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A B S T R A C T

In the Vehicle-to-Grid (V2G) scenario, a multitude of coordinated electric vehicles (EVs) equipped with high-
capacity batteries actively participate in power grid dispatching as energy carriers, aiming to achieve a
tripartite objective encompassing peak load reduction and valley filling, enhanced utilization of renewable
energy sources, and added benefits for electric vehicle owners. To address the existing limitations in
the charging–discharging decision-making process for electric vehicles based on V2G, such as the lack of
consideration for charging pile constraints, EV profitability, EV transportation timeliness, and high costs
associated with central servers, we proposed a reinforcement learning-based Multi-vehicle Joint Routing
and Charging–Discharging Decision algorithm (MJRCDD). Firstly, the Markov decision process (MDP) was
established to describe the problem, and the route selection and charging–discharging behavior of the vehicle
were innovatively integrated in the vehicle action space. Secondly, the multi-vehicle joint route planning
and charging–discharging decision problem was solved by multi-agent reinforcement learning. Finally, the
effectiveness of MJRCDD was verified by simulation and comparison experiments based on PeMS.
1. Introduction

It is projected that the demand for oil will continue to experience
a growth rate of 54 percent until 2035. However, conventional inter-
nal combustion engine vehicles typically exhibit an energy efficiency
ranging from 20 to 30 percent, indicating that only a fraction of the
fuel consumed by vehicles can be effectively converted into mechanical
energy. On the other hand, the energy efficiency of electric vehicles is
usually between 60 and 70 percent, so it is clear that electric vehicles
are more energy efficient than internal combustion engines [1]. In
addition to the continued exploitation of traditional energy sources,
the continued development of new technologies has increased the
efficiency of renewable energy sources such as wind and solar power.
By 2050, solar power is expected to provide about 40 percent of the
electricity supply, wind power about 31 percent, and other renewable
energy sources such as hydro-power, geothermal energy, biomass, etc.,
about 29 percent of the electricity supply. This means that it is possible
for renewable energy to replace traditional fossil fuels as the dominant
source of electricity supply [2].

∗ Corresponding author.
E-mail address: mmhassan@ksu.edu.sa (M.M. Hassan).

The global electric vehicle fleet is expected to reach 220 million by
2030. For example, an average car needs about 10L of gasoline, while
a motorcycle needs about 5L of oil per hundred kilometers. Electric
vehicles only need 20 kWh of electricity [3]. From the perspective
of cost alone, electric vehicles are more economical than traditional
cars and motorcycles. Furthermore, EVs are able to provide ancillary
services to the power grid during high demand periods or outage
situations [4].

Therefore, considering the advantages of electric vehicles men-
tioned above, they will definitely be the future trend. However, the
large charging demand brought by the high penetration rate of electric
vehicles will increase the load of the power grid, especially in peak
times and for areas with dense charging stations, it will have a certain
impact on the power grid [5]. Although the development of renewable
energy power grid can alleviate the energy crisis to a certain extent, its
output is affected by weather, season, geography and other factors, and
such instability will affect the stability and security of power grid [6].
While many renewable energy generation facilities are built in remote
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areas, the load centers of the grid are usually in urban and industrial
areas, which makes it difficult to transfer and consume renewable
energy, so much of renewable energy is still discarded.

In order to solve the above problems, Vehicle-to-Grid (V2G) tech-
nology [7] comes into being and becomes a very promising way.
The technology takes advantage of two-way energy transfers between
charging stations and electric vehicles, which can offload surplus en-
ergy into the grid [8]. This way of using the energy stored by a large
number of EVs as a buffer between renewable energy and the grid can
balance the grid load and improve the grid stability. Secondly, it can
store renewable energy and reduce energy waste. Finally, it can create
additional profit for EV users and further facilitate the popularization
of EVs, achieving a win-win situation [9].

Considering the real V2G scenario, electric vehicles can buy and
sell energy between Renewable-energy (R-type) charging stations and
traditional grid (G-type) charging stations to gain profits and reduce
their own travel costs. The fact is that the charging price at R-type
station is usually less than the discharging price at G-type station, and
is much less than the charging price at G-type station. Therefore, the
owners of EVs may make profit by charging at R-type stations and
discharging at G-type stations. However, the number of charging and
discharging piles in the charging station is limited, and each electric
vehicle is bounded by its departure and destination as well as its
tolerable travel time. Although many papers have assumed there is an
aggregator as a bridge between EVs and the smart grid [10], in this
paper, we adopt a distributed method, regarding each electric vehicle
in the system as an agent, which achieves the goal of maximizing the
overall profits by selecting its actions. The main contributions of this
paper are as follows:

• A system model is established to study the optimization of multi-
vehicle charging and discharging profits under time constraints by
integrating the interaction between vehicles. The Markov decision
process (MDP) model is established to describe the state of the
agent, the state transition equation is derived, and the appropriate
reward function is given. In addition, the vehicle routing and
charging and discharging behavior are combined to form the
optional actions of the agent innovatively, and the action set and
action value function are given.

• A reinforcement learning-based multi-vehicle joint route plan-
ning and charging–discharging decision algorithm (MJRCDD) is
proposed in this study. The algorithm utilizes MADDPG, a multi-
agent general model, and follows the framework of centralized
training and decentralized execution. It encompasses predicting
other vehicle strategies within the system and training vehicles
with strategy sets. By continuously interacting with the road
environment and accumulating experience, vehicles can learn the
optimal strategy for each state. Finally, a simulation experiment
of the algorithm is conducted on PeMS to verify its effectiveness
in multi-vehicle and multi-constraint scenarios under time con-
straints for EV charging and discharging scheduling by comparing
it with other algorithms.

The subsequent sections of this paper are structured as follows:
ection 2 provides a comprehensive review and analysis of the relevant
iterature. In Section 3, we present the formulaic expression of the
ystem model and problem. Section 4 introduces and elucidates the
ulti-vehicle joint routing and charging–discharging decision algo-

ithm (MJRCDD). To evaluate its performance, we simulate the urban
raffic map of Santa Clara, California in Section 5. Finally, in Section 6,
e summarize our findings.

. Related work

.1. Effectiveness of V2G

Many studies have demonstrated the effectiveness of V2G in EV
harging and discharging applications. In [11], with V2G as the goal
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to minimize losses in the system, the author makes a comprehensive
cost analysis of strategies based on active power dispatching (APD) and
reactive power dispatching (RPD), and verifies that integrating electric
vehicles into distribution systems to support the grid by providing
a flexible power management is a promising prospect. In [12], the
author proposed the water cycle algorithm (WCA) of the EV charging
model, and found that the bidirectional operation of the charging sta-
tion could accommodate more EV without overloading the distribution
transformer. Most importantly, using electric vehicles as reactive power
compensators can improve grid voltage distribution without reducing
battery life. The authors of Ref. [13] propose an intelligent framework
based on Internet of Things (IoT) and edge computing to effectively
manage V2G operations, which can handle distributed energy, con-
tribute to grid stability, improve its reliability, and improve power
efficiency.

2.2. Deficiencies in existing work

With more and more complicated problem scenes in reality, many
researches have limitations in practical application. In literature [14],
Guo Y et al. proposed a two-stage framework to effectively manage
EV charging and discharging behaviors. However, this method is not
suitable for real-time scenarios where EV charging demand changes and
electricity price changes are more complex. Yang H [15] et al. proposed
an optimization model for route selection and charging navigation of
electric vehicles. However, the setting that electric vehicles can only
sell surplus energy at the destination makes it unable to optimize
the economic benefits of owners in real scenarios. Liu P [16] et al.
proposed K shortest path joint routing scheduling algorithm (KSP-JRS)
based on A* algorithm of artificial intelligence, considering various
constraints and aiming at improving the overall economic benefits of
electric vehicles. However, the whole algorithm is centralized. When
it is applied to super large-scale cities, it is impractical to handle all
scheduling tasks only through a limited number of central servers.
Subsequently, the author proposed a distributed joint path planning
and charge–discharge decision algorithm (JPPCDD) in literature [17]
to solve this problem. Unfortunately, the algorithm adopts best-effort
in maximum vehicle travel time and does not have accurate constraints.

