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ABSTRACT In recent years, due to their ability to transmit and relay wireless signals in challenging
terrains, Unmanned Aerial Vehicles (UAVs) and High Altitude Platform Stations (HAPS) have become
indispensable in various operations in security, emergency, and military campaigns. However, these
networks’ ad-hoc structure and open nature make them highly vulnerable to numerous threats and, in
particular, to severe jamming attacks. Furthermore, the communication link between a HAPS and multiple
UAVs is also under the threat of multiple and different jamming attacks. Addressing these challenges
requires innovative and novel methods capable of interactive and proactive defence strategies. To this end, in
this study, we propose a method that combines a pseudo-random (PR) algorithm for initial channel selection
with a Transformer-based module to predict jammer behavior. This proactive approach significantly
enhances the robustness of UAV communications. Our results demonstrate substantial improvements in
transmission success rates and prediction accuracy, offering a robust solution for secure UAV and HAPS
communications under adverse conditions.

INDEX TERMS Anti-jamming, smart jamming, multiple-jamming, transformer, LSTM, UAVs, HAPS.

. INTRODUCTION

NMANNED Aerial Vehicles (UAVs) and High

Altitude Platform Stations (HAPS) have emerged
as pivotal components in today’s rapidly evolving tech-
nological landscape. Their applications are diverse and
far-reaching, ranging from entertainment to critical military
operations, which highlights their versatility and indis-
pensability. As airborne devices capable of transmitting
and relaying wireless signals, UAVs and HAPS have
proven particularly beneficial in geographically challenging
regions, thereby revolutionizing communication paradigms
(11, 121, 31, [4].

However, UAV networks (UAVNs), which frequently
operate on an ad-hoc basis, can be vulnerable to various
wireless attacks, including jamming and eavesdropping. This
vulnerability is further exacerbated by UAVNS’ critical role
in security, emergency, and warfare communications, making
them attractive targets for numerous threats. The open
nature of these networks intensifies their susceptibility to
jamming attacks, which can lead to a significant degradation

in communication quality or even to a complete denial
of service (DoS) [5]. Such attacks raise serious concerns
about scalability and integration of UAVs into broader
communication networks, posing significant challenges to
their operation and reliability [6], [7], [8].

To address these challenges, various anti-jamming solu-
tions for UAVNs have been proposed. Among them,
game-theoretic approaches were used to model the strategic
interactions between UAVs and jammers. For instance,
Cheng et al. [9] proposed a Bimatrix Stackelberg game
approach for adaptive frequency selection. Similarly,
Xu et al. [10] used a Bayesian-Stackelberg game for
strategy optimization under incomplete information sce-
narios. Moreover, Han et al. [11] proposed a distributed
UAV deployment strategy using game theory. Furthermore,
Feng et al. [12] extended game-theoretic principles to
multi-agent reinforcement learning scenarios to address the
challenges of UAV-assisted communication in the presence
of jamming. Additionally, Zhang et al. [13] explored col-
laborative multi-agent jamming deceiving techniques, where
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UAVs work together to deceive jammers and improve
communication performance.

Previous studies also leveraged artificial intelligence
to enhance anti-jamming capabilities. For instance,
Ma et al. [14] used reinforcement learning for dynamic
power control in UAVNs, while Wu et al. [15] applied
Q-learning for joint optimization in the frequency-motion-
antenna domain. Furthermore, Gao et al. [16] employed
deep Q-networks (DQNs) to develop anti-intelligent jamming
strategies.

Cooperative strategies proved to be a promising solution
in mitigating jamming threats. In one of the relevant studies,
Yu et al. [17] proposed a two-step anti-jamming strategy
that encourages cooperation among UAVs. Furthermore,
in [18], Almasoud optimized UAV trajectories using a
genetic algorithm to minimize jamming effects during data
collection. Similarly, Su et al. [19] developed a cooperative
method using a local altruistic game model and a distributed
algorithm to optimize channel selection among UAVs,
thereby significantly enhancing anti-jamming performance.
The utilization of machine learning techniques for jam-
ming detection and classification has also gained traction,
with Li et al. [20] proposing a feature-and spectrogram-
tailored machine learning approach for OFDM-based UAVs.
Furthermore, Luo and Liu [21] investigated the use of
intelligent approach jamming in UAV-assisted wireless com-
munication systems. The integration of machine learning
with software-defined networking for enhanced network
metric prediction and cyberattack detection in UAV relay
networks has also been explored by Agnew et al. in [22]
and [23], respectively.

However, while these solutions address various aspects
of UAVN jamming threats, significant challenges remain.
Specifically, most existing approaches do not take into
account heavy jamming scenarios, where a significant
portion of the available spectrum channels is under attack,
e.g., up to 70% of the spectrum, or the growing threat
of sophisticated machine learning-driven jamming attacks,
where the disrupting entity employs advanced algorithms,
notably deep reinforcement learning, to learn the behaviour
of its targets and maximize its jamming effectiveness.

