
Citation: Durand, A.; Watteau, T.;

Ghazi, G.; Botez, R.M. Generalized

Shortest Path Problem: An Innovative

Approach for Non-Additive Problems

in Conditional Weighted Graphs.

Mathematics 2024, 12, 2995. https://

doi.org/10.3390/math12192995

Academic Editor: Andrea Scozzari

Received: 26 July 2024

Revised: 14 September 2024

Accepted: 21 September 2024

Published: 26 September 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Generalized Shortest Path Problem: An Innovative Approach for
Non-Additive Problems in Conditional Weighted Graphs
Adrien Durand ∗, Timothé Watteau , Georges Ghazi ∗ and Ruxandra Mihaela Botez ∗

Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity (LARCASE), École de
Technologie Supérieure (ÉTS), Université de Québec, Montréal, QC H3C 1K3, Canada; timothe.wt@gmail.com
* Correspondence: adrien.durand1709@gmail.com (A.D.); georges.ghazi@etsmtl.ca (G.G.);

ruxandra.botez@etsmtl.ca (R.M.B)

Abstract: The shortest path problem is fundamental in graph theory and has been studied extensively
due to its practical importance. Despite this aspect, finding the shortest path between two nodes
remains a significant challenge in many applications, as it often becomes complex and time consuming.
This complexity becomes even more challenging when constraints make the problem non-additive,
thereby increasing the difficulty of finding the optimal path. The objective of this paper is to
present a broad perspective on the conventional shortest path problem. It introduces a new method
to classify cost functions associated with graphs by defining distinct sets of cost functions. This
classification facilitates the exploration of line graphs and an understanding of the upper bounds on
the transformation sizes for these types of graphs. Based on these foundations, the paper proposes
a practical methodology for solving non-additive shortest path problems. It also provides a proof
of optimality and establishes an upper bound on the algorithmic cost of the proposed methodology.
This study not only expands the scope of traditional shortest path problems but also highlights their
computational complexity and potential solutions.

Keywords: universal shortest path problem; line graphs; graph cost functions; optimization techniques

MSC: 68R10

1. Introduction

Among the wide range of challenges addressed in graph theory, the problem of finding
the shortest path between two nodes (or vertices), commonly known as the shortest path
problem (SPP), is one of the most fundamental and most widely studied. Indeed, a variety
of real-world problems, ranging from network routing in communication systems [1],
robotics [2], transportation logistics [3,4] and trajectories optimization [5–9], depend on the
efficient resolution of the SPP. In fact, regardless of the application context, the problem can
always be formulated to determine a path between two vertices of the graph that minimizes
the sum of the weights of the edges that compose it. Although this is a universal problem,
solving the shortest path remains a topic of interest for many researchers.

Over several decades, Dijkstra’s algorithm, introduced by Edsger W. Dijkstra in
1956 [10], and the A* algorithm, developed by Peter Hart, Nils Nilsson, and Bertram
Raphael in 1968 [11], have been used as fundamental methods for solving the SPP. Basically,
Dijkstra’s algorithm finds the shortest path from a starting node to all other nodes in a
weighted graph by iteratively selecting the node giving the smallest known distance and
by updating the distances to its neighboring nodes. The A* algorithm, on the other hand,
can be seen as an improvement of Dijkstra’s algorithm, as it uses heuristics to prioritize
paths that appear to be the smallest, thus often finding the shortest path more efficiently.
While practical in many problems, these algorithms can unfortunately be computationally
expensive and slow for very large graphs, particularly when there are complex constraints

Mathematics 2024, 12, 2995. https://doi.org/10.3390/math12192995 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12192995
https://doi.org/10.3390/math12192995
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0008-5396-5160
https://orcid.org/0000-0002-9374-0176
https://orcid.org/0000-0002-0911-6646
https://doi.org/10.3390/math12192995
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12192995?type=check_update&version=2

Mathematics 2024, 12, 2995 2 of 24

between nodes and segments. These algorithms can also be inefficient, or even fail to find a
solution, when the cost function to be minimized is non-additive.

The difficulty of solving the SSP is not always due to the choice of the optimization
algorithm, but rather to the way in which the problem is defined. Loui [12] highlighted
this issue by criticizing the rigidity of classical SPP models and pointed out the relevance
of incorporating probabilistic weights in these methods under certain circumstances. To
address this problem, two solutions were proposed: (1) minimizing the expected values of
the weights, and (2) setting bounds for each weight and minimizing a combined function.
Another solution proposed by Loui was the use of dynamic programming, which consists
of solving a problem by dividing it into sub-problems, then solving these sub-problems
incrementally from the simplest to the most complex, storing their intermediate results.