2.3. Reinforcement learning in V2G

In recent years, reinforcement learning (RL) has been widely used
in complex decision-making process [18], and it is often used to solve
real-time charging–discharging scheduling problems in V2G field. Yao
L et al. [19] coordinated charging tasks of multiple electric vehicles in
a parking lot through binary programming strategy, which, however,
depended on prior knowledge in the system. In contrast, model-free
methods can learn good control strategies based on reinforcement
learning and do not depend on any knowledge of the system [20].
Literature [21] uses Q table to estimate action value function through
discrete electricity price and charging behavior, but this method can
only deal with a small number of states and actions. Secondly, the
decentralization procedure has a great influence on the performance. In
order to compensate for its limitations, literature [22] employs linear
basis functions as an approximation method for the action value func-
tion. However, linear approximators are inadequate when confronted
with nonlinear problems. In addition, literature [23] uses nonlinear ker-
nel mean regression operators to fit action value functions. However,
this method relies too much on the determination of kernel function
and its parameters. In general, the limited approximation ability of the
above methods hinders their application in real world scenarios.

2.4. Deep learning in V2G

With the development of deep learning, neural networks have the
potential to become universal approximators [24]. Deep neural net-
works have excellent performance in complex mapping learning of
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high dimensional data and in many complex decision applications.
Zhang et al. proposed a new joint charging scheduling and compu-
tation offloading scheme (OCEAN) for Electric Vehicle-assisted Multi-
access Edge Computing [25]. The paper formulated a cooperative
two-timescale optimization problem to minimize the charging load and
its variance subject to the performance requirements of computation
tasks. In [26], the author proposed an EV charging navigation algo-
rithm based on deep reinforcement learning, aiming to minimize the
total driving time and charging cost. In literature [27], the author de-
scribed EV charging–discharging scheduling problem as a constrained
Markov decision process (CMDP) to find a scheduling strategy to min-
imize charging cost, and proposed a model-free method based on
safety deep reinforcement learning (SDRL) to solve the CMDP problem.
However, the problem is that these methods do not take into account
the effects of multiple electric vehicles, making the study inapplicable
to real-world scenarios.

Besides V2G technologies, some work proposed V2V energy trad-
ing [28], however, the small energy transferring bandwidth and strict
site requirements, limited the application of this technology.

3. System model

3.1. Problem background

As trajectory planning has been a very important research topic
in the area of IoV [29], in addition to participating in power grid
dispatching as a mobile energy storage device, EV’s travel requirements
as a means of transportation should not be affected. Uncoordinated
charging behavior will easily cause congestion at the charging sta-
tions [30]. In this paper, the joint routing and charging–discharging
decision scheduling of electric vehicles are studied under the constraint
of vehicle travel destination and maximum vehicle travel time.

In this scenario, ensuring that the one-time routing scheme planned
for the vehicle and the subsequent charging–discharging decision based
on this scheme can meet the time requirements poses a challenge
for the game-based JPPCDD method proposed in literature [17]. On
the contrary, the vehicle needs to ‘‘try’’ different schemes again and
again, actually gets feedback by choosing the action and comparing
the time spent after implementation to the maximum travel time, and
then trains itself several times based on that feedback to achieve the
given goal. The reinforcement learning is grounded in the ‘‘trial and
error’’ behavior akin to that observed in animals, wherein the agent
receives feedback subsequent to its actions [18], it subsequently learns
and deliberates based on this feedback, thereby adapting its behavior
more effectively to the environment. In this paper, based on the V2G
scenario, each vehicle in the system, as an agent, can achieve the goal
of maximizing the overall profits of the vehicle under the constraint
conditions by selecting corresponding actions of route selection and
charging–discharging.

3.2. Problem formulation

This section introduces the relevant instance definition, relevant
variable setting, target problem description and relevant constraint
formulation in the scenario. The physical objects in the system include
electric vehicles and charging stations. As 6G [31] and privacy preserv-
ing [32] can be utilized to support IoV, the communication and data
will not be considered in this paper. The symbolic variables related
to the vehicle are given in Table 1. The charging–discharging station
and its behavior here are the action set of the agent, and its attribute
information is given in Table 2. Table 3 shows the related symbolic
variables needed for system modeling.

According to the above variables, we can express the objective
function as Eq. (1), where the constraints are shown as Eqs. (2), (3),
(4), and (5) respectively.

𝑀𝑎𝑥
∑

𝑅𝑓𝑖𝑛𝑎𝑙
𝑖 (1)
𝑖∈
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Table 1
Symbolic variable related to vehicle.

Notation Description

 The set of all EV
𝑇 𝑜𝑡𝑎𝑙𝑖 The total time specified for the journey of EV i
𝑆𝑡𝑎𝑟𝑡𝑖 The departure of the journey for EV i
𝐸𝑛𝑑𝑖 The destination of the journey for EV i
𝐸𝑖𝑛𝑖𝑡𝑖 The Electric quantity at the departure of EV i
𝐸𝑚𝑎𝑥𝑖 Maximum battery capacity of EV i
𝑙𝑜𝑐𝑖 The station location of EV i in the current state
𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑖𝑖 The time when EV i left its current position
𝑒𝑛𝑒𝑟𝑔𝑦𝑙𝑜𝑐𝑖𝑖 The electric charge of the EV i when it leaves its current position
 Virtual node in the graph
 The set of all nodes in the graph

Table 2
Symbolic variable related to station.

Notation Description

𝑎𝑡𝑡𝑟𝑖 The dimensional column vector, consisting of the following
symbols, represents all the information about this station

𝑗𝑐ℎ𝑛𝑢𝑚 Number of charging piles at node j

𝑗𝑑𝑖𝑠𝑛𝑢𝑚 Number of discharge piles at node j

𝑋𝑅
𝑗 The 0/1 variable that indicates whether node j is a

renewable energy charging station

𝑋𝐺
𝑗 The 0/1 variable that indicates whether node j is a grid

charging station

𝑃𝑜𝑤𝑐
𝑗 Charging power of node i

𝑃𝑜𝑤𝑑
𝑗 Discharging power of node i

𝑊𝑗𝑐 Charging price of the charging station at node i
𝑊𝑗𝑑 Discharging price of the discharging station at node i

𝑖𝑛(𝑗) The set of incoming edges of the node j
𝑜𝑢𝑡(𝑗) The set of outcoming edges of the node j

Table 3
Symbolic variables related to system modeling.

Notation Description

 The set of all the states
 The set of all actions
𝑅𝑡+1 The corresponding reward value of (𝑠𝑡 , 𝑎𝑡)
𝑅𝑖𝑗 The 0/1 variable that indicates Whether node i can reach node j
𝑗𝑐 The EV chooses to charge itself at node j
𝑗𝑑 The EV chooses to discharge itself at node j
𝑗𝑝 The EV chooses to pass by at node j
𝑇𝑤𝑎𝑖𝑡
𝑗 The waiting time for EV at station j

𝛼𝐴 Electricity consumption per vehicle distance
𝑣 Vehicle speed
𝑑𝑖𝑗 Distance from node i to node j

𝑅𝑖𝑛𝑖𝑡
𝑖 Initial cumulative reward for EV i

𝑅𝑓𝑖𝑛𝑎𝑙
𝑖 Final cumulative reward for EV i

𝐺𝑡 The system eventually accumulates rewards
𝑄𝜋 (𝑠, 𝑎) The value of action 𝑎 at state 𝑠, 𝑄𝜋 for short

∑

𝑚∈𝑖𝑛(𝑗)
𝑋𝑐𝑎𝑟

𝑚 −
∑

𝑘∈𝑜𝑢𝑡(𝑗)
𝑋𝑐𝑎𝑟

𝑘 =

⎧

⎪

⎨

⎪

⎩

−1 𝑗 = 𝑆𝑡𝑎𝑟𝑡𝑖
0 ∀𝑗 ∈ 𝑍⧵ 𝑆𝑡𝑎𝑟𝑡𝑖, 𝐸𝑛𝑑𝑖, 𝑉𝑁
1 𝑗 = 𝐸𝑛𝑑𝑖, 𝑉 𝑁

(2)

