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Si and its oxides have been extensively explored in theoretical research due to their technological
importance. Simultaneously describing interatomic interactions within both Si and SiO2 without the
use of ab initio methods is considered challenging, given the charge transfers involved. Herein, this
challenge is overcome by developing a unifiedmachine learning interatomic potentials describing the
Si/SiO2/Osystem,basedon themoment tensorpotential (MTP) framework. ThisMTP is trainedusinga
comprehensive database generated using density functional theory simulations, encompassing
diverse crystal structures, point defects, extended defects, and disordered structure. Extensive
testing of the MTP is performed, indicating it can describe static and dynamic features of very diverse
Si, O, and SiO2 atomic structures with a degree of fidelity approaching that of DFT.

Si/SiO2 interfaces are ubiquitous in semiconductor manufacturing, which
includesmetal-oxide-semiconductorfield-effect transistors1, nanowire- and
nanodot-transistors. The formation of SiO2 layers involves charge transfer
during the oxidation of Si substrates2. Additionally, siliceous materials-
including clay minerals and cement, which comprise Si, O, and SiO2

components-are governedby interactions that entail similar charge transfer.
Abundant past theoretical research has focused on understanding Si, its
oxides, the formation of SiO2 multilayered structures, early oxidation rates,
and amorphization of oxide layers3–8. These studies predominantly reliedon
electronic density functional theory (DFT)9–11 and nonflexible classical
potentials12,13. However, simulating large systems with multiple compo-
nents, charge transfer, and hetero-interfacial systems poses challenges
within these frameworks. An ideal modeling approach should explicitly or
implicitly capture charge transfer without compromising accuracy or
incurring prohibitively large computational costs. Existing charge equili-
bration potentials like ReaxFF14,15 and COMB16–18, while being capable of
describing chemical interactions during MD simulations, tend to have a
limited ability to describe mechanical properties of materials15,17,19 unless
special reparametrization is applied.

Recent advances, such as linear-scaling DFT11,20 and machine learning
(ML) force fields–e.g., the Gaussian approximation potentials (GAP)21, and
artificial neural networks22,23—lift the limitations of traditionalmethods.ML
force fields have demonstrated high accuracy in modeling Si24–27 and many
other elements28–32. Similar progress has been made in improving intera-
tomic interaction descriptions in Si oxides33–36 and metal oxides37–40. How-
ever, jointly describing compounds and their constituents using ML force
fields presents challenges due to the disjointed configurational space of
multi-phase forms and the need to handle charge transfer. ML force
fields41–45 combine a descriptor to a regression procedure to encode

geometry and ab initio properties, usually omitting explicit electronic
structures. A previous study focusing on modeling SiO2 using the moment
tensor potential (MTP) suggests incorporating additional reference data is
preferable to adding explicit charge equilibration for long-range
interactions33.

The novelty of this article is a MTP46,47 that jointly describes intera-
tomic interactions in SiO2 and its constituents (Si and O), enabling the
representation of multiple charge states. The developedMTP for Si/O/SiO2

systems is parameterized using an ab initio database containing diverse
crystal structures, point defects, extended defects, anddisordered structures.
This MTP is then utilized for molecular statics (MS) and molecular
dynamics (MD) simulations to investigate crystalline, interfaces, amor-
phous, and liquid states of Si and SiO2. These test simulations indicate that
the MTP can provide a unified description of these disjoint systems.

Results
Our analysis encompassesbothMSandMDsimulations.MS results include
cohesive energy, lattice constant, elastic constant, defect formation energies,
interface relaxation, as well as linear and planar defect. The MD results
bracket vacancy diffusion coefficients,meltingpoint,interfaces, aswell as the
liquid and amorphous structures of Si and SiO2. The outcome of these runs
are compared against the reference method (DFT) and those derived from
the semi-classical potential.

Cohesive energy, elastic constant, point defects and extended
defects
First, the state equations of various Si and SiO2 polymorphs are presented as
cohesive energy vs lattice parameter. Please see themethodology section for
calculation details. Additionally, the cohesive energy values for molecular
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oxygen, both O2 and O3, are provided. As shown in Fig. 1, the MTP repli-
cated the cohesive energies of the references states with remarkable accu-
racy. The Table 1 compares lattice parameters predicted by the MTP,
COMB, and ReaxFF models with benchmark and experimental data.
Remarkably, the MTP predictions show excellent agreement with both the
benchmark and experimental data.

The second-order elastic constants and bulk modulus are determined
using finite difference, as detailed in the methods section. Table 2 provides
the relative root mean square error (RRMSE) on elastic constant with
respect to the DFT benchmark and experimental data. The MTP model
demonstrates lower RRMSE when compared to those of ReaxFF and
COMB potentials, it competes closely with the Beest Kramer van Santen
(BKS)48 potential. Moreover, other semi-empirical models reported in
ref. 24 demonstrate higher errors compared to the predictions made by the
MTP model. The bulk modulus values for various silicon and silica poly-
morphs can also be found in Table 3. As evident, the MTP predictions
closely align with the reference methods and experimental values, although
it is worth noting that the training set did not encompass the deformation of
certain polymorphs.Our potential accurately predicts the elastic constant of
amorphous silica, even though amorphous configurations were not inclu-
ded in the training set. In our testing of the MTP potential, we have also
considered point defects like vacancies, divacancies, and self-interstitials.
The RRMSE values for these defects are reported in Table 4. Once again,
using the MTP leads to smaller relative errors in comparison to ReaxFF
potential. Since the majority of potentials were not specifically para-
meterized for the oxygen systemalone, our comparisonwas limited solely to
ReaxFF. In our study, we examined a specific case involving the I4 compact
cluster49within the Si crystal, whichwasnot included in our training set. The
atoms within the cluster exhibit a harmonious four-coordinated arrange-
ment. Notably, the cluster boasts the presence of five-, six-, and seven-
membered atomic rings. The bond lengths and bond angles of this cluster
were calculated based on relaxed structures obtained fromDFT,MTP, SW,
ReaxFF and COMB calculations, as illustrated in Fig. 2. Notably, no dan-
gling bondswere observed for all potentials, except for the COMBpotential,
which failed to reproduce the I4 structure. When analyzing the formation
energy of the cluster, the MTP model exhibited a prediction within 14% of
the reference value, while the SW and ReaxFF potentials displayed errors
reaching up to 27% and 47%, respectively. Among the models assessed, the
MTP model exhibited superior agreement with DFT calculations for both
bond lengths and bond angles. As this is a perfectly coordinated tetra-
interstitial, we also tested 3 and 5-fold coordinated interstitials, namely, di-
interstitial, tri-interstitial, and tetra-interstitial, as shown in Fig. 2. While
these defects are not included in the training set, the MTP exhibits better
agreement with the benchmark than ReaxFF, as detailed in Table 4. The
MTP also outperforms ReaxFF in describing the vacancy formation energy
in silica polymorphs, as demonstrated in Table 4. Again, no SiO2 point
defects configurations were incorporated to our training set.