Seeking to address these challenges, recent research
has explored the potential of predictive models and
advanced machine learning architectures for anti-jamming.
For instance, Pourranjbar et al. [24] demonstrated the use
of Recurrent Neural Networks (RNNs) to predict jammers’
occupied channels, enabling proactive mitigation strategies
against multiple jamming policies. In another relevant study,
the same group further investigated the use of RNNs
for proactive channel prediction as a defence and offence
strategy in tactical wireless networks [25]. Furthermore,
using the power of a Transformer encoder within a deep
reinforcement learning (DRL) framework, Xu et al. [26]
investigated how Transformers could improve state space
representation for anti-jamming optimization. The need
for robust anti-jamming in the face of evolving threats
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has also driven investigations into distributed multi-agent
reinforcement learning for cooperative learning [27], [28],
particularly in scenarios where secure communication links
might not be guaranteed [29]. Additionally, the combination
of deep learning with distributed techniques has also shown
promise, with the results showing improved environmental
awareness and adaptive behaviour [30], [31]. However, these
innovative methods have not been specifically tailored to the
challenging environments faced by UAVNs, particularly in
the presence of heavy jamming and sophisticated machine
learning-based jamming attacks. The existing literature often
overlooks the complexities arising from high jamming den-
sities, where a significant portion of the available spectrum
is under attack. Moreover, the dynamic and adaptive nature
of machine learning-driven jamming attacks necessitates
the development of proactive and intelligent anti-jamming
solutions that can anticipate and counteract evolving threats.

Building upon these advancements, in the present study,
we propose a novel anti-jamming approach that employs
the superior predictive capabilities of Transformer models.
Specifically, we introduce a Transformer-based module
designed to predict the behaviour of multiple jammers,
including those employing DRL-driven strategies. This
method significantly differs from existing approaches by
emphasizing real-time adaptability and proactive threat
mitigation in high-density jamming environments. This
predictive capability enables proactive countermeasures,
which is a crucial step in securing UAVNs against emerging
threats.

Our Transformer module is designed to operate both
offline and online, providing the flexibility needed for
dynamic UAV environments. While offline training on
historical jamming patterns prepares the module, online
adaptation allows real-time adjustment. We integrate these
Transformer-based predictions with a pseudo-random (PR)
channel selection algorithm in a robust hybrid approach. This
combination benefits from the flexibility and unpredictability
of randomization and the adaptability and intelligence
provided by our predictive model. As a result, our offline and
online Transformer-based method demonstrates significant
performance advantages, with the online model achieving
success rates of up to 70% and maintaining a high prediction
accuracy of 75%, even within a complex environment
characterized by the presence of a heavy jamming scenario
and the use of diverse jamming attack policies by the
disrupting entities.

Finally, to validate the effectiveness of our approach,
we conduct rigorous simulations, with the results demon-
strating its superiority compared to existing benchmarks.
Specifically, the results of our simulations showcase signif-
icantly improved transmission success rates and prediction
accuracy, highlighting how our method is better equipped to
handle sophisticated threats and secure UAVNSs in real-world
operational environments.

The remainder of the article is organized as follows. In
Section I, we present the modeling of the system, followed by
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a detailed explanation of our proposed method in Section II.
Section IIT discusses the outcomes of our approach in the
results and analysis section. Finally, in Section IV, we
draw conclusions, summarizing our findings and suggesting
directions for further research.

Il. SYSTEM MODEL

In this study, we propose a sophisticated communication
system involving legitimate UAVs and a combination of
terrestrial and non-terrestrial networks under heavy jamming
attacks. The system comprises three legitimate UAVs, which
are mobile and communicate with a terrestrial network
composed of three nodes and a non-terrestrial network with
a HAPS. All legitimate UAVs are geographically spread
to prevent physical collision; yet wireless communication
interference is possible. The spectrum of the communication
links between legitimate UAVs and the nodes, or HAPS,
is divided into N orthogonal channels. Furthermore, the
communication process is divided into equal timeslots.
There is no direct communication between UAVs, and they
do not operate on a scheduling basis. Instead, to select
unique channels, each UAV utilizes a pseudo-random (PR)
channel selection pattern that is generated using a pseudo-
random number generator, resulting in a deterministic yet
seemingly random selection of channels unique to each UAV.
PR patterns are established before deployment, ensuring
that no two UAVs will attempt to transmit on the same
channel during a given timeslot. This approach eliminates
the possibility of interference, which occurs when multiple
UAVs transmit on the same channel simultaneously. This
approach rules out interference, which occurs when two or
more UAVs choose the same channel for data transmission.

All channels between all elements of the system are
reciprocal and follow a Rayleigh fading model, accounting
for random fluctuations in signal amplitude and phase
experienced in air-to-ground and air-to-HAPS links.

As shown in Fig. 1, our system includes multiple jammers
with distinct behaviors. A DRL-powered smart jammer uses
a DQN and interacts with the environment to learn an
efficient attack policy. Additionally, a sweeping jammer
targets one frequency channel at a time, while a comb
jammer targets a group of three different frequency channels
for T.omp timeslots, after which it attacks a different set of
frequency channels and so on.