≤ 𝑒𝑛𝑒𝑟𝑔𝑦𝑙𝑜𝑐𝑖𝑖 ≤ 𝐸𝑚𝑎𝑥𝑖, (∀𝑖 ∈ 𝑉 ) ∩ (∀𝑙𝑜𝑐𝑖 ∈ 𝑁) (3)

𝑖𝑚𝑒𝐸𝑛𝑑𝑖
𝑖 ≤ 𝑇 𝑜𝑡𝑎𝑙𝑖, (∀𝑖 ∈ 𝑉 ) (4)

𝑅𝑙𝑜𝑐𝑖𝑘 = 1
𝑅𝑘𝐸𝑛𝑑𝑖 = 1

(5)

𝑅𝑓𝑖𝑛𝑎𝑙
𝑖 in Eq. (1) represents the final cumulative reward of the EV 𝑖,

as described in Table 3. Its calculation is given in the reward calculation

of MDP below. Since the system aims to maximize the overall vehicle
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profits, the goal is the sum of the final reward of all vehicles. Eq. (2)
is the continuity condition of the route in graph theory, indicating
that except for the departure and the destination, the inbound degree
of other nodes must be equal to the outbound degree. In this paper,
the vehicle stops only when it reaches its destination or virtual node,
otherwise it will continue to select the next node, thus ensuring the
constraint of Eq. (2). Eq. (3) is the energy constraint, which means
that the electric quantity of any vehicle in the system should not be
negative at any node, and should not exceed the maximum battery
capacity. When discharging, the vehicle is limited to ensure 30% of
the maximum electric quantity of it. Because the vehicle in the system
is a mobile energy storage device with high battery capacity, 30% of
the maximum electric quantity ensures that it will not stop on the road
due to lack of electricity, thus meeting the requirements of Eq. (3).

Eq. (4) represents a crucial constraint on vehicle travel time,
wherein the duration for any vehicle to reach its destination must not
exceed the specified maximum travel time. To address this requirement,
this study draws inspiration from reinforcement learning techniques
regarding vehicles as agents, employing continuous attempts and final
reward assignment. Eq. (5) is a constraint on alternative stations,
respectively indicating that the nodes 𝑘 to be reached by vehicles
ext are reachable at the current location 𝑙𝑜𝑐𝑖 and node 𝑘 can reach
he destination of vehicles 𝐸𝑛𝑑𝑖, which is also in line with common
onstraints. In contrast to the JPPCDD’s scenario, this paper does
ot specify a particular waiting position as the constraints on the
aximum travel time for vehicle charging–discharging behavior are
ore significant than those on the number of waiting positions. Instead,

he waiting time is calculated into the final time expense of the vehicle
nd is restricted according to the time constraint.

. Multi-vehicle joint routing scheduling and charging–disc-
arging decision algorithm based on reinforcement learning

To solve the above problem and find out the strategy that satisfies
he above constraints and maximizes the objective function under the
ulti-vehicle scenario, this section proposes the multi-vehicle joint

outing scheduling and charging and discharging decision algorithm
ased on reinforcement learning (MJRCDD). The overall structure of
he model is shown in Fig. 1. Firstly, the specific scenario of electric
ehicles is abstractable and formulaic, which has been completed in the
revious section. Action and other features are extracted to establish
he basic Markov decision process of reinforcement learning. The MDP
s chosen because it is able to accurately describe and solve decision
roblems in stochastic processes and many existing works such as [27,
3,34] also use it to model the process of EV charging/discharging.
hen, based on MDP, the multi-agent depth deterministic gradient
trategy MJRCDD provides the joint routing scheduling and charge–
ischarge scheme under multi-vehicle and multi-constraint scenarios
fter multiple iteration training for the model environment.

.1. Establish Markov decision process (MDP)

This section corresponds to the steps of establishing Markov deci-
ion process according to the formulated problem in Fig. 1. Markov
ecision process framework has become a framework suitable for solv-
ng most reinforcement learning problems. Simultaneously, the route
lanning and charging–discharging decision processing of the vehicle
n this system involves multiple steps that necessitate comprehensive
onsideration, with each step’s scheduling scheme determined by the
receding step’s decision.
(1) 𝐒𝐭𝐚𝐭𝐞 𝐒𝐩𝐚𝐜𝐞: The system state space is represented by 𝑠𝑡 =

𝑙𝑜𝑐𝑡, 𝑒𝑛𝑒𝑟𝑔𝑦
𝑙𝑜𝑐𝑡
𝑡 , 𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑡𝑡 , 𝑎𝑡𝑡𝑟𝑖𝑙𝑜𝑐𝑡}, where 𝑙𝑜𝑐𝑡 represents the position node

f the vehicle at the time of the step 𝑡. 𝑒𝑛𝑒𝑟𝑔𝑦𝑙𝑜𝑐𝑡𝑡 represents the power
torage when the vehicle travels to the current location node 𝑙𝑜𝑐𝑡.
𝑖𝑚𝑒𝑙𝑜𝑐𝑡𝑡 represents the time taken by the vehicle from the departure

o the current location node 𝑙𝑜𝑐𝑡. 𝑎𝑡𝑡𝑟𝑖𝑙𝑜𝑐𝑡 represents the attributes of
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he current node 𝑙𝑜𝑐𝑡. It is a 𝑁 dimensional column vector, including
𝑋𝑅

𝑙𝑜𝑐𝑡
which indicates whether the station is a R-type or G-type charging

node.
(2) 𝐀𝐜𝐭𝐢𝐨𝐧 𝐒𝐩𝐚𝐜𝐞: Action refers to the behavior taken by electric

vehicles in the system environment, which can be understood as a
bridge between vehicle states. The existence of action makes the static
environment move forward. In actual decision-making, vehicles will
make corresponding actions in different states according to the guid-
ance of algorithms, and finally acquire learning experience according
to the reward feedback of the environment. 𝑎𝑡 (𝑎𝑡 ∈ 𝐴, 𝐴 represents
the set of all actions) is used to represent the action taken by the
electric vehicle in the state 𝑠 at step 𝑡. Due to the limited charging and
discharging stations that can be selected as the next step, as well as
the three limited optional strategies (charging, discharging and passing
through the station), the types of joint station selection and decision
making are also limited. Therefore, the action space 𝐴 can be defined
as all the joint station selection and charging–discharging choices. For
example, the decisions such as charging 𝑘𝑐 , discharging 𝑘𝑑 and passing
𝑘𝑝 of a vehicle at a G-type station 𝑘 will appear in the action set as three
parallel actions. Of course, the action set also includes other nodes, such
as three behaviors corresponding to the station, as shown in Eq. (8).

(3) 𝐒𝐭𝐚𝐭𝐞 𝐭𝐫𝐚𝐧𝐬𝐟𝐞𝐫: The state transfer of the system from step 𝑡 to
step 𝑡+1 is shown in Eq. (6), (7), (8), and (9), where Eq. (6) is the total
state transfer, Eq. (7) is the position state transfer, 𝑘 is the next station
to be selected, and energy transfer is Eq. (8), when the next station 𝑘 is
selected and charged at the station, that is 𝑎𝑡 = 𝑘𝑐, the electric quantity
of the vehicle in the step 𝑡 + 1 is the maximum electric quantity of the
vehicle. Similarly, if the vehicle passes only at the selected station, the
electric quantity changes as the electric quantity in the previous state
minus the cost of the trip. 𝑘𝑑 indicates that the vehicle discharges at
the selected node. Formula (9) represents the transfer from step 𝑡 to
step 𝑡+ 1 time state, which also depends on the actions 𝑎𝑡 taken by the
vehicle step 𝑡 in the state 𝑠, where 𝑇𝑤𝑎𝑖𝑡

𝑘 represents the waiting time
of the vehicle at the station. When there is no need to wait, it is 0,
𝛼 represents the electric consumption per unit distance of the vehicle,
and 𝑣 represents the vehicle speed.

