural models
resulting from SyDRA can help game engine developers solve folder
organisation and coupling issues, as well as make game engine devel-
opment choices. Section 5 describes the design and execution of a user
study and its results. Section 6 presents internal and external threats to
validity, and Section 7 presents the conclusion and future work.

4 https://gamerant.com/dragon-age-mark-darrah-bioware-problems/
5 https://kotaku.com/bethesda-zenimax-fallout-76-crunch-development-

849033233
6 https://dev.epicgames.com/documentation/en-us/unreal-engine/
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nderstanding-the-basics-of-unreal-engine.
2. Related work

The structure and purpose of game engines are often not well-
documented, and for this reason, several researchers have attempted
to use software architecture recovery techniques to search for ar-
chitectural structures in the source code and help developers assign
them meaning. For example, Munro et al. (2009) used Doxygen,7 a
popular documentation generation tool, to extract dependency infor-
mation from an open-source version of the IdTech game engine. This
data was then used to create dependency graphs, which aided ‘‘in
the process of identifying suitable improvements and enhancements
to a specific engine and have supported implementing these in an
appropriate manner’’.

Agrahari and Chimalakonda (2021) developed and used AC2, a
software analysis tool ‘‘to generate call graphs and collaboration graphs
across three releases’’ of Unreal Engine. These graphs helped them
identify architectural patterns in components, observe their evolution
and ‘‘aid in better comprehension of this complex and widely used game
engine for researchers and practitioners’’.

Researchers conduct experiments to evaluate the usefulness of ex-
tracted architectural models, for example, [6,7]. In these studies, they
present a set of architectural understanding tasks to developers. By
measuring how swiftly and correctly developers can perform tasks
with and without a supporting architectural model or documentation,
they assess the benefit this model brings to system understanding. In
Section 5, we describe how we designed and conducted a controlled
experiment based on the work of [7].

Alternatively, researchers may conduct field studies, observing how
developers and architects use them in real scenarios [8, p. 1]. However,
this kind of study requires collaboration with companies and long-term
observation. Considering the closed-source nature of video game and
game engine development, this would not be a viable option for our
study. As we explain in Section 3, SyDRA relies on the analysis of source
code and documentation, both of which must be openly available.

3. Approach

The Subsystem Dependency Recovery Approach (SyDRA) comprises
six steps, shown in Fig. 1, and it helps game engine developers to
analyse one or more game engines. SyDRA’s steps describe how a
developer can consistently select game engines to analyse, cluster their
files and folders and later cross-referencing this information with an
include graph. As a result, they obtain architectural models that can be
used to understand a game engine’s architectural structure, identify and
reduce excessive coupling, and increase cohesion.

Our implementation of SyDRA is available on GitHub,8 along with
ata and visualisations resulting from our analysis of 10 open-source
ame engines, which we also show and discuss in previous work [3].
e obtain these results by implementing SyDRA’s steps as follows:
1. System Selection: We select 10 open-source game engines from

itHub, searching for the ‘‘game engine’’ keyword, filtering by the
anguage C++, and then ordering the results by their popularity. We
onsider popularity to be the number of GitHub stars in a repository.
e chose this metric because it is ‘‘partial evidence for the repository

ontaining an engineered software project’’ [9, p. 7]. This way, we
void selecting ‘‘toy’’ projects which do not properly represent the scale
nd complexity of industry-grade game engines.
2. Subsystem Selection: For each selected game engine, we define

ow to cluster each file and folder into functional groups, which are
ubsystems. We consider 16 subsystems described in the ‘‘Runtime
ame Engine Architecture’’ by [10, p. 33], each corresponding to
ommon features needed to create most video games. For example,
raphics, audio, physics simulation and input device processing. We
ummarise this list of subsystems as shown in Table 1.

7 https://www.doxygen.nl
8 https://github.com/gamedev-studies/game-engine-analyser
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Fig. 1. Steps of our game engine analysis approach.
Table 1
Summarised ‘‘Runtime Game Engine Architecture’’ subsystem descriptions, adapted from Gregory (2018).
ID Subsystem Description

AUD Audio Manages audio playback and effects.
COR Core Manages engine initialisation and contains libraries for math, memory allocation, etc.
DEB Profiling & Debugging Manages performance stats, debugging via in-game menus or console.
EDI World Editor Enables visual game world-building.
FES Front End Manages GUI, menus, heads-up display (HUD), and video playback.
GMP Gameplay Foundations Manages the game object model, scripting and event/messaging system.
HID Human Interface Devices Manages game-specific input interfaces, physical I/O devices.
LLR Low-Level Renderer Manages cameras, textures, shaders, fonts, and general drawing tasks.
OMP Online Multiplayer Manages match-making and game state replication.
PHY Collision & Physics Manages forces and constraints, rigid bodies, ray/shape casting.
PLA Platform Independence Layer Manages platform-specific graphics, file systems, threading, etc.
RES Resources Manages the loading/caching of game assets, such as 3D models, textures, fonts, etc.
SDK Third-Party SDKs Enables interfacing with DirectX, OpenGL, Havok, PhysX, STL, etc.
SKA Skeletal Animation Manages animation state tree, inverse kinematics (IK), and mesh rendering.
SGC Scene Graph/ Culling Optimisations Computes spatial hash, occlusion, and level of detail (LOD).
VFX Visual Effects Enables light mapping, dynamic shadows, particles, decals, etc.
Fig. 2. Graph metrics used in our analysis of SyDRA’s results.
3. Subsystem Detection: For each selected game engine, we man-
ually cluster all files and folders into the selected subsystems. To
ensure files implementing the same features are clustered into the
same group, we consider their naming, folder hierarchy, mentions in
the documentation and the comments found in their source code to
determine their functionality.

