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ABSTRACT As wireless communication technology progresses towards the sixth generation (6G), high-
frequency millimeter-wave (mmWave) communication has emerged as a promising candidate for enabling
vehicular networks. It offers high data rates and low-latency communication. However, obstacles such as
buildings, trees, and other vehicles can cause signal attenuation and blockage, leading to communication
failures that can result in fatal accidents or traffic congestion. Predicting blockages is crucial for ensuring
reliable and efficient communications. Furthermore, the advent of 6G technology is anticipated to integrate
advanced sensing capabilities, utilizing a variety of sensor types. These sensors, ranging from traditional
RF sensors to cameras and Lidar sensors, are expected to provide access to rich multimodal data, thereby
enriching communication systems with a wealth of additional contextual information. Leveraging this
multimodal data becomes essential for making precise network management decisions, including the
crucial task of blockage detection. In this paper, we propose a Deep Learning (DL)-based approach
that combines Convolutional Neural Networks (CNNs) and customized Vision Transformers (ViTs) to
effectively extract essential information from multimodal data and predict blockages in vehicular networks.
We train and evaluate our proposed method on the DL dataset framework for vision-aided wireless
communications (ViWi) and demonstrate its potential for predicting blockages in vehicular networks
through simulations. The results show that the proposed approach achieves over 95% accurate predictions,
proving its potential for integration into 6G vehicular networks to enhance communication reliability and
support advanced applications such as autonomous driving and smart city infrastructure. These findings
underscore the practical significance and future impact of our work in advancing ultra-reliable and low-
latency communication systems.

INDEX TERMS Computer vision, deep learning, sixth generation (6G), vehicle-to-everything (V2X)
communication.

I. INTRODUCTION
A. BACKGROUND AND MOTIVATION
Wireless communication has shown one of the fastest growth
rates in previous decades, with the commercial deployment
of the fifth-generation wireless communication (5G) in 2020.

The associate editor coordinating the review of this manuscript and

approving it for publication was Amin Mahmoudi .

5G is a revolutionary technology that offers ultra-reliable and
low-latency communication (uRLLC) as well as enhanced
mobile broadband (eMBB) services. Researchers are now
turning their attention towards sixth-generation (6G) wireless
communication systems, which aim to offer ‘‘connected
intelligence’’ instead of ‘‘connected things’’ in various
sectors [1], [2], [3], [4]. The transition to 6G demands higher
data rates and channel capacity, requiring the use of higher
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frequencies, including millimeter-wave (mmWave) and sub-
terahertz communications [5], [6].

However, these frequencies present new challenges, such
as their vulnerability to blockage, which results in signal-to-
noise ratio (SNR) dips and frequent disconnections. There-
fore, Line-of-Sight (LoS) and Non-Line-of-Sight (NLoS)
predictions are vital for future high-frequency communica-
tion applications, where we can predict whether the future
connection between a base station and a given user will be
blocked or not, especially in highly dynamic networks, such
as vehicular networks, which are one of the most vulnerable
applications to user disconnections.

With the development of 6G sensing and the availability
of various types of sensors, such as high-resolution cameras,
LiDAR, radar, and acoustic sensors [7], [8]. These sensors
facilitate the collection of diverse data types, including
visual imagery, depth information, and acoustic signals,
thereby providing a comprehensive understanding of the
surrounding environment. This data represents a significant
opportunity to enhance network management decisions,
including the crucial task of blockage detection. Leveraging
this multimodal data is essential for ensuring the reliability
and efficiency of vehicular communication networks.

The vehicle-to-everything (V2X) technology, which
enables vehicles to communicate with other vehicles,
infrastructure, and road users, is a key enabler of intelligent
transportation systems [9], [10]. The primary aim of V2X
communication is to improve road safety, traffic efficiency,
and driver experience by providing real-time information
about road conditions, traffic flow, and nearby vehicles.
However, V2X networks face significant challenges, such
as high mobility, intermittent connectivity, and limited
resources, which affect their performance. The complexity
introduced by these challenges will create highly intricate
vehicular network scenarios, making it extremely difficult,
if not impossible, to model such systems for LoS prediction
using traditional probabilistic methods and optimization
models [11], [12], [13], [14], [15]. Contextualization in
V2X communication involves the integration and analysis of
environmental, vehicular, and network contexts to enhance
communication reliability and efficiency [16]. This approach
is particularly relevant to LoS prediction solutions in V2X
networks by understanding the context in which vehicles
operate, including dynamic changes in the environment and
vehicle behavior.

The introduction of advanced machine learning architec-
tures, such as Convolutional Neural Networks (CNNs) and
Vision Transformers (ViTs) [17], into the realm of vehicular
communications opens new avenues for addressing these
challenges. CNNs, known for their ability to capture spatial
patterns and correlations [18], [19], can be instrumental in
analyzing time-series data derived from vehicular sensors.
Specifically, CNNs excel at extracting fine-grained local
features from images, making them highly effective for tasks
that require detailed spatial analysis. Meanwhile, ViTs offer a
complementary strength by effectively handling image-based

inputs and capturing intricate patterns and long-range
dependencies that are often present in vehicular scenarios,
such as V2X cooperative perception [20]. ViTs leverage the
self-attention mechanism to model relationships across the
entire image, enabling them to understand global context
and dependencies that are crucial for accurate blockage
prediction. By combining CNNs andViTs, we aim to leverage
the strengths of both architectures to enhance our system’s
performance. The CNN component captures detailed local
features from the multimodal data, while the ViT com-
ponent provides a global context by modeling long-range
dependencies. This synergy allows for a more comprehensive
feature extraction process, leading to improved predictive
accuracy. The combination of CNNs and ViTs allows for
a more thorough extraction of features, where CNNs focus
on detailed local patterns and ViTs provide a broader
context. This hybrid approach balances local and global
feature learning, potentially improving the model’s ability
to generalize across diverse data distributions. Moreover,
the integrated model can be adapted to various tasks within
the considered system by fine-tuning different components.
However, it is important to mention that the combination
of CNNs and ViTs results in a more complex model
with higher computational requirements compared to using
either architecture alone. Integrating the two architectures
can also pose challenges in terms of training stability and
convergence, requiring careful tuning of hyperparameters.
We believe that the synergy between CNNs and ViTs
enhances our system’s overall performance, providing a
balanced trade-off between local feature extraction and global
context modeling. This combination is particularly beneficial
for tasks in AI and wireless communication that require both
detailed local analysis and broad contextual understanding.