The static migration barrier energy of the vacancy was determined
using the nudged elastic band (NEB)50. The migration barrier profiles,
including the DFT-based profiles as well as the MTP- and SW-based pro-
files, are depicted in Fig. 3b.The MTP migration barrier profile shows
excellent agreement with the DFT reference profile. In contrast, the SW
potential does not capture the reference profiles with similar accuracy.
Examining the barrier for vacancy migration reveals a relative error in
barrier height of 15.0% for MTP, while for SW, it is 73.1%. These results
demonstrate that the MTP model can better mimic the reference method
when studying point defects within larger systems, as demonstrated in
references28,51,52. The activation barriers for mono-vacancy hopping were
further investigated using MD simulations, considering temperatures ran-
ging from 1000 K to 1650 K. The simulation details are provided in the
method section for reference. The mean square displacements are also
provided in the supplementary Fig. S4. As reported in Fig. 3a, the activation
energy for mono-vacancy hopping is 0.31 eV forMTP and 0.41 eV for SW.
These values are close to the static activation barriers computed at 0 K; the
MTPmodel behaves in a physically plausible fashion.As observed in Fig. 3a,

Fig. 1 | Bond and angle energy of oxygen molecules, and equation of state of
silicon and silica polymorphs. a Bond and angle energy of dioxygen and ozone as
calculated usingMTP (lines) and DFT (dots). b–d Energy-volume relationships in
crystalline SiO2 and Si polymorphs calculated using the MTP (lines) and DFT
(dots). 3D Si polymorphs (b), 3D (c), and 2D (d) SiO2 structures were considered.
Details pertaining to these crystal structures are available as S.I. Agreement
between MTP and DFT is excellent. Insets: illustration of selected polymorphs
crystal structures.
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Table 1 | Comparison of lattice constants predicted by MTP,
ReaxFF, and COMB models against experimental data and
DFT calculations

Exp DFT MTP COMB ReaxFF

α Si a 5.430088 5.4690 5.4682 5.4399 5.4635

β-Si a 4.66589 4.8090 4.8170 4.8242 4.7650

c 2.565 2.6554 2.6493 2.6533 2.6207

HD a 3.8508 3.8601 3.8411 3.8635

c 6.2706 6.3028 6.2718 6.3084

HCP a 2.6961 2.8038 2.8065 2.7192

c 4.5577 4.6013 4.6057 4.4624

SH a 2.553089 2.6458 2.6478 2.7232 2.9162

c 2.3820 2.4840 2.4861 2.5569 2.7382

ST12 a 5.6763 5.6639 5.7680 5.65236

c 6.8308 6.7607 6.8849 6.7469

BC8 a 5.7657 5.7662 5.7539 5.6405

c 4.7077 4.7081 4.6980 4.6054

C24 a 3.8290 3.8510 3.8533 3.8482 3.7800

b 10.70 10.2298 10.7874 10.7732 10.5821

c 12.63 12.7483 12.7281 12.7113 12.4859

C46 a 10.355091 10.2298 10.2777 10.1513 10.1761

C136 a 14.86491 14.7417 14.7989 14.8817 14.6751

α-Q a 4.916092 5.0339 5.0280 4.9105 4.8872

c 5.4054 5.5216 5.5314 5.4022 5.3765

β-Q a 4.997793 5.1060 5.1171 5.05321 5.0529

c 5.4601 5.5869 5.5905 5.5207 5.52045

α-C a 4.972094 5.1026 5.1004 4.7418 4.8774

c 6.922 7.1364 7.1205 6.6199 6.8092

β-C a 7.159095 7.4608 7.4625 7.5429 7.3724

α-T a 5.010096 5.0616 5.1275 4.8502 4.9462

b 8.600 8.9187 8.8062 8.3299 8.4948

c 8.2200 8.4166 8.4159 7.9607 8.1183

β-T a 5.035097 5.2756 5.2731 5.2957 5.2255

c 8.220 8.6107 8.6069 8.6438 8.5292

CO a 7.135698 7.2653 7.2354 7.2648 7.6759

b 12.3692 12.5368 12.4253 11.9582 12.3520

c 7.1736 6.2766 6.2687 6.2943 6.6504

SE a 4.073099 4.1145 4.1155 4.2222 4.4444

b 5.0260 4.5263 4.5287 4.6461 4.8906

c 4.4770 5.0814 5.0830 5.2147 5.4892

ST a 4.1797100 4.2345 4.2285 4.2858 4.8368

c 2.6669 2.69170 2.6905 2.7269 3.0776

KE a 7.464101 7.5581 7.6446 7.4497 7.5001

c 8.62 9.1695 8.8285 8.6035 8.6617

MO a 7.3317102 7.5199 7.4262 7.7782 7.4709

b 4.876 5.0728 4.9944 5.2312 5.0245

c 8.758 6.9780 6.8935 7.2203 6.9350

CH a 13.6046103 13.70564 13.7061 13.6346 13.5269

c 14.8290 14.9563 14.9569 14.8789 14.7614

ZG a 16.4110104 16.7106 16.9151 16.3306 16.6907

b 20.0440 20.4473 20.3998 19.6949 20.1292

c 5.0427 5.1559 5.2060 5.0261 5.1370

ZSM a 20.0511105 20.4927 20.6177 20.2347 20.1282

b 19.8757 20.1528 20.2357 19.8598 19.7552

c 13.3682 13.5828 13.7043 13.4498 13.3789

RRMSE (%) 0.17 0.39 0.37

Table 2 | Comparision of force fields prediction of elastic
constant for silicon crystal and α-quart

Si elastic constants (GPa)

Exp88 DFT MTP COMB ReaxFF

C11 165 153.1 168.1 142.5 109.3

C12 65 57.0 51.8 75.4 46.8

C44 79.2 74.3 65.5 69.0 37.0

RRMSE (%) 5.7 8.0 21.5

(5.8) (7.0) (18.8)

α-quartz elastic constants (GPa)

Exp106 DFT MTP BKS48

C11 86.8 84.2 83.1 90.6

C12 7 3.3 10.6 8.1

C13 19.1 8.26 17.8 15.2

C14 −18 17.1 −21.8 −17.6

C33 105.8 89.5 100.1 107.0

C44 58.2 52.0 34.7 50.2

C66 39.9 42.8 36.2 41.2

RRMSE (%) 6.1 2.4

(12.3) (10.8)

The RRMSE value calculated against DFT data are provided in parentheses. Note that the BKS
potential was implemented by optimizing bulk parameters based on the predictions of experimental
elastic constants of α-quartz48.