We assume that all elements in our system can sense the
spectrum while continuing their transmission or attacking
tasks. This enables them to have information about the
spectrum activity of the last part of the timeslot before the
start of the next one. A legitimate UAV’s transmission is
successful when its interactions with the node and the HAPS
are not jammed.

In Section III, we present our proposed method to address
the challenges identified in this system model.

lll. PROBLEM FORMULATION
This section delineates the problem addressed in this study—
namely, the issue of multiple jammers launching various
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FIGURE 1. Diagram of the proposed communication system involving UAVs, nodes,
jammers, and HAPS.

types of attacks. In the environment outlined in Section II,
each legitimate UAV follows a predefined PR channel
selection agreement to counteract the smart jammer’s attacks
when communicating with the HAPS. In addition, the UAVs
aim to thwart the sweeping and comb jammer attacks
targeting their link with terrestrial nodes.

However, the smart jammer employs Deep Q learning to
take action and uses the Markov Decision Process (MDP)
to get the optimal behaviour. This MDP is characterized by
the tuple (S, A, P, R,) outlined below.

« S represents the state space. At time-slot t, s[f] =
[c1]f], ca[t], .., en[f]] € S denotes the environment’s
state, where c¢;[t] is O if channel i is vacant or 1
otherwise.

e A = A" x A" x A, where A’ = {1,2,..C}, C being
the number of spectrum channels, constitutes the action
space for the smart jammer. It simultaneously attacks
three channels at time slot 7. This action is defined as
ajlr] = [¢f[1], 711, ¢ [11], where ¢f[1] € A, k € {1,2,3)
is the k™ channel attacked by the jammer at time slot 7.

. Paj (s[¢], s[t + 1]) is the transition probability between
state s[t] and s[r + 1] after the smart jammer takes
action a;.

e Rj(s[t], aj[t]) is the reward the smart jammer receives
for taking action g; in state s[z]. At time slot ¢, the
jammer receives a reward of 1 for each successfully
jammed channel. Otherwise, it receives no reward. The
reward for this jammer is given by Eq. (1):

Ny
Ri(s[t], qjl) = ) Xy (1
i=0
where

2

[ 1if alf] € ajlt],
Xid =) 0 otherwise.
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The environment also contains two additional jammers. A
sweeping jammer selects channel cgj[f] = cgj[t — 1] (mod N),
and a comb jammer simultaneously attacks three channels as
follows: c[t] = [cij[t], cgj[t], cgj[t]], maintaining its choice
for Teomp time slots. Then, it targets a different random set
of frequency channels and so on.

IV. PROPOSED METHOD

In this study, we introduce a novel method that uses a PR
algorithm for initial channel selection, augmented with a
Transformer module to predict the jammed channels in the
subsequent timeslot. To combat these diverse jammers, we
propose a novel anti-jamming approach built around two key
components.

First, UAVs employ a PR channel selection algorithm for
initial defence. Second, we augment this initial strategy with
a Transformer Encoder-Decoder architecture to predict the
jammed channels in the subsequent timeslot. The encoder
portion is adept at capturing intricate relationships within
sequential data, making it ideal for the analysis of historical
jamming patterns. The decoder then uses the encoded
information to generate a prediction of the jamming sequence
for the next timeslot.

Transformers are a powerful deep-learning architecture
known for their ability to model sequential relationships in
data. This ability of Transformers is underpinned by a core
mechanism called ‘attention’, which allows the model to
focus on the most relevant parts of the input sequence when
making predictions. In our context, the Transformer ‘attends’
to specific moments in the jamming history to predict future
jammer behaviour. Specifically, the Transformer’s attention
mechanism excels in finding patterns within historical data.
In our system, this allows the model to identify correlations
between the UAVs’ PR choices and the jammers’ subsequent
attacks, thereby facilitating a proactive defence strategy.

This model is trained on data entries generated from an
environment where only the PR algorithm is used. This
training enables the model to predict the jammed channels
relative to the choices made by legitimate UAVs using the
PR algorithm. Therefore, when we employ the prediction,
we are essentially predicting how the smart jammer reacts
to the PR algorithm. We also predict the channels of the
sweep and comb jammers.

The Transformer model operates on a sequence of past
jamming states as input. Each input is represented as a binary
vector of length C, where 1 indicates a jammed channel and
0 represents a free channel. The output of the model is also
a binary vector of length C, with each element predicting the
presence (1) or absence (0) of a jammer on the corresponding
channel in the next timeslot.

Overall, our Transformer model features a customized
embedding layer designed to process binary sequences
representing jamming states. This differs significantly from
traditional Transformer models, which typically operate on
sequences of words or tokens. This adaptation enables our
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FIGURE 2. Encoder-Decoder Transformer module architecture for the jamming
position prediction.

model to effectively capture the dependencies and patterns
inherent in binary jamming data.