4. Include Graph Generation: For each selected game engine, we
generate an include graph which represents dependencies between files.
This step is done automatically with the cinclude2dot tool.9

5. Architectural Model Generation: For each selected game en-
gine, we use the data obtained from Steps 3 and 4 to generate an
architectural model. We then load these models into Moose, a software
analysis platform which we describe in more detail in Section 5.3. This
step is done semi-automatically.

6. Architectural Model Visualisation: For each selected game
engine, we use the visualisation titled ‘‘Architectural map’’ from Moose
to generate a visual representation of the include graph, files, folders
and subsystems. This step is done semi-automatically.

Additionally, based on the number of nodes and edges on each
include graph, we compute the following metrics, illustrated in Fig. 2:

9 https://www.flourish.org/cinclude2dot/
3

• In-degree: The count of incoming edges of a node (e.g., the
Physics subsystem is included by three other subsystems).

• Out-degree: The count of outgoing edges of a node (e.g., the
Physics subsystem includes one other subsystem).

• Betweenness centrality: The extent to which a node lies in the
path of others [11, p. 758] (e.g., most subsystems include the
Physics subsystem, which in turn includes others).

It took us approximately six months to apply SyDRA’s steps to 10
open-source game engines. The most time-consuming step was subsys-
tem detection (Step 3), performed exclusively by the first author over
approximately two months. In Section 4, we present the architectural
models derived from the application of SyDRA. Furthermore, in Sec-
tion 5, we show examples of how the use of architectural models can
inform developers performing architecture understanding and impact
analysis tasks.

4. Application

As a result of applying the SyDRA, we obtained 10 architectural
models, one for each of the selected game engines. These models
are graphs where each node is a file, and each edge is an include
relationship between files. For example, using the Architectural Map

https://www.flourish.org/cinclude2dot/


Entertainment Computing 52 (2025) 100832G.C. Ullmann et al.

f
i

M
u
s
e
o
s

4

h
f
E
r
w
e
9
s
a
a

Fig. 3. Architectural Map showing files containing the word ‘‘camera’’ from Godot.
c
t

i

a
s

i
v
l
o
c
w
a
c
i

Fig. 4. Unreal Engine’s architectural model.

rom Moose, these files can be viewed clustered by subsystem, or
ndividually, as shown in Fig. 3.

Examining subsystems and their relationships in the Architectural
ap serves as a starting point for game engine developers seeking to

nderstand the structure and functionality of a game engine. In this
ection, we show some examples of visual and numerical information
xtracted from these 10 architectural models and how they help devel-
pers understand three aspects of game engines: subsystem coupling,
ubsystem cohesion and coupling between files and subsystems.

.1. Subsystem coupling

The models produced by the SyDRA enable us to visualise the
igh-level architecture of the game engine, meaning it shows us what
eatures are available and how they depend on each other. In Unreal
ngine and Godot, we detected all 16 subsystems described in the
eference architecture (see Fig. 4). In the remaining game engines,
e detected 12 or more subsystems. The only exception was OlcPix-
lGameEngine, in which we detected only five subsystems. Therefore,
0% of the game engines we analysed contain at least 75% of the
ubsystems described in the reference architecture, which shows there
re many similarities between the reference architecture and the actual
rchitecture of open-source game engines.

The Core (COR), Low-Level Renderer (LLR) and Resources (RES) are
the most frequently coupled subsystems, as shown in Table 2. As shown
in Table 1, these subsystems have several responsibilities, and we
believe this is the reason behind their high coupling. For example, the
Low-Level Renderer (LLR) subsystem goes beyond simply drawing on the
screen and also provides abstractions that, while visual, also relates
to other subsystems. For example, while camera functionality is part
4

Table 2
The top frequent subsystem coupling pairs.

Pair Count Pair Count

COR → LLR 9 COR → PHY 8
GMP → COR 9 FES → COR 8
LLR → COR 9 RES → COR 8
PHY → COR 9 SKA → COR 8
COR → RES 8 SKA → LLR 8
LLR → RES 8

of Low-Level Renderer (LLR), to know what is within the view of the
amera and therefore, what needs to be drawn, it depends on informa-
ion from the Scene Graph/Culling Optimizations (SGC) subsystem, which

provides culling and occlusion computation.
Core (COR), Low-Level Renderer (LLR) and Resources (RES) have high

n-degree and centrality, along with Platform Independence Layer (PLA),
which likewise centralises utilities and cross-platform compatibility
code. While this type of analysis enables us to detect coupling patterns,
it cannot explain why this coupling exists and whether it could be
reduced. For this reason, in Section 4.3, we show examples that explain
why certain subsystems are more coupled in certain game engines,
whether these coupling patterns repeat in different game engines and
what they show about the architecture.