𝑠𝑡+1 = 𝑓 (𝑠𝑡, 𝑠𝑡) (6)

𝑙𝑜𝑐𝑡+1 = 𝑘 (7)

𝑒𝑛𝑒𝑟𝑔𝑦𝑡+1 =

⎧

⎪

⎨

⎪

⎩

𝐸𝑚𝑎𝑥𝑖 𝑎𝑡 = 𝑘𝑐
𝑒𝑛𝑒𝑟𝑔𝑦𝑙𝑜𝑐𝑡𝑡 − 𝑑𝑙𝑜𝑐𝑡𝑘∕𝛼 𝑎𝑡 = 𝑘𝑝

𝐸𝑚𝑎𝑥𝑖 ∗ 30% 𝑎𝑡 = 𝑘𝑑

(8)

time𝑙𝑜𝑐𝑡+1𝑡+1 =

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

time𝑙𝑜𝑐𝑡𝑡 +
[

Emax𝑖 −
(

energloc𝑡
𝑡 −

𝑑𝑙𝑜𝑐𝑡𝑘
𝛼

)]

× 𝑃𝑜𝑤𝑐
𝑘 + 𝑇wait

𝑘
, 𝑎𝑡 = 𝑘𝑐

time𝑙𝑜𝑐𝑡𝑡 +
𝑑𝑙𝑜𝑐𝑡𝑘
𝑣 , 𝑎𝑡 = 𝑘𝑝

time𝑙𝑜𝑐𝑡𝑡 +
[

energy𝑙𝑜𝑐𝑡𝑡 −
𝑑𝑙𝑜𝑐𝑡𝑘
𝛼 −

(

Emax𝑖 ×30%
)

]

× 𝑃𝑜𝑤𝑑
𝑘

+𝑇wait
𝑘 , 𝑎𝑡 = 𝑘𝑑

(9)

(4) 𝐑𝐞𝐰𝐚𝐫𝐝 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧: The reward 𝑅𝑡+1 represents the outcome ob-
tained after executing action 𝑎𝑡 at time step 𝑡 in state 𝑠. At the end
of each action, the income or cost brought by the decision can be
calculated as a reward function. Considering that the objective of this
chapter is to maximize vehicle income by combining vehicle routing
and charging–discharging behavior decision, By examining the reward
function, it becomes evident that the lower the charging price or the
higher the discharge price at station 𝑘, the greater the reward value the
vehicle will receive. Meanwhile, the charging and discharging decision
behavior of the same station will also affect the vehicle reward. The
reward value corresponding to the agent in (𝑠𝑡, 𝑎𝑡) is shown in Eq. (10):

𝑅𝑡+1 =

⎧

⎪

⎨

⎪

−
[

Emax 𝑖 −
(

energy loc 𝑡
𝑡 −

𝑑loc 𝑡𝑘

𝛼

)]

×𝑊𝑘𝑐 ,… , 𝑎𝑡 = 𝑘𝑐
0,… , 𝑎𝑡 = 𝑘𝑝

[

energy loct − 𝑑loc k −
(

Emax × 30%
)

]

×𝑊 ,… , 𝑎 = 𝑘

(10)

⎩ 𝑡 𝛼 𝑖 𝑘𝑑 𝑡 𝑑
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Fig. 1. Overview of the method model.
In each step 𝑡, a state–action sequence 𝑠𝑒𝑞 = [𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1, 𝑎𝑡+1] can be
obtained according to the state 𝑠 and strategy 𝜋 at the current moment.
Here, the cumulative reward of all steps is shown as Eq. (11) :

𝑅𝑖𝑛𝑖𝑡
𝑖 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2Rt+3 +⋯ + 𝛾𝑇−𝑡−1𝑅𝑇 =

𝑇−𝑡−1
∑

𝑘=0
𝛾𝑘𝑅𝑡+𝑘+1 (11)

𝛾 is a constant between [0,1], representing the discount factor.
Because the vehicle has to take into account not only the current
reward, but also the future reward when calculating the total pay-
off. However, the longer this interval, the more uncertain the future
rewards are, so we can reduce the proportion of future rewards in
total revenue. The larger 𝛾 is, the more ‘‘far-sighted’’ the agent is.
Furthermore, 𝛾 = 0 means that the strategy is ‘‘short-sighted’’ and
only considers the current and timely rewards. 𝛾 = 1 means that
future cumulative rewards can be obtained in advance without discount
calculation. Considering the time requirement and the vehicle’s own
travel restrictions, as shown in Eqs. (4) and (5), Eq. (12) will be
obtained on the basis of Eq. (11). I.e., only when the total time of the
vehicle to the destination is less than the maximum travel time cost and
it actually reaches the destination, the actual reward will be given to
the vehicle. Among them, 𝑉 𝑁 is a virtual node, which belongs to the
exit degree of all nodes and will not have its own exit degree, in other
words, once the vehicle chooses the station that does not meet Eq. (5)
in the scene, after a finite number of steps, they will eventually reach
and stop at 𝑉 𝑁 . When the vehicle reaches its true destination, the state
will end, and there will be no arrival at 𝑉 𝑁 . Therefore, in addition to
the timeout, when the vehicle is at 𝑉 𝑁 , it also does not meet the travel
requirements, and at this time, it also directly gives negative rewards to
encourage the vehicle to conform to the constraints. The maximization
goal in Eq. (12) is the same as that in Eq. (1).

𝑅𝑓𝑖𝑛𝑎𝑙
𝑖 =

⎧

⎪

⎨

⎪

⎩

∑𝑇−𝑡−1
𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1

(

time loc 𝑇
𝑇 ≤ Total𝑖

)

∧
(

loc𝑇 ≠ 𝑉 𝑁
)

−
∑𝑇−𝑡−1

𝑘=0 𝛾𝑘𝑅𝑡+𝑘+1

(

𝑡𝑖𝑚𝑒𝑙𝑜𝑐𝑇+1𝑇 > Total 𝑖

)

∨
(

loc𝑇 = 𝑉 𝑁
)

(12)

On the basis of Eq. (12), further considering the multi-vehicle
system of this model, the final cumulative return of the model can
be updated into Eq. (13), i.e., the maximum income of all vehicles in
Eq. (1) of this paper:

𝐺𝑡 =
𝑉
∑

𝑅final
𝑖 (13)
𝑖
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(5) 𝐀𝐜𝐭𝐢𝐨𝐧 𝐯𝐚𝐥𝐮𝐞 𝐟𝐮𝐧𝐜𝐭𝐢𝐨𝐧: Because strategies 𝜋 are probabilistically
distributed, there may be many different 𝑠𝑒𝑞, this paper uses 𝐺𝑡 to
evaluate the cumulative rewards of states 𝑠𝑡 = 𝑠

𝑉𝜋 (𝑠) = 𝐸𝜋
[

𝐺𝑡 ∣ 𝑠𝑡 = 𝑠
]

(14)

𝑉𝜋 is a state-value function, and the corresponding state–action
value function is:

𝑄𝜋 (𝑠, 𝑎) = 𝐸𝜋
[

𝐺𝑡 ∣ 𝑠𝑡 = 𝑠, 𝑎𝑡 = 𝑎
]

(15)

This paper aims to maximize the cumulative reward expectation, so
the problem can be converted into a strategy 𝜋∗ for solving Eq. (16) :

𝜋∗ = argmax𝜋 𝑄𝜋 (𝑠, 𝑎) (16)

4.2. Multi-vehicle joint routing scheduling and charging–discharging deci-
sion algorithm

In this section, the multi-vehicle joint routing and charging-
discharging decision algorithm MJRCDD is proposed based on the
multi-agent depth deterministic strategy gradient algorithm based on
reinforcement learning. MJRCDD adopts the framework of centralized
training and distributed execution. As the actor–critic framework has
been approved to be very efficient to handle the hybrid action [35],
in the training phase, each vehicle has an actor network and a critic
network, in which the critic network collects the state and action of all
vehicles in the system and generates a value 𝑄. The actor network of
each electric vehicle makes decisions based on its own partial state.
At the same time, MJRCDD extends the critic network to learn the
strategies of other vehicles, so that each EV performs a function that
approximates the strategies of other vehicles. For any 𝜋𝑖 ≠ 𝜋′