A. TRANSFORMER WORKFLOW

As shown in Fig. 2, the Transformer processes the jamming
history through a series of steps to predict future jammer
behaviour:

o Input Embedding: The input to the Transformer is a
sequence of past jamming states, representing each state
as a binary vector. The embedding layer transforms
these binary vectors into a rich vector representation,
capturing the semantic meaning of each jamming state.

o Positional Encoding: Since the Transformer architecture
does not inherently capture the order of the input
sequence, positional encoding is added to the embedded
representation. This encoding injects information about
the relative or absolute position of each jamming state
in the sequence, allowing the model to understand the
temporal dynamics of the jamming patterns.

o Encoder Self-Attention: The core of the Transformer is
the self-attention mechanism. In the encoder, the self-
attention layer allows the model to weigh the importance
of different positions in the input sequence when
processing a particular position. This enables the model
to capture complex dependencies and relationships
between different jamming states in the history.

o Encoder Feedforward Network: After the self-attention
layer, a feedforward network further processes the
encoded representation. This network consists of two
linear transformations with a ReLU activation function
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in between. It helps to capture more complex patterns
in the data.

o Decoder Initialization and Embedding: The decoder
starts with an initial sequence (e.g., a ‘start’ token) and
embeds it into a continuous representation, similar to
the encoder.

o Decoder Self-Attention and Encoder-Decoder Attention:
The decoder also has a self-attention layer to focus on
the relationships within the generated output sequence.
Additionally, it has an encoder-decoder multi-head
attention layer that allows it to attend to relevant parts of
the encoded input sequence, helping it generate accurate
predictions.

o Decoder Feedforward Network and Output: Similar to
the encoder, the decoder has a feedforward network that
performs the final processing step where normalization
again ensures stability, and the sigmoid function maps
the output values between O and 1 for probability-like
predictions.

Our method encompasses two distinct variants to balance
robustness and adaptability: offline and online. The offline
variant is trained on a pre-existing dataset of jamming pat-
terns and does not update its parameters during deployment.
It provides robust initial performance based on the patterns
it learned during training. In contrast, the online variant
continuously adapts to the changing jamming environment. It
maintains a memory of recent jamming data and periodically
retrains the Transformer model, refining its predictions based
on real-time observations.

To illustrate, consider a scenario where a new jamming
strategy emerges after the initial deployment of the offline
model. The offline model would be unable to adapt to
this new strategy, potentially leading to a decrease in
performance. However, the online model would detect the
shift in jamming behaviour, retrain on the updated data, and
adjust its predictions accordingly, maintaining a high level
of anti-jamming effectiveness.

B. OFFLINE METHOD

The offline variant of our method begins with the pre-training
of a Transformer model. This training is conducted on
simulated data where UAVs employ the PR channel selection
algorithm in the presence of jammers. Once the anti-jamming
scenario begins, the system maintains a memory window
of Tfeamres timeslots. Initially, this window is filled with
placeholder values (e.g., ones) to provide a neutral baseline
for the Transformer predictions. The Transformer module
takes this memory window as input to predict the jammer
positions in the next timeslot.

C. ONLINE METHOD

The online variant of our method builds upon the offline vari-
ant’s foundation. It also starts with a pre-trained Transformer
model. However, this model is continuously refined during
live operation. The system maintains a training memory of
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Algorithm 1 Offline Version of the Proposed Algorithm

1: Initialize UAVs

2: Initialize the Transformer model

3: Simulate UAVs behaviors using the PR channel selection
algorithm under jammer attacks

4: Construct a training dataset with jammer channel posi-
tions from the simulations

5: Train the Transformer model with the training dataset

6: while UAVs are operational do

The Transformer model takes the current memory

window of jammed channels with length Tqpres as input
// Initially, the memory window is filled with placeholder

values

8: The Transformer model predicts the next jammed
channel information

9: UAVs select their actions from the predicted free
channels by the Transformer model

10: Update the memory window with the last jamming

information // Maintain a memory window of the past
Tfearures timeslots for the prediction operation
11: end while

Algorithm 2 Online Version of the Proposed Algorithm

1: Initialize UAVs

2: Initialize the Transformer model

3: Initialize the training dataset

4. while UAVs are operational do

5 The Transformer model takes the current memory
window of jammed channels with length Trupes as input
// Initially, the memory window is filled with placeholder

values
if Tpning is reached then
7: Train the Transformer model on the training
dataset of length Tying
8: end if
The Transformer model predicts the next jammed
channel
10 UAVs select their actions from the predicted free
channels by the Transformer model
11: Update the training dataset with ongoing jammed

channels // Maintain a training memory of length Tiyine
for the tuning operation

12: Update the memory window with the last jamming
information // Maintain a memory window of the past
Tfearures timeslots for the prediction operation

13: end while

length Typing storing recent jamming data to achieve this.
Once Tyming is reached, the Transformer model is retrained
on these accumulated data, thereby allowing the model to
adapt to the jammers’ changing behaviors.