While architectural models can give us insights into groups of
subsystems, or even groups of game engines, we can also focus on
a particular subsystem of a particular game engine to understand its
features. For example, on Fig. 5, we show that, upon inspection of
the Third-Party SDKs (SDK) subsystem of FlaxEngine, we can view the
include relationship between its libraries and several subsystems, and
from this relationships, we can infer the functionality of the libraries,
even if we do not know their functionality. For example, we can
infer DirectXMesh is a graphics-related library, due to it being included
by with the Low-Level Renderer (LLR) subsystem. Similarly, detex,10

texture decompression library, is included by the Resources (RES)
ubsystem, which is responsible for file loading and management.

In addition to their functional features, understanding the availabil-
ty of specific libraries within the Third-Party SDKs (SDK) can offer
aluable insights into both architectural considerations and functional
imitations. For example, Unreal Engine uses PhysX, a physics library
ptimised to leverage GPU acceleration typically found in NVidia video
ards. Conversely, Godot uses Bullet, and cannot benefit from this hard-
are performance boost. Consequently, when game engine developers
re faced with a decision between two platforms based on their physics
apabilities, this insight can serve to inform their choice. While present
n the code and folder structures, the inspection of the architectural

10 https://github.com/hglm/detex

https://github.com/hglm/detex
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Fig. 5. FlaxEngine include relationships between subsystems and Third-Party SDKs (SDK).
Fig. 6. Folder organisation pattern we found in O3DE.
model helps make this information more evident to the game engine
developer.

4.2. Subsystem cohesion

Especially on game engines that have been in development for
decades, such as Unreal, Godot and O3DE, the folder structure tends
to grow large and sometimes become excessively nested. Also, a small
number of folders contains the majority of files, which is an indicator of
low file cohesion. Architectural models based on files and folders, such
as those produced by SyDRA, highlight where the bulk of the source
code is located within the directory structure, and therefore points of
low file cohesion in this structure. For example, in O3DE, most of the
files implementing subsystem features are located in ./Code/Framework.
By analysing the subfolder organisation of each folder we observe that
the folders AzCore, AzFramework, AzNetworking and AzToolsFramework
share the same folder organisation pattern, comprised as follows:

• Features: Contain files that implement features. This folder al-
ways has the same name as its parent (e.g., AzCore has a folder
also named AzCore).

• Platform: Contains files that implement a part of Platform Inde-
pendence Layer (PLA) subsystem related to the ‘‘features’’ folder.

• Tests: Contains unit tests to features in the ‘‘features’’ folder.

We demonstrate this folder organisation pattern in Fig. 6. While its
rationale is not explained in O3DE’s documentation, we believe it was
created to break down the Platform Independence Layer (PLA), a large
subsystem that encompasses many features, into folders with a lower
file count. However, while highlighting the separation between O3DE’s
core and other subsystems, this organisation does not use its folder
hierarchy to cohesively group all subsystem code under one folder.
For example, AzQtComponents, which is a part of the Front End (FES)
5

Fig. 7. Alternative folder organisation for O3DE.

subsystem, is in the same hierarchy level as AzFramework, a folder
which contains files for several subsystems.

In Fig. 7, we show an alternative organisation that has two folders
in its top level, ‘‘Core’’ and ‘‘Features’’, which are then subdivided
by purpose: containing code from O3DE’s core only or from other
subsystems. Each of these top-level folders keeps its own Platform and
Test folders. Thus, we avoid naming repetition and create a more
semantic folder hierarchy, which separates the subsystems and their
features from the higher-level concept of ‘‘Core’’ vs. ‘‘Features’’.

While at first glance such folder-level refactoring may appear merely
aesthetic, it can help developers re-purpose game engines. By eliminat-
ing unnecessary nesting and clustering files by subsystem, developers
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Fig. 8. Architectural models.
can focus on going forward with the development of new features with-
out being encumbered by legacy architectural structures and naming
that no longer serve a purpose.

4.3. File and subsystem coupling

The inspection of the include relationships between files and the
cross-referencing of this information with game engine documentation,
when it exists, may give us detailed insights into how a particular part
of a subsystem works. In this section, we inspect subsystems in Panda3D
and GamePlay3d, as shown in Fig. 8.

For example, if we look into Panda3D’s Low-Level Renderer (LLR)
subsystem, we observe it has a high in-degree because of its display
folder, which contains files implementing graphics-related function-
ality used by the Scene Graph/Culling Optimizations (SGC) and Visual
Effects (VFX) subsystems. For instance, one of these files, graphicsState-
Guardian.h, implements a graphics state guardian (GSG), which receives
high-level rendering instructions (e.g., drawing a character present in
the scene graph) and then handles low-level rendering instructions in
a format the operating system and graphics hardware can understand.
As explained by Goslin and Mine (2004):

‘‘All code specific to rendering on a particular plat-
form is contained within a well-defined class called a
graphics state guardian. After the system transforms and
culls the scene graph, it hands off the graphics entities to
the GSG for rendering. A game or application only needs
to interact with the scene graph, which means the only
part of the code that the system must port and optimise
for a particular hardware platform is the local version of
the GSG class itself’’.