Moreover, the dynamic nature of vehicular networks, with
constantly changing environments and vehicular movements,
necessitates the use of models that can adapt over time. Gated
Recurrent Units (GRUs) [21] emerge as a suitable choice
in this context, given their capability to model temporal
dependencies and retain relevant information across time
steps. Integrating GRUs allows for the effective capture of
the temporal evolution of vehicular network states, providing
a robust framework for making informed predictions about
potential blockages.

In light of these considerations, the motivation for
integrating CNNs, ViTs, and GRUs in our approach is
driven by the need to effectively utilize the rich multimodal
data available in 6G-enabled vehicular networks. By har-
nessing the strengths of these advanced machine learning
architectures, we aim to address the complex challenge of
blockage prediction, ensuring seamless communication in the
intelligent transportation systems of the future.

B. RELATED WORK
The aforementioned challenges have motivated numerous
researchers to propose innovative solutions for blockage
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detection and prediction to address the LoS blockage issue
in V2X networks. These proposed solutions make use of
various approaches as well as different types of data, such
as visual data from cameras [22] and tabular data, including
channel and beamforming vectors [23]. Moreover, with the
rapid evolution of artificial intelligence (AI) and machine
learning techniques, researchers have employed advanced
tools to predict LoS using different data sources.

Initially, the solutions were based on themulti-connectivity
approach, such as the one proposed by [24], which introduced
a centralized multi-cell solution to improve the quality
of connections in the face of disconnections caused by
LoS blockages in Heterogeneous Networks (HetNets). The
solution is based on keeping track of the connection link
between the user and multiple base stations, where the
centralized unit collects information from all the base stations
to make a decision about the quality of the connection.
However, these solutions detect the disconnections without
anticipating them, which causes the user to get disconnected
for a while until the base station recovers the connection link,
causing communication latency. Therefore, more information
is needed to allow the base station to predict the NLoS
state and the optimal beamforming codebook to be used
before losing the connection. For this reason, different
tabular data sources and types were explored to extract
the needed information for the machine-learning model to
anticipate blockage. For instance, in [12], the authors used
a series of channel state information (CSI) measured by
signal transmissions in an indoor office environment with
a Recurrent Neural Network (RNN) model consisting of a
Long Short-Term Memory (LSTM) block [25] to predict the
connection state (LoS or NLoS). Also, the authors of [13]
proved the ability of neural networks to detect the current
link status using the sub-6GHz channel from the DeepMIMO
dataset script [26], which generates a labeled sub-6GHz and
mmWave channels set. On the other hand, authors in [15],
provided a predictive solution to anticipate the stationary
blockage for a single mmWave user using past observations
of beamforming vectors, with an approach based on the
GRU network [23]. The mentioned approaches achieved
outstanding performance in predicting stationary blockages.
However, in many practical scenarios, such as vehicular
networks, the movement of the environment and the users can
cause blockages to occur and disappear rapidly. In such cases,
predicting only stationary blockages may not be sufficient to
ensure reliable and efficient communication. Therefore, it is
important to also consider the prediction of dynamic or non-
stationary blockages.

Due to the limitations of previous solutions, the research
community tried to explore other data types to reach
better prediction performance for static and dynamic future
blockages. As a novel solution, the authors in [22] proposed
a blockage prediction framework using a publicly available
vision-aided wireless communications (ViWi) framework
dataset [27], which provides RGB images of different
communication scenes and a tabular wireless data generator

script. However, it considered only single-user communi-
cation settings. Finally, at the time of writing this paper,
the state-of-the-art solution was proposed by [28], where
the authors consider both tabular and vision data to form
a multimodal data approach for multi-user communication
settings. This approach is based on a centralized Deep
Learning (DL) solution that takes advantage of the extracted
information from both beam vectors and the images, first
to detect the presence of a user, and then detect whether
there is a possible future blockage or not using the position
of the detected user. This solution has shown an impressive
performance improvement in terms of detecting future LoS
blockages. However, it is extremely dependent on the
performance of the object detection component, which is
sometimes inaccurate and impacts the overall performance.

The methodologies referenced in previous research aimed
to optimize the utilization of wireless data to forecast future
LoS blockages. Despite these efforts, the inclusion of alter-
native data sources, such as images, became necessary. How-
ever, the integration of multiple data modalities poses chal-
lenges in extracting relevant information. Therefore, a more
robust feature extraction architecture is needed to effectively
handle multimodal data and enable the extraction of valuable
information for a more comprehensive understanding of the
environment, leading to more precise predictions of future
connection states. To address these limitations, we propose a
hybrid approach that combines CNNs and customized ViTs.
CNNs are effective in capturing local patterns and spatial
hierarchies through convolutional operations, making them
particularly suitable for extracting fine-grained features from
images. On the other hand, ViTs leverage the self-attention
mechanism to model long-range dependencies and global
context, which allows them to capture relationships across
the entire image. By integrating CNNs and ViTs, our
approach capitalizes on the complementary strengths of
these architectures to enhance feature extraction and improve
blockage prediction accuracy. Moreover, we incorporate a
GRU-based architecture to capture temporal dependencies
between the extracted features and the blockage state at future
time steps. This architecture enables us to effectively process
multimodal data, including images and beamforming vectors,
and predict blockages with high accuracy and robustness.

C. CONTRIBUTION
In this paper, we present a multimodal vision transformer-
aided predictive framework that anticipates future connection
states using both images collected using an RGB camera
and beam vectors collected from the perspective of the
base station. Our approach focuses on developing an
advanced AI-driven framework that addresses the challenges
of anticipating blockages, including both static and dynamic
obstacles. This framework efficiently leverages the rich
information contained in multimodal data. In the devel-
opment of our vision-aided blockage prediction method,
we have employed the ViWi dataset [27], as it was the most
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comprehensive and pertinent dataset available at the time of
conducting this research.