Table 3 | Exploring bulk modulus in silicon and silica
polymorphs: calculations using experimental lattice
parameters input in LAMMPS code

Structure Exp DFT MTP COMB ReaxFF

Diamond
silicon

98.388 89.0 90.5 97.8 67.6

β-tin silicon 105 110.0 180.3 98.2

HD 87.3 91.2 97.8 67

HCP silicon 86.5 99.8 601.936 -

BC8 silicon 83.4 94 95.8 291.1

ST12 silicon 75.0 99.5 56.9 397

α-quartz 3892 32.8 39.9 33.7 -

α-tridymite 26.1 22.6 20.8 -

Keatite 66.7 70.9 12.3 -

Coesite 96.398 114 97.4 - -

Moganite 32.2107 37.2 28.9 - -

Seifertite 290108 278 320 112.8 -

Zeolite
(Chabazite)

54109 62.0 56.3 - -

Zeolite (GUS-1) 24.4 24.8 9.7 -

Zeolite (ZSM) 32.9 47.1 11.5 -

a-Si - 82.5110 70.9 - -

a-SiO2 36.4111 - 37.9 - -

RRMSE 3.3 51.4 44.7

(3.5) (24.1) (33.6)

The units are expressed in GPa. The RRMSE value (calculated against DFT data) is provided in
parentheses. The value of the bulk modulus for amorphous structures may vary depending on the
cooling rate. In our study, we used cooling rates of 5 K/ps for silicon and 10 K/ps for silica.
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b, the barrier obtained from MD simulation is 0.32 eV, whereas the static
migration barrier stands at 0.31 eV. It is noteworthy that NEB configura-
tions, including ab initio molecular dynamics (AIMD) configurations
containing vacancies, were not included in the training set.We investigated
extendeddefects suchas generalized stacking faults anddislocations in theSi
crystal.Generalized stacking faults are planardefects closely linked to slip. In
turn, the behavior of dislocations and their core properties are particularly
important for understanding plasticity. The methods section of our study
provides a detailed description of our model for generalized stacking faults
and dislocations, as well as the calculations involved. In Fig. 4a, b, the excess
energy per unit area, also known as a γ-line, is presented. The γ-line was
calculated using the benchmark method, the MTP model, the SW53 and
Tersoff (TS)54,55 semi-classical potentials. As shown in the Fig. 4, theMTP is
in good agreement with the benchmark results. In contrast, SW and TS
demonstrate lesser agreement with the benchmark. In Fig. 5, the dislocation
core structures are presented. The core structures predicted by the MTP
model exhibit a nearly perfect agreement with those predicted by DFT, as
reported in ref. 56. An important and distinctive feature of our potential is
the direct relaxation of the C1 core structure to the C2 structure, which is
commonly referred to as the double-period reconstruction of theC1 core. In
past studies, the C2 core structure was often manually reconstructed from
the relaxed C1 core56,57. However, our potential eliminates the need for
manual reconstruction by obtaining the C2 structure directly. To obtain the
relaxed structure and energy of the C1 configuration, a snapshot is selected
from the relaxation steps that ultimately lead to the C2 structure. Our
investigation also revealed that theC2 core is themost stable configuration, a
result consistent with previous reports56,57. In addition to Fig. 5, the core
structures are also depicted in Supplementary Fig. S10.

Table 4 | Comparative analysis of defect formation energies in
silicon crystals and silica polymorphs using DFT, MTP, and
ReaxFF results

DFT MTP ReaxFF

Si-V 3.7 2.3 3.0

Si-V2 5.5 3.7 6.7

Si-I2 2.9 3.0 1.9

Si-I3 2.1 2.5 2.1

Si-I4C1 2.2 2.5 2.0

Si-I4C2 2.1 2.4 1.1

α-AQ 6.1 5.8 6.6

β-BQ 5.4 5.8 5.1

α-AC 5.1 5.1 4.9

α-AT 5.0 4.8 1.3

KE 5.2 5.7 0.5

CO 5.40 6.20 4.4

CO 5.9 6.78 4.3

MO 5.2 5.8 5.5

SE 6.2 4.3 0.9

ST 6.2 5.3 2.3

RRMSE (%) 4.5 12.0

Our comparisonexcludes the results fromBKSandCOMBas theyare not parameterized for a single
oxygen system. In the training set, only the silicon vacancy defect is present, while other defects are
used to test theportability of thepotential. For Si-I2, Si-I3, Si-I4C1, andSi-I4C2, the formation energy is
given in eV per atom.

Fig. 2 | Point defects in silicon crystal. In silicon crystal, a relaxed perfectly coor-
dinated four-interstitial cluster is depicted. left a and c: the MTP leads to bond
lengths and angles (as illustrated in theb) in better agreementwithDFT as compared
to SW, ReaxFF and COMBmodels. Additionally, two other interstitial clusters with
coordination defects are presented, namely a four-interstitial cluster d and a di-
interstitial e. All the interstitial atoms are colored orange. In d and e, the interstitial
bonds are also colored orange. Their formation energies are indicated in Table 4,
where configurations b, d, and e correspond to Si-I4C2, Si-I4C1, and Si-I2, respec-
tively. The notations I1, I2, I3, and I4, as well as α, β, γ, δ, and ϵ, represent bond lengths
and bond angles within the cluster, respectively. These interstitial configurations
were not included in the training set.

Fig. 3 | Diffusion of point defects in silicon crystal. a Temperature dependence of
vacancy diffusion coefficients simulated using the MTP and SW. b NEB-based
mono-vacancy jump barrier. DFT, MTP and SW are compared. AIMD configura-
tions containing vacancies, along with NEB configurations, were excluded from the
training set. Insets: illustration of vacancy position before and after the jump within
the silicon crystal.
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Coexistence simulation
We determined the solid-liquid coexistence temperature of silicon using
the solid-liquid interfacemethod described in ref. 58.OurMTPpotential
predicts the silicon melting point to be 1485 ± 5 K, which is ~0.5% lower
than the benchmark DFT-GGA value of 1492 K59. Note that both the
MTP potential and the benchmark value are ~12% lower than the
experimentalmelting point of 1687 K, as reported in ref. 60. Notably, our
database initially lacked solid-liquid interface data, so we integrated a
few AIMD configurations gathered around the experimental melting
point into our unified training set. Additionally, it is important to
acknowledge the influence of the exchange-correlation (XC) function on
melting behavior, as discussed in refs. 59,61. The capability of MTP to
accurately replicate the melting point of the GGA XC functional
showcases the high-quality simulation of liquid structure by MTP, as
elaborated in the following section. For comprehensive details on our
coexistence simulation approach, please refer to the accompanying
supplementary Fig. S9.

Silicon slab energy
We compare the surface energy predicted by MTP against experimental
data and DFT references, as slab data were not included in the training set.
Experimental slab energy values for Si (100), Si(110), and Si(111) are
reported to be 2.1, 1.5, and 1.2 j/m262, respectively, while our DFT values are
2.1, 1.8, and 1.6 j/m². TheMTP predicts these surface energies to be 2.0, 1.3,
and 1.2 j/m², respectively.While a large discrepancy betweenMTPandDFT
is observed, especially for Si(110)with relative errors of up to25%, theMTP-
predicted surface energy closely matches the experimental slab energy.

Disordered structures
Wealso considered an extensive set of disordered Si andSiO2 structures.We
compared structures generated using ab initio MD, MTP-MD, and semi-
empirical-MD. All three cases were subjected to identical MD simulation
conditions, except for amorphous silica, where the MTP simulation time
was shorter compared to the other potentials. For comparison, we have
chosen the Vashista (VA)63, Munetoh (TS)64, BKS48, and Sundararaman
(SHK1 and SHK2)65 models. The details regarding the ab initio and classical
MD simulations are comprehensively provided in the methods section. To
analyze the disordered structures, we utilized both the pair correlation
functions and the bond angle distribution functions.