D. DECISION MAKING
Both offline and online variants of our method employ
the same core decision-making logic. Before applying the
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sigmoid function, the UAVs analyze the Transformer model’s
output and prioritize channels with the lowest predicted
values. This strategy enhances robustness, as these channels
are most likely to be free of jamming activity. Therefore, by
focusing on the channels the Transformer predicts to be clear,
the UAVs proactively mitigate the impact of unexpected
jamming events.

In Section V, we compare offline and online versions
of our algorithm in terms of success rate and predictive
precision.

E. COMPUTATIONAL COMPLEXITY

The computational complexity of our Transformer-based
method during the testing (prediction) phase is influenced
by the following factors:

o Input Dimensionality: The Transformer receives an
input with dimensions Tarures X Nehannels- Transformers
generally exhibit quadratic complexity with respect to
the total number of features [O((Tfeanres ¥ Nenanneis)®)]-

o Transformer Attention Heads (H): The number of atten-
tion heads in the Transformer model directly impacts
complexity. We can approximate the relationship as
linear [O(H)].

Combining the dominant factors, we estimate complexity
as approximately O((Treaures X Nc;m,mels)2 x H). In the
scenario where Tfoqures and H are considered constant, the
complexity scales quadratically with the number of channels
[O(Nghannels) 1.

Crucially, offline training can be performed with powerful
computational tools, making its complexity less of a concern
for real-time deployment. Our method’s specific parameter
configuration (Tfeaures = 13, Nehanneis = 10, H = 2) leads to
a low computational footprint, making it suitable for onboard
processing on UAVs.

While the computational complexity of the Transformer
model is a consideration, it is well within the capabilities
of modern UAV hardware. The feasibility of deploying
Transformer models on UAVs for real-time tasks has been
demonstrated in recent research [32]. Recent advancements
in embedded systems and edge computing have led to the
development of powerful and energy-efficient processors
that can handle the computational demands of deep-learning
models like Transformers. Moreover, techniques such as
model quantization [33] and pruning [34] can be employed
to further reduce the model’s size and computational require-
ments without significantly sacrificing performance.

V. SIMULATION RESULTS AND ANALYSIS

In this section, we present the results of our simulations
and compare the different methodologies employed in our
research. Our aim is to evaluate the effectiveness of our
proposed Transformer-based anti-jamming techniques as
compared to a baseline PR channel selection approach and
other machine learning paradigms. We begin by describ-
ing the experimental setup used to evaluate our methods
presented in Section IV.
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TABLE 1. Simulation parameters.

Description Value
Number of channels [10, 12, 14]
Number of agents 3

Number of jammers 3

Jamming types ‘smart’, ‘comb’, ‘sweeping’

Comb jammer depth : T.omp 50 timeslots
Transformer embedding size 64

100 epochs
11500 timeslots

2048 timeslots

Number of training epochs
Number of episode timeslots
Tuning period : Tiyning

Prediction window : T'reqtures 13 timeslots

A. EXPERIMENTAL SETUP

Our experimental setup involves a complex scenario with
10 channels, 3 legitimate users, and 3 jammers: a smart
jammer employing a DQN, capable of attacking 3 chan-
nels simultaneously, a comb jammer attacking 3 channels
every Teomp timeslots, and a sweeping jammer attacking 1
channel per timeslot. This diversity of jammers allows us to
evaluate the robustness of our method against various and
simultaneous jamming threats. Table I provides a summary
of the considered simulation parameters. Additionally, we
investigate the impact of varying the number of channels,
testing our methods’ performances on environments with
10, 12 and 14 channels. This choice reflects a compromise
between evaluating the method’s effectiveness under different
jamming densities and maintaining a realistic number of
channels for UAV communications.

The simulations are conducted on a PC with the following
specifications: 13th Gen Intel Core i7-13700 CPU with 16
cores at 2.10 GHz, NVIDIA RTX A2000 GPU with 12 GB
GDDR6 memory, and 32 GB DDR5 RAM. The software
environment included CUDA Version 11.8, Python 3.11.5,
and PyTorch 2.14-cull8.

B. METHODOLOGIES

Our simulations employ the offline (TR-OFF) and online
(TR-ON) variants of the method introduced in Section IV.
Both rely on a Transformer model, with the key difference
being the online variant’s real-time tuning process. To
generate training data, we initially use a PR channel
selection algorithm. To provide a comprehensive evaluation,
we compare the two variants of our method against the
following three benchmarks:

o DQ: Legitimate users independently use their DQNs to
learn channel selection strategies that mitigate jamming,
with rewards based on their success in avoiding the
attacks.

o Offline LSTM (LSTM-OFF): An LSTM module predicts
jammer positions and users select channels accord-
ingly. This serves as a comparison to evaluate the
Transformer’s effectiveness in a similar time-series
prediction setting.
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e Online LSTM (LSTM-ON): Similar to LSTM-OFF, yet
with the model periodically fine-tuned to parallel the
TR-ON approach.