In GamePlay3d, the Profiling & Debugging (DEB) subsystem has
a high in-degree because its DebugNew.h file is included by several
subsystems to replace global new and delete C++ operators for ‘‘mem-
ory tracking’’.11 We observe a similar implementation in Urho3d. We
observe the Logger.h file is also frequently included for debugging pur-
poses. Even though debugging code would normally be removed upon
pushing to the master branch, we observe four files in GamePlay3d’s
repository still include either DebugNew.h or Logger.h.

These are just two examples of how detailed information about
subsystem functionality can help game engine developers understand
the subsystems they are working with. This information is essential
during the planning of game engine re-purposing, so game developers
can be aware of the existing architectural structures and how the
change or removal of one impacts others. In Section 5, we show
other examples of how the use of architectural models can support
architectural understanding and inform developers on impact analysis.

11 https://github.com/gameplay3d/gameplay/blob/4de92c4c6/gameplay/
src/DebugNew.h
6

Fig. 9. Our emergent open-source game engine architecture.

4.4. Discussion

‘‘And you see every time I made a further division, up came more
boxes based on these divisions until I had a huge pyramid of boxes.
Finally you see that while I was splitting the cycle up into finer and
finer pieces, I was also building a structure. (...) The overall name
of these interrelated structures, the genus of which the hierarchy
of containment and structure of causation are just species, is a
system’’.
Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance

As presented in Section 4, developers can identify architectural
problems and reflect on solutions by visualising and analysing game
engine architectural models. While useful for analysing game engines
individually, we can also combine models from different game engines
to observe which architectural patterns emerge from this combination,
and which are, therefore, shared among all the game engines in the
analysed set.

For example, in Fig. 9, we use a box-and-line diagram to represent
the most frequent relationships between subsystems on the 10 game
engines we analysed. In the centre of the diagram, we placed the
subsystems with the highest betweenness centrality, forming an inner
core (dark red). Next, we placed other subsystems which appear in
Table 2 in the outer core (light red). Finally, we placed the subsystems
which do not appear in Table 2 in the outer core’s periphery (white).
All relationships shown in the diagram are among the most frequent,
as shown in Table 2. When there was a tie (e.g., two pairs had the
same frequency), we chose the coupling pair with the highest sum of
betweenness centrality.

In this emergent architecture, we observe that Low-Level Renderer
(LLR) often inter-depends on Core (COR), which it uses to access func-
tionality in the Platform Compatibility Layer (PLA) and Resources (RES).

https://github.com/gameplay3d/gameplay/blob/4de92c4c6/gameplay/src/DebugNew.h
https://github.com/gameplay3d/gameplay/blob/4de92c4c6/gameplay/src/DebugNew.h
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Table 3
Experimental design.

Variable X Variable Y - Tool

Run VS Code Moose + VS Code
1 A B

It is often included by the World Editor (EDI) and Gameplay Foundations
(GMP), which are both visual interfaces between the user and the game
engine. Because it manages UI elements that emit events and trigger
actions throughout the system, Front End (FES) often depends on the
event/messaging system in Core (COR).

By providing a high-level view of subsystem includes, an emergent
game engine architecture such as we show here can provide an archi-
tectural reference to game engine developers wishing to build a new
game engine that structurally resembles the set of game engines we
analysed. It may also serve as a guide to impact analysis of an existing
game engine, showing which subsystems might be affected by a change
in any other number of subsystems.

5. Controlled experiment

We conduct a controlled experiment with 16 developers to de-
termine the qualitative success of SyDRA in supporting developers’
understanding and maintenance of game engines. We base our study
design on another similar study by Briand et al. (2001), henceforth
called ‘‘original experiment’’. In this section, we describe the design
and execution of our controlled experiment, presenting and discussing
the obtained results.

We employed a between-group 2 × 1 design, as described in Table 3.
The independent variables are the experimental runs (X) and the tools
used to analyse Godot (Y). The assignment of participants to the control
(A) and treatment (B) groups was done randomly to control learning
and fatigue effects. Tasks were shown randomly to participants, except
for Tasks 3 and 4, which depended on each other and could not be
understood if shown in reverse order. We provide more details about
our task choices in Section 5.4.

5.1. Hypotheses

The null hypothesis is stated as:

• H0: Using SyDRA provides no significant difference in the under-
standability and maintainability of game engine architecture.

The alternative hypotheses, i.e., what is expected to occur, are
stated as:

• H1: It is significantly easier to understand game engine architec-
ture by using SyDRA.

• H2: It is significantly easier to perform impact analysis (locate
changes) in game engines by using SyDRA.

5.2. Participants

We recruited 16 participants, all over 18 years of age and with
prior experience in object-oriented programming. We recruited them
via email or by asking them in person. Most participants are men under
30 based in Brazil or Canada. They are mostly students, researchers or
software developers outside the video game industry. They have mostly
2 to 5 years of software development experience and have used Unity
for student or hobby projects.