Liquid and amorphous silicon
As observed from the radial distribution function shown in Fig. 6a, theMTP
describes the structure of liquid Siwithhighprecision. Incontrast, theothers
potential leads to a shifted position of the first-neighbor peak compared to
the results obtained from the reference (DFT). Additionally, there is an
overestimation of the peak height, primarily observed with the EDIP and
Tersoff potentials. The angular distribution function (ADF) Fig. 6b also
demonstrates excellent agreement between the MTP model and DFT data.
When considering amorphous Si, the MTP model accurately describes the
structural features in agreement with experimental data. Conversely, semi-
classical potentials like SW and Tersoff fail to replicate the experimental
radial distribution profile. As shown in Fig. 6c, experimental g(r) andMTP-
MD lead to nearly identical first-neighbor peaks (2.36Å) and second
neighbor peaks (3.89Å). Additionally, the MTP model exhibits better
agreement with the experimental bond angle distribution centered around
108.6°66. Although the bond angle distributions of semi-empirical models
like SW and EDIP are closer to the experimental values, they exhibit angle
distributions below 90°, as shown in Fig. 6d. Note that the ab initio cooling
and equilibration trajectory was not included in the training set of theMTP
model, which suggests the MTP is fairly general, which can be attributed to
the fact that the training dataset encompasses a variety of configurations
within the disordered Si systems. Overall, the MTP model demonstrates a
level of accuracy comparable to that of DFT and experiment when
describing the structural features and bonding characteristics of dis-
ordered Si.

Fig. 4 | Planar defect in silicon crystal. γ-lines on the (111) plane as predicted by
DFT, MTP, TS and SW. The shuffle (S) and glide (G) cuts are illustrated in the inset.
aTheMTP provides a good description of the γ-line associated to the shuffle cut and
b a near-perfect description of the γ-line associated to the glide cut. Insets (i), (ii), and
(iii) represent the bulk structure, the relaxed shuffle (S) structure, and the relaxed
glide (G) structure, respectively.

Fig. 5 | Line defect in silicon crystal. Positions and relaxed structures of [110] screw
dislocation cores in Si obtained with the MTP potential. The system size was set to
14400 atoms and oriented such that the x, y, and z directions coincide to [11-2],
[111], [110] respectively. The dislocation core structures are in good agreement with
DFT core structures reported in the literature56. The core types are represented by A,
B, C1, and C2, respectively. The red mark indicates the position of the dislocation
core. Dislocation configurations were excluded from the training dataset.
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Liquid and amorphous silica
Figure 7 illustrates results pertaining to liquid SiO2. It includes pair dis-
tribution functions (PDF) and ADF. The MTP is in better agreement with
DFT as compared to the others potential. We notice both quantitative and
qualitative differences between the semi-empirical potentials and DFT,
except for the Si–Opair correlation function. In this case, the semi-empirical
potentials only overestimates the height of the first peak, which is located
around 1.62Å67–69. This value is consistentwith the experimental Si–Obond
length observed in liquid SiO2, indicating a strong chemical interaction
between the Si–O pairs. Both the O-O and Si-Si pair correlation functions
exhibit a shift in the first peak as given by the others models, while there is a
strong quantitative and qualitative match between the MTP-based and the
DFT-based structures. Furthermore, the BKS-based Si–O–Si ADF, along
with those of other semi-empirical models, does not match the DFT-based
ADF. Conversely, the MTP-based ADF demonstrates a good match. At
3600 K, using our 96-atomsimulationboxmodel, the average Si–O–Si angle
between two SiO4 tetrahedra is determined as follows: DFT–134.5°,
MTP–131.4°, BKS–146.0°, TS–143.6°, VA–141.8°, SHK1–142.6°, and
SHK2–140.4°. Our DFT value aligns closely with literature, approximately
136.0°70 and 135.0°71 respectively. It is evident that the MTP closely
resembles the reference method, whereas other models align with experi-
mental values for the Si–O–Si angle in amorphous silica, ranging between
140° and 152°72–74. This likely stems from the semi-empirical models being
meticulously fitted with consideration of experimental properties. Most of
themwere optimized based onmixed ab initio-experimental data. We then
varied the temperature of liquid silica from 2500 K to 3500 K using a 648-
atom box and recorded the Si–O–Si angle, as depicted in Fig. 7d. We have
found that the Si–O–Si angle in liquid silica changes with temperature,
consistent with the findings reported in ref. 75. As the temperature
decreases, the angle between tetrahedral interconnections increases, con-
tributing to network relaxation. It is likely that the relaxation of the network
at room temperature upon cooling is primarily attributed to variations in
bond lengths and angles, given that the network structure of silica liquid
does not qualitatively change between 3500 K and 300 K.

Furthermore ab initioMD,MTP-MD,BKS-MDandothermodels lead
to a within-tetrahedra O-Si–O bond angle distribution centered around
109°,which is nearly equal to the experimental bond angle67–69.However, the
BKS and VA potentials overestimate the average probability at 109°, while
the TS potential underestimates this probability. The SHK1, SHK2, and
MTPpotentialsmatch thebenchmark.TheDFT,MTP,andall othermodels
except TS lead to very similar O-O-OADFs. However, when it comes to the
Si-Si-Si angle, qualitative and quantitative discrepancies are observed
between BKS-generated structures and DFT-generated structures, while
MTP-generated structures match the benchmark. There is also a notable
discrepancy between the structure predicted by othermodels and that of the
benchmark.

The partial PDFs of vitreous SiO2 are illustrated in Fig. 8a–c. The
comparison is made against the PDF computed from experimental data
using the reverse Monte Carlo (RMC) method76. The MTP potential
exhibits qualitative agreement with RMC data, as our PDF profiles match
those obtained from RMC.For example, only the MTP accurately repro-
duces the RMCprofiles for Si-Si interactions, as the second peak around 5Å
is not reproduced by the other models, including the BKS model. Addi-
tionally, while the other models fail to reproduce the height of the Si–O
RMC PDF, the MTP potential shows a good match. To further analyze the
structure, we also computed the most important ADF, as well as the Si–O
bond length distribution function. For O-Si–O (refer to Fig. 8c, all the
profiles are similar but vary in height, centered around the experimental
value of 109.0°.When it comes to Si–O–Si angle (Fig. 8d), both theMTPand
BKS show similar profiles centered between the experimental values of 144°
and 152°. The average values for BKSSi–O–Si angle is 150 and the one of the
MTP is 145.5. As the average value for the same angle predicted byMTP in
liquid silica at 3600 is ~131.4, this confirms that the Si–O–Si angle varies in

Fig. 6 | Liquid and amorphous silicon. Disordered structures of Si
simulated using DFT, MTP, semi-empirical models a Radial and b angular
distribution functions of liquid Si (3370 K, 64 atoms); c Radial and d angular
distribution functions of amorphous Si (300 K, 1000 atoms). The amorphous
distribution functions are compared against experimental data from Exp A112,113

and Exp B66.

