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ABSTRACT Advancements in sixth-generation (6G) networks, coupled with the evolution of multimodal
sensing in vehicle-to-everything (V2X) networks, have opened avenues for transformative research
into multimodal-based artificial intelligence (AI) applications for wireless communication and network
management. However, this promising research direction is often constrained by the limited availability of
suitable datasets. In response, this paper introduces a comprehensive configurable co-simulation framework
that integrates the state-of-the-art CARLA and Sionna simulators to generate a multimodal multi-view
V2X (MVX) dataset. We present novel AI-based models to predict future line-of-sight (LoS) blockages
and optimal beam direction as well as an innovative antenna position optimization (APO) solution, all
of which are underpinned by the multimodal dataset MVX. Our framework capitalizes on collaborative
perception and significantly enhances V2X communication by integrating LiDAR and wireless data.
Thorough evaluations demonstrate that our collaborative perception approach outperforms traditional
methods of both beam and blockage prediction in terms of accuracy and efficiency. Additionally, we
evaluate the importance of infrastructural elements in V2X systems and conduct a computational study
to illustrate that our framework is suitable for various operational scenarios and can be used as a digital
twin solution. This work not only contributes to the field of V2X wireless communications by providing
a versatile framework for network management but also sets the stage for future research on multi-sensor
fusion in AI applications for V2X wireless communication environments to enhance the efficiency and
resilience of future 6G networks.

INDEX TERMS 6G, V2X, collaborative perception, vision transformer, network management.

I. INTRODUCTION
A. MOTIVATION

IN THE rapidly advancing field of wireless commu-
nications, the transition towards sixth-generation (6G)

represents a fundamental transformation characterized by
exploring high-frequency bands such as millimeter waves
(mmWave) and terahertz (THz). However, these high
frequencies are subject to significant penetration loss and
attenuation, which make them vulnerable to physical block-
ages [1] that cause the received signal-to-noise ratio to
fluctuate. These fluctuations become particularly problematic
when physical obstructions disrupt the line-of-sight (LoS)

between base stations and users and cause frequent commu-
nication channel interruptions. These interruptions degrade
network reliability and lead to substantial delays when
re-establishing LoS connections [2]. In addition, massive
antenna arrays make it possible to form ultra-narrow beams.
This technological advancement serves two purposes: 1) it
substantially amplifies the received signal power at the
intended users, and 2) it reduces interference, which is crucial
for maintaining system integrity. However, this technology
complicates beam management, particularly in scenarios
involving high-mobility vehicles. The challenges they intro-
duce must be overcome to achieve ultra-reliable low-latency
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communication (URLLC) in 6G networks. Meanwhile, the
evolution of multimodal sensing plays a crucial role in
shaping the future of wireless systems, particularly in 6G
networks. 6G vehicular networks have the potential to
generate plenty of multimodal data given the various types
of sensors that are used by autonomous vehicles [3], [4].
This characteristic has spurred innovative research directions,
notably multimodal sensing-aided wireless communication
and network management [5], [6], [7], to address the chal-
lenges associated with blockage and beam vector prediction
using simulated datasets. This research has highlighted how
efficiently artificial intelligence (AI) components can utilize
the rich dataset to extract valuable insights for predicting
blockages [5] and beam vectors [6] to achieve URLLC.

As AI research for autonomous driving progresses, a
novel approach has emerged to achieve a more accurate
and comprehensive understanding of the environment and
AI decision-making capabilities: collaborative perception.
Traditional single-agent perception systems often grapple
with challenges such as limited sensor range, which can
lead to potentially catastrophic outcomes at great distances,
as highlighted in [8]. This limitation arises primarily from
an individual vehicle’s perception being confined to a
single perspective with a restricted field of view. Several
studies [9], [10], [11], [12] have explored overcoming these
limitations by integrating multiple viewpoints of the same
scene. This exploration focuses on vehicle-to-everything
(V2X) collaborative perception [13], which encompasses
both vehicle-to-vehicle (V2V) and vehicle-to-infrastructure
(V2I) interactions. As these studies demonstrate, the success
of collaborative perception in AI-based autonomous driving
is largely attributable to the availability of high-quality
datasets that are configurable and scalable. However, in
wireless communication, particularly in 6G V2X networks,
there is currently a lack of comprehensive multimodal
datasets that are configurable, multimodal, and multi-user.
This absence of suitable datasets presents a significant
challenge when it comes to applying proven multimodal
collaborative perception methods to enhance the reliability
and efficiency of 6G network management.

B. RELATED WORK
Thanks to the use of multimodal data, the evolution of
AI-based network management solutions, particularly for
beam and blockage prediction in wireless networks, has
been significantly accelerated. This section reviews the key
developments in this area.
Initially, solutions such as the multi-connectivity approach

proposed in [14] laid the groundwork for managing connec-
tion links between users and multiple base stations. In that
model, a centralized unit aggregates information from all
base stations to evaluate the connection quality. However, a
critical limitation of these solutions is that they are reactive
- they detect disconnections after the fact, which means
that users are temporarily disconnected, and communication
is delayed until the base station re-establishes the link.

It became evident that more predictive approaches were
needed to address this challenge. The objective then shifted
to enabling base stations to anticipate the state of non-line-of-
sight (NLoS) connections and proactively selecting optimal
beam vectors to prevent connection loss. The introduction of
comprehensive datasets catalyzed the development of several
AI-based network management solutions that incorporate
multimodal data by using wireless simulators, such as the
Blender Sensor simulator [15], the Simulation of Urban
Mobility (SUMO) [16] traffic simulator, and Remcom’s
Wireless InSite simulator [17] for ray tracing, to generate
datasets that combine wireless and multimodal data. The
following are the prominent related datasets that integrated
multimodal data with wireless data.

• LiDAR Data [18]: This dataset combines LiDAR data
points and wireless data to aid with LoS detection and
reduce the overhead for mmWave beam selection. It
was generated using the Blender Sensor simulator [15],
the SUMO simulator [16], and the Wireless InSite
simulator [17].

• ViWi [19]: This dataset was produced using a virtual
simulated multimodal data framework that generates
images from fixed base station cameras, LiDAR data,
and wireless data using the Wireless InSite simula-
tor [17]. It underscores the importance of visual data in
wireless communication datasets, with studies showing
that such data enhances blockage prediction accuracy
in V2X networks.

• DeepSense 6G [20]: This multimodal dataset is sourced
from real-world scenes utilizing various sensors.