Participants’ familiarity with game engine usage and development
varied greatly. For example, while 57% of the participants reported
no experience with game engines, two participants reported develop-
ing their own game engines. This diversity of levels of experience is
important because it allows us to observe how the tools we selected
7

Fig. 10. Moose with Architectural Map visible on the top right.

for the study were used differently by each kind of developer and
their challenges. A more detailed breakdown of demographics can be
found in the replication package we published on our research group
website.12

5.3. Materials

In this study, participants analysed Godot,13 a cross-platform, free
and open-source game engine by Juan Linietsky and Ariel Manzur
released in 2014. We chose Godot due to its relevance to the open-
source developer community on GitHub, as explained in Section 3.
While control group participants used exclusively Visual Studio Code
to analyse Godot’s source code, treatment group participants used
both Moose + Visual Studio Code, and therefore had access to the
Architectural Map visualisation of Godot produced with SyDRA.

We created instructional documents to teach participants to use
the given tools. As we explain in Section 5.5, we asked participants
to read the document related to the tool they were about to use
before performing the tasks. These documents provided an overview of
features such as file searching and browsing, illustrated by screenshots.
At the end of each document, we also provided three optional warm-
up exercises designed to reinforce the instructions. Although similar to
the tasks in the experiment, these warm-ups were simpler and focused
on a single feature at a time. For example, in the Visual Studio Code
warm-ups, we asked participants to use the search feature to find and
count the number of files containing the word ‘‘Music’’. They could then
verify their answers on the last page of the document.

In this section, we provide an overview of the main features of
Moose and Visual Studio Code and our rationale for choosing these
tools for the study. We also describe the features participants used
during the experiment to aid them in the completion of the tasks
and show examples of the screenshots included in the instructional
documents.
Moose: A platform for software analysis14 composed of several tools
built on top of the Pharo15 programming language. It enables users
to define metamodels and create models based on them. It also al-
lows users to visualise these models as Architectural Maps, as ex-
plained in Section 3. Model entities can be written (or ‘‘propagated’’ in
Moose’s jargon) to a bus, which is a channel of communication between
tools [13, p. 130]. Moose tools, such as the Architectural Map, can then

12 https://www.ptidej.net/downloads/replications/icec24/index_html
13 https://github.com/godotengine/godot
14 https://moosetechnology.org/
15 https://pharo.org/

https://www.ptidej.net/downloads/replications/icec24/index_html
https://github.com/godotengine/godot
https://moosetechnology.org/
https://pharo.org/
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Fig. 11. Visual Studio Code, used by the control group participants.
Table 4
Examples of task statements.

Type Control group Treatment group

Architectural
Understanding

Search for the file servers/audio/audio_effect .h
and open it. Provide a short description of its
functionality.

Expand the Audio subsystem, expand the ‘‘audio’’
folder and propagate the file
servers/audio/audio_effect.h. Provide a short
description of its functionality.

Impact
Analysis

Suppose the rich text functionality in the Front
end subsystem of Godot was removed. Please
mention all files which may have to be changed as
a result of the removal of these functionalities.

Suppose the rich text functionality in the Front
end subsystem of Godot was removed. Please
mention all files which may have to be changed as
a result of the removal of these functionalities.
read entities from the bus and do something with them (e.g., draw a
visualisation).

During the study, as shown in Fig. 10, treatment group participants
located files and folders using the Architectural Map (top right) and
propagated them to a built-in source code browser to inspect the
source code (bottom). Participants could launch Visual Studio Code
from Moose built-in editor to use features such as code folding, syntax
highlighting, and search, not available on Moose. They could also use
Moose tag browser to see the list of files clustered into each subsystem,
represented as coloured tags (top left).
Visual Studio Code: A source code editor16 released by Microsoft in
2015. Also commonly referred to as VS Code. During the study, control
group participants used it to locate files and folders inside the Godot
repository, read source code and search for words as directed by the
task statements, as we show in Fig. 11. We chose VS Code due to its
broad popularity among software developers. According to the Stack
Overflow Developer Survey 2023, 74.09% of professional developers
and 78.39% of developers learning to code use VS Code.17

5.4. Tasks

We asked participants to perform nine tasks during the study, which
were of two kinds: architectural understanding and impact analysis.
In architectural understanding tasks, we asked participants to explain
game engine subsystems and dependencies between files. In impact
analysis tasks, we asked participants to point out which files should be
changed due to a change/removal of functionality in another part of
the system. Participants performed seven architectural understanding
tasks and two impact analysis tasks.

We wrote our task statements based on those provided in Appendix
A of the original experiment [7, p. 527]. We changed the statements
slightly to make them easier for novice developers to understand. We

16 https://code.visualstudio.com/
17 https://survey.stackoverflow.co/2023/#technology-most-popular-

technologies
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also adapted task statements to reflect the steps participants in different
groups had to perform to find files in the tools they were using, as
demonstrated in Table 4. For example, while in Task 2, we asked
treatment group participants to ‘‘Expand the Audio subsystem’’ and
then ‘‘propagate’’ a given file, we asked control group participants to
search the file by name and then open it.18 This way, we ensured both
participants were directed to the same file, even though they followed
different steps to find and open it.