𝑖 , there is
the transition probability shown in Eq. (17) :

𝑃
(

𝑠′ ∣ 𝑠, 𝑎1,… , 𝑎𝑁 , 𝜋1,… , 𝜋𝑁
)

= 𝑃
(

𝑠′ ∣ 𝑠, 𝑎1,… , 𝑎𝑁
)

= 𝑃
(

𝑠′ ∣ 𝑠, 𝑎1,… , 𝑎𝑁 , 𝜋′
1,… , 𝜋′

𝑁
)

(17)

𝜋 =
{

𝜋1,… , 𝜋𝑁
}

represents a set of policies for all vehicles, 𝜋′ =
{

𝜋′
1,… , 𝜋′

𝑁
}

represents the deterministic strategy of a vehicle in the
target strategy network. In other words, the MADDPG-based MJRCDD
is different from most traditional reinforcement learning methods that
cannot be directly applied to multi-agent scenarios. MJRCDD speculates
the decisions of other vehicles through the extended critic network after
learning other vehicles’ strategies, and takes the speculated actions
of other vehicles as the condition. On this basis, even if the strategy

changes, the environment remains static. Secondly, in the multi-agent
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Fig. 2. MJRCDD overall structure diagram.
environment, the strategy of electric vehicles may overfit the actions
of other vehicles, resulting in the problem that its own strategy may
be ineffective when the strategy of other vehicles changes, so MJRCDD
adopts electric vehicles with a strategy set to solve the problem. The
overall structure of MJRCDD is shown in Fig. 2.

As can be seen from Fig. 2, MJRCDD is an extension of the actor–
critic strategy gradient approach, with each electric vehicle or agent
having its own actor–critic network. The overall structure of the algo-
rithm is shown by the black and blue arrows on the left in Fig. 2. The
electric vehicle takes actions against the system environment according
to its network output, gets rewards from the environment feedback,
and updates its state. At the same time, as shown by the arrow on the
right, each vehicle stores information such as its motion state reward in
a replay buffer represented by a gray cylinder , and updates the loss
function accordingly. The player-critic method for each electric vehicle
works as follows.

In this multi-electric vehicle actor–critic model, the deterministic
strategy parameter of a vehicle in the actor strategy network in Fig. 2
is 𝜃 =

{

𝜃1,… , 𝜃𝑁
}

, the set of all vehicle strategies is 𝜋 =
{

𝜋1,… , 𝜋𝑁
}

,
then the expected revenue of each vehicle 𝐽 (𝜃𝑖) can be expressed as
Eq. (18) :

∇𝜃𝑖𝐽 (𝜃) = E𝑆∼𝑝𝜇 ,𝑎𝑖∼𝜋𝑖

[

∇𝜃𝑖 log𝜋𝑖
(

𝑎𝑖 ∣ 𝑠𝑖
)

𝑄𝜋
𝑖
(

𝑠, 𝑎1,… , 𝑎𝑁
)

]

(18)

Among them 𝑄𝜋
𝑖
(

𝑠, 𝑎1,… , 𝑎𝑁
)

is a centralized action value function
output by a network of critics, which takes as input the action 𝑎1,… , 𝑎𝑁
and status information 𝑠 of all vehicles and outputs the value 𝑄 of
vehicles. Since each 𝑄𝜋

𝑖 is learned separately, the reward structure of
vehicles can be arbitrary. Further, it is extended to the deterministic
strategy. For the continuous strategy 𝜇𝜃𝑖 of an electric vehicle, the
parameter is 𝜃 (abbreviated as 𝜇 ), and the gradient can be written
𝑖 𝑖
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as Eq. (19) :

∇𝜃𝑖𝐽
(

𝜇𝑖
)

= E𝑠,𝑎∼

[

∇𝜃𝑖𝜇𝑖
(

𝑎𝑖 ∣ 𝑠𝑖
)

∇𝑎𝑖𝑄
𝜇
𝑖
(

𝑠, 𝑎1,… , 𝑎𝑁
)

|

|

|𝑎𝑖=𝜇𝑖(𝑠𝑖)

]

(19)

The replay buffer  here corresponds to the gray cylindrical replay
buffer module in Fig. 2, which contains data tuples

(

𝑠, 𝑠′, 𝑎1 … , 𝑎𝑁 , 𝑟1
… , 𝑟𝑁 ,done

)

from 𝑁 electric vehicles to record the experience of
all vehicles. 𝑄𝜇

𝑖 , as mentioned earlier, 𝑄𝜋
𝑖
(

𝑠, 𝑎1,… , 𝑎𝑁
)

represents the
concentrated action value function output by the critic network with all
vehicle states and actions as inputs, as indicated by the output arrow
of the critic 𝑄 network in Fig. 2. 𝑄𝜇

𝑖 is used to evaluate the quality of
actor network output strategies. This article updates the critic policy
network 𝑄𝜇

𝑖 by minimizing the loss function, and its update expression
is Eq. (20), where 𝑦 is expressed as Eq. (21):


(

𝜃𝑖
)

= E𝑠,𝑎,𝑟,𝑟𝑠′
[

(

𝑄𝜇
𝑖
(

𝑠, 𝑎1,… , 𝑎𝑁
)

− 𝑦
)2
]

(20)

𝑦 = 𝑟𝑖 + (1 − done ) × 𝛾𝑄𝜇′
𝑖
(

𝑠′, 𝑎′1 … , 𝑎′𝑁
)

|

|

|𝑎′𝑗=𝜇
′
𝑗 (𝑠

′𝑗
(21)

Among them 𝜇′ =
(

𝜇𝜃1 ′ ,… , 𝜇𝜃′𝑁
)

is a target policy set with

a delay parameter 𝑄′
𝑖 . 𝑄𝜇′

𝑖 represents the target network based on
deterministic policy set 𝜇′ and delay parameter 𝜃′𝑖 . The delay parameter
𝜃′𝑖 can be updated by Eq. (22), where 𝜏 is the soft update coefficient,
corresponding to the soft update process from the critic 𝑄 network of
electric vehicles to its target 𝑄 network in Fig. 2.

𝜃′𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏)𝜃′𝑖 (22)

As mentioned above, MJRCDD adopts the method of learning strate-
gies of other vehicles to meet the demand of taking actions of other
vehicles as conditions mentioned in Eq. (20). For methods to infer the
strategies of other agents, entropy regularizers can be used to learn by
maximizing the logarithmic probability of the vehicle’s action.



P. Liu et al.

o
a



1

1
1

Alexandria Engineering Journal 105 (2024) 724–735 
In this method, each vehicle 𝑖 maintains an approximate value �̂�𝜙𝑗𝑖
f 𝜇𝑗 of vehicle 𝑗 (where 𝛷 is the approximate parameter, abbreviated
s �̂�𝑗

𝑖 ), as shown in Eq. (23) :
(

𝜙𝑗
𝑖

)

= −E𝑠𝑗 ,𝑎𝑗

[

log �̂�𝑗
𝑖
(

𝑎𝑗 ∣ 𝑠𝑗
)

+ 𝜆𝐻
(

�̂�𝑗
𝑖

)]

, (23)

where 𝐻 is the entropy of the strategy distribution and the approximate
strategy is used. The approximate value 𝑦 in Eq. (20) can be replaced
by the approximate value 𝑦 calculated in Eq. (24) below, where �̂�

′𝑗
𝑖 is

the target network of the approximate strategy �̂�𝑗
𝑖 .

�̂� = 𝑟𝑖 + 𝛾𝑄𝜇
𝑖
(

𝑠′, 𝜇′
𝑖
(

𝑠1
)

… , �̂�′
𝑖
(

𝑠𝑖
)

,… , �̂�′𝑁
𝑖

(

𝑠𝑁
))

(24)

In this scenario, there is the problem of non-stationary environment
caused by constantly changing strategies of agents mentioned above
in multi-agent reinforcement learning [36]. MJRCDD replaces the tra-
ditional method of over-matching behaviors of competitors by using
vehicles with strategy sets, avoiding the vulnerability of traditional
methods that fail when other vehicles change strategies. In order to
obtain a multi-agent strategy with more robust policy variation against
competing vehicles in the environment, MJRCDD trains 𝑘 different set
of sub-strategies. In each episode, a specific sub-strategy is randomly
selected for each agent to execute.