The research community has built upon these datasets by
exploring the use of various data types to enhance prediction
accuracy for static and dynamic blockage detection. Notably,
the work presented in [21] leverages the ViWi dataset
framework [19] and visual data from the perspective of the
base stations to develop a machine learning-based blockage
prediction framework. This approach was further expanded
by [22], which introduced the use of LiDAR data to
predict dynamic link blockages proactively, and [5], utilized
base station-perspective images for blockage prediction in
mmWave environments. The work presented in [6] further
advances this field and uses both visual and positional data
to predict the optimal beam indices, which is an innovative
alternative to conventional beam sweeping approaches. These
studies underscore the significant advantages of employing
multimodal data to create an environment-aware AI solu-
tion. Notably, the vision-aided blockage prediction solution
is highly accurate within a 500-ms prediction window.
However, its accuracy degree is reduced when applied over
larger prediction windows. Meanwhile, the beam prediction
approach effectively reduces beam training overhead, which
enhances the overall prediction accuracy and network man-
agement efficiency. However, these solutions can be used
only with data collected from either a user or a base
station perspective, which inherently limits the sensors’
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range. This limitation is mainly due to the confinement of
perception to a single perspective, which restricts the field
of view and may compromise the accuracy of predictions.
This constraint can lead to lower communication quality
and potentially catastrophic outcomes. Therefore, there is
growing recognition that a collaborative perception approach
that encompasses a broader environmental understanding is
needed. However, the development of such an approach is
limited by a lack of suitable datasets. Existing datasets cannot
be used to test collaborative perception solutions as they
require data inputs from a wider range of perspectives to
ensure comprehensive environmental awareness. This gap
highlights the urgent need for new and more comprehensive
datasets that can support the advancement of collaborative
perception techniques for network management. While the
focus on multimodal datasets in autonomous driving has led
to significant advancements in collaborative perception, the
integration of such approaches in wireless communication,
particularly AI-based network management solutions, comes
with a distinct set of challenges and opportunities.
The exploration of multimodal datasets designed for

collaborative perception in autonomous driving has attracted
considerable interest. A variety of datasets with distinct fea-
tures have been developed to advance this field. CARLA [23]
is an open-source realistic simulator that was designed to
advance autonomous driving research. It incorporates urban
layouts, various vehicle models, realistic building structures,
dynamic pedestrian activity, and detailed street signs. What
sets this simulator apart is its ability to accommodate a
wide range of sensor setups comprising cameras and LiDAR
sensors. Furthermore, it provides rich data for comprehensive
experimentation, including Global Positioning System (GPS)
coordinates, vehicle speed, and vehicle acceleration. The
CARLA [23] simulator’s exceptional quality has laid the
foundation for the creation of the following datasets that
have contributed significantly to collaborative perception and
autonomous driving research.

• OPV2V [24]: This dataset utilizes the CARLA [23]
simulator to generate multi-view autonomous driving
data (images, LiDAR data points, and GPS coordinates)
and focuses primarily on V2V communication.

• V2X-Sim [25]: This dataset comprises RGB images
and infrastructure viewpoints. Its utility extends beyond
V2V communication.

• DAIR-V2X [26]: This real-world connected
autonomous driving dataset features images and point
clouds.

• DOLPHINS [27]: This simulated large-scale
multimodal multi-view autonomous driving dataset
includes vehicles and roadside units (RSUs). It supports
both V2V- and V2I-based collaborative perception.

While these datasets have facilitated the development of AI
solutions for intelligent transportation, they lack the integration
of wireless data, which limits their applicability to wireless
communication and network management applications.

C. CONTRIBUTION
In this paper, we introduce a multimodal V2X (MVX)
dataset, a groundbreaking dataset that is set to revolutionize
6G V2X AI applications. MVX is the world’s first con-
figurable and scalable multi-agent and multimodal dataset
created using a co-simulation framework that incorporates
differentiable accurate ray tracing simulation. MVX lever-
ages the CARLA simulator [23], which is known for its
realistic and high-quality environment modeling, precise
three-dimensional (3D) maps, and sensor configurability. We
also employ the state-of-the-art Sionna differentiable ray
tracing simulator [28] for radio propagation modeling [29].

MVX outperforms traditional autonomous driving datasets
by incorporating wireless data, which expands its utility
to a wide range of AI-assisted network management and
wireless communication applications. It is more useful than
existing multimodal wireless datasets in three key ways: 1) it
is the first to incorporate wireless data using differentiable
ray tracing simulation, 2) it provides a highly configurable
simulation that allows all aspects of the physical world and
the wireless environment to be manipulated, and 3) it takes
into account a wide variety of ground truth information,
including object bounding boxes and semantic segmentation.
This synthetic dataset has the potential to support large-scale
generation, which is challenging and costly to accomplish
using real-world data collection methods. Our primary
contributions are as follows:

• Co-Simulation Framework: We introduce a co-
simulation framework that grants complete control over
physical world parameters such as sensors, antennas, the
number of users, vehicles, pedestrians, and buildings.
It also allows the wireless environment configurations,
including transmitters, receivers, and the channel model,
to be customized.

• MVX Dataset: We introduce MVX, a comprehensive
multimodal set of data that was collected using a variety
of sensors, including cameras and LiDAR sensors,
and incorporates both the user and the base station
perspective in different environments and scenarios. It
includes crucial ground truth annotations like accurate
3D object bounding boxes, semantic segmentation, and
differentiable ray tracing-based wireless data.

• Multimodal Collaborative Perception for Blockage and
Beam Prediction: We propose a novel multimodal
transformer-based collaborative perception AI frame-
work for multi-user V2X blockage and beam vector
prediction. This framework integrates collaborative per-
ception into future LoS blockage and optimal beam
vector prediction, which enables base stations to have
a comprehensive understanding of the environment and
significantly improves the accuracy and reliability of
predictions.

• Antenna Position Optimization (APO): We present an
architecture to optimize antenna placement in a vari-
ety of scenarios. Our architecture utilizes data from
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FIGURE 1. Considered CARLA maps and their equivalent in the Sionna simulator.

simulated V2X network traffic and communication
scenarios to inform strategic antenna positioning and
optimize network performance and reliability in differ-
ent environmental contexts.

II. SYSTEM AND CHANNEL MODELS
In this section, we present the MVX co-simulation
framework, including the settings used for the physical
environment as well as the wireless environment’s system
model and channel model.
To create a realistic simulation environment, we config-

ured the physical settings as follows:

A. SCENARIO AND PHYSICAL ENVIRONMENT
SETTINGS
We chose four different representative autonomous driving
scenarios and various weather conditions from the CARLA
simulator’s preset maps, which are presented in Figure 1.
The diversity of the maps used is essential to validate
the generalizability of AI solutions. Each scenario involves
two RSUs and multiple vehicles equipped with LiDAR
sensors. The vehicles are initialized in specific locations at
each simulation round. Equipping the RSUs with cameras
increases the amount of multimodal data from different
perspectives that are available to facilitate the development
of collaborative perception solutions for wireless communi-
cation and network management. Interconnected autonomous
vehicles can expand their perceptual fields with the help of
other agents and RSUs to improve invisible object detection.
The comprehensive data collected provides more information
than is typically available from RSU sensors and ensures
more accurate and safety-focused decision-making.