The use of weighted graphs with random variables, instead of predetermined fixed
variables, is a common approach in the literature. This approach was used by Raj et al.
in [13] to improve the safety of hazardous goods transport routes. Their objective was to
identify the safest path in a graph, while imposing a variance constraint to mitigate paths
with excessive uncertainties. In fact, the modeling of the variance is particularly interesting
from an optimization point of view, as it does not reduce the cost function to a simple sum
of weights. Indeed, the variance, which is quadratic by nature, requires a more complex
calculation and can be determined for each path p using a binary vector x ∈ [0, 1]|E|, such
that xα = 1 if α ∈ p, or xα = 0 otherwise. Starting from this definition, the variance of a path
can be computed using the covariance matrix Q = [qα,β] ∈ R|E|×|E|, which is symmetric
and positive definite, with rows and columns indexed by the segments of the graph. The
interaction cost between two arcs α and β is reflected by the sum of the off-diagonal entries
qα,β + qβ,α, while the linear cost of an arc γ is represented by the diagonal element qγ,γ. The
variance of a path p is then obtained by using the formula: Var(p) = xTQx.

While Raj et al. [13] treated the variance as a constraint, Sen et al. [14] considered it as a
component of the cost function (or as the cost function itself). In their study, which focused
on the application of a shortest path algorithm for road traffic, they implemented a multi-
objective optimization to balance the expected travel time and its variance. The concept
of considering a cost function of the form f (p) = xTQx is referred to as the quadratic
shortest path problem (QSPP). Hu and Sotirov in [15] proposed a solution to this problem
using semi-definite programming relaxation methods for directed graphs. They used the
alternating direction method of multipliers to find solutions and demonstrated that their
bounds were the strongest for this problem at that time. Many methods have also been
effective in addressing the QSPP, such as proposed by Rostami et al. [16,17] and by Hu [18].

In several studies, the weighting of segments in shortest path calculations has been
treated using random variables. This technique is typically used when it is difficult to
predetermine the weights of segments in a graph. Weiss and Kaminka [19] proposed a
slightly different modeling approach by exploring shortest path computation techniques
when obtaining the exact segment weights is algorithmically expensive. To deal with this
complexity, they approximated the weights with a certain level of confidence using a cost
estimation function that provides bounds on the actual value of the weights. However,
this approach, while practical, requires the development of a shortest path algorithm that
works with these estimated weights, which may affect the optimality of the solution.

Turner and Hamacher in [20] introduced the concept of the universal shortest path
problem (USPP). This concept consists of incorporating and then extending previously
known variants, such as the largest edge cost (bottleneck SSP) and the difference between
the largest and smallest edge cost (balanced SPP). In a subsequent study [21], Turner
developed strongly polynomial-time algorithms to solve the USPP with equality constraints.
These efforts highlight the continuous evolution and diversification of methodologies to
address the complex challenges posed by shortest path problems.

An alternative modeling approach for addressing the SPP involves considering graph
weights not as real scalar values but as vectors. This vector-based method, adopted by
Jiang et al. [22], assigns distinct physical meanings to each vector component. For instance,

Mathematics 2024, 12, 2995 3 of 24

in the context of a road network, vector weights might represent the length of a road
segment, the degree of congestion, and the probability of delays. The SPP can then be
solved by using a cost function that mathematically combines the vector components,
reducing it to a traditional cost function. However, this approach does not offer any
significant improvements; it simply organizes the data differently while solving the SPP
using Dijkstra’s or A* algorithms. It is therefore more adapted for multi-objective problems,
where the objective is to optimize multiple criteria as considered by Salzman et al. in [23]
to solve the SPP with two objective functions using heuristic methods. The vector-based
approach may seem trivial, because once the problem is modeled as a weighted graph with
associated quantities, engineers can easily apply standard physical formulas to derive a
relevant cost. However, the real challenge often lies in the initial modeling of the problem
as a weighted graph, for which this approach does not provides solutions.

Vidhya and Saraswathi [24] addressed the SPP under fuzzy conditions using trape-
zoidal intuitionistic fuzzy numbers (TrIFNs). These TrIFNs were used to model the uncer-
tainties and inaccuracies associated with the arcs in a graph. The problem was formulated
as a bi-objective problem: minimizing costs and travel time. Each arc of the graph was
associated with a fuzzy cost c̃ij and a fuzzy time t̃ij.