Assume that the policy 𝜇𝑖 is a collection of 𝐾 different subpolicies,
in which the subpolicies 𝑘 are represented 𝜇𝜃(𝑘)𝑖

(denoted as 𝜇(𝑘)
𝑖 ). For

each vehicle 𝑖, we maximize the set objective Eq. (25) :

𝐽𝑒
(

𝜇𝑖
)

= E𝑘∼𝑢𝑛𝑖𝑓 (1,𝐾),𝑆∼𝑝𝜇 ,𝑎∼𝜇(𝑘)𝑖

[

𝑅𝑖(𝑠, 𝑎)
]

(25)

Since different subpolicies are executed in different episode, MJR-
CDD maintains a replay buffer (𝑘)

𝑖 for each subpolicy 𝜇(𝑘)
𝑖 of the vehicle

𝑖. Therefore, the gradient of the integration target relative to 𝜃(𝑘)𝑖 is
shown in Eq. (26) :

∇𝜃(𝑘)𝑖
𝐽𝑒

(

𝜇𝑖
)

= 1
𝐾
E𝑠,𝑎∼𝐷(𝑘)

𝑖

×

[

∇𝜃(𝑘)𝑖
𝜇(𝑘)
𝑖

(

𝑎𝑖 ∣ 𝑠𝑖
)

∇𝑎𝑖𝑄
𝜇𝑖
(

𝑠, 𝑎1,… , 𝑎𝑁
)|

|

|

|𝑎𝑖=𝜇
(𝑘)
𝑖 (𝑠𝑖)

] (26)

The overall process of MJRCDD is shown in Alg. 1. Step 1 to 2 is the
initialization of parameters. Step 3 defines the total episode of training.
Step 6 to Step 26 is a complete episode, where each agent 𝑖 will select an
action 𝑎𝑡 at time slot 𝑡. All EVs’ states and actions, together with rewards
and next states will be inserted into the environment and stored in
the replay memory. Then, from Step 11 to 15, each EV will update its
critic and actor network. If all EVs have reached their destinations, the
current episode ends and the current profit is obtained. The training
will be terminated when it reaches the 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒.

5. Experiments and analysis

5.1. Experiment setting

The simulation was based on a real-world traffic map around Santa
Clara, California, derived from PeMS, which was a unified traffic data
set collected by Caltrans on the California Highway. The data of the
system is collected by thousands of sensors mounted on the side of
the road every 15 min, marked as black dots in Fig. 3(a). As Directed
Acyclic Graph (DAG) can describe many real-world applications [36],
we model the traffic map into a directed acyclic traffic graph as
shown in Fig. 3(b), which contains 5 G-type stations (black nodes), 3
reversible R-type stations (green nodes), and 2 ordinary intersections
(blue nodes).

In the experiment, the price is 1 $/kWh for purchasing electricity at
R-type station, 10 $/kWh for discharging electricity at G-type station,
and 20 $/kWh for charging electricity at G-type station. Without loss
of generality, we select five types of vehicles, considering respectively

maximum battery capacity, initial electricity quantity, starting node,
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Algorithm 1 Multi-vehicle Joint Routing and Charging and Discharging
Decision Algorithm(MJRCDD)
1: Initialize actor policy network 𝜇, target policy network 𝜇′ with

weight 𝜃 and 𝜃′ for all agents;
2: Initialize replay memory as 
3: for each episode 𝑒𝑝 = 1 to 𝑚𝑎𝑥_𝑒𝑝𝑖𝑠𝑜𝑑𝑒 do
4: Randomly generate a process  for actions exploration
5: Initialize the state 𝑠0 and 𝑠𝑡𝑒𝑝 = 0
6: while done==False do
7: Select actions 𝑎𝑡 for each agent 𝑖
8: Enter EVs’ states 𝑠 and actions 𝑎 into environment
9: Obtain EVs’ rewards 𝑟 and next states 𝑠′ by actions 𝑎

10: Store
(

𝑠, 𝑎, 𝑟, 𝑠′ , done ) in 
11: for EV 𝑖 = 1 to 𝑁 do
12: Sample a random batch of  as

{(

𝑠𝑗 , 𝑎𝑗 , 𝑟𝑗 , 𝑠′𝑗 , done 𝑗)}

from 
13: Set the target value 𝑦𝑗 as Eq. (21)
14: Update critic by minimizing the loss:


(

𝜃𝑖
)

= 1
𝑆
∑

𝑗

(

𝑦𝑗 −𝑄𝜇
𝑖

(

𝑠𝑗 , 𝑎𝑗1,… , 𝑎𝑗𝑁
))2

5: Update actor using the sampled policy gradient:
∇𝜃𝑖𝐽 = 1

𝑆
∑

𝑗 ∇𝜃𝑖𝜇𝑖
(

𝑠𝑗𝑖
)

∇𝑎𝑖𝑄
𝜇
𝑖

(

𝑠𝑗 , 𝑎𝑗1,… , 𝑎𝑗𝑁
)

|

|

|

|𝑎𝑖=𝜇𝑖
(

𝑠𝑗𝑖
)

6: end for
7: Update target network parameters for each agent 𝑖: 𝜃′𝑖 ← 𝜏𝜃𝑖 +

(1 − 𝜏)𝜃′𝑖
18: 𝑠𝑡𝑒𝑝 = 𝑠𝑡𝑒𝑝 + 1
19: for all EVs do
20: if EV 𝑖 reaches the 𝐸𝑛𝑑𝑖 then
21: 𝑑𝑜𝑛𝑒𝑖 = 𝑇𝑅𝑈𝐸
22: Get Reward with Eq. (12)
23: end if
24: 𝑑𝑜𝑛𝑒 = 𝑎𝑙𝑙[𝑑𝑜𝑛𝑒1, ..., 𝑑𝑜𝑛𝑒𝑁 ]
25: end for
26: end while
27: Get 𝐺𝑡 with Eq. (13)
28: end for

Table 4
Type parameters of five electric vehicles in the experiment.

Vehicle
type

Battery
capacity (kWh)

Initial energy
(kWh)

Maximum
travel time

Start
node

End
node

1 10 000 7800 40 B J
2 7500 6100 35 A F
3 6800 5200 30 D J
4 8200 8000 20 C G
5 6000 5500 35 E J

destination, and maximum driving time, as shown in Table 4. Consid-
ering that each vehicle in the MJRCDD algorithm is associated with two
actor networks and two critic networks, to limit the calculation scale,
we assign 10 electric vehicles for each group.

For evaluation metrics, to better demonstrate the performance of the
joint optimization method on total profit and individual transportation
timeliness, the first one is the average profit of EVs, which can assess
the public benefit. It is evaluated under different settings. The second
one is the overtime vehicle ratio, which can evaluate the degree of the
algorithm’s guarantee of the user’s service quality.

5.2. Performance evaluation

5.2.1. Comparison with basic methods
Under the above experimental settings, to increase the competi-
tiveness of charging–discharging station resources among vehicles and
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Fig. 3. Experimental traffic map.
Fig. 4. Overall vehicle profits graph under different algorithms.

study the performance of scheduling algorithm under resource limita-
tion, the 10 electric vehicles in the system come from the same type
with the same starting place and destination in Table 4. 10 vehicles
in the first group of experiments used the initial battery capacity of
7800 kWh and the maximum battery capacity of 10 000 kWh, which
meant that the starting node was the end node and the time limit was
40 min. Another 10 vehicles in the second group of experiments used
the second type of vehicles in Table 4. The 10 vehicles in the fifth
group of experiments correspond to the third, fourth and fifth types
of vehicles in Table 4, so as to verify the superiority and effectiveness
of the algorithm in multiple groups of scenes. Similarly, to increase the
competition between vehicles, the number of charging and discharging
piles in the five groups of scenes is set at 3, and the experimental results
are shown in Fig. 4.