B. WIRELESS SYSTEM MODEL
We consider a dynamic V2X network that includes multiple
dynamic users (vehicles), dynamic pedestrians, and base
stations, and use the Sionna simulator’s equivalents of the
chosen CARLA maps, which are depicted in Figure 1. Ray
tracing is used to simulate physically accurate environment-
specific wireless channel realizations for a given scene and

user position. More specifically, we use the Sionna ray
tracing simulator, which is differentiable as a result of
TensorFlow’s automatic gradient computation and thus yields
channel impulse responses that are differentiable with respect
to the ray tracing simulation parameters including mate-
rial properties (conductivity, permittivity), antenna patterns,
orientations, and positions. Transmitters and receivers are
equipped with planar antenna arrays having M elements,
which are defined by scene properties, to ensure enhanced
beamforming capabilities in complex urban settings. The
beamforming vector for a given planar antenna array is
defined as

W = 1√
M

⎡
⎢⎢⎢⎢⎣

1

ej
2πd
λ (sin(θ) cos(φ))

...

ej
2πd
λ ((M−1) sin(θ) cos(φ))

⎤
⎥⎥⎥⎥⎦

, (1)

where d is the antenna element spacing, λ is the wavelength
of the carrier frequency, and θ and φ are the beam steering
angles in azimuth and elevation, respectively. We conduct
ray tracing to compute the propagation paths between
all transmitters and receivers. Each propagation path i is
characterized by a channel coefficient ai, a delay τi, and the
angles (θR,i, ϕR,i) and (θT,i, ϕT,i), which represent the angles
of arrival and departure, respectively, in both azimuth and
elevation. The channel coefficient ai is defined as

ai = λ

4π
CR
(
θR,i, ϕR,i

)HTiCT
(
θT,i, ϕT,i

)
, (2)

where CT and CR are the antenna patterns, and Ti is a trans-
fer matrix. The Paths object provides detailed information
about each simulated path, allowing the generation of
channel impulse responses and the application of Doppler
shifts to model time-evolving wireless channels.

C. CHANNEL MODEL
In our study, we adopt a geometric channel model as
is used in [18], [30], [31] to accurately simulate wireless
communications in dynamic V2X networks. This model is
particularly suitable for representing complex signal inter-
actions in urban environments and taking into account the
various scattering, reflection, and diffraction phenomena that
occur in such settings [32]. This model considers multiple
propagation paths, each characterized by specific path loss,
delay, and arrival and departure angle values. When there
are N propagation paths, the channel frequency response at
frequency f for user u is mathematically represented as

Hu(f ) =
N∑
i=1

aie
−j2π f τi , (3)

where τi represents the path delay.

D. CONFIGURABILITY
One of the most notable features of our simulation envi-
ronment is its exceptional configurability. As depicted in
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FIGURE 2. The workflow of MVX co-simulation framework.

Figure 2, users can easily modify its configuration using the
CARLA Python API. They can add sensors and position
them anywhere, remove or alter existing sensors, adjust the
number and position of agent vehicles, specify their paths,
relocate the RSUs, and even make changes to the buildings
with a single line of code.
The wireless environment’s configuration is equally flexi-

ble and enables users to modify various parameters, including
the channel models, the wireless characteristics, material
properties such as conductivity and permittivity, and the
antenna patterns, orientations and positions of the transmit-
ters and receivers. These adjustments can be made using the
Sionna Python API. Therefore, our co-simulation framework
is designed to be highly flexible and adaptable to user-
specific requirements.

III. PROBLEM FORMULATION AND PROPOSED
SOLUTION
In this paper, we address three interrelated challenges associ-
ated with dynamic V2X networks: blockage prediction, beam
prediction, and antenna position optimization. To tackle these
challenges, we introduce a collaborative perception solution
using our rich multimodal dataset MVX, which encompasses
LiDAR point clouds and beamforming vectors from the
perspective of multiple users and infrastructure.
Traditional blockage and beam prediction approaches

often rely on the perspective of a single network element,
typically a base station equipped with a camera or a
LiDAR sensor. We propose a novel approach that considers
V2X perception as a heterogeneous multi-agent perception
system in which various types of agents, such as base
stations and vehicles, perceive their surrounding environment
simultaneously and communicate with each other. This
collaborative approach aims to provide a more comprehen-
sive understanding of the environment and facilitate more
accurate predictions. Our objective is to develop a robust
fusion system that significantly enhances the base station’s
perceptual capabilities. We consider the blockage prediction
and beam direction prediction problems independently,
although both are inherently spatial. We train our proposed
multimodal collaborative perception solution to indepen-
dently predict future LoS blockages and optimal beam
directions using environmental awareness. Our proposed
framework’s overall architecture is illustrated in Figure 3.
The framework comprises four key components: 1) data

sequence preparation, 2) feature extraction and sharing,
3) V2X-ViT [13], a dedicated vision transformer designed
for V2X collaborative perception, and 4) a prediction
head component. The subsections that follow detail each
problem’s formulation and the constraints and objectives that
guide our efforts to enhance communication efficiency and
reliability in complex urban environments.

A. COLLABORATIVE PERCEPTION
The focus of our approach to collaborative perception in
dynamic V2X networks is synergistic interactions among
the vehicles (agents) and base stations. Each vehicle in the
network actively participates in data sharing by transmitting
to the base station a rich set of features extracted from
LiDAR data points. The full collection of data from multiple
agents ensures that the base station has a holistic view of
the network environment.
The extraction of features from the data collected is a

pivotal component of our system. To this end, we adopt the
PointPillars method [33], which is an anchor-based technique
that is known for efficiently handling point cloud data,
lessening computational demand, optimizing memory [24],
and transforming LiDAR raw point clouds into a structured
format. The structured data, which resembles a 2D pseudo-
image, is then processed through the PointPillars backbone
to yield informative feature maps. The feature maps are
represented as {Fi[t]}Nai=1 at a time step t for agent i (i =
−1 for the base station), where Na denotes the number of
agents, and contains essential spatial information that is then
transmitted to the base station.
At the core of our collaborative perception framework is

the V2X-ViT solution [13] for V2X collaborative perception,
which simultaneously covers V2V and V2I communication.
The V2X-ViT solution introduces an innovative hetero-
geneous multi-agent self-attention module (HMSA) which
was designed to adeptly learn and distinguish the varied
interactions involved in V2V and V2I communication. It
also incorporates a multi-scale window attention (MSwin)
module that was specifically developed to effectively capture
long-range spatial interactions, which is particularly critical
in scenarios requiring high-resolution detection. The V2X-
ViT solution employs an adaptive delay-aware positional
encoding (DPE) module for the temporal alignment of
features, which effectively addresses feature misalignments
that may arise due to localization errors and time delays.
Additionally, HMSA and MSwin modules facilitate the
capture of both inter- and intra-agent interactions. The result
is an enriched, aggregated fused feature map I(t, i).
The final stage in our pipeline is the prediction head

component, which receives the fused feature maps and
applies the time series model gated recurrent unit (GRU) to
predict the future LoS state and the optimal beam vector for
the future time interval. We chose to use GRU over other
time series models for several compelling reasons. GRUs’
relatively simple architecture and efficient performance give
them a distinct advantage over other recurrent neural network
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FIGURE 3. Overview of our proposed V2X collaborative perception-based network management system.

variants and enable them to be trained faster and be
less computationally complex. Moreover, in recent related
works [5], [21], [34], [35], [36], researchers have been
able to directly adopt the GRU model for their time series
predictions without needing to perform extensive model
comparison.