C. COMPARATIVE ANALYSIS

The results of our simulations providfe valuable insights into
each method’s performance. In this section, we present the
results of a comprehensive comparative analysis, examining
success rates, jammer performance against our Transformer-
based methods, prediction accuracy, and the impact of
varying channel count. Our goal is to showcase the efficiency
of our proposed methods for predicting and mitigating heavy
jamming attacks.

1) SUCCESS RATE COMPARISON

We begin by comparing the success rates of TR-ON, TR-
OFF, and other benchmark methods. The success rate is
the number of timeslots where legitimate UAVs do not get
jammed, divided by the total number of timeslots.

Fig. 3 illustrates the success rates over time for seven
distinct methods: TR-ON, TR-OFF, A2C, PR, LSTM-OFF,
LSTM-ON, and DQ. The TR-ON method consistently
outperforms the other methods, achieving a success rate of
70% by the end of the observed period. This demonstrates
its high effectiveness in mitigating jamming attacks within
a heavily jammed and dynamic environment. The TR-OFF
method also exhibits commendable performance, reaching
a success rate over 60%. However, its lack of a tuning
mechanism makes it 10% less effective than the TR-ON
method. Each tuning period, denoted as Tying, boosts TR-
ON’s success rate, indicating its adaptability to the changing
behaviour of the DQ-smart jammer. The A2C method, on
the other hand, maintains a consistent yet comparatively
lower success rate of approximately 30%, highlighting the
limitations of this reinforcement learning approach in this
scenario. Furthermore, owing to the random nature of the
channel selection algorithm, the PR method shows a steady
success rate of ca. 45%. Next, LSTM-OFF and LSTM-ON
methods demonstrate relatively lower performance than the
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FIGURE 4. Jammers success rate against both online and offline Transformer
methods.

Transformer-backed algorithms, with success rates slightly
above 50%. Finally, the DQ-based algorithm exhibits the
poorest performance, with success rates falling below 40%
and approaching 30% by the end of the simulation period.
This is due to the DQ-jammer’s ability to learn and adapt
to the behaviour of the DQ-powered legitimate users.

Fig. 3 clearly highlights the superior performance of the
Transformer-backed methods, particularly TR-ON, in terms
of success rate over time.

2) JAMMER PERFORMANCE

This section analyzes the performance of the DQ, comb, and
sweep jammers when faced with the TR-OFF and TR-ON
anti-jamming algorithms. Fig. 4 depicts the success rates of
these jammers against three legitimate users.

The comb and sweep jammers are completely thwarted
by the Transformer-based models, with their success rates
plummeting to zero. This finding demonstrates that both
TR-ON and TR-OFF can effectively learn and counter the
patterns of these jammers from the training data.

By contrast, the smart jammer exhibits a more complex
dynamic. Its success rate against the offline model (DQ vs.
TR-OFF) steadily increases over time, reaching a peak of
35%. However, against the online model (DQ vs. online),
its success rate fluctuates below 30%. This cyclical pattern
reflects the TR-ON model’s tuning mechanism, which
continually forces the smart jammer to adapt. Each tuning
period temporarily disrupts the smart jammer. The latter then
subsequently improves until the next tuning cycle.

These observations highlight the TR-ON model’s adapt-
ability to changing jamming strategies. Despite a temporary
decrease in prediction accuracy during the tuning period, the
TR-ON model’s ability to learn and adapt to new patterns
used by the smart jammer ultimately results in its lower
overall jamming success rate.

3) ACCURACY OF TRANSFORMER MODELS VS. LSTM

This section presents the results of a comparative analysis
of the prediction accuracy of TR-ON, TR-OFF, and the
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FIGURE 5. Prediction accuracy comparison of the Transformer vs. LSTM models.

LSTM-backed models. This comparison is instrumental in
understanding each method’s relative strengths and weak-
nesses in predicting the jammers’ positions.

Fig. 5 reveals distinct performance characteristics of the
Transformer vs. LSTM models. The TR-ON and TR-
OFF models consistently demonstrate a superior prediction
accuracy as compared to their LSTM counterparts.

The TR-ON model exhibits the highest accuracy overall,
which significantly increases around the 4000 mark on
the time axis and remains high thereafter. By contrast,
the LSTM-OFF model has the lowest accuracy through-
out the observed period. While the LSTM-ON model
shows improvement towards the end, approaching the TR-
OFF model’s accuracy, it still falls short of the superior
performance of the TR-ON model.