To establish a robust and efficient predictive framework,
we introduce a unique time series DL architecture that
incorporates a feature extraction component. Specifically, our
framework utilizes a customized architecture of CNN and
ViT to extract needed information from the input images
and beam vectors. The proposed architecture allows the
extraction of a comprehensive and detailed representation
of the multimodal input data. This, in turn, produces more
accurate and robust predictions compared to existing meth-
ods. Specifically, this paper’s contributions are summarized
as follows:

• Our approach employs a time-series DL model, specif-
ically a GRU neural network, to predict future LoS
connection states. What sets our approach apart is the
quality of the features extracted by our unique feature
extraction architecture. By leveraging advanced DL
techniques such as CNNs and ViTs, our framework
embeds multimodal data efficiently and provides a
substantial volume of pertinent information for the
learning process.

• Our approach distinguishes itself from existing methods
by effectively integrating different data modalities,
such as images and beamforming vectors, to enhance
the predictive performance. Unlike existing methods
that often rely heavily on a single data modality,
our multimodal approach captures a broader range of
contextual information, leading to more accurate and
reliable predictions. Furthermore, our method differen-
tiates itself from the current multimodal state-of-the-art
solutions by eliminating the dependency on pre-trained
object detection models, which can introduce errors
and inconsistencies due to misinterpretations or failures
in object detection. Instead, we leverage the combined
strengths of CNNs and ViTs for robust feature extrac-
tion. This approach creates a more resilient predictive
framework that maintains high performance even in
challenging visual conditions.

• Through experiments and comparative analysis, we
demonstrate that our solution improves prediction accu-
racy and offers better stability and consistency compared
to existing methods. This is particularly evident in
scenarios where object detection models may struggle,
further validating the effectiveness of our approach in
6G V2X networks.

D. ORGANIZATION
This paper is organized as follows. In Section II, we describe
the system model considered in our study. In Section III,
we formulate the V2X blockage prediction problem and
provide a detailed analysis of the challenges. Section IV
presents our proposed methodology, which includes fea-
ture extraction using ViT and classification using a GRU
neural network. In Section V, we provide details on the

implementation of the proposed solution and the obtained
numerical results, including a comparison with the state-
of-the-art works. Finally, in Section VI, we present our
conclusion and highlight directions for future work.

II. SYSTEM AND CHANNEL MODELS
In this section, we provide a detailed description of the system
and channel models used for our proposed V2X blockage
prediction methodology.

A. SYSTEM MODEL
In a vehicle network, the environment is formed by dynamic
users and dynamic objects that could be detected as possible
obstacles, as presented in Figure 1, with a base station
equipped with a standard-resolution RGB camera.

FIGURE 1. A top-view and a perspective view of the ViWi outdoor
scenario [27].

We consider a highly dynamic vehicular network environ-
ment, where base stations use the beamforming codebook
technique, which is helpful to target the desired user directly
without losing signal energy in undesired directions. Beam-
forming vectors can provide information about the direction
of the user, this provides the base station with 3D awareness,
which is significantly helpful for both detecting the existence
of the user, as well as tracking its location. Moreover, images
serve as a data type rich with valuable information about
the environment. Visual data is highly informative, offering
essential details about the user, including their position,
distance, velocity, size, and more.

Formally, at a time step t ′ in a time interval of p steps and
for a given user u, an observation Xu is defined as follows:

Xu[t ′] = {(Au[t], bu[t])}t
′

t=t ′−p+1 . (1)

whereAu is a series of image frames of the environment taken
from the perspective of the base station, and bu is the beam
index of the corresponding optimal beamforming vector from
the predefined beam codebook F while communicating with
user u.

Our vehicular network consists of an outdoor environment
including small-cell mmWave base stations using beamform-
ing. The decision about the optimal beam vector index while
communicating with a user u is extracted from a predefined
beamforming codebook F :

F = {wn}
N
n=1 , (2)
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where N denotes the number of the beamforming vectors
present in the codebook and wn ∈ CM×1 is given by:

wn =
1

√
M

[
1, ej

2π
λ d sin(φn), . . . , ej(M−1) 2πλ d sin(φn)

]T
, (3)

where φn ∈

{
2πn
N

}N−1

n=0
defines the uniform quantization of

the azimuth angle and λ as the wavelength. In this system,
we considerM elements uniform linear array (ULA) antennas
at the base stations, which is equipped with three RGB
cameras targeting the frontal, right, and left directions.

B. CHANNEL MODEL
In our research, the experimental results are derived from data
samples obtained using the ViWi data generation framework,
which employs the ray-tracing software Wireless InSite to
simulate realistic mmWave channel conditions. The channel
model adopted throughout this paper is a geometric mmWave
channel model with L clusters. The communication system
utilizes orthogonal frequency division multiplexing (OFDM)
with K subcarriers and a cyclic prefix of length D. For each
user u, we define the downlink channel with received signal
yu,k as follows

yu,k = hTu,kwn∗x + nk , (4)

where hu,k ∈ CM×1 denotes the channel between the base
station and user u at sub-carrier k , and wn∗ is the optimal
beam vector that maximizes the received SNR at the receiver
selected from the predefined beam codebook F , and the
noise sample nk follows a complex Gaussian distribution
NC

(
0, σ 2

)
, given by [28]

hu,k =

D−1∑
d=0

L∑
ℓ=1

αℓe−j 2πkK dp (dTS − τℓ) a (θℓ, φℓ) , (5)

where αℓ is the path gain including path loss, p is the pulse
shaping filter, τℓ is the delay, TS is the sampling period, and a,
θℓ, φℓ are the arraymanifold vector, the azimuth and elevation
angles of arrival.

III. PROBLEM FORMULATION
In this section, we formally define the problem of V2X
blockage prediction, which is the main focus of this paper.
Let us consider a highly dynamic 6G vehicular network
where vehicles are communicating with a base station
(BS) through a mmWave channel. We assume directional
communication with the aid of beamforming techniques
where the vehicles and BS are equipped with a beamforming
codebook containing a set of predefined beam vectors,
and they adapt the beam direction according to the CSI
to optimize the communication performance. The goal of
the beamforming algorithm is to maximize the signal-to-
interference-plus-noise ratio (SINR) by steering the main
beam toward the intended receiver. Our goal is to predict the
occurrence of these blockages and their duration in advance,
hence allowing the vehicles and the BS to switch to a more
suitable beam direction to maintain the communication link.