https://doi.org/10.1038/s41524-024-01390-8 Article

npj Computational Materials |          (2024) 10:218 6

www.nature.com/npjcompumats


liquid silica. Considering all the potential, the the Si–O bond length dis-
tribution are centered between 1.60 and 1.66Å. The average bond length
distribution for MTP potential is 1.63Å, which is close to experimental
values of 1.62Å. Note that these structural properties may vary slightly
depending on the employed cooling rate. Despite the high cooling rate, no
major coordination defects were observed. This indicates that the config-
uration has been well equilibrated at 3000 K, resulting in the establishment
of a strong network. Note that the ab initio MD trajectory, which

encompasses both the cooling and equilibration stages of the amorphous
structure preparation, was not included in theMTP training set, which is an
indicator of theMTP’s generalization capability. Overall, theMTPpotential
demonstrates a remarkable improvement in accurately describing the
structure of disordered SiO2 compared towell-established potentials such as
the BKS potential and others. The MTP model captures the essential
structural features of thedisordered systemswith greater precision, resulting
in a better agreement with experimental observations67–69,76.

Fig. 7 | Liquid silica. a Si-Si, bO-O and c Si–Ocorrelation functions g(r) and f Si-O-
Si, e O-Si-O, g Si-Si-Si, and h O-O-O partial bond angle distribution function for
liquid SiO2 at 3600 K simulated using DFT, MTP, BKS, TS, VA, SHK1 and SHK2

with a 96-atom simulation box. d Distribution of the Si–O–Si angle against tem-
perature using the MTP potential.

Fig. 8 | Amorphous silica. Partial radial distribution functions (a–c) in vitreous
silicawere obtained using various potential includingMTP, BKS, TS, VA, SHK1, and
SHK2. The vitreous systems were equilibrated at 300 K, consisting of 648 atoms.
These partial radial distribution functions are compared with experimental data

obtained using ReverseMonte Carlo (RMC)76. Additionally, the angular distribution
function (d, e) and bond length distribution function (f) were analyzed and com-
pared with experimental data frommultiple sources: Exp A67, Exp B73, Exp C114, and
Exp D115.
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Phonon dispersion
We calculated the phonon dispersion of c-Si and α-quartz, as illustrated in
Fig. 9a, b, respectively. The MTPmodel exhibits very good agreement with
the reference method (DFT) except the higher frequencies for α-quartz.
Once again, the corresponding frozen phonon configurations were not
explicitly included in the training set.

Si–SiO2 interface
The Si–SiO2 interface, a cornerstone in semiconductor physics andmaterial
science, plays a fundamental role in device fabrication and significantly
impacts device performance. Exploring heterostructures involving Si–SiO2

interfaces opens avenues for novel functionalities and applications in
microelectronics and beyond. Given its importance, capturing the structure
and dynamics of the Si–SiO2 interface is paramount for a potentialmodel of
the Si–O system. To achieve this, we employed various models, encom-
passing crystalline Si slabs with different orientations, such as Si(100),
Si(110), and Si(111). Our approach involved utilizing both α-quartz, β-
cristobalite, andotherpolymorphs in constructing the Si–SiO2 interface. For
a detailed explanation of our construction scheme, please refer to the
Method section. To assess the suitability of the potential formodeling the Si/
SiO2 interface, we examined interfaces using both O-terminated SiO2 slabs
and Si-terminated slabs. For each Si/SiO2 crystalline interface configuration,
we perform force and energyminimization, allowing the positions of atoms
and the simulation box size to change simultaneously. Following geometry
optimization,MDs simulations are conducted for 50 ps at 300 K in theNPT
ensemble. First, our potential stabilized themajority of the interfaces in both

static and dynamic runs, with the extent of stabilization depending on the
orientation of the Si slab and the termination of the quartz slab. For Si(110)
in contact with either a Si- or O-terminated quartz slab, our potential suc-
cessfully stabilizes and describes the dynamics of the resulting interfaces,
whether symmetric or non-symmetric. However, our potential only suc-
cessfully describes symmetric interfaces for Si(100) and Si(111), which are
built fromquartz slabs terminatedby Si. These combinations of termination
and orientation were not considered in the training set, showcasing the
remarkable generalization ability of our interaction potential. It is worth
noting that defects, such as silicon dangling bonds or over-coordinated
oxygen atoms, are observed at the interface following both minimization
and dynamic runs, as depicted in Fig. 10. As noted in ref. 77, the presence of
the dangling bonds is a natural occurrence and constitutes a typical aspect of
interface defects. Such anomalies are commonplace and anticipated in these
interfaces, owing to the inherent lattice mismatch between the involved
materials. Usually, interfacial defects are passivated or special construction
schemes are adopted to eliminate them.However, our study does not aim to
create defect-free interfaces. Instead, our goal is to evaluate the potential’s
capability to manage complex heterostructures with varying bonding types
not encountered during the training process. To further validate our
potential for silicon and silica interfaces, we compare the interfacial energies
of small models computed using MTP and DFT. Detailed descriptions of
these smallmodels are provided in theMethods section.Our results (shown
in Fig. 11) exhibit good correlation between DFT and MTP models.
Importantly, configurations generated by the MTP potential through
relaxation and MD simulations converged easily, typically requiring fewer
than50 iterationsof single-point energy calculations ofDFT.This highlights
the reliability of interfacial configurations generated by the MTP potential.
These findings demonstrate the capability of MTP potentials to effectively
investigate heterosystems containing Si–SiO2 interfaces. The relaxed small
models of the Si–SiO2 interfaces are presented in the supporting informa-
tion (Figs. S11 and S12).

Discussion
In this work, we have successfully parametrized a ML potential that can
implicitly capture and describe different charge states. Additionally, thisML
potential has the remarkable ability to describe disjoint zones and hetero-
zones of the configurational space of SiO2 and its constituent elements, Si
and oxygen. The potential description of various phenomena-including
point defects, diffusion in Si crystals, extended defects, the liquid phase of Si
and SiO2, and the amorphous phase of Si and SiO2-either rivals or out-
performs existing potentials. The potential exhibits very good agreement
with experimental data in challenging configurational zones, such as the
amorphous state, even though these configurationswere not included in the
training data. In many scenarios, such as disordered phases (liquid, amor-
phous), the potential achieved a near-perfect match with the reference
method in terms of accuracy, using exactly the same simulation time(very
short) and conditions. Even when utilizing longer simulation times and
large system with a semi-empirical model, it does not reaches a level of
accuracy similar to the reference method. Furthermore, the potential dis-
plays an intriguing capability regarding dislocation behavior. It autono-
mously transitioned theC1 structure to theC2 structurewithout the need for
manual reconstruction. While there is a growing consensus that ML
potentials can effectively serve as surrogates for DFT in terms of accuracy
and speed, generalization including charge state modeling remains a chal-
lenging task. This study provides evidence that reaction coordinates are
sufficient to implicitly capture charge transfer or charge states involved in
chemical reactions. Aside from potentials explicitly considering charge
transfer, separate ML potentials are developed for each individual chemical
element or compound which database is constructible by DFT. Our
approach suggests this is not necessary; compounds and their elemental
constituents can be trained jointly. Indeed, joint parametrization, where
parameters are derived simultaneously for both silicon, silica and oxygen,
offers several advantages. By employing a single potential to describe the
interactions between atoms in both silicon and silica, the computational