5.5. Procedures

The study session was divided into three parts. First, we asked
participants to read and follow the instructional document described
in Section 5.3. Then, we asked them to perform the tasks. Finally,
participants completed a debriefing questionnaire, where we asked
them for background information and also for a workload assessment
of the tasks they performed. For the second and third parts, participants
submitted their answers via an online form, which also computed the
time elapsed between answers.

The debriefing questionnaire was divided into two parts.19 In ques-
tions 1 to 7, we asked participants about their professional backgrounds
and demographics. In questions 8 to 13, we asked participants to make
a workload assessment of the tasks they performed based on the NASA
TLX (Task Load Index) questionnaire. We chose NASA TLX because it
has been used for over 20 years by several studies that evaluate soft-
ware development [14, p. 668], interface design and decision-making
activities [15, p. 906].

We used the information provided by participants in the debriefing
questionnaire to qualitatively measure their perception of effort and
stress concerning the tools they used and the tasks they performed.
We also correlated their performance with their years of development
experience and familiarity with game engines to understand how each

18 See Folder 2 of the replication package for the complete task statements.
19 See Folder 2 of the replication package for the complete debriefing

questions/answers.

https://code.visualstudio.com/
https://survey.stackoverflow.co/2023/#technology-most-popular-technologies
https://survey.stackoverflow.co/2023/#technology-most-popular-technologies
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variable influences performance. We discuss these comparisons in more
detail in Section 4.

We remained available throughout the study session to support
participants but kept physically distanced from them. Our support
was limited to clarifying task descriptions when asked and resolving
technical issues with the computer and tools related to the study.

5.6. Measurements

We measured the level of game engine architectural understanding
by the participants by measuring the time they spent on tasks and how
correctly they completed tasks. We derived six dependent variables
from this data, as in the original experiment [7, p. 518]:

• UndTime: Time spent on architectural understanding tasks in
minutes.

• UndCorr : Correctness of architectural understanding tasks (e.g.,
the number of tasks correctly answered).

• ModTime: Time spent on impact analysis tasks in minutes.
• ModComp: Completeness of the impact analysis, obtained by di-

viding the number of correct files informed by the participant by
the actual number of correct files.

• ModCorr : Correctness of the impact analysis, obtained by dividing
the number of correct files informed by the participant by the
total number of files informed by the participant.

• ModRate: Modification rate, obtained by dividing the number of
correct files informed by the participant by ModTime.

The original study did not define architectural understanding cor-
ectness, so we defined it as binary: an answer is either correct (1)
r incorrect (0). Therefore, UndCorr ranges from zero to seven, given

there were seven architectural understanding tasks in total. For Impact
Analysis tasks, correctness is defined as the ratio between the number
of files the participant informed correctly, and the total number of files
they informed. Therefore,ModCorr ranges from zero to two, given there
were two impact analysis tasks in total.

5.7. Data analysis procedures

We collected data from participants throughout 16 sessions spread
across one month. Therefore, eight data points were available for
the control group and eight for the treatment group. All participants
answered all tasks and debriefing questions. We used the following
statistical techniques20 to determine whether the data collected during
the study was statistically significant:

1. Number of participants: We used a two-sample T-test to de-
termine the number of participants we would need to detect
statistically significant differences. We considered 𝛼 = 0.05, a
statistical power of 0.9 and standard deviations based on the
original experiment. For task completion time, we defined a
minimum difference of 1 min. For task correctness, we defined a
minimum 30% difference. The minimum number of participants
would be 14 in total. We exceeded this number by conducting
the study with 16 participants to ensure statistical significance.

2. Normality: We used both the Kolmogorov–Smirnov and the
Shapiro–Wilks’ W normality tests. In both cases, we observed all
dependent variables had non-normal distributions.

3. Statistical Significance: We used a non-parametric significance
test that is adequate for non-normal data, the Wilcoxon Matched
Pairs test. To be significant, the result of the test, called the Z
value, must exceed the critical Z value for 𝛼 = 0.05, one-tailed,
as provided by the Wilcoxon Signed-Ranks Table,21. We observed
UndTime UndCorr, ModCorr and ModRate exceeded the critical Z
value, while ModTime and ModComp did not.

20 See Folder 3 of the replication package for statistical testing results.
21 https://real-statistics.com/statistics-tables/wilcoxon-signed-ranks-table/
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4. Effect Size: We computed the effect size for each variable by cal-
culating the difference between the control group and treatment
group arithmetic means, then dividing the result by the geo-
metric mean of the control group and treatment group standard
deviations.

.8. Results

In Table 5 we show a summary of the dependent variables collected
rom the 16 participants of the study. The columns represent the
ean (𝑋), the median (𝑚̃), minimum and maximum values and stan-

dard deviation (s). On average, participants took 62 min to complete
understanding tasks and 31 min to complete impact analysis tasks,
totalling 1 h and 33 min. From the standard deviation, we observe a
high variability in both completion time and correctness, reflecting the
participants’ diverse levels of experience.

By observing variables related to time (UndTime) and correctness
(UndCorr) together in Figs. 12(a) and 12(c), we can understand how
the tool used by each group influenced the performance of participants
in the architectural understanding tasks. While the treatment group
completed the tasks faster, both groups completed them with the same
level of correctness. Therefore, using SyDRA decreases task completion
time but has no effect on task correctness.