B. BLOCKAGE PREDICTION
In this study, we address the challenge of predicting link
blockages in dynamic V2X networks. Our approach involves
developing a model that uses beam vectors and LiDAR point
clouds collected from the perspective of various users and
the base station to predict blockages.
For each link between user u and a base station in the

network, we collect a sequence of data over time. At any
given time instance t, this data is represented by Xu[t] =
(lu[t], bu[t]), where lu[t] is the LiDAR data point that cap-
tures the environment from the user’s perspective and bu[t]
is the beam vector that corresponds to the communication
link between the base station and user u. The objective
is to use this data to accurately predict the occurrence of
a link blockage in the future time steps considered. This
problem is formulated as a binary classification problem,
where the model predicts whether a blockage will happen in
a predefined future time window. For each user u at any time
instance t, the LoS state is defined as su[t], which is a binary
indicator. This indicator reflects whether the communication
link between user u and the base station is in a LoS (0) or
NLoS (1) state at time t.

The task is to predict the blockage status yu[τ + f ] at a
future time τ + f given a sequence of data {Xu[t]}τt=τ−p+1
for a user u over a past time window of size p. In this case,
yu[τ + f ] is a binary variable indicating the occurrence (1)
or absence (0) of a blockage in the future time interval f
and is defined as

yu
[
τ + f

] =
{

0, su[t] = 0,∀t ∈ {τ + 1, . . . , τ + f }
1, otherwise

. (4)

Therefore, the challenge lies in predicting su[t + f ] using
the current and past data collected. We specifically seek to
develop a predictive solution P such that

P
(
{Xu[t]}τt=τ−p+1

)
→ yu

[
τ + f

]
, (5)

where P is a function that maps the current sequence of data
{Xu[t]}τt=τ−p+1 to the predicted future LoS state yu[τ+f ]. We
aim to forecast the likelihood of an LoS blockage occurring
in the next f time steps by analyzing the data Xu[t], which
includes the LiDAR data point lu[t] and the beam vector
bu[t]. Our blockage prediction approach requires training
a time series GRU model using the MVX dataset whose
true future LoS states are known. This training will enable
the model to lea‘rn the complex patterns and dependencies
in the fused feature map I(t, i) provided by the V2X-ViT
component that leads to blockages, to facilitate accurate
predictions during real-time operation in the dynamic V2X
network.

C. BEAM PREDICTION
Our approach to beam prediction involves employing our
comprehensive dataset MVX which includes LiDAR data
points and previously established beam vectors to anticipate
the optimal beam configuration for future communications.
First, a sequence of data is collected for each user Xu[t].

The beam vector is an essential aspect of the data and
indicates the direction of signal transmission between the
user and the base station. The aim is to predict the optimal
beam vector that allows the base station to target the user in
communication to provide better signal coverage in the future
time steps considered. This prediction is crucial for proactive
network management because it maintains connectivity and
prevents potential signal degradation. This can be formalized
by saying future beam state bu[t + f ] is the beam vector
that will be most suitable for time t+ f considering current
and past collected data sequences. The challenge lies in
predicting θu[t+f ] and φu[t+f ], which are the beam steering
angles of the beam vector bu[t+ f ] in azimuth and elevation,
respectively, using the data collected up to the current time
t, which is equivalent to predicting the beam vector bu[t+ f ].
We formulate the beam prediction task as follows:

B
(
{Xu[t]}τt=τ−p+1

)
→ (

θu
[
τ + f

]
, φu

[
τ + f

])
, (6)

where B is a predictive function that maps the sequence
of data {Xu[t]}τt=τ−p+1 to the steering angles (θu[τ + f ]
and φu[τ + f ]) of the optimal future beam state bu[τ +
f ]. We solve this by training a model that is capable of
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FIGURE 4. APO component architecture.

understanding the V2X network’s temporal dynamics and
spatial characteristics.
The solution leverages our multimodal dataset MVX

and employs a GRU to predict the beam state. With this
predictive modeling, we aim to obtain a communication
system that dynamically adapts to the varying conditions of
a V2X network, optimizes beam selection in real time, and
enhances the overall network performance.

D. ANTENNA POSITION OPTIMIZATION
Since our co-simulation framework is highly configurable,
we propose to optimize the positioning of the antenna in our
system to ensure maximum coverage and communication
reliability. We propose to use the APO framework illustrated
in Figure 4 to do so.

The fused feature maps provided by the V2X-ViT com-
ponent are fed into the APO component, which utilizes two
1 × 1 convolution layers to perform the critical tasks of box
regression and classification. The regression outputs define
the bounding boxes that precisely indicate the agents’ posi-
tion and determine the active area of communication. Once
the active zones have been detected, the framework leverages
co-simulation with the CARLA and Sionna simulators. This
co-simulation makes it possible to realistically model both
the urban environment (via CARLA) and the intricate details
of wireless signal propagation (via Sionna). We evaluate
various scenarios in the simulated environment to investigate
the impact antenna positioning has on network performance.
The forecasted active area is fed into a Q-learning algorithm
that maximizes the coverage map within the target area. This
process aims to optimize the antenna’s positioning to ensure
maximum efficiency and coverage. Formally speaking, the
goal is to find the optimal location p∗ within an area of
potential antenna locations in the simulated environment that
maximizes the received signal’s coverage in the targeted area
(active zone) of the scene. This objective can be quantified
by constructing a grid-like coverage map representation that
is subdivided into rectangular cells quantifying the signal
reception quality at specific locations. The mathematical
formulation of the average signal power in each grid cell
(i, j) is:

αi,j = 1

|C|
∫
Ci,j

|h(r)|2dr, (7)

where |h(r)|2 represents the squared magnitude of the path
coefficients at position r = (x, y), and the integral is

FIGURE 5. MVX data generation framework.

computed over the cell area Ci,j, with dr being the differential
element dx · dy. The coverage map contains these values for
each cell and provides a detailed signal strength profile for
the entire area. To determine the optimal antenna location
p∗, we solve the following maximization problem:

p∗ = arg max
p∈P

⎛
⎝∑

i,j

αi,j(p)

⎞
⎠, (8)

where P encompasses all potential antenna locations in the
simulated environment, and αi,j(p) denotes the computed
average signal power for cell (i, j) given the antenna’s
position at p. This procedure requires determining the
coverage map for different antenna locations and selecting
the one that maximizes the cumulative signal coverage,
thereby optimizing antenna placement for enhanced network
performance.

IV. IMPLEMENTATION
In this section, we present the details of implementing
the MVX co-simulation framework for data generation, the
collaborative perception framework proposed for beam and
blockage prediction, and the APO component.