Considering a future interval in which we predict the
blockage. Let f be the size of the future interval, and let lu[t] ∈

{0, 1} be the LoS connection state indicator for the upcoming
time step t , which is equal to 0 if an LoS is available and 1 if
not (NLoS: blockage detected), and Lu[t ′] = {lu[t]}

t ′+f
t=t ′+1 is

the set of connection statuses in the future interval. The time
step referred to aligns with the data generation framework of
the ViWi dataset, where a ‘time instance’ does not specify an
exact duration in conventional units like seconds or minutes.
It reflects the duration used to generate each data point in the
dataset.

We define the global future link status su as a binary
indicator of whether we have an LoS blockage in the future f
time steps, where:

su[t ′] =

{
0, lu[t] = 0, ∀t ∈

{
t ′ + 1, . . . , t ′ + f

}
1, otherwise

, (6)

which is equal to 0 if a LoS connection will be maintained
for the next f time steps, and 1 if not (a blockage is predicted
to occur in the future interval). The principal objective is
to design a DL framework capable of extracting the needed
information from the multimodal data to maximize the
accuracy of the predicted future connection states ŝu for all
users u in the set of users U :

max
U∏
u=1

P
(
ŝu = su | Xu

)
. (7)

In the next section, we provide a description of the
methodology of the proposed solution.

IV. PROPOSED SOLUTION METHODOLOGY

Algorithm 1 Proposed Solution for Blockage Prediction in
V2X Communication
Require: Multimodal data Xu, including images

{Au[t]}t
′

t=t ′−p+1 and beamforming vectors

{bu[t]}t
′

t=t ′−p+1
Ensure: Predicted blockage state ŷu
1: Feature Extraction:

• Extract features from beamforming vectors using
CNN

• Extract features from images using ViT
2: Merge Features:

Concatenate feature maps from CNN and embeddings
from ViT.

3: Time Series Prediction:
• Pass concatenated features through the GRU net-
work

• Obtain predicted blockage state ŝu.
4: return ŷu

The proposed methodology described in Figure 2 aims to
predict future obstacles in LoS vehicular communications
between base stations and vehicles using multimodal data
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FIGURE 2. Proposed V2X LoS ViT-CNN framework.

that includes images and beamforming vectors. This task is
becoming increasingly complex due to the higher frequency
bands that will be used in future networks, the high mobility
of users, and the heterogeneity of the used data to make the
decision.

There are mainly two challenges that need to be addressed
to realize the full potential of this methodology. The first one
is related to the type of data we are dealing with. In fact, since
the data comes from different modalities, such as images
and beamforming vectors, there may be differences in the
data format, size, resolution, and type of information that
could be extracted from each data type. This can make it
difficult to integrate the data and extract meaningful features.
The other challenge, proven by the available state-of-the-art
solution [28], is the high dependency on the object detection
component, adversely affecting the overall performance with
any small errors caused by the object detection model, which
can limit the scalability of the methodology.

To address these challenges effectively, we propose an
efficient feature extraction technique capable of handling the
heterogeneity of the data and extracting essential information
without relying on an object detection component. Addition-
ally, we optimize the training process of the feature extraction
component to accommodate different data types and utilize it
as an embedding component.

A. FEATURE EXTRACTION
To achieve efficient information extraction essential for
the final decision-making process, we propose a novel
transformer-based architecture for feature extraction from

FIGURE 3. The architecture of our proposed ViT model.

multimodal data for blockage detection in V2X, as shown
in Figure 2. In this design, we apply CNNs for processing
tabular wireless data and use ViTs to handle images. This
hybrid approach takes advantage of the unique strengths of
both architectures, facilitating effective information capture
and extraction from diverse modalities. The feature extraction
component is designed to extract useful information Iu from
the input data Xu, which consists of beamforming codebook
vectors and camera images (Au[t], bu[t]). The proposed
architecture consists of two parallel branches: one branch
for CNN-based feature extraction and another branch for
ViT-based feature extraction, then merged to provide the
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FIGURE 4. The illustration of the transformer encoder inspired by [29].

extracted information to the final predictive element. These
two branches will be described in detail in the following
subsections.

TABLE 1. Architecture parameters.

1) CNN BRANCH
The CNN branch focuses on processing tabular wireless
data by extracting essential features from beamforming
vectors {bu[t]}t

′

t=t ′−p+1. Our CNN architecture is designed
to capture intricate spatial dependencies within the beam
vectors. As shown in Table 1, it consists of 4 convolutional
layers, with each layer equippedwith an increasing number of
filters, ranging from 32 to 256. A 3×3 filter size is employed
consistently across all layers, ensuring an efficient receptive
field. A stride of 1 is set for each convolutional layer,
ensuring that the convolution operation scans the entire input.
Rectified Linear Unit (ReLU) activation functions are applied

after each convolutional layer, introducing non-linearity into
the model. The output of the CNN branch is a set of
high-dimensional feature maps that capture essential patterns
and relationships within the beamforming vectors.

2) ViT BRANCH
In our framework, the ViT branch is responsible for
processing the images {Au[t]}t

′

t=t ′−p+1, which provides
visual information relevant to blockage detection. ViT is a
state-of-the-art architecture for image understanding tasks,
particularly for V2X information extraction applications [20].
In the ViT branch, as described in Figure 3, the input

images are divided into non-overlapping patches of size
[16 × 16], which are then linearly embedded into a
lower-dimensional representation of size 512 to obtain a
sequence of patch embeddings. The patch size is optimized
and set to be large enough to capture global patterns
in the image. A positional encoding is then added to
the patch embeddings to provide the network with the
positional information of each patch in the image. These
embeddings, along with position embeddings, serve as
the input to the transformer encoder proposed in [29]
described in Figure 4. The transformer encoder consists of
multiple layers of self-attention mechanisms (MSA) and
fully connected multi-layer neural network (MLP) blocks.
Self-attention allows the model to attend to different parts
of the image while capturing global relationships between
patches. The output of the ViT branch is a sequence of
high-level embeddings that encode the spatial information
and relationships within the images. These embeddings
effectively capture the visual characteristics that contribute
to blockage detection.