From Fig. 4, it can be seen that MJRCDD performs better than other
algorithms in five different types of vehicle scenarios. The superiority
of MJRCDD over No-Selling, which does not perform charging and
discharging behaviors, validates the economic value of vehicles charg-
ing and discharging through V2G. Compared with the uncoordinated
algorithm directly applied to the optimal solution for a single vehicle
in a multi vehicle scenario, MJRCDD demonstrates the benefits of
considering the impact of multiple workshops. Compared with the KSP-
JRS algorithm that uses the complete path as an optional strategy, the
advantages of using a single site and charging/discharging behavior at
the site as the action set have been demonstrated.

It is theoretically stated that in the multi-agent environment, the in-
fluence between each other will lead to the instability of the
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environment. In specific scenarios, such as the simplest third group of
experiment scenarios, the optimal decision of single vehicle calculated
from Uncoordinated is to adopt the route 𝐷− > 𝐺− > 𝐽 and discharge
behavior is present only at 𝐽 , so only three vehicles in the system
can obtain the established profit, and the profit of other vehicles is
0 because they cannot discharge at the original node 𝐽 . In MJRCDD,
vehicles consider the options of other electric vehicles in the environ-
ment when making their own decisions. Some vehicles can discharge
at point 𝐽 to optimize the situation where all vehicles compete for the
uncoordinated point. This greatly reduces the competitive relationship
between vehicles and enables the full utilization of the ‘‘resources’’ in
the entire system, which is also the reason why MJRCDD’s experimental
results are close to twice as the Uncoordinated algorithm.

Different from MJRCDD, which divides paths 𝐷− > 𝐺− > 𝐽 into
two schemes (𝐷− > 𝐺(𝑐ℎ𝑎𝑟𝑔𝑒)− > 𝐽 and 𝐷− > 𝐺− > 𝐽 (𝑐ℎ𝑎𝑟𝑔𝑒)),
KSP-JRS algorithm, which takes complete path 𝐷− > 𝐺− > 𝐽 as one
of the schemes, has lower overall vehicle income than MJRCDD due
to insufficient utilization of charging–discharging stations. In addition,
due to the fact that vehicles with 𝐷 as the starting point and 𝐽 as the
destination only have one route, 𝐷− > 𝐺− > 𝐽 , KSP-JRS algorithm,
compared to the Uncoordinated algorithm, cannot fully leverage the
advantage of bringing overall benefits to vehicles by choosing other
routes, resulting in a situation where the benefits are the same as
the Uncoordinated algorithm. Furthermore, this is also the reason why
applying KSP-JRS, the vehicle with the starting node 𝐴 and the ending
node 𝐹 in the second group of experiment, and the vehicle with the
starting node 𝐸 and the ending node 𝐽 in the fifth group of experiment,
have the same profit with the Uncoordinated algorithm. In the first and
fourth group of experiments, although the vehicle has other alternative
paths, KSP-JRS can only give up the behavior of increasing the overall
income of the vehicle through ‘‘detour’’ due to the constraints of
maximum travel time, which also has the same effect on the income of
the Uncoordinated algorithm. Despite the constraints of road and time
in the experiment, KSP-JRS algorithm still has advantages compared
with the Uncoordinated algorithm. This is evident in Fig. 6 when the
maximum travel time of the first group of vehicles is extended from
40 min to 50 min. This also verifies the advantages of MJRCDD over
KSP-JRS in more scenarios.

5.2.2. The relationship between the overall vehicle profits and the number
of charging–discharging piles

In this subsection, the experiment studied the relationship between
vehicle income and the number of charging–discharging piles. The first
type of vehicle in Table 4 was used in the experiment. In addition, in
order to realize that all 10 vehicles are still in a saturated state, the
number of charging stations in this experiment is set from 1 to 4 to
study the performance of different algorithms on vehicle joint routing
planning and optimization of charging–discharging benefits based on
the number of charging stations. The experimental results are shown

in Fig. 5.
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Fig. 5. The relationship between the overall vehicle revenue and the number of
charging/discharging piles at the station.

Fig. 6. The relationship between total vehicle revenue and maximum travel time.

As illustrated in Fig. 5, it is evident that No-Selling remains un-
ffected by the number of charging piles. However, the revenue of
ehicles experiences a notable increase with the surge in the number of
harging piles across all scheduling algorithms. This phenomenon can
e attributed to the fact that the augmented availability of charging–
ischarging piles provides more vehicles with opportunities to engage
n electricity trading through V2G technology, thereby augmenting
heir income. This trend aligns with common sense and provides a
lear explanation for the observed data. It is worth noting that in this
xperiment scenario, the optimal decision of the bicycle calculated
rom Uncoordinated is to adopt 𝐵− > 𝐸− > 𝐺− > 𝐽 route and

has discharging behavior only at node 𝐽 , so when the number of
harging piles is increased by one, one more vehicle among the 10 can
btain the path brought by this scheme, and the income of the other
ehicles is 0. Therefore, the linear growth process shown in the figure
ppears. This also demonstrates the limitation of Uncoordinated as a
ehicle scheduling algorithm that relies too much on the system scene
nvironment.

In the specific scenario (Fig. 3), the 40-min maximum travel time
equirement limits the KSP-JRS from selecting 𝐵− > 𝐶− > 𝐸− >
732 
− > 𝐽 route, where it can charge and discharge in order to gain
revenue at node 𝐶. Therefore, KSP-JRS has the same performance
as Uncoordinated in Fig. 5. However, when the allowance time is
extended, KSP-JRS will appear superior to Uncoordinated, as shown in
Fig. 6.

Furthermore, in comparison to Uncoordinated scheduling, MJR-
CDD adopts the same detour mode as KSP-JRS and targets the path
𝐵− > 𝐸− > 𝐺− > 𝐽 . Unlike all vehicles under Uncoordinated
scheduling, MJRCDD offers two distinct schemes (𝐵− > 𝐸− > 𝐺− >
𝐽 (𝑐ℎ𝑎𝑟𝑔𝑒) and 𝐵− > 𝐸− > 𝐺(𝑐ℎ𝑎𝑟𝑔𝑒)− > 𝐽 ), which include every
site and its charging–discharging behaviors in the action set. This
undoubtedly increases the number of charging piles capable of pro-
viding charging–discharging services again and reduces competition
among vehicles within the system, aspects that are not considered in
Uncoordinated scheduling. These factors are overlooked by the KSP-
JRS algorithm based on complete routes, thereby explaining why the
MJRCDD algorithm achieves higher average profits than KSP-JRS.

5.2.3. The relationship between total vehicle profits and maximum travel
time

As mentioned earlier, MADDPG studies the optimization problem of
multi electric vehicle charging and discharging under time constraints.
Therefore, this experiment explores the impact of maximum vehicle
travel time on vehicle revenue. Using 10 vehicles of the first type, with
3 charging and discharging stations, the maximum travel time of the
vehicles was increased from 0 to 50 in 10 min. The experimental results
are shown in Fig. 6.

As shown in Fig. 6, when the maximum journey time of a vehicle is
limited to 20 min, which is less than the time required for the vehicle
to travel according to the shortest path, the vehicle cannot reach the
destination within the specified time even if it does not consider the
charging and discharging behavior. Therefore, it appears that all the
benefits of scheduling algorithms are journey costs. When the time is
limited to 30 min, although the vehicle can complete the journey, the
remaining time is not enough to support its charging and discharging
behavior, so the situation also appears that the benefit is the travel
expense. However, with the relaxation of time restrictions, in addition
to No-selling, MJRCDD, KSP-JRS, and Uncoordinated have the time
support to earn income through two-way flow of electricity by relying
on V2G technology, and the phenomenon of income increase begins to
appear.

In the scenario where the total allowed time consumption is 40 min,
the vehicle’s revenue is the result shown in Fig. 5 when the number of
charging and discharging stations is 3. As analyzed in the previous text,
this is because the ‘‘trade-off’’ of MJRCDD’s multiple workshops brings
better results than uncoordinated ones, as the charging and discharging
behavior at a single station replaces the complete path, which brings
better results than KSP-JRS.