A. MVX CO-SIMULATION FRAMEWORK AND DATA
GENERATION
To the best of our knowledge, there exists no public V2X
collaborative perception multimodal datasets for wireless
communication applications. We address this situation by
providing the public dataset MVX, which was generated
using the framework illustrated in Figure 5. It is a novel
multimodal dataset suitable for V2X collaborative perception
research in wireless communications. It is unique because
it includes differentiable ray tracing simulations and high-
resolution LiDAR data from the perspective of multiple
vehicles and infrastructure to ensure that it is relevant
and useful for wireless communication and collaborative
perception network management applications.

1) PHYSICAL ENVIRONMENT CONFIGURATION

The MVX dataset was derived from co-simulations con-
ducted in 60 unique scenes across four distinct maps or
scenarios using the CARLA simulator. Each scenario lasted
precisely 50 seconds and contained two base stations and
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FIGURE 6. The scenarios considered in the co-simulation to generate the MVX
dataset.

between two and six intelligent agents, all four of which
are depicted in Figure 6. In each scenario, the ego vehicle
follows a predefined route and synchronously collects sensor
data every 10 seconds, at a rate equivalent to 2 frames per
second. Once the simulation of one scenario is complete,
the simulator is reset to start a new round. A random
number of smart agents also simultaneously collect data,
and other traffic participants, such as cars and pedestrians,
are first randomly positioned and then controlled using
CARLA’s AI control mechanisms. LiDAR data is acquired
using LiDAR sensors that have a 120-meter data range and
have been configured as indicated in Table 1. These sensors
are positioned one on each of the vehicles and on the top of
each RSU. The sensors use ray-casting to emulate rotating
LiDAR. To facilitate sensor calibration [27], the camera
and LiDAR sensor are installed at the same location. We
also collect ground truth labels provided by the CARLA
simulator, which include the 3D bounding boxes of the
vehicles participating in the simulation.

2) WIRELESS ENVIRONMENT CONFIGURATION

The previously mentioned physical world scenarios are then
replicated in the Sionna simulator, as shown in Figure 1. The
ray tracing simulation results are then tuned by adjusting the
maximum number of interactions (or bounces) that rays can
have with objects in the scene. The shoot-and-bounce ray
tracing algorithm’s stochastic nature means that multiple runs
can yield different path calculations. We fixed the random
seed in TensorFlow to ensure reproducibility. We use a site-
specific link-level simulation of a 6G V2X network for
our wireless environment and consider an OFDM MIMO
system in the downlink direction. In line with the 3rd
Generation Partnership Project’s (3GPP)’s 5G standards for
mmWave V2X communication, we configure our ray tracing
simulation to have the planar array antenna parameters set
out in Table 1 and generate the dataset needed for our
framework, including the LoS state su[t] and the optimal
beam orientation bu[t] for communication with ego vehicle u.

TABLE 1. Architecture parameters.

We utilize the Sionna ray tracing module in our simulation
to ensure the propagation environment is accurately modeled.
This module performs deterministic ray tracing to capture
the multipath effects present in the vehicular environment,
such as reflections, diffractions, and scattering. We ensure
the urban landscape’s complex propagation conditions are
realistically depicted by adjusting the number of bounces.
When it comes to configuring the simulated OFDM MIMO
system parameters, such as the number of subcarriers, the
subcarrier spacing, and the cyclic prefix length, we tried
to configure them in line with the characteristics that 6G
V2X networks are expected to have [37], [38], [39], [40],
[41]. We set the carrier frequency and the bandwidth for
the simulations to 140 GHz and 2 GHz, respectively, which
are typical values for the sub-THz frequency range in
anticipated 6G networks [42]. This makes it possible to
achieve high data transmission rates, which are crucial for
V2X communication scenarios that incorporate high mobility
and require rapid data exchange. This frequency range was
chosen in order to evaluate how our framework performs with
higher frequencies that are more susceptible to blockages.
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Downlink transmission involves multiple antennas at both the
transmitter and the receiver to support beamforming. Once
the ego vehicle’s and the connected agents’ positions and
velocities have been obtained from the CARLA simulator,
we compute the coverage map for the designated target
area. We then calculate the gradients of the average received
signal power in this area with respect to the transmitter’s
orientation. These gradients, which are accessible because
the Sionna ray tracing simulations are differentiable, are
leveraged to refine the transmitter’s orientation using gradient
ascent and maximize signal coverage at the ego vehicle’s
location. The simulation generates time-domain channel
coefficients that are converted into frequency-domain chan-
nel responses, which are essential for the OFDM modulation
process.
Finally, the dataset’s LoS states at each simulation time

step are used to compute the blockage state yu[τ + f ] and
link it with the corresponding data sequence {Xu[t]}τt=τ−p+1,
which is then partitioned into training, validation, and test
sets to support the training and evaluation of our predictive
models.

B. FRAMEWORK TRAINING
Once the necessary data is ready, we start the training,
validation, and testing of our framework. The implementation
is detailed below. All models were trained using Nvidia
Quadro P1000 GPUs.

1) COLLABORATIVE PERCEPTION

The V2X-ViT [13] vision transformer component, is an
open-source solution designed for collaborative perception in
autonomous driving applications. It is known for its ability
to detect the bounding boxes of connected vehicles. It comes
with a model that has been pre-trained using the parameters
presented in Table 1 and a dataset that was synthesized by
the CARLA simulator. We adopt the V2X-ViT solution for
our framework with some modifications to its architecture to
fine-tune it for our MVX dataset using the same parameters.
The raw LiDAR point clouds are first processed into

stacked pillar tensors. These tensors are then converted into
2D pseudo-images and input into the PointPillars backbone,
which is configured using the parameters outlined in Table 1.
This backbone is responsible for extracting informative
feature maps, which are then shared with the participant
vehicles and the base station in the simulation to lay the
groundwork for further feature processing. The aggregated
features obtained from the connected agents are input into
the V2X-ViT component of our framework. We utilize the
open-source V2X-ViT model proposed by Xu et al. [13],
which has been designed to perform iterative inter-agent and
intra-agent feature fusion using self-attention mechanisms.
It is configured with three encoder layers and window sizes
of 4, 8, and 16 in the MSwin module. We adopt the Adam
optimizer with an initial learning rate of 10−3, which is
reduced every 10 epochs by a decay factor of 0.1 as detailed

in Table 1. This stage’s output features are integrated with
the beam vectors for subsequent prediction tasks.

2) PREDICTION HEAD

We train the GRU and APO separately for the prediction
head component. First, the time series GRU is trained, using
embedded features from the data sequences, to forecast the
future blockage state and the optimal beam direction for
subsequent time steps. As for the APO, we use the V2X-ViT
solution’s detection head, which employs the fused feature
maps it received and two 1×1 convolution layers to predict
the position, size, and yaw angle of the bounding boxes
of the vehicles in the network as well as the confidence
score of being an object. The area that contains the predicted
bounding boxes is then designated as the target active zone.
A Q-learning algorithm is used to interactively optimize
the antenna’s position. This algorithm uses the coverage
map within the target active zone as its state space and
the communication rate in bits as the reward signal. The
algorithm moves the antenna to different positions in the
predefined feasible areas to maximize the reward and thus
enhance the V2X network’s communication rate.