B. TIME SERIES PREDICTION
Time series forecasting has traditionally been dominated by
linear and ensemblemethods. Thesemethods are highly inter-
pretable and efficient for a variety of problems, particularly
when coupled with feature engineering. However, with the
advent of RNN in the 1980s, followed by more advanced
RNN structures, such as LSTM in 1997 [25], and more
recently, GRU in 2014 [23], DL techniques have enabled the
learning of complex relationships between sequential inputs
and outputs with limited feature engineering. These RNN
techniques have enormous potential for analyzing large-scale
time series in previously unfeasible ways. GRUs, a newer
version of RNNs, show similar performances as RNNs and
LSTMs while being significantly faster to compute. GRUs
record long-term dependencies without any cell state by using
reset and update gates. The update gate identifies how much
past informationmust be kept, while the reset gate determines
how much past information must be ignored. GRUs are often
faster and require lessmemory than LSTMs since they require
fewer tensor operations.
In our methodology, after extracting relevant features

using our customized architecture, the next step is to
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pass these features through a time series computer vision
classification component to make a binary decision. For
this purpose, we use a GRU as the temporal modeling
component of our framework. Our GRU network consists of
2 stacked layers, each layer comprising 256 and 128 hidden
units, respectively. The GRU architecture operates in a
unidirectional manner, as bidirectional processing is deemed
unnecessary for the given task due to the inherently causal
nature of the LoS prediction task, where future information
cannot influence past events. Hyperbolic Tangent (tanh)
activation functions are applied, and a dropout probability
of 0.3 is introduced to mitigate overfitting. The final layer
consists of a fully connected layer with a single neuron,
for the final binary classification, and the sigmoid activation
function ensures that predictions fall within the [0, 1] range.
Binary Cross-Entropy is chosen as the loss function, making
it well-suited for our binary LoS prediction task. The GRU
network serves as the decision-maker in our multimodal LoS
prediction system, synthesizing both spatial and temporal
information to predict future LoS states accurately.

V. IMPLEMENTATION AND NUMERICAL RESULTS
In this section, we elaborate on the vehicular communication
environment that was used for data generation, as well as the
process followed to prepare the data used in the proposed
framework. We also describe the training of the feature
extraction components and the time series computer vision
classifier. Additionally, we provide numerical results and
a detailed evaluation of the performance of the proposed
methodology in order to evaluate its effectiveness in predict-
ing future obstacles in vehicular communications.

TABLE 2. Implementation parameters.

A. ENVIRONMENT AND DATA SETUP
In this section, we illustrate the framework used to build
the needed environment and generate the wireless and image
datasets. Specifically, we start with the definition of the
scenarios from the ViWi dataset generator [27], followed by
the detailed process for raw data generation, and finally, the
data processing is applied to our raw data to provide the
needed data sequences for the DL time series model.

FIGURE 5. Data generation pipeline.

1) ENVIRONMENT PREPARATION
Our environment is built using the ‘‘ASUDT1’’ scenario
from ViWi open-source dataset [27], which contains an
outdoor multi-user environment. As illustrated in Figure 1,
the scenario illustrates a busy downtown street, along with
its various elements, such as cars, buses, trucks, skyscrapers,
buildings, lamp posts, etc. The experimental setup consists
of a pair of base stations with uniform linear array mmWave
antennas. The base stations are placed 80 meters apart, facing
opposite directions, and operating at a frequency of 28 GHz.
A custom Matlab script is utilized to optimize the size and
shape of the antenna array. In addition, each base station is
equipped with three cameras, which are strategically placed
to capture the surrounding environment from different angles.
The cameras are labeled from 1 to 6 and have overlapping
fields of view. Specifically, cameras 3 and 4, situated on
the left side of the first base station and the right side of
the second base station, respectively, share almost identical
fields of view. The use of multiple cameras with overlapping
views enables us to capture different perspectives of the
environment and ensures a more comprehensive and accurate
dataset for our predictive model. The ViWi data generation
script enables the manipulation of the number of users and the
number of scenes that the scenario has, where a scene is one
frame in a video captured by the RGB camera. Each vehicle,
equipped with a mmWave radio receiver, continuously moves
in one direction in one of the four road lines with a variable
velocity.

2) DATA GENERATION PIPELINE
As depicted in Figure 5, the data generation pipeline for
this project begins with the ViWi raw data generator, which
utilizes the parameters provided in Table 2. The ViWi
generator produces a 4-tuple data point, which includes an
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image of a selected scene, an mmWave channel for each
user for each OFDM subcarrier for each of the M antennas
at time step t , the coordinates of the user position in the
visual field of the selected base station, and the connection
state indicating whether there is a LoS connection or not.
The beam codebook vectors are then obtained using a
uniform planar array (UPA) codebook generation Matlab
script, which generates a beam-steering codebook design.
Using the generated channels, we select the beam vector
that maximizes the received SNR at the receiver from the
codebook, resulting in the following optimal beam vector for
a total of K subcarriers.

w⋆
= argmax

w∈F

1
K

K∑
k=1

E
[∥∥∥(hk)T w

∥∥∥2
2

]
, (8)

Finally, using the LoS state of the future f steps, the
pipeline constructs the target of the data and embeds the
resulting dataset in the form of observation and target. The
observation is a pair of sequences of images and beam vectors
(Au[t], bu[t]), while the target is the future LoS state su. This
comprehensive pipeline generates a large and diverse dataset
to train and test the proposed solution for V2X blockage
prediction.

3) DATA PROCESSING
To render the data suitable for a time series DL model,
we need to form a dataset composed of sequences. Each
data point consists of p successive pairs of images and
beam vectors (Au[t], bu[t]) for t ∈

{
t ′ − p+ 1, . . . , t ′

}
, and

the label su which is a binary state indicating whether we
have a blockage in the next f time steps. Thus, we have a
sequence of p pairs with information about the past p time
steps, and the target su presenting the information about the
future f time steps. In our experiments, we set p to 8 and
f to 3. After creating feature columns, such as time-lagged
observations, making roughly 7000 data points, we divide
the dataset into three parts: training, validation, and test sets.
We used a division ratio of 70% for the training set, 15% for
the validation set, and 15% for the test set. It is noted that
since our data is time-dependent, it is crucial to preserve the
temporal sequence. Therefore, no shuffling has been applied
to our dataset.

B. IMPLEMENTATION
Once the necessary data is ready, we start the training,
validation, and testing of our framework. The implementation
details are provided below. All models were built using
the TensorFlow [31] DL framework and trained on Nvidia
Quadro P1000 GPUs.