When the time limit was relaxed to 50 min, an interesting phe-
nomenon emerged that vehicle income increased under MJRCDD and
KSP-JRS, while the income remained unchanged under Uncoordinated.
This is because the additional ten minutes cannot make the vehicles in
the system discharge again at this node after the original three vehicles
discharging at node 𝐽 , so there is no change in income for Uncoordi-
nated. However, when the time continues to increase to 60 min, there
is sufficient waiting time, so that the three charging piles at 𝐽 can each
complete two discharge services, that is, six vehicles can obtain the ben-
efits brought by discharge. Therefore, under Uncoordinated scheduling,
the benefits of vehicles increase by about two times compared with
40 min and 50 min limitation scenarios.

For MJRCDD and KSP-JRS, when the maximum travel time of
vehicles is extended from 40 min to 50 min, although the increased
time is not enough for the discharge station in the system to be used
again by waiting vehicles, it provides time support for the vehicle to

choose ‘‘detour’’ to other available stations to sell additional electricity
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Table 5
Type parameters of five electric vehicles in the experiment.

Group number/method 1 2 3 4 5

MJRCDD 0% 0% 0% 0% 0%
JPPCDD 30% 0% 0% 70% 40%

and gain revenue. Therefore, three electric vehicles can obtain income
by discharging at node 𝐶, which is also the reason for the increase
in overall income when the maximum travel time of vehicles under
JRCDD and KSP-JRS algorithm is 50 min compared with the maximum
travel time of 40 min, and it also reflects the superiority of KSP-JRS
scheduling algorithm to Uncoordinated.

From a vertical reading of the figure, it can be seen that MJRCDD
results in higher overall vehicle revenue than KSP-JRS and Uncoordi-
nated at the same time. Horizontally, when vehicles achieve similar
revenue, the maximum travel time required by the MJRCDD algorithm
is less than KSP-JRS and Uncoordinated. As time continues to increase,
due to the fact that most vehicles in the system have already had the
opportunity to discharge under the scheduling of MJRCDD, there has
been a decrease in growth rate. For example, the increase in time from
50 min to 60 min has resulted in a smaller increase in revenue for
vehicles than the increase from 40 min to 50 min. When the charging
time is extended to 60 min, all vehicles in the system can benefit
from it and reach a stable state. Based on this, further speculation
and imagination can be made. As time continues to increase and even
reaches a value that allows all vehicles to complete the optimal single
vehicle path by waiting, MJRCDD will gradually approach this value at
a slower and slower rate, KSP-JRS will approach it at a stable rate, and
uncoordinated will continue to approach it with increasing amplitude.
This also validates the effectiveness of MJRCDD scheduling under finite
time constraints.

𝐄𝐟𝐟𝐞𝐜𝐭𝐢𝐯𝐞𝐧𝐞𝐬𝐬 𝐨𝐟 𝐌𝐉𝐑𝐂𝐃𝐃 𝐮𝐧𝐝𝐞𝐫 𝐭𝐢𝐦𝐞 𝐜𝐨𝐧𝐬𝐭𝐫𝐚𝐢𝐧𝐭𝐬 : This section
conducted a comparative study on the effectiveness of MJRCDD in time-
constrained scenarios by reducing the overall time cost of JPPCDD. The
experiment is also divided into five groups. Each group corresponds
to 10 vehicles of one type in Table 4. The number of charging piles
is 3. Accordingly, in order to constrain the total JPPCDD time, the
waiting position of each site is set to 0. Since JPPCDD only calculates
the total time of the trip at the end of the journey, it is impossible to
calculate the vehicle income within a given limited time. Combined
with the analysis of the previous group of experiments, it is found that
the income difference between MJRCDD and JPPCDD under no time
constraint is mainly from the maximum discharge of greedy strategy
algorithm. Therefore, this experiment directly takes the proportion of
vehicles exceeding the given time as the index to evaluate the algorithm
conforming to the time constraint scenario, and compares and analyzes
the two algorithms. The experimental results are shown in Table 5.

As shown in Table 5, in the first set of data, MJRCDD will take the
corresponding path and charging–discharging plan in strict accordance
with the time constraint. Based on the decision of other vehicles,
the subsequent vehicles in the system will abandon the charging–
discharging behavior and only arrive at the end by the shortest path
to ensure that all vehicles do not exceed the maximum travel time
constraint. Accordingly, even if the waiting position is set to 0, ve-
hicles are not allowed to increase revenue through time-consuming
waiting behavior. However, since there is no specific time constraint,
the JPPCDD algorithm aiming at maximizing the revenue of vehicle
groups will still guide vehicles to increase revenue by detouring to other
stations, which is allowed and even encouraged in JPPCDD. Therefore,
in the ten-vehicle scenario, three vehicles took a detour to discharge
at node 𝐶 and then timeout occurred. However, for MJRCDD, since
timeout would be negatively rewarded in each episode, the trained
vehicles would choose to give up this behavior. As there is only one
alternative path for the second and third groups of data, JPPCDD has
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Fig. 7. Behavior diagram of vehicle under MJRCDD scheduling.

no additional way to earn income compared with MJRCDD. Therefore,
after the charging–discharging station in this path is occupied, vehicles
are forced to drive from the starting node to the end node without
charging and discharging. Hence, JPPCDD also has the situation that
the proportion of time-out vehicles in the total vehicles is 0. In the
fourth group, the vehicles with 𝐶 as the starting node and 𝐽 as the
end node, due to the maximum travel time limit of 20, it can be
guessed that the owners care much more about the time guarantee
than the benefits. However, because there are more optional stations
along the route from 𝐶 to 𝐽 , more vehicles exceed the maximum travel
time limit while JPPCDD creates more benefits. This set of experiments
clearly demonstrates the different emphases of JPPCDD and MJRCDD
to maximize returns and ensure strict time constraints. Similarly, in
the fifth group of experiments, the number of overtime vehicles in
MJRCDD is still less than that in JPPCDD. As can be seen from Table 5,
as the time allowance or the initial energy decrease, the number of
vehicles exceeding the time limit increases. Also, the pair of starting
node and destination will affect the result, i.e., the length of the route
and whether there are charging stations along the road.

5.2.4. Behavior diagram of vehicle under MJRCDD scheduling
Fig. 7 shows the driving conditions of 10 vehicles of the first type

in Table 4 when the number of charging piles is 3 and the travel time
is 50 min, corresponding to the result of MJRCDD when the charging
time is 50 in Fig. 6.

As shown in Fig. 7, there are four behaviors among the 10 vehicles:
discharge at point 𝐶, discharge at point 𝐺, discharge at point 𝐽 , and
direct passing. Among them, three vehicles discharge at point 𝐽 to gen-
erate revenue, which is also the solution chosen by the uncoordinated
algorithm analyzed earlier. Unlike this, there are three vehicles in the
system that can generate revenue by discharging at point 𝐺. Due to
the given maximum travel time of 50, the vehicles can also generate
revenue by taking a detour to discharge at point 𝐶. Finally, as all
rechargeable and dischargeable stations are occupied, one vehicle can
only abandon the charging and discharging behavior.

6. Conclusion

In this paper, joint routing planning and charging–discharging de-
cision making of multiple electric vehicles under multiple constraints
was studied. Utilizing V2G technology, a MJRCDD algorithm based on
reinforcement learning was proposed. The algorithm is based on the
MDP model which includes vehicle state space, action space, transition
between states and reward function. It refers to the multi-agent deep
deterministic strategy model, adopts the mode of centralized training
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and distributed execution, and adds the prediction of other vehicle
decisions and vehicles with strategy set on the basis of the actor critic
to adapt to the multi-vehicle scene. Vehicle routing and charging–
discharging behaviors are combined to form actions based on vehicle
motion space, so as to jointly schedule vehicle routing planning and
charging–discharging decisions. Finally, simulation experiments and
comparison experiments were conducted on PeMS data set and traffic
data near Santa Clara, California, to verify the advantages of MJRCDD
algorithm.

One of the most important practical concerns is the impact of
repeated charging and discharging on the life of the battery. Therefore,
in the future, we consider to include State of Charge (SOC) in the
algorithm. The total profit will take into account the drain on the
battery, so as to better meet the demand of electric vehicle owners.
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