V. NUMERICAL RESULTS AND EVALUATION
In this study, we incorporate LiDAR and wireless data
in a collaborative perception-based network management
framework and employ a variety of evaluation metrics
to rigorously assess each of the framework’s components,
compare the framework to multiple alternative methods, and
evaluate its overall performance efficiency.

A. EVALUATION METRICS AND METHODS USED FOR
COMPARISON
In our investigation, multiple baseline methods are employed
to evaluate the importance of the various data streams that
are captured by the agents. Two distinct solutions form the
basis of comparison: one that utilizes exclusively LiDAR
data that is from the base station’s viewpoint, and the other
that considers solely data from the ego user’s perspective.
To ensure the comparison is fair, all methods evaluated
incorporate PointPillars as their backbone architecture and
follow the same data processing protocols.
To evaluate the proposed framework’s wireless commu-

nication performance, we define three benchmark scenarios
to be the baseline methods. The first scenario features a
base station that utilizes a system that neither anticipates
nor responds to LoS blockages. The second features a
base station that employs a static beamforming management
system that maintains a fixed beam orientation towards the
communication zone without dynamic adaptation. The third
scenario features a base station that utilizes a heuristic-
based beam management system that strategically selects a
beam vector from a predefined codebook to optimize data
rate coverage within the target area. When it comes to 3D
bounding box detection performance, the fine-tuned V2X-
ViT solution’s ability to correctly identify bounding boxes is
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quantified using average precision (AP) at intersection-over-
union (IoU) thresholds of 0.5 and 0.7, to provide insight
into its level of precision at different levels of recall. As
for blockage prediction performance, the solution’s binary
decision-making performance is assessed using its accuracy
metric and the F1 score derived from the confusion matrix.
The F1 score is a harmonic mean of the precision P and the
recall R, and offers a balance between the two, defined as

F1 = 2 × P× R

P+ R
, (9)

where P is the ratio of true positives to the sum of true
and false positives, and R is the ratio of true positives to
the sum of true positives and false negatives. The solution’s
beam direction prediction performance is reported as a
distance-based accuracy (DbA) score. This score quantifies
how much the predicted beam direction deviates from the
ground truth optimal direction, providing nuanced insights
into the predictions’ proximity to the true values. The DbA
is computed as

DbA = 1 − dgt
dmax

, (10)

where dgt is the distance to ground truth calculated using
the Euclidean distance between the predicted and true beam
directions, and dmax is the maximum possible distance in the
defined feature space. The APO and the overall framework
performance are evaluated using the received signal power
and the data rate within the ground truth active zone. For the
received signal power, the ray tracing simulations that were
conducted to compute the propagation paths between all the
transmitters and receivers provide a channel coefficient ai
for each path i, and the received power is calculated using
the channel coefficient as follows:

Prx(dB) = 10 · log10

(∑
i

|ai|2
)

. (11)

The data rate is assessed using the coverage map, which
reflects the signal power’s distribution across the active zone.

B. BOUNDING BOX DETECTION
How efficiently our framework can detect the bounding
boxes of both the ego user and the associated agents in
our V2X network is integral to its functionality. It is the
foundation upon which various predictive elements of our
proposed solution are built.
Despite the pre-trained V2X-ViT solution’s proficiency

in 3D bounding box detection tasks being proven in
autonomous driving scenarios when trained and tested
using the V2XSet dataset proposed by [13], we observed
performance enhancements upon fine-tuning it on our
MVX dataset. This refinement is visually evident in
Figure 7, which contrasts the detection capabilities before
and after being fine-tuned and tested on our MVX dataset.
Optimization yields bounding boxes that are detected with
greater precision and closely mirror the ground truth. The

FIGURE 7. Comparison of the bounding boxes detection of (a) the pre-trained model
V2X-ViT and (b) the fine-tuned V2X-ViT. Bounding boxes in green depict the ground
truth, while those in red indicate the predictions.

TABLE 2. Performance of predictive components for different methods.

fine-tuned model outperforms its non-fine-tuned counterpart,
enhancing by 4.1% and 2.9% for IoU thresholds of 0.5 and
0.7, respectively. This improvement is pivotal to the archi-
tecture’s overall success. Accurate bounding box detection
critically informs the predictive modeling of future optimal
beam vectors and blockage states as well as the active zone
for APO. Hence, the model’s 3D detection performance
directly influences the robustness and reliability of our entire
MVX-ViT framework.

C. MAIN PERFORMANCE COMPARISON
We evaluate the predictive components of our framework
by comparing our solutions with different baseline blockage
and beam prediction methods. The blockage prediction task
utilizes the fused feature map that the V2X-ViT solution
learned and the simulated rays to construct data sequences
for time series GRU model training. This model utilizes
data from the past p time steps to predict the blockage
of LoS in the upcoming f time steps. Table 2 compares
the performance of the baseline methods considered and
our proposed collaborative perception solution. When it
comes to blockage prediction, our approach outperforms the
user perspective method by a margin of 41% in terms of
accuracy and 39.9% in terms of F1 score and the base
station perspective method by a margin of 19.2% in terms
of accuracy and 20.1% in terms of F1 score over the base
station perspective method.
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FIGURE 8. A comparative example of the dynamic beam direction adaptation for
ego vehicle tracking: (a) ego vehicle position at t1, (b) ego vehicle position at t2

10 seconds later, (c) coverage map at t1, and (d) coverage map at t2.

As for the beam direction prediction, Figure 8 illustrates
an example using our solution and showcases how the
antenna array’s beam pattern adapts dynamically to maintain
alignment with the movement of the ego vehicle, which is
distinctly represented by a red box in the CARLA simulation
and a blue point in the Sionna simulation. This adaptation
is visualized over 10 seconds, between two specific time
steps, t1 and t2. The coverage map provided in the figure
not only highlights how precisely our solution tracks the
vehicle but also illustrates the nuanced changes that occur
in the beam’s orientation over time, which attests to the
system’s responsiveness and accuracy when it comes to
real-time beam direction adjustment. The results prove that
collaborative perception effectively enables the GRU model
to accurately predict future blockages. This is attributable to
the fact that the aggregated data from the connected agents
provides a broader view of the environment and equips
the base station with insights outside its immediate field
of view. This comprehensive environmental understanding
underscores the importance of incorporating collaborative
perception in V2X networks.
When it comes to evaluating wireless communication

performance, experiments were conducted to observe how
the received signal power evolved across various scenarios
when our proposed solution and the baseline solutions
were used. As for LoS blockage prediction, we simulate
a highly dynamic environment with frequent LoS block-
ages, with Nb operational base stations, one of which is
actively communicating with the ego vehicle. All base
stations use our future LoS blockage prediction solution to
proactively manage handovers, shifting communication from
antennas predicted to experience blockages to those predicted
to remain blockage-free, thereby maintaining connectivity.
When the base station that is actively serving the ego vehicle
predicts a potential LoS blockage, it triggers the prediction of