4) IMPACT OF THE NUMBER OF CHANNELS

We examine the impact of increasing the number of channels
on the performance of our Transformer-based anti-jamming
methods. In this test, we deliberately maintain a high
jamming density, ensuring at least half the channels are
under potential jamming threat. We specifically choose three
channel counts: 10, 12, and 14. This equates to jamming
ratios of 0.70, 0.58, and 0.5, respectively, keeping the number
of legitimate UAVs and jammers constant. Fig. 6 illustrates
how the average success rate of legitimate UAVs changes
with an increase in the number of channels. We observe a
general trend of increasing success rates for both the TR-ON
and TR-OFF models as the number of channels increases.
This indicates that, in the event of jamming threats, a larger
pool of available channels benefits UAV communications.
Importantly, the TR-ON model consistently outperforms the
TR-OFF across all channel counts, emphasizing the value
of its real-time adaptability. This advantage becomes even
more pronounced as the number of channels scales. For
example, at 10 channels, the difference is minimal, with
TR-ON achieving 65% and TR-OFF 63%; however, at
14 channels, TR-ON achieves a success rate of ca. 76%,
while TR-OFF remains around 70%. This highlights that,
in complex environments with more channels, the ability
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to adapt to changing jamming strategies becomes crucial.
These results convincingly demonstrate the effectiveness of
our Transformer-based approaches, particularly the online-
adaptive TR-ON model, in securing UAV communications
against adversarial jamming.

In Fig. 7, we observe a positive correlation between the
number of channels and the prediction accuracy of our
Transformer-based models. The increased dimensionality of
the data allows both the TR-ON and TR-OFF models to
better learn the underlying patterns of jammer behaviour.
Interestingly, with an increase of the number of channels
to 14, with a corresponding jamming ratio of 50%, the
difference in accuracy between the TR-ON and TR-OFF
models diminishes and amounts to 1%. This suggests that,
when the environment provides a sufficient number of free
channels, the pre-trained knowledge of the TR-OFF model
becomes sufficient to achieve prediction accuracy levels
comparable to those afforded by the online-adaptive TR-ON
method.

5) TRANSFORMER MODEL TRAINING AND
CONVERGENCE

The Transformer model is trained using the AdamW opti-
mizer with a learning rate scheduler. The training process
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aims to minimize the binary cross-entropy loss between
the predicted and actual jamming states. The convergence
behaviour of the model is illustrated in Fig. 8. Both the
training and validation losses initially increase. In the initial
phase of training (epoch < 10), the observed increase in
loss can be attributed to the random initialization of the
model’s parameters and the optimizer’s initial exploration of
the parameter space. Furthermore, since the data is imported
batch by batch, the model has not yet seen the entire
dataset. As the model begins to capture the underlying
patterns in the data and visits more of it across epochs,
the optimizer’s updates become more refined, leading to the
subsequent decrease in both training and validation loss.
The training loss continues to decrease steadily over the
epochs, ultimately reaching a value of approximately 0.3
at 100 epochs. The validation loss, while also decreasing,
experiences more fluctuations and plateaus around 0.35,
slightly above the final training loss. The alignment of the
two curves in later epochs suggests the model is generalizing
well and not overfitting. The slight remaining gap between
training and validation loss indicates the potential for
further marginal improvement in generalization performance.
Overall, the consistent downward trend and proximity of the
curves demonstrate the model’s effectiveness in learning the
underlying patterns of the data and its ability to generalize
to unseen jamming scenarios.

6) ANALYSIS AND TRADE-OFF

Our comparative analysis underscores the effectiveness of
Transformer-based anti-jamming methods and reveals key
trade-offs between the TR-ON and TR-OFF models.

The TR-ON model, with its real-time adaptability, con-
sistently outperforms all other methods in terms of success
rate, demonstrating resilience in dynamic, jammer-rich envi-
ronments. This superior performance is due to its ability
to continuously learn and adapt to the evolving tactics of
intelligent jammers. Unlike the TR-OFF, which relies on
pre-trained knowledge and struggles to adjust to novel or
unexpected jamming strategies, the TR-ON actively updates
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its model parameters by retraining on recent jamming data.
This continuous learning allows the TR-ON to identify and
respond to shifts in jammer behaviour, which is crucial when
facing intelligent jammers employing deep reinforcement
learning. As a result, the TR-ON maintains a higher
success rate, staying ahead of the jammer’s evolving tactics.
Interestingly, the distinction in success rates grows with an
increase in the complexity of the environment (i.e., a higher
number of channels).

Of note, both Transformer models successfully thwart the
comb and sweep jammers, highlighting their effectiveness
in countering predictable jamming patterns. Furthermore,
they exhibit a consistently higher prediction accuracy as
compared to the LSTM-based benchmarks, underscoring
the Transformer architecture’s superiority for time-series
analysis in jamming scenarios.

An important consideration is the effect of channel count.
By providing more opportunities for legitimate communica-
tion to evade jamming, an increase in the number of channels
generally boosts the success rate of both Transformer models.
Interestingly, the difference in their prediction accuracy
diminishes at higher channel counts, especially when the
jamming ratio drops to 50%. This suggests a potential point
where the TR-OFF model’s pre-trained knowledge becomes
sufficient under less congested conditions.

This observation highlights a critical trade-off: compu-
tational complexity. While the TR-ON delivers superior
performance, especially in dynamic and heavily jammed
environments, it requires a robust computational setup. This
becomes particularly important for real-world UAVs with
onboard processing units for training tasks. However, despite
being computationally less demanding, the TR-OFF offers a
slightly lower success rate overall.