Fig. 9 | Phonon dispersions. Phonon dispersions of a c-Si and b α-quartz computed
using DFT and MTP.
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model becomes more streamlined and easier to manage. The unified
potential can save time and resources by avoiding the need to recalibrate
parameters of the model for each of the materials involved. The unification
idea is also important for some areas of application, such as interfacial
modeling for electronic devices, energy storage and conversion, and surface

coatings and tribology. Here, the reference data for ML potential must
include both the individual materials in contact as well as the boundary
region. In addition, as chemical reactions can occur inMDsimulation, good
modeling of amulti-componentmaterial or complex systems under certain
conditions requires joint parametrization of the considered system and its

Fig. 10 | Interface structure of Si–SiO2. Geometry optimization and MD equilibration of 50 ps simulation: Si(010)/α-Quartz (001) (top) and Si(110)/α-Quartz (001)
(bottom) a, c Relaxed at 0 K, b, d Annealed at 300 K.
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constituents. For instance, oxygen aggregation in high-temperature MD
simulations was observed by researchers, as noted in ref. 34 (supporting
information). This observation led to the inclusion of oxygen molecules in
the training set by the researchers. Our preliminary study pertained to a
semiconductor and its oxide. However, whether this approach can be
generalized to other elements and mixtures-including multi-component
alloys and compounds remains to be seen. To ensure a well-implemented
unified interaction potential, several other aspects need to be explored in the
future. Given that the compound and its constituents are not locatedwithin
the same zone of the configurational space, achieving an accurate, efficient,
low-cost, and general unified potential for both the material and its oxides
with limited data may require adjustments to the underlying mathematical
model, thefitting procedure, and the database samplingmethods (including
active learning). These adjustments could help attain the same level of
accuracy at a more affordable computational cost, resembling a feature of
potentials parameterized for a single compound. Likewise, while this study
achieved a joint description of Si and SiO2 using the MTP framework, it is
likely that other currently developed ML potential frameworks would have
led to a similar result. In conjunction with these questions, our aim in the
future is to extend this work by incorporating the element of hydrogen to
model silica gels.

Methods
Ab initio calculations
The database was constructed using DFT, as implemented in the Quantum
ESPRESSO78 package. The exchange-correlation potential was treatedusing
the generalized gradient approximationofPerdew-Burke-Ernzerhof (GGA-
PBE)79. Projector augmented waves (PAW)80 were employed. Kinetic
energy cutoffs of 884 eV for Si and 1224 eV for both SiO2 and oxygen were
chosen. In all calculations, the Brillouin zone was sampled using the
Monkhorst-Pack grid81 scheme. Different k-points were used for each
polymorph, including an 8 × 8 × 8 for the ordinary phases of Si and an
11 × 11 × 11 for SiO2. The gamma point was used for oxygen molecules.

MLmodel: the MTP
In this work, the MTP46 was chosen as the MLmodel. The MTP is a multi-
component potential. In a previous comparative study82, it demonstrated a

favorable trade-off between accuracy and computational speed across a
range of modeling problems. The model derives its name from its use of a
tensorial representation of atomic coordinates and utilizes linear regression
to determine the local atomic energy. These local atomic energies are sub-
sequently summed to obtain the total energy of the system under con-
sideration. The MTP model considers the total energy of a specific atomic
configuration as a sum of individual atomic energy contributions.

ETotal ¼
Xn
i¼1

Ei ¼
Xn
i¼1

Vlocalðζ iÞ ð1Þ

The argument ζi is a tuple ζi = (rij, τi, τj) containing the relative coordinate rij
and atomic types τi, τj. Here, Vlocal is approximately computed within the
sphere or circle of radius (Rc) of 5.7Å, beyond which the central atom no
longer feels any interaction. Practically, in the MTP framework, the
expansion of the atomic energy Vlocal into basis functions Bβ serves as the
foundation for linear regression.

Vlocal ¼
X
β

cβBβ ð2Þ

Since the potential energy function Vlocal is smooth, the force acting on an
atom k at position rk in a given configuration xq can be calculated by taking
the gradient of the total energy.

FkðxqÞ ¼ �∇ETotalðxqÞ ¼ �
X
i

∂Vðζ iÞ
∂rkðxqÞ ð3Þ

The virial stress within an atomic configuration xq of volume Ω can be
expressed as follows.

σ ijðxqÞ ¼
1
2Ω

X
k2Ω

X
l2Ω

ðxðlÞi � xðkÞi ÞFðklÞ
j ð4Þ

The functions Bβ in equation 2 are obtained through the contraction of the
descriptors. In the MTP model, the descriptors are formed by tensors of
atomic coordinatesweighted by radial functions. These descriptors consider

Fig. 11 | Interface energy of Si–SiO2. Comparing
interface energies of silicon and various silica poly-
morphs, including amorphous silica, using MTP
potential and DFT. The orange line indicates the
diagonal y = x, corresponding to a perfect
correlation.
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both the radial distribution and the angular distribution of the neighbor-
hood surrounding each atom. By incorporating information from both the
radial and angular aspects, the descriptors capture the local atomic envir-
onment in a more comprehensive manner, enabling a more accurate
representation of the atomic energy within the MTP framework.

Mμ;νðrij; τi; τjÞ ¼
X
j

fμðjrijj; τi; τjÞ rij � � � � � � � � � � � rij|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
ν times

ð5Þ

The radial function fμ, is further expanded using radial basis functions Q
(α)

andfitting parameter cðαÞμ;τi;τj
as expansion coefficients. This expansion allows

for a more flexible and accurate representation of the radial dependence of
the atomic interactions.

f μ;ðjrijj; τi; τjÞ ¼
X
α

cðαÞμ;τi;τj
QðαÞðjrijjÞ ð6Þ

The model parameters Θ ¼ ðcβ; cμ;τi;τj Þ are determined during the mini-
mization of the cost function as given by Equation (7).

Data curation and optimization
We acquired ab initio data using established methods and databases from
prior research. The database construction involved two methodologies,
namelymanual processing24,82,83 and active learning84, as explained deeply in
supporting information. Specifically, we referred to the dataset created for
the GAP for silicon24, the comparative study82, and active learning techni-
ques detailed in ref. 84. For liquid silica, we utilized the temperature range
(1000 K–5000 K) from previous databases specifically designed for neural
network interatomic potentials (NNIP), which covered temperatures
exceeding its boiling point and extended as high as 5000 K, as referenced in
ref. 36. While NNIP potentials involve a very large number of adjustable
parameters–typically tens of thousands–allowing to jointly describe a large
number of off-equilibrium configurations, accommodating such deviations
from equilibrium becomes challenging within the MTP framework due to
limited numbers of parameters. Effective MTP training, therefore, relies on
carefully selecting the training set.Our final training dataset, herein referred
to as the unified training set, was constructed through a two-step process:
curation and subsequent optimization.