the future LoS state of the ego user and all surrounding base
stations. If another base station is predicted to maintain an
unblocked LoS state, the communication link is handed over
to this base station. This proactive approach ensures that the
communication link remains unblocked, even in the presence
of potential blockages. This dynamic approach’s performance
is compared to that of three contrasting strategies: 1) a non-
adaptive method that does not account for blockages, 2) a
user-perspective predictive model, and 3) a base station-
perspective predictive model.
We evaluate beam direction prediction using a different

scenario in which the ego vehicle is highly dynamic and
its movement severely affects the received signal power. In
this scenario, our solution enables a base station to adjust
its communication beam in real time in response to the ego
vehicle’s movement. We compare this predictive method to
static and heuristic beam management systems. The static
system maintains a constant beam orientation, while the
heuristic system selects beam vectors from a predefined
codebook to enhance the data rate within the target area.
In both comparisons, we integrate our MVX-based solution,
which employs our models for both LoS blockage and beam
direction prediction.
Figure 9 (a) presents how LoS blockages affect the

received signal strength when the different methods consid-
ered are used. The baseline non-reactive method exhibits
severe signal attenuation, with power reductions of more than
99%, due to high frequencies being vulnerable to blockages
and potentially experiencing frequent disconnections, which
are represented by the vertical lines in the plots. Conversely,
the user-perspective and base station-perspective predictive
models mitigate some signal degradation with reduced
power dips, reaching a nearly 90% and an 88% drop in
signal power, respectively, in the detected blockages and
the same drop percentages for the undetected blockages.
We can interpret the reason for this from the plots: the
slight delay in detecting the future blockages that cause
the start of the drop in signal before processing the
information to prevent the blockages since the amount of
information collected at that point is limited and the base
stations need more time to collect more data to identify
the future blockages. Our collaborative perception-based
blockage prediction model excels at detecting and responding
to LoS blockages and, in turn, limits power drops to
around 70%. This marked improvement underscores the
benefit of sharing information between connected agents,
which enhances the base stations’ situational awareness and
accelerates decision-making. Towards the end of the analysis
period, all methods experience a decrease in signal strength
due to the vehicle’s movement away from the beam’s focus.
Our MVX-ViT solution effectively counteracts this trend by
utilizing predicted beam vectors to adjust the beam direction
and maintain signal integrity.
Figure 9 (b) indicates how the ego vehicle’s movement

affects the received signal strength when different prediction
methods are used. First, the baseline, which utilizes a static
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FIGURE 9. Evolution of received signal power over time.

beam vector, experiences a significant decline in signal
strength of more than 99%. This sharp decline underscores
the challenges static systems face in dynamic vehicular
environments. The heuristic alternative, which employs a
predefined beam codebook, delivers marginal improvements.
In this approach, the coverage area is segmented into distinct
sectors, with the beam direction adjusted following the
strongest received signal power obtained from user feedback,
assuming sector beam vector prediction using the received
feedback is perfect. This method does not meet the strict
requirements of 6G V2X communications, with an average
decline in signal strength of around 60%. The persistence of
a fixed beam in each sector leads to continued signal degra-
dation and reflects the method’s limited flexibility when there
are rapid environmental and behavioral shifts. Conversely,
the method that integrates collaborative perception for beam
direction prediction substantially mitigates signal fluctuation.
Continuously monitoring and predicting the optimal beam
direction based on the information shared by the connected
agents cancels out the adverse effects of user movement
on signal reception. This adaptability is key to maintaining
a high-quality communication link and meeting 6G V2X
network standards.

D. ABLATION STUDY
In our evaluation of the impact the infrastructure has on our
V2X system, we compare two different types of simulations:
1) a V2V configuration in which only vehicles are equipped
with sensors and communicate data to the base station, and
2) a V2X setup in which infrastructural elements are also
equipped with sensors and contribute to data collection. We
also conduct an ablation study to understand how the number
of connected agents influences system performance. In this
case, agents refer to all the vehicles, except the ego vehicle,
that can collect, process, and transmit information to the base
station. We base our evaluation on the average data rate,
which we calculated by aggregating the data rates observed
at each time step over multiple simulation runs and agent
counts and then computing the mean value.
As Figure 10 shows, an increase in the number of agents

correlates with improved performance for both the V2V and

FIGURE 10. Evolution of data rate with the number of agents in 6G V2X
environment.

V2X configurations. Notably, the V2X setup outperforms
the V2V configuration in terms of average data rate in
the considered scenarios. We attribute this enhancement to
the infrastructure sensors, which typically experience fewer
obstructions and thus provide a broader and less obstructed
view. This broader perspective produces a richer dataset,
which yields more insightful features that are crucial for
accurately interpreting the surrounding environment.

E. COMPUTATION STUDY
We evaluated our framework’s performance by demonstrat-
ing the level of performance achieved by our proposed
approach. However, increasing the volume of data to be
processed introduces computational challenges that can lead
to communication latency. We address this by conducting a
computational evaluation in which we compare our proposed
solution with three different approaches. First, we consider
a baseline method that involves training a GRU model to
predict blockages and beam directions using wireless data
from the perspective of the base station. Second, we evaluate
a multimodal approach in which a GRU model is trained
using multimodal data from the base station’s perspective.
Third, we assess a collaborative approach that involves a
GRU model being trained using collaborative wireless data.
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FIGURE 11. Runtime efficiency of two possible approaches.

FIGURE 12. Comparison of Data Rate and Overhead by Approach.

Finally, we consider our proposed multimodal collaborative
perception approach. Figure 11 (a) presents each GRU
model’s runtime evolution for different numbers of past time
steps p. It highlights the overhead that is introduced by
each approach and the impact that incorporating multimodal
collaborative perception data has on runtime, which is the
amount of time it takes for the GRU model to make
a prediction. Despite the fact that GRUs are inherently
efficient and simple, the volume of historical data considered
significantly influences their performance. The colored area
under the curves illustrates the computational overhead that
is added by each approach.
To fairly quantify and evaluate the latency introduced

by each approach, we further investigate each method’s
efficiency by comparing the amount of overhead it introduces
with its overall performance reported as a percentage.
We calculate the area under the runtime curves to deter-
mine the amount of overhead that is introduced by each
approach and illustrate the percentage of overhead and
data rate of each approach compared to the proposed
method in Figure 12. The wireless-based collaborative per-
ception approach exhibits a small performance improvement
of 5.09% compared to the baseline method due to the
irrelevance of using collaborative wireless data to make
decisions that are dependent on the ego vehicle’s physical
surroundings. Conversely, the multimodal aspect introduces
the most computational overhead in both the multimodal
and multimodal collaborative perception approaches due to

FIGURE 13. Trade-off between system complexity and operational performance.