The literature review clearly shows that in the majority of studies (if not all), a rigid
representation of the shortest path problem has always been considered. No current
approach envisages a weighting system that considers the position of a segment in the
graph, such as adapting the weights depending on the previous nodes (or segments) on
the path. It has also been observed that the shortest path problem and its variants offer
numerous opportunities for research and application. However, despite the popularity
of the problem, the costs associated with a path are typically computed in only three
ways: through (1) additive scalar cost functions of the form f (p) = ∑α∈p cα, (2) quadratic
scalar cost functions f (p) = xTQx, or (3) cost functions that incorporate vector weights.
Consequently, it seems both interesting and necessary to generalize the cost functions or
the methods of weighting the graphs to a wider range of problems.

This paper proposes to extend the concept of cost functions in traditional SPPs by
including non-additive functions. It provides a classification of these functions and intro-
duces a method for solving the SPP using a non-additive cost function with conditional
weighting. Driven by practical engineering needs, the method is applied to a specific case
within the aeronautical sector. In this case study, the integration of geometric constraints
requires the use of non-additive cost functions, illustrating the practical application and
relevance of the proposed method.

The remainder of this paper is organized as follows: In Section 2, the notations used
throughout the paper are clarified. In Section 3, different types of cost functions are
classified by introducing new elements of analysis for finite graphs. The application of
the line graph and the estimation of the graph size following a sequence of iterated line
graphs are explored in Section 4. Insights from the previous sections are then combined in
Section 5 to optimally solve the shortest path problem using a k-additive cost function. An
application example highlighting the relevance of this method is presented in Section 6.
The paper concludes with final remarks and conclusions in the last section.

2. Notations for Graphs

Two types of graphs are considered in this study: undirected graphs and directed
graphs (or digraphs). These sets will be denoted as G and Gd, respectively. Basically, a
graph G ∈ G can be defined as a set of vertices (or nodes) V connected by a set of edges
(or segments) E, and is mathematically denoted as G = (V, E). A digraph is a type of
graph where the edges have a direction associated with them. This aspect means that the
connections between vertices are not bidirectional, as in a undirected graph, but follow a
specific direction from one vertex to another.

To distinguish edges from vertices, the following notations are used: vertices are
represented by lowercase Latin letters (e.g., u, v, etc.), while edges are represented by

Mathematics 2024, 12, 2995 4 of 24

lowercase Greek letters (e.g., α, β, etc.). Based on these notations, the following properties
can be established:

• If G ∈ G is an undirected graph, the vertices that constitute an edge are interchangeable.
Thus, any edge α ∈ E defined as a set of nodes such as α = {u, v} with u, v ∈ V,
can be equivalently expressed as α = {v, u}. Consequently, an edge is a subset of V
composed of two elements.

• If G′ ∈ Gd is a digraph, an edge can be seen as an ordered pair of two elements that are
obviously not interchangeable. Consequently, for any edge α ∈ E defined as α = (u, v)
with u, v ∈ V, a direction must be specified. For this purpose, the first element of the
directed edge, α1 = u, is referred to as the tail of the edge α, while the second element,
α2 = v, is referred to as the head of the edge α.

Both directed and undirected graphs can be weighted. A weighted graph is defined as
G = (V, E, w) where w : E→ R is a function that assigns a real weight to each edge.

Finally, the set of neighbors of a vertex is denoted as N (v), and is defined as follows:
N (v) = {u ∈ V|(v, u) ∈ E}. This set includes all vertices u that are directly connected to
the vertex (or node) v by an edge in the graph.

3. Classification of Graph Cost Functions

As discussed in Section 1, the effectiveness of solving the SPP depends not only on the
definition of the graph, but also on the nature of the cost function. This function is essential
for mathematically evaluating the efficiency of a path in terms of metrics to be minimized.
The objective of this section is to define three categories of cost functions applicable to any
SPP: (1) additive, (2) non-additive, and (3) k-additive. In addition, this section provides
mathematical definitions to characterise these categories using techniques of differential
analysis on finite graphs.

3.1. Elements of Differential Analysis on a Finite Graph

Calculus on finite weighted graphs is a well-studied field. Dodziuk [25] initiated
the study of the Laplacian operator in the discrete domain, highlighting several proper-
ties of the continuous operator that transfer well to discrete representation. Subsequent
work by Woess [26] and McDonald and Meyers [27] further developed this framework by
considering the spaces of vertex or edge functions as a Hilbert space H. This approach
involves defining an inner product inH(V) andH(E), which facilitates the application of
calculus concepts. The mathematical tools developed in these studies also allow the use
of differential operators, such as the weighted graph derivative ∂xi f (xj), or the weighted
gradient (∇w) and divergence (∇∗w), respectively, defined as ∇w f (xi, xj) = ∂xi f (xj) with
f ∈ H(V) and ⟨ f ,∇∗wF⟩H(V) = ⟨∇w f , F⟩H(E) with F ∈ H(E).