To enhance the quality of our training set and to properly assess the
error of the test set, down selection was applied. To begin, we sorted our full
database into smaller subsets as elaborated in Tab. S3 through S6 in the
supporting information. Within each subset, we then utilize a filtering
strategy referred to herein as the “train-remove-train" approach. We first
train while monitoring for significant reductions in energy and force errors
associated to each configuration as we incrementally raise theMTP level by
one unit (We focus on levels 08 to 14 for deformation and defects, while
levels 16 to 18 are used for disordered structures). Next, we analyze the error
reduction between 2 or 3 consecutive levels. If a significant decrease is not
observed, we then eliminate configurations based on factors such as:
(1) Total energy: configurations with similar total energies yet differing

atomic coordinates to other in the training set, as well as those with
fluctuating total energies but nearly identical atomic positions to others
in the training set are removed. These configurations originated from
relaxation of molecules, single-point calculations of unrelaxed defects,
manually constructed unrelaxed jump paths, and strained configura-
tions where lattice parameters or vectors were strained without
corresponding adjustments to atomic positions and embedded dimer.

(2) Contributions from smearing: this can be primarily attributed to the
extensive use of high-temperature AIMD simulations. Silica config-
urations generated from AIMD simulations, featuring a number of
atoms greater than 36, are excluded if they exhibit smearing
contributions to the total energy greater than zero.

(3) Minimum interatomic distances (this criteria complements the total
energy criteria): if multiple configurations from the same batch exhibit
similar minimum distances, some are removed. This technique was

mostly used for oxygen molecules. For example, we check the intera-
tomic distance in the batch of relaxed O3 molecules. We also discard
embedded dimer configurations by comparing their minimum
interatomic distances with those of the AIMD configurations. If the
minimum interatomic distances are equal, we choose AIMD over
embedded dimer configuration.

(4) Polymorphism: These configurations are derived from deformations
following thermal expansion. Most of these configurations have been
accurately computed and were included in the training database.
However, some polymorphs arising from displacive phase transfor-
mations andpolymorphs sharing the same lattice systemwith identical
coordination numbers were excluded. In the case of displacive phase
transformation, we retain the parent crystal and exclude the child
crystal.When dealing with two polymorphs that share the same lattice
system and coordination number, we typically choose one of them.

After removing these undesired configurations, we reinitiate the
training process incrementally, following a pattern akin to the first stage.
This “train-remove-train” process is iterated until we attain a high level of
confidence in the cleanliness of the subset–i.e., all configurations included in
the subset are associated with training errors that decrease as theMTP level
increases. In the subsequent curation phase, we examine the possibility of
extracting an even smaller subset from each previously cleaned subset.84. To
achieve this, we use the “select-add" command embedded in theMTP code,
as described in ref. 47. We applied the “select-add" command to every
cleaned subset.

Training set
In implementing the unified potential, we selected a range of configurations
from the optimized and curated database, as outlined in the Data Curation
and Optimization section. Similarly, the test set was chosen from the same
optimized database to eliminate any overlap between the two sets.While the
test set encompasses all properties or types of configurations represented in
the extensive database, the training set only includes certain configuration
types. This strategic approach aims to ensure the portability of the inter-
action potential. Note that the database contains configurations of sub-
stantial size, with up to 1000 atoms.However, we constrained themaximum
box size in the training set to 36, except for the interfaces set where a few
configurations are of size 80. Consequently, the number of atoms in the
training set’s boxes ranges from 1 to 80. Conversely, the test set contains
configurations of the maximum size found in the database. The specific
types of configurations represented in the training set are detailed inTable 5.
By restricting the training set to specific configuration types, we aim to
enhance the generalizability of our potential by simulating properties not
present in the training set. Within the current implementation of the MTP
potential, we do not employ a validation set in the typical manner used to
estimate overfitting or underfitting during the training of neural network
models. Instead,we opt to utilize anoffline test set for this purpose. To gauge
the potential’s portability more comprehensively, we perform MD simu-
lations for properties that were not included in the training set.

Training and validation
The cost function, as described by Equation (7), was minimized using the
Broyden-Fletcher-Goldfarb-Shanno algorithm, a quasi-Newton optimiza-
tionmethod implemented in theMTP framework. Fundamentally, training
theMTPmodelwith atomic configurations entailsfinding the parameter set
{Θ} by solving the minimization problem presented in Equation (7). We
trained the refined unified training sets as detailed in Tab. S7 (supporting
information) andTable 5. First,MTPpotentialswith parameter sets ranging
from 300 to 1600, corresponding to levels 18 to 26, were used to train set 1
(Tab. S7 and Fig. S1a) as part of preliminary works, including optimization,
training mode, and testing. The preliminary works are also presented in
supplemental information from Figs. S5–S8. At this stage, two training
modes were employed: vibration mode and structures weighting mode.
Specifically, the potential resulting from the vibration mode was used as
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input for the structures weighting mode training. The training process
iterated until a desirable level of accuracy was achieved. As outlined in the
supporting information, we assessed the validation error using the resulting
potentials. We employed two independent validation sets, denoted as
Validation 1 and Validation 2, which atom distributions are shown in the
supplementary Fig. S2 and Fig. S3, respectively. Validation 1 was randomly
selectedconcurrentlywith the training set fromthe curateddatabase.On the
other hand, Validation 2 consisted of the AIMD cooling and equilibration
trajectories at 300 K. These validation sets were utilized as part of pre-
liminary work. For the final implementation, we utilized the level 28. Based
on the preliminary work, we opted for the structure weighting mode. The
two-step trainingmode, as applied to large-size configurations in set 1 (Tab.
S7 and Fig. S1a)), was deemed unnecessary. Given that our final training set
(Table 5) comprises small cell configurations, we exclusively employed the
structure weighting mode. We utilized the resulting potential to conduct
both static calculations and MD simulations, with the outcomes presented
in the main text.

Pn
i¼1

weðEmtpðxðiÞ;ΘÞ � EqmðxðiÞÞÞ2þ
h

wf

PNaðxðiÞ Þ

j¼1
jFmtp

j ðxðiÞ;ΘÞ � Fqm
j ðxðiÞÞj2

þwσ jσmtpðxðiÞ;ΘÞ � σqmðxðiÞÞj2� ! min

ð7Þ

Here, Eqm, Fqm, σqm denotes the values of energy, force, and stress computed
by the quantummechanical approach (DFT),whileEmtp,Fmtp, σmtp represents
the corresponding values obtained from the MTP model. we, wf, wσ are the
relative weights indicating the importance of the energy, the force and stress
in optimization procedure.

Static calculations
This section summarizes the mathematical procedure used to determine
static properties presented in the article.