7) ROBUSTNESS AGAINST CHANNEL IMPERFECTIONS
AND NOISE

In this part of our performance analysis, we fix the number of
channels to N, = 10. Our system demonstrates adaptability
to varying levels of channel imperfections and noise. We use
a threshold-based strategy for channel detection, ensuring
accurate identification of jammed channels. This approach
considers channels with received base-band signal amplitude
exceeding a threshold (®) jammed. However, the choice of
this threshold presents a trade-off between the probability of
false alarm (Py,), where noise is mistaken for jamming, and
the probability of miss detection (P,y), where a jamming
signal goes undetected. Following [24], Eq. (3) and Eq. (4)
show that Py, depends solely on the threshold value (®) and

the noise power (02):
®
Pgy = Q -
o

By contrast, P,y is also influenced by the jamming-to-
noise ratio (JNR), which incorporates the jamming signal

3)
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TABLE 2. P, for Different P, and JNR Values.

INR/Py,, | 0.01 0.05 0.1 0.15 0.2 0.25
5 0.7082 [ 0.4469 |0.3097 |[0.2291 0.1745 ]0.1348
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FIGURE 9. Effect of Py, and P,y on the success rate.
power (n):
n—0
Prd = Q( - > 4)

As illustrated in Table II, a higher JNR (stronger jamming
signal) generally translates to a lower Py, making the
jamming signal easier to detect. Conversely, a lower JNR
makes detection more challenging and can increase Pyg.

Simulating realistic jamming environments JNR is a
dynamic parameter reflecting the real-world challenges of
UAV communication. While moving, UAVs experience
variations in their distance from jammers. Higher JNRs
occur when UAVs are closer to jammers due to the stronger
jamming signal strength. Conversely, lower JNRs represent
situations where UAVs are farther away and the jamming
signal weakens. To evaluate how our system performs under
varying levels of jamming intensity, we simulate these
dynamic JNR conditions.

Fig. 9 illustrates the success rates of both the TR-ON
(Fig. 9 (a)) and TR-OFF (Fig. 9 (b)) anti-jamming models
under varying degrees of channel imperfections. The impact
of JNR, P4, and Py, is clearly visible. The ideal scenario
without imperfections (dotted line) sets the benchmark for
the other scenarios, as it represents the maximum achievable
success rate. In line with our expectation, the success rates
decrease with increasing P, and Py,. For both models, high
JNR levels (above 12 dB) lead to success rates closer to the
ideal case, as lower P, allows for a more reliable jamming
detection.
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Interestingly, the success rates remain relatively high even
with increased Py, at high JNRs. This suggests that both
models are more robust to false alarms than miss detections.
A missed detection has a greater detrimental effect, as it
means a jammed channel remains unidentified. Importantly,
the TR-ON model consistently outperforms the TR-OFF
model across various combinations of JNR, P4, and Pp,,
demonstrating its superior ability to mitigate jamming within
imperfect channel conditions.

VI. CONCLUSION

This study demonstrates the effectiveness of Transformer-
based models for mitigating heavy jamming attacks within
dense UAV and HAPS communication systems. Combining
pseudo-random channel selection with a Transformer’s adap-
tive prediction capabilities, our hybrid methodology offers
distinct advantages over other approaches. We design the
Transformer to effectively operate in both offline and online
modes.

In dynamic environments with smart jammers, the online
Transformer (TR-ON) surpasses other methods, including
the offline Transformer (TR-OFF), LSTM models, DQN-
based strategies, and basic PR techniques. The TR-ON
demonstrates superior success rates and prediction accuracy,
particularly with an increase in the number of channels.
It also successfully thwarts comb and sweep jammers.
Interestingly, with a large number of channels and lower
jamming density, the accuracy gap between TR-ON and TR-
OFF diminishes, highlighting a potential trade-off between
computational efficiency and adaptability. Our analysis
highlights the system’s robustness to channel imperfections
and noise. Of note, both models demonstrate a higher
tolerance for false alarms, but missed detections have a
more significant negative impact on success rates. The TR-
ON maintains its superior performance across various noise
scenarios.

Overall, our results provide robust evidence that
Transformer models are powerful tools for enhancing
UAV communication robustness against jamming threats.
However, it is important to acknowledge some potential
limitations to our approach. The performance of both
TR-OFF and TR-ON is contingent on the quality and rep-
resentativeness of the training data. If the training data does
not adequately capture the diversity of potential jamming
strategies, the models may struggle to generalize to unseen
scenarios, resulting in reduced effectiveness. Furthermore,
the Transformer model itself could be a target for adversarial
attacks. Adversaries could attempt to manipulate the input
data or exploit vulnerabilities in the model’s architecture to
mislead its predictions. For instance, a jammer might initially
use a predictable pattern that the model learns, only to
change its strategy later, causing the model to make incorrect
predictions. This could potentially compromise the UAV’s
anti-jamming capabilities.

Future research should focus on cooperative UAV strate-
gies, latency optimization, and integration with broader
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spectrum-sharing protocols. These advancements would fur-
ther strengthen the development of secure and adaptable UAV
anti-jamming systems.
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