1) FEATURES EXTRACTION
The feature extraction component of our multimodal LoS
prediction framework plays a crucial role in processing the
multimodal data, which includes both images and beam
vectors. We adopt a two-branch approach, leveraging the

FIGURE 6. Evolution of loss function while training the proposed solution
and the baseline method over both (a) training and (b) validation
datasets.

power of both ViT and CNN architectures for extracting
relevant spatial and structural features. For the ViT branch,
we employ a pre-trained model that has been fine-tuned on
the ImageNet dataset [30]. During fine-tuning, as shown in
Table 2, we set the learning rate to 1e-5 and utilized a batch
size of 32 to efficiently adapt the model to our specific
LoS prediction task. In parallel, the CNN branch focuses
on extracting features from the beam vectors. Training
parameters for the CNN include a learning rate of 1e-3,
a batch size of 64, and a dropout probability of 0.2 to
prevent overfitting. We train the CNN for 1000 epochs,
allowing it to learn complex spatial dependencies within
the beamforming data effectively. The Adam optimizer is
employed for efficient weight updates during training. These
two branches operate synergistically to provide a rich set of
spatial and structural features, ensuring that the multimodal
data is comprehensively processed for subsequent LoS state
prediction.

2) DETECTION
In our framework, we employ a baseline GRU framework to
detect blockages in the future f time slots using the extracted
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FIGURE 7. Evolution of accuracy while training the proposed solution and
the baseline method over both (a) training and (b) validation datasets.

information from the prepared sequences of past information
during the last p time slots. We trained the model using the
parameters listed in Table 2, and the results are displayed in
the following section. As a baseline solution, we implement
the object detection approach proposed in [28]. This method
proposes an object detection component to detect possible
obstacles in the environment by extracting the coordinates
of the bounding boxes of the detected objects and using
only these coordinates with the beamforming vectors in the
training process of the GRU model. For the implementation
of this solution, we used the latest object detection You Only
Look Once (YOLO) [32] model: YOLOv7 [33], followed by
the same GRU model considered in our solution.

C. NUMERICAL RESULTS AND EVALUATION
1) COMPARISON TO STATE-OF-THE-ART
Using the described experimental setup, we trained and tested
the proposed framework on the generated multimodal time-
sequence data, and performed a thorough analysis of the
results. We compared our solution with the state-of-the-art
approach described in [28] that uses an object detection

component, which is currently the only known method that
combines the use of images with wireless data for LoS
blockage prediction.

TABLE 3. Comparison of baseline and proposed method accuracy.

During the training process, we monitored the evolution
of the training and validation loss values and the accuracy,
which are common metrics for evaluating the performance of
machine learning models. As displayed in Figures 6 and 7,
the results show a steady decrease in the loss value and an
increase in the accuracy for both the training and validation
sets throughout training. This behavior indicates that the
model is learning the features and the patterns in the data
effectively to predict the future LoS state. Moreover, our
solution outperforms the state-of-the-art method where a
faster decrease in the loss value and a faster increase in
accuracy for both training and validation sets are clearly
observed. In fact, after 400 epochs of training theGRUmodel,
the proposed solution reaches a training accuracy of 0.905
while the object detection solution is at 0.860.Meanwhile, the
validation accuracy of the GRU model reaches 0.839 while
that of the baseline is at 0.729. The improved performance of
our proposed solution on the validation dataset, as presented
in Table 3, which was not used during training, demonstrates
its ability to generalize to new and unseen data. This is a
crucial characteristic for a model to be practically applicable
in real-world scenarios where the data is not perfectly clean
and there may be variations in the input features.

FIGURE 8. Example of errors causing the limitations of the baseline
solution.

Furthermore, the significant improvement in accuracy over
the baseline solution demonstrates the robustness of our
model. This robustness is evident in the model’s ability to
maintain high performance across the validation datasets,
indicating that it can effectively generalize to new, unseen
data. The baseline solution relies on the coordinates of the
bounding boxes of detected objects, which makes it heavily
dependent on the performance of the object detection model.
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As an example, Figure 8 shows two types of anomalies caused
by the object detection component first the miss detection of
the boundaries of the vehicles (the bus in time steps t , t + 4,
and t + 5), second the non-detection of the vehicles (in time
steps t + 1, t + 2, t + 3, t + 6, and t + 7).

Our proposed solution effectively overcomes these prob-
lems by leveraging the strengths of CNNs and ViTs for fea-
ture extraction and a GRU time-series model for prediction.
Unlike the baseline method, which relies solely on the precise
detection of objects and their boundaries, our approach
interprets the image data as a sequence of patches, allowing
the ViT component to capture global context and long-range
dependencies within the visual data. This capability enables
the model to extract relevant environmental information
even when the object detection model fails to identify or
correctly localize vehicles, as shown in the anomalies of
Figure 8. Consequently, in this example, ourmodel accurately
predicted the blockage despite the challenges presented by
the object detection errors.

FIGURE 9. Confusion matrix of the proposed solution.

2) QUALITATIVE EVALUATION
To assess the precision of the model, we depict the confusion
matrix, which provides a detailed breakdown of the model’s
classification performance. As observed in Figure 9, the
confusion matrix shows that the model achieves a True
Positive (TP) value of 85% and a True Negative (TN) value
of 96%.

We also calculate the precision and recall of the proposed
method. The precision measures the proportion of predicted
positives that are correctly positive, while the recall measures
the proportion of actual positives that are correctly predicted
as positive. The results show that the proposed methodology
achieves a precision of 95.72% and a recall of 85%, which
proves the effectiveness and robustness of the proposed
approach. However, there is an imbalance in the prediction
performance, which is resulting from the imbalance of our
dataset which has more LoS data points than NLoS ones. This
limitation will be considered in our future works.