For the chemical component with a formula XlYmZn, we calculate the
cohesive energy as follows:

Ecoh ¼ EXlYmZn
� ðlEX þmEY þ nEZÞ: ð8Þ

Where EXlYmZn
represents the energy of the supercell of the compound,

while EX, EY, and EZ correspond to the energies of the isolated atoms. The
subscripts l,m, andn indicate thenumberofX,Y, andZatomspresent in the

building block EXlYmZn
of the material. Due to variations in the number of

atomswithin theprimitive cell of eachpolymorphcompared to the standard
structural configuration, we normalize the cohesive energy by dividing it by
the number of atoms present in the regular phase.

Points defects formation properties such as vacancy formation energy
(Ef

v) was calculated using this equations:

Ef
v ¼ EN0�1 �

N0 � 1
N0

� EN0
: ð9Þ

For interstitial formation energy Ef
i , we used:

Ef
i ¼ EN0þ1 �

N0 þ 1
N0

� EN0
: ð10Þ

In equations (9) and (10), N0 and EN0
correspond to the number of atoms

and total energy of a perfect supercell.
Particularly, vacancies in SiO2 polymorphswere estimated considering

a neutral state. Thus, the formation energy in SiO2 polymorphs was cal-
culated using:

Ef ¼ Evac � Ebulk þ μO: ð11Þ

In this equation, Evac and Ebulk represent the energy of the supercell con-
taining the oxygenvacancy and the energyof the bulk supercell, respectively.
The chemical potential is defined as half of the energy of a dioxygen
molecule (μO ¼ 1=2*EO2

).
The equilibrium bulk modulus which correspond to the curvature of

the energy-volume curve at its minimum was derived from the second-
order elastic constants85. We calculate elastic stiffness constant Cij using
central finite difference formula.

Cij ¼
P
ðþεjÞ
i � P

ð�εjÞ
i

2 � εj
: ð12Þ

whereP
ðþεjÞ
i is the ith component of the stress tensorwhen the configuration

is strained only by jth component (εj) of the strain vector ( ε!). After
applying directional or isotropic deformation, the atomic positions undergo
relaxation while the overall box size remains fixed. We compute the gen-
eralized stacking fault energy (γ(u)) by incrementally shifting the upper
crystal half along the slip direction and assessing energy differences per unit
area (A) of the fault plane.

γðuÞ ¼ EðuÞ � Eo

A
: ð13Þ

where, Eo represents the energy of the perfect crystal, while E(u) denote the
energy of the supercell with the fault vector u which is directly proportional
to the Burgers vector (b). Surface energy is also calculated using the fol-
lowing expression:

γ ¼ Eslab � NEbulk

2A
: ð14Þ

In this context, A refers to the area of the slab, N represents the number of
atoms in the slab, whileEslab andEbulk denote the total energy of the slab and
the bulk energy per atom, respectively.

Si–SiO2 Interface construction
Previous reports indicate that defects are commonly observed at the inter-
face Si–SiO2 due to the imperfect matching of the two materials. To avoid
considerable latticemismatch, we utilize specific techniques. First, we rotate
the alpha-quartz structure to achieve a tetragonal configuration. Next, we
duplicate both the silicon crystal and alpha-quartz structure, ensuring that

Table 5 | Final refined and optimized training dataset derived
from extensive uncurated database

Cleaned and opitmized subset Total

Vacancy Si 50

Single interstitial Si 63

Stacking fault Si 40

Isolated atom Si and O 2

Deformation Si 99

Deformation SiO2 139

Liquid Si 217

Liquid SiO2 353

Oxygen molecules 21

Interface Si/SiO2 164

Embedded dimer (Si, SiO2) 2

SiO2 slab 9

Unified training set 1159

Please refer to the supporting information for specific details about the number of atoms per
configuration.
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the lattice dimensions perpendicular to the interfacedirection closelymatch.
This approach enables us to apply a small strain (<2%) to the lattice vectors
before forming the interface. Technically, the lattice mismatch α can be
defined as the relative difference in lattice parameters between two crys-
talline materials, often expressed as a percentage or in terms of the absolute
difference in lattice constants along specific crystallographic directions:

α ¼ n � L1 �m � L2
n � L1 þm � L2

: ð15Þ

Lattice duplication factors are represented by integers n and m; L1 and L2
denote the lattice parameters of a given direction. In both cases, symmetric
and asymmetric interfaces were constructed for both oxygen-terminated
and silicon-terminated quartz slabs, incorporating Si (100), Si (110), and Si
(111) slab orientations. Our objective is not solely to construct a flawless
interface representation of a naturally occurring or real-world interface, but
rather to explore the versatility of the potential. We then estimate the
interface energy using:

γ ¼ ES � ðnSiO2
� ESiO2

þmSi � ESiÞ
A

: ð16Þ

Where A represents the area of the interface, nSiO2
and mSi represent the

number of formula units of SiO2 and Si in the interface system. ES is the
energy of the supercell containing the interface. The terms ESiO2

and ESi
correspond to the energy of silica and silicon per formula unit, respectively.
Due to the impractical size of duplicatedmodels for energy computation via
DFT, smaller superlattices were also constructed involving Si (100) inter-
facing with α-quartz, β-cristobalite, α-cristobalite, β-tridymite, and amor-
phous silica. This facilitated comparison between results obtained using
MTP potentials and those from DFT. Each simulation box contains two
distinct interfaces. Initially, these small models were relaxed at 0 K using
MTP potentials. Subsequently, MTP-driven MD simulations were
performed at temperatures of 300 K, 500 K, 800 K, and 1200 K for 100 ps,
and configurations were selected from the trajectories. The energies of these
selected configurations, as well as the relaxed configurations, were then
computed using DFT-based single-point energy calculations.

MD simulation
AIMD simulation was carried out using Quantum Espresso using the
parameters as described in the section “Ab initio calculations details." The
integration timestep was set to 1 fs for Si and 2 fs for SiO2. The ionic tem-
perature during simulations was controlled using velocity rescaling.

Force-field MD simulations were performed using the large-scale
atomic/molecular massively parallel simulator (LAMMPS) software
package86. While it is impractical to perfectly replicate the MD settings in
Quantum Espresso within LAMMPS, we aimed to make them as close as
possible. To generate disordered structures, we employed the velocity
rescaling thermostat to control the temperature during the simulations. The
time integration used the same time steps as in the AIMD simulations. For
studying point defects diffusion in Si and self-diffusion in SiO2, the Nosee-
Hoover thermostat87 was employed. The latter simulations were performed
using a timestep of 1 fs, and the damping parameter was set to 100 fs.

Data availability
The Si–O–SiO2 database and the unified potentials can be found at https://
gitlab.com/Kazongogit/MTPu.

Code availability
The main codes used for this work are Quantum ESPRESSO (version 6.8),
LAMMPS (version 2022), PHONOPY, and MLIP-2 (version 2). They are
available at https://www.quantum-espresso.org, https://lammps.sandia.gov,
https://phonopy.github.io/phonopy and https://mlip.skoltech.
rurespectively. Further details can be found in the GitLab repository
https://gitlab.com/Kazongogit/MTPu. Additionally, Python scripts were

written for data manipulation and processing; most are available on the
GitLab repository.
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