In impact analysis tasks, the control group completed tasks faster
but also less correctly than the treatment group, as we show in Figs. 12(b
and 12(d). This happened because, by using exclusively VS Code,
participants had more difficulty finding all outgoing and incoming
include relationships between files and ended their analysis prema-
turely. In contrast, participants using SyDRA could succinctly visualise
relationships as arrows in the Architectural Map, which helped them
complete impact analysis more correctly.

However, we must also consider statistical significance and effect
size when interpreting these results. For example, while UndTime, Und-
Corr and ModCorr are statistically significant, ModTime is not, which
means the average impact analysis time observed in this study cannot
be generalised. Moreover, we did not identify a large effect size for any
statistically significant variables, as shown in Table 6. Considering the
scale defined by [16] for software engineering, the largest effect size
for a statistically significant variable was ‘‘medium’’ for ModCorr.

Conclusion of the Controlled Experiment:
Based on our observations, we accept both H1 and H2. The results
show that using SyDRA enables a statistically significant decrease
in task completion time while not affecting task correctness. Re-
garding impact analysis, using SyDRA results in slightly higher
task correctness but no statistically significant difference in task
completion time.

5.9. Discussion

In Fig. 13, we compare participant answers about six aspects of task
load described in the NASA TLX questionnaire: mental, physical and
temporal demand, perception of success, effort and frustration. As for
the perception of success and temporal demand, there was no difference
between groups, which is evidence that the tools the participants used
did not make them feel overwhelmed.

We also observe that the participant’s perception of success cor-
relates with their experience level. For example, video game devel-
opers reported a higher perception of success, lower mental demand
and lower frustration than non-video game developers and students/
researchers. We observe the same pattern when comparing novice (less
than five years of professional experience) and experienced (five years
of professional experience or more) developers of all backgrounds.

The treatment group reported lower mental demand, perception of
effort and frustration when compared to the control group, which is

evidence that participants felt more comfortable using VS Code with

https://real-statistics.com/statistics-tables/wilcoxon-signed-ranks-table/
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Table 5
Descriptive statistics for each dependent variable.

Variable 𝑋 𝑚̃ min max s Measurement

UndTime 62.0 67.3 25.0 128.7 30.0 minutes
UndCorr 6.1 6.5 2.0 7.0 1.3 tasks
ModTime 31.4 25.4 10.0 62.9 17.1 minutes
ModCorr 1.3 1.4 0.0 2.0 0.7 ratio actual/expected correct file count
ModComp 1.5 1.1 0.6 3.6 0.9 ratio provided correct/total file count
ModRate 0.0 0.0 0.0 0.0 0.0 ratio correct files/ModTime
Fig. 12. Correctness and completion time distribution for both study groups.
Fig. 13. Participants’ answers for NASA TLX questions.
Table 6
Effect size for each dependent variable.

Variable 𝑋 control 𝑋 treatment Effect size Z

UndTime 65.5 49.2 0.4 20.0
UndCorr 5.9 6.2 0.3 10.5
ModTime 21.4 32.0 1.7 5.0
ModComp 1.0 2.0 1.5 5.0
ModCorr 1.1 1.5 0.5 7.0
ModRate 0.0 0.0 0.2 12.0
10
the SyDRA-generated architectural model instead of VS Code only. In
contrast, the treatment group reported higher physical demand than the
control group. However, physical demand is not a major contributor to
workload in software development [14, p. 671]. Therefore, we believe
these reports of high physical demand are not evidence that using
SyDRA necessarily demands more body movement or effort than VS
Code only.

Overall, the data we collected through the NASA TLX questionnaire
shows that participants perceive a lower task load when using SyDRA,
even though this perception correlates to each participant’s professional
experience and familiarity with the video game domain. The largest
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difference we observed between the groups was in the perception of
task mental demand and frustration.

6. Threats to validity

In this section, we discuss threats to the validity of SyDRA and the
controlled experiment.

6.1. External validity

We acknowledge that the game engines we selected for analysis
with SyDRA may not be entirely representative of all open-source game
engines or the entire video game industry. We mitigated this issue
by selecting game engines based on their popularity, as described in
Section 3. We confined our analysis to C++ game engines, which may
have led to the exclusion of pertinent game engines developed in other
programming languages.

Moreover, we acknowledge using ‘‘Runtime Game Engine Archi-
tecture’’ [10, p. 33] in subsystem detection across all game engines,
potentially introducing a bias. As a mitigation strategy, in future work,
we intend to encompass a wider spectrum of subsystems, both obtained
via SyDRA and game engine development literature.

In the controlled experiment, we used a 2 × 1 design, not within-
subject, which differs from the original 2 × 2 within-subject design.
We chose this design due to limited participant availability, which
made it hard or sometimes impossible to ensure all participants could
participate twice in the study. As explained in the original experiment,
by using the 2 × 2 within-subject design ‘‘the error variance due to
differences among subjects is reduced’’ [7, p. 518]. We are aware that
by choosing the 2 × 1 design we risked obtaining higher error variance
for all dependent variables. In future work, we intend to run another
study with more participants and also use a 2 × 2 within-subject design.