To further evaluate the performance of our proposed
solution for blockage detection, we conducted two distinct

FIGURE 10. Evolution of (a) SNR and (b) channel capacity for one user
with and without blockage prevention.

scenarios. In the first scenario, we simulate a normal V2X
communication without any blockage prevention technique
and evaluate the performance in terms of SNR, channel
capacity, and accuracy (as shown in Figure 10). From the
result illustrated in Figure 10 (a), the SNR value exhibited
a significant drop when a blockage occurred between
30 and 80 time steps, leading to a temporary disconnection.
Furthermore, the channel capacity plot showed a complete
disconnection during blockage, with the communication
receiving 0 bps in Figure 10 (b). This demonstrates the
disruptive impact of blockages on V2X networks, resulting in
user disconnections and degraded service quality. In contrast,
in the second scenario, we implemented a blockage pre-
vention technique using our blockage detection framework.
When a blockage was detected, the communication was
efficiently handed over from base station 1 to base station 2,
effectively preventing the SNR drop and maintaining contin-
uous communication. The SNR plot in Figure 10 (a) shows
that our solution successfully prevents the SNR cut, allowing
the communication to persist normally. Similarly, the channel
capacity plot in Figure 10 (b) shows that the channel capacity
remained stable and continued to evolve during the time of
blockage, ensuring uninterrupted data flow. This compelling
evidence highlights the importance of accurately predicting
blockages in advance and the significant role our solution
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FIGURE 11. Accuracy evolution with varying (a) past time steps p and
(b) future time steps f .

plays in preventing user disconnections and ensuring the
stability and reliability of V2X network management. Our
proposed architecture’s ability to predict future blockages
and implement prompt preventative actions presents a crucial
advancement in V2X communication, enhancing safety,
efficiency, and overall performance.

The selection of the number of past time steps p and future
time steps f in our GRU time series model is a critical
consideration for accurate predictions. To understand their
impact, we conducted experiments varying p and f from 1 to
20 as shown in Figure 11. The results revealed interesting
insights into the relationship between these parameters and
the model’s accuracy. For p, increasing its value generally
benefits time series models, particularly those based on
recurrent neural networks like GRU. By increasing p, the
model gains access to more historical context, enabling
it to capture long-term dependencies and patterns in the
data more effectively. Our experiments showed a notable
improvement in accuracy as we increased p from 1 to 8,
indicating that an 8-time step history is optimal for capturing
the essential patterns. However, beyond this point, the
model’s performance started to plateau, suggesting that
excessively long histories may introduce noise or irrelevant
information, hindering further accuracy gains and even
leading to performance degradation, as well as increasing
computational complexity. For f , we observed that increasing

f beyond a certain point led to a decline in accuracy. For
our model, a value of 5 for f appeared to strike the right
balance, providing a reasonable prediction horizon without
overburdening the model with excessive future information.
These findings indicate the importance of carefully selecting
the values of p and f to optimize the model’s accuracy and
avoid unnecessary computational overhead. Our experiments
provide valuable insights into configuring the GRU time
series model effectively, enhancing its predictive capabilities
for future blockage of LoS. Overall, the numerical results
demonstrate the effectiveness and robustness of the proposed
methodology in predicting future obstacles in vehicular
communications and highlight the potential for further
improvements and applications in real-world settings.

FIGURE 12. A perspective view of the unseen scenario [27].

To ensure the robustness and generalizability of the
proposed solution, we extended our evaluation by testing the
model on a different scenario from the ViWi framework,
as illustrated in Figure 12, that was not seen during the
training phase. This tests the model’s ability to adapt
to new and unseen data, which is crucial for practical
deployment in real-world scenarios. The new scenario is
an outdoor setting depicting a single car driving through
a city street with two stationary buses. The Base Station,
equipped with one mmWave antenna and three cameras,
is positioned at a height of 5 meters in the middle of the
street. The car follows one of five trajectories, each 90 meters
long with 1000 equally spaced points (0.089 meters apart),
creating a 5000-point user grid in total. This additional
scenario includes variations in obstacle types, densities,
and environmental conditions that were not included in the
training dataset. This helps assess the model’s ability to
generalize to new situations and maintain high performance.
The results of this evaluation are summarized in Table 4,
where we compare the performance metrics of our proposed
method between the original training scenario and the unseen
scenario. The performance is evaluated based on accuracy
and recall. The results demonstrate that our proposed method
maintains high performance even in an unseen scenario,
showcasing its robustness and generalizability. The slight
decrease in performance is attributed to the added variability.
Nonetheless, the overall high-performance metrics indicate
that the model has a strong ability to generalize, making
it suitable for practical applications in vehicular networks
where environmental conditions can vary significantly.
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TABLE 4. Evaluation of the proposed method in an unseen scenario.

3) ABLATION STUDY
We perform an ablation study to evaluate the added value
of each component of the proposed framework. We compare
the performance of using only a CNN model, a CNN model
coupled with a ViT, a CNN model coupled with a GRU
model, and the proposed solution, which combines CNN and
a ViT for feature extraction coupled with a GRU model.

In the CNN-only approach, the CNN model is fed a
sequence of images from the past p time steps. Each image
is processed independently by the CNN to extract spatial
features, which are then aggregated to capture temporal
dynamics. This aggregation is achieved by stacking the
features along a new dimension and passing them through
additional convolutional layers to learn temporal correlations.
The aggregated features are then used to predict the future
LoS state. In the CNN-ViT approach, beam vectors are
fed into the CNN to extract spatial features, while images
are processed by the ViT. The extracted features are then
combined and fed into a fully connected layer that predicts
the future LoS state. The CNN-GRU approach extends the
CNN-only method by incorporating a GRU at the end.
Finally, we consider the proposed approach that incorporates
a CNN-ViT-GRU framework.

Figure 11 illustrates that the accuracy fluctuation of the
CNN-only model and the CNN-ViT approach are indepen-
dent of the number of past and future time steps. This is due
to the fact that CNNs are inherently static and do not model
changes over time. The dual-processing method CNN-ViT
improved the accuracy of prediction in Figure 11 by
utilizing the complementary capabilities of CNNs and ViTs.
However, the temporal evolution of the extracted features
is still not modeled in this approach. Therefore, a hybrid
approach that integrates a feature extraction component with
a temporal model, such as GRU, is essential to capture
both spatial and temporal dependencies. By incorporating
a GRU, the CNN-GRU approach significantly enhances the
model’s ability to understand temporal dynamics, which are
crucial for predicting future blockages. The GRU helps in
maintaining and updating a temporal context, leading to more
accurate predictions compared to using CNN alone. Finally,
the CNN-ViT-GRU approach combines all strengths, offering
the most robust predictions by integrating spatial, global, and
temporal features. However, this comprehensive approach is
the most computationally intensive. Therefore, selecting the
best approach involves balancing the need for accuracy with
computational efficiency.