the size of the LiDAR data and the ViT’s processing time.
Despite this, the multimodal approach increases the average
data rate by only 20.92% compared to the baseline method,
while our multimodal collaborative perception approach
provides an 88.36% improvement in performance over that
of the baseline method with just 14.36% more computa-
tional cost than the multimodal solution. This significant
improvement is due to the rich information that connected
agents contribute to the LiDAR dataset about the physical
surroundings of the base station and the ego vehicle.
The availability of computational power allows for an

alternative approach: integrating our framework with MVX
co-simulation in digital twin-based decision-making. In this
scenario, instead of relying on the time series GRU model’s
predictions, we can deploy an additional convolutional layer
to predict the future position of network elements (vehicles)
from the fused feature maps. Ray tracing simulation using
the future position of the network elements is then employed
to determine the future LoS state and the optimal beam
direction. The following analysis evaluates both of these
methods. In our study, the time series GRU model’s runtime
efficiency is directly related to the number of past time steps
p used to make the prediction, as depicted in Figure 11 (a).
This dependency highlights that the model’s performance is
sensitive to the amount of past data it considers. Conversely,
the computational demand for ray tracing simulation, which
is illustrated in Figure 11 (b), is related to the maximum
depth, which is defined by the number of interactions
between a simulated ray and the scene objects to trace
the signal paths. This depth factor directly influences the
simulation’s runtime, with deeper tracing necessitating more
computational resources. Balancing system complexity and
operational performance is further explored in Figure 13,
where we compare an AI model-based approach and a digital
twin approach using the communication system’s overall
quality (average data rate) and different computational time
budgets. The average data rate was calculated by combining
the data rates recorded at each time step over multiple sim-
ulation runs using all 4 maps and then computing the mean
value. It provides a comprehensive measure of the system’s
performance under varying conditions. This analysis reveals
that there is a distinct computational time threshold that
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FIGURE 14. Simulation snapshot of the coverage map before and after the application of the APO component.

divides the performance curves into two main parts. Below
this threshold, the GRU model performs best and efficiently
manages predictions with limited computational resources.
However, above this threshold, ray tracing digital twin
simulation performs best as the increased computational
allowance enables it to deliver more accurate predictions.
This highlights a critical trade-off in the computational
strategies: the GRU model excels under strict time and
computational power constraints and is suitable for scenarios
in which rapid decision-making is needed. In contrast, the
digital twin approach, with its more intensive computational
requirements, is better suited for situations in which the
depth and accuracy of the predictions are prioritized over
the computational power.
Ultimately, being able to select between these two meth-

ods offers a significant advantage. In environments where
rapid response and low latency are crucial, such as in
highly dynamic V2X networks, the GRU model’s speed
and efficiency make it the preferred option. Conversely,
in contexts where additional computational resources can
be afforded and a slight compromise in decision speed is
acceptable, particularly in less critical scenarios, the digital
twin approach becomes advantageous.

F. APO EVALUATION
The final component of our framework is the APO solution,
which exemplifies the practical application of the MVX
co-simulation framework and highlights the importance of
it being configurable and differentiable. In the following
experiment, we compare using our APO component with two
different Q-learning-based approaches. The bounding boxes
detected for vehicles in multiple simulations are utilized
to generate a map that simulates traffic flow. This map
is then used to define the targeted active zone, which is
denoted by a red rectangle in Figure 14. Afterwards, the
APO solution focuses on this active zone, learns to identify

a more advantageous position for the antenna, and shifts
the antenna to that position. This process maximizes the
average received power in the active zone and proposes a
new position for the base station, which is indicated by a
red circle in Figure 14.
The first Q-learning-based approach considered utilizes a

classic Q-learning algorithm in which an agent iteratively
explores the environment by choosing actions (antenna
movements) either randomly or based on the highest Q-
values in a Q-table in accordance with an epsilon-greedy
strategy to balance exploration and exploitation. This method
enables the agent to learn optimal positions by updating
the Q-values based on the rewards received and ultimately
converges to the best antenna positions. The second Q-
learning-based approach considered enhances the classic
Q-learning algorithm by incorporating gradient ascent in
the exploration phase. In this case, the agent computes the
gradients of the average received power in the active zone
with respect to the antenna’s position and moves in the
direction that maximizes the reward with guidance from a
learning rate. Figure 15 demonstrates that the gradient-based
method converges to optimal positions more quickly by
leveraging the differentiability of the ray tracing simulation
and therefore achieves a more efficient and precise learning
process than the more stochastic classic Q-learning-based
approach does.

VI. CONCLUSION
In this paper, we present a comprehensive co-simulation
framework for V2X networks that utilizes two state-of-the-art
simulators - CARLA and Sionna. This framework makes it
possible to generate datasets with complete control over both
the physical and wireless environments’ configurations. We
introduce novel AI-based predictive models for blockage and
beam prediction, along with an innovative antenna position
optimization solution. Backed by the multimodal MVX
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FIGURE 15. Convergence of the APO, comparing the performance of the classic
Q-learning and gradient-based Q-learning methods in terms of the average received
power in the active zone (reward) over iterations.

dataset, our framework employs collaborative perception
to significantly enhance V2X communication. Thorough
evaluations demonstrate that our collaborative perception
approach outperforms traditional user- and base station-
based perspectives. Integrating LiDAR and wireless data
that has been processed using our fine-tuned V2X-ViT
model significantly enhances bounding box detection and
thereby improves the accuracy of beam and blockage
prediction. This improvement was not only theoretical
but also observable in practice, as our models showed
significantly higher data rates and signal strength values
in various simulated V2X scenarios. Our ablation eval-
uation further confirms the importance of incorporating
infrastructural elements in V2X systems and reveals the
added value that infrastructural data can provide in complex
network environments, as well as the number of connected
agents that contribute to the collaborative perception of
the infrastructure. The results of our computational study
underscore our framework’s versatility and ability to offer
efficient GRU model-based predictions for time-sensitive
scenarios and more computationally intensive digital twin
simulations for scenarios where precision is paramount.
Our framework’s APO component brought to light a novel
application for our MVX co-simulation environment. It can
quickly converge and effectively optimize antenna positions
in response to simulated traffic patterns. This advancement
opens up new doors for various applications in real-world
V2X communication systems to enhance the efficiency of
network management.
In conclusion, our work contributes significantly to the

field of V2X communication by providing a robust and
versatile framework for future research and development. By
addressing the challenges associated with dynamic network
environments, we leverage the power of AI, collaborative
perception, and multimodal data to pave the way for more
resilient, efficient, and intelligent V2X network management
systems, that are set to meet the demands of the future
6G networks. This work facilitates future research on AI
applications for future V2X communication systems.

This work also focuses on LiDAR/wireless-based collab-
orative network management. Our future work will involve
multi-sensor fusion for joint V2X perception and prediction,
which is made possible by the configurability of our MVX
co-simulation framework. This future direction promises to
further enrich the landscape of AI applications in V2X
communication systems.
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