Moreover, a confounding effect may result from our selection of
game engines, analysis tools and participants for the controlled experi-
ment. For example, Godot may not be representative of all open-source
game engines in size and complexity. Also, most participants did not
have prior experience with video game development and therefore do
not accurately represent developers in these domains. Finally, we did
not detect a large effect size for any of the statistically significant de-
pendent variables, which is evidence that our results may not generalise
to other game engines or more diverse participants.

6.2. Internal validity

The subsystem detection step of SyDRA was performed manually
by the first author, which may have introduced a bias in the process.
To mitigate this issue, we intend to assign multiple people to work
in this step and later combine their results by consensus. We also
intend to explore quasi-automated approaches for subsystem detection
to determine the most suitable method for game engines and other
types of software.

Moreover, we are aware that our analysis of SyDRA’s results is
dependent on Moose behaviour, and also on the graph metric (e.g., in-
degree and centrality) we extracted from the architectural models.
Changing them could also change the results and therefore our percep-
tion of these game engine architectures. In future work, we intend to
experiment with different software analysis and visualisation tools and
measure to what extent they can help developers perform architectural
understanding, impact analysis and testing activities.

In the context of the controlled experiment, while we measured
how quickly and correctly participants completed understanding and
impact analysis tasks, we did not measure whether they would be able
to implement the changes in the source code quickly and correctly as
well. Also, while tasks allowed for several possible solutions, we did not
verify whether the solution provided by the participant was the best or
most optimised in practice, only whether it was architecturally sound.
11
We are aware that most task statements and debriefing questions
allowed for multiple interpretations and that may have been the reason
for the large variation in terms of task completion time and task
correctness we observed. An observer effect may have also contributed
to this variation, considering participants may have felt less stressed or
behaved differently if they were not being observed. As we explained
in Section 5.5, we tried to mitigate this effect by physically distancing
from the participants and interacting with them only when necessary.

A maturation effect may have occurred in the study due to par-
ticipants learning how the tools work as the study proceeded. Some
participants also had prior experience with the tools used in the study,
which might have helped them complete tasks faster and more correctly
than others. As stated in Section 5.3, we mitigated this effect by
choosing a tool that is known by most developers (Visual Studio Code),
as well as providing instructional documents for both tools.

An instrumentation effect may also have occurred due to differences
between control and treatment task descriptions. As explained in Sec-
tion 5.4, we did our best to ensure the tasks could be completed with
a similar amount of effort in both tools and that the task descriptions
were clear and stated in the same way to both groups. However, it is
possible that these differences also influenced the participants’ abilities
to understand and complete tasks more correctly.

7. Conclusion

In this paper, we present the Subsystem-Dependency Recovery Ap-
proach (SyDRA). By applying this approach to 10 open-source game
engines, we obtain architectural models which can be used to compare
game engine architectures and identify and solve problems such as high
coupling and low cohesion. Additionally, we showed and discussed
ways in which the metrics and visualisations derived from architectural
models can aid game engine development, such as:

• Architectural Understanding: Architectural model visualisations
provide a friendly way for novice game engine developers to
understand this kind of system and start developing their own
subsystems or plugins. Moreover, we show how the use of ar-
chitectural models can aid architectural understanding in Sec-
tion 5.8.

• Impact Analysis: Game engine developers can refactor their code
more safely by visualising how changes to a subsystem could
impact the whole game engine.

• Reference Extraction: Game engine architects seeking to design
a new engine can extract architectural models from similar sys-
tems and use them as references. They can either extract and
visualise data for a single system or join data from multiple
systems within the same family, as we show in Fig. 9. This is
useful both for large companies and small indie developers who
develop tailor-made solutions, e.g., for performance.

Through a controlled experiment with 16 software developers, we
evaluated the extent to which SyDRA helps developers perform archi-
tecture understanding and impact analysis tasks. We asked developers
to analyse Godot, an open-source game engine. While control group
participants used exclusively VS Code to analyse Godot’s source code,
treatment group participants used both Moose + Visual Studio Code,
and therefore had access to the Architectural Map visualisation of
Godot produced with SyDRA. Our experiment’s most important con-
tribution is showing a small yet statistically significant decrease in
completion time for architectural understanding tasks when using VS
Code in conjunction with the SyDRA-generated architectural model.

Finally, our analysis of the answers in the experiment’s debriefing
questionnaires shows that by using SyDRA developers can better un-
derstand game engine architecture while not increasing their perceived
workload. In future work, we intend to ask game engine developers to

evaluate our suggestions for subsystem coupling reduction (Section 4.1)
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and subsystem cohesion increase (as shown in Section 4.2), as well as
the emergent game engine architecture we propose in Section 4.4. We
aim to understand whether these suggestions are useful in a profes-
sional video game development setting, and we will seek collaboration
with independent video game development companies to achieve this.

Moreover, we are aware SyDRA is flexible enough to be used in
the analysis of other software families which are fundamental to video
game production, such as image and sound editors and 3D modelling
software. Therefore, we intend to apply SyDRA to these software fam-
ilies, to identify common architectural structures that can guide their
creation, maintenance and evolution.
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