4) SCALABILITY ANALYSIS
To assess the scalability of our solution, we simulated three
different network environments. A small network scenario

with 1 user and 2 base stations, a medium network scenario
with 20 users, and a large network scenario with 60 users.
These simulations help evaluate the model’s performance
as network size and complexity increase. The results of
the scalability testing are summarized in Table 5. The
performancemetrics include accuracy and runtime, providing
insights into how the model scales with increasing network
complexity.

TABLE 5. Scalability evaluation of the proposed method.

The results indicate that the proposed method maintains
high accuracy and reasonable runtime even as the network
size and complexity increase. The scalability tests demon-
strate that the proposed approach is capable of handling
larger and more complex network environments effectively.
The slight decrease in performance metrics with increasing
network size was expected due to the added complexity
and computational load. However, the overall high perfor-
mance underscores the model’s robustness and scalability.
By simulating larger networks, we provide a comprehensive
evaluation of the model’s scalability without incurring
the high costs associated with real-world implementations.
These results validate the method’s potential for practical
deployment in large-scale vehicular communication systems,
reinforcing its suitability for future 6G networks.

Our solution’s scalability and robustness in simulated
environments indicate its strong potential for real-world
applications, particularly in the context of 6G vehicular
networks and smart cities. Our Framework can be inte-
grated into existing vehicular networks to enhance V2X
communications. By deploying the model on edge computing
devices, such as roadside units or in-vehicle processors, it can
operate in real time to predict LoS blockages and dynamically
adjust communication paths. This capability is crucial for
maintaining reliable communication in environments with
high mobility and complex signal propagation dynamics.
Additionally, our approach can be utilized to optimize traffic
management systems in smart city initiatives. For example,
by predicting potential communication disruptions that could
affect traffic flow, our model can assist in adjusting signal
timings and rerouting traffic to prevent congestion. This
application improves traffic efficiency and enhances safety by
ensuring that critical communications between vehicles and
infrastructure are maintained.

Implementing our model in these real-world scenarios
involves optimizing it for deployment on resource-constrained
edge devices and ensuring compatibility with existing com-
munication protocols. Additionally, conducting real-world
testing in diverse environments will be essential to fine-tuning
the model and confirming its effectiveness across various
operational contexts.

VOLUME 12, 2024 133581



G. Gharsallah, G. Kaddoum: ViT LoS V2X: ViTs for Environment-Aware LoS Blockage Prediction

5) LIMITATIONS AND FUTURE RESEARCH DIRECTIONS
While the proposed approach offers significant advantages
for predicting LoS blockage in 6G vehicular networks,
certain limitations and areas for further research must be
acknowledged.

A primary limitation of our approach is the increased
computational complexity resulting from the integration
of CNNs and ViTs. This complexity leads to higher
resource requirements, including memory and processing
power, which may limit the feasibility of deploying the
model on resource-constrained devices commonly used in
edge computing environments. The need for substantial
computational resources could also impact the real-time
performance of the model, particularly in scenarios with high
data throughput or in networks with large numbers of users
and base stations. Additionally, the reliance on both visual
and wireless data means that the model’s performance could
be adversely affected in scenarios where one data modality is
significantly degraded, such as in poor visibility conditions.

Future research could address these limitations by focusing
on several key areas. One area of focus could be optimizing
the proposed architecture for edge computing environments.
Additionally, extensive real-world testing in a broader
range of environments, including urban, suburban, and rural
settings, would be essential to better understand the model’s
performance under diverse conditions. Another important
direction for future research is the investigation of alternative
data modalities. For instance, integrating LiDAR data, which
provides three-dimensional knowledge about the environ-
ment, could enhance the model’s robustness, particularly
in scenarios where understanding the three-dimensional
spatial configuration is crucial for accurate blockage
prediction.

The use of cameras and sensors in vehicular networks,
particularly in the context of 6G-enabled technologies, raises
significant ethical and privacy concerns. The collection and
processing of visual data, such as images and videos, as well
as other sensor data, can potentially involve sensitive infor-
mation about individuals, vehicles, and their surroundings.
Ensuring that this data is handled with the highest privacy and
security standards is essential for the responsible deployment
of these technologies. One of the primary privacy concerns
relates to the inadvertent capture of personally identifiable
information (PII) through camera systems, such as faces,
license plates, or other identifying features. To mitigate these
concerns, data anonymization techniques can be employed to
obscure or remove sensitive information from the collected
data before it is processed or transmitted. In addition to
anonymization, secure data transmission protocols are critical
for maintaining the integrity and confidentiality of the data
as it is transferred between vehicles, infrastructure, and
cloud-based systems. Encryption methods, such as end-to-
end encryption, should be implemented to protect data from
unauthorized access during transmission.

Addressing these limitations and pursuing these research
directions can further refine and enhance the proposed

solution, making it more robust and applicable in a wider
range of real-world scenarios.

VI. CONCLUSION
In this paper, we present a novel ViT-based feature extraction
architecture to solve the challenging problem of predicting
blockages in an mmWave vehicular network. The proposed
architecture enables the extraction of relevant information
from the input multimodal data, leading to more accurate
and robust predictions about future LoS states using a GRU
time-series model as a predictive component. In contrast
to previous approaches that rely on other computer vision
techniques such as object detection and bounding boxes, our
method takes a unique perspective by interpreting an image
as a sequence of patches and processing it using a standard
transformer encoder. This novel approach has demonstrated
remarkable performance, achieving comparable or even
superior results to state-of-the-art methods.

Our proposed approach not only outperforms the state-
of-the-art method [28] by achieving a high accuracy rate,
but it also proves the effectiveness of the ViT-based feature
extraction component in providing essential information to
the DL time-series model. This advancement represents a
significant contribution to the design and implementation of
more efficient and reliable wireless networks, which are crit-
ical for supporting uRLLC and eMBB services in real-world
vehicular communication networks. By addressing the chal-
lenges of blockage prediction, our work lays the foundation
for the practical deployment of 6G V2X applications, with
potential implications for improving traffic safety, reducing
congestion, and enabling autonomous vehicle operations in
smart cities.

As future work, it would be interesting to explore more
complex vehicular environments and different scenarios, such
as urban settings, where the presence of obstacles andmoving
vehicles can significantly impact network performance.
Additionally, investigating the use of our proposed feature
extraction architecture for other input data types, such as
Lidar data, could further enhance prediction accuracy and
robustness, making the network even more reliable in diverse
real-world conditions.
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