In this study, various concepts from differential calculus are applied to graphs in
order to characterize both the structure of the graph and its associated cost function. For
further information on this subject, readers are referred to the studies of Friedman and
Tillich [28–30]. These studies introduce a specialized form of “calculus” for graphs, allow-
ing graph theory to make new connections with functional analysis. Such an innovative
approach has been applied effectively in various domains, including image processing,
machine learning, and network analysis [31–34].

Let f : P → R+ be a cost function associated with a graph G, where P denotes
the set of all paths in G = (V, E). A path p ∈ P is an ordered list of nodes (or vertices)
without repetition, such that any two consecutive nodes in the list are connected by an edge.
Consequently, it can be written that E ⊂ P . Also, given the absence of node repetition in
any path, the number of possible paths is finite, i.e., |P| < ∞.

We can introduce the space of real path functions H(P), which is a |P|-dimensional
Hilbert space such as:

H(P) = { f : P → R} (1)

Mathematics 2024, 12, 2995 5 of 24

The variations of f ∈ H(P) can be analysed by examining the function ∂ f (i.e., the
differential of f) which can be defined as follows:

∂ f : E×P → R
(α, p) 7→ ∂ f (α|α∈̃p) = f (α∈̃p)− f (p \ α)

(2)

where α ∈̃ p means that the edge α is included in the path p, and f (p \ α) refers to the
evaluation of the cost function on the edges of p excluding the edge α.

Equation (2) can be re-written as:

∂ f (α|p1αp2) = f (p1αp2)− (f (p1u1) + f (u2 p2)) , α = (u1, u2) (3)

to express the variation of f with respect to an edge α∈̃p that connects two paths p1 and p2
within P , such that p = p1αp2. This equation is useful to describe the effect of including
the edge α in a given path p.

Similarly, Equation (4):

∆i=1,2∂ f (α|piα) = |∂ f (α|p1α)− ∂ f (α|p2α)| (4)

can be used to quantify the difference in ∂ f between two paths p1α and p2α sharing the
same “terminal” edge α. This equation is useful to compare the effect of connecting the
edge α to two given paths, p1 and p2.

Finally, using the mathematical definitions introduced in this section, we can establish
the following property for a generalized cost function f .

Property 1. The cost function f can be expressed as the sum of its local differentials by considering
the complete path p, such that:

f (p) = ∑
α∈̃p

∂ f (α|p) (5)

This representation of f is referred to as the “differential form of f ”.

3.2. Additive and Non-Additive Cost Functions

In graph theory, an additive cost function is a function where the total cost is “simply”
the sum of individual costs associated with each edge that compose a path. This type of
function is commonly used in problems where the cost can be incrementally accumulated
without considering the interaction between edges or nodes.

Mathematically, an additive cost function can be defined on the graph set P as follows:

f ∈ FG(0) with FG(0) = { f ∈ H(P)|∀p, α ∈ P × E, ∆i∂ f (α|pi) = 0} (6)

FG(0) is then the set of additive cost function. Based on this definition, a non-additive cost
function is any cost function associated with graph G that does not belong to the set FG(0),
such that:

f /∈ FG(0)⇒ f ∈ FG(0) (7)

3.3. k-Additive Cost Function

A k-additive cost function generalizes additive cost functions and refines the concept
of non-additive cost functions by incorporating interactions among up to k components of
a path. In other words, a k-additive cost function is a function for which the value of the
cost is influenced by interactions among up to k components. Interactions beyond the kth

component are assumed to be negligible or zero. This type of cost function is particularly
useful in problems where the cost associated with an edge in a graph is primarily influenced
by the properties of adjacent edges.

In addition, the k-additivity nature of a cost function can be oriented. Therefore, we
can categorize the following three sets according to their orientation:

Mathematics 2024, 12, 2995 6 of 24

Definition 1. The k-additive on the left cost function set:

FL
G(k) := { f ∈ H(P)|∀p, α ∈ P × E| l(p) ≥ k⇒ ∆i∂ f (α|qi pα) = 0} (8)

Definition 2. The k-additive on the right cost function set:

FR
G(k) := { f ∈ H(P)|∀p, α ∈ P × E| l(p) ≥ k⇒ ∆i∂ f (α|αpqi) = 0} (9)

Definition 3. The k-additive on the left and right cost function set:

FLR
G (k) :=

{
f ∈ H(P)|∀p1, p2, α ∈ P2 × E|

{
l(p1) ≥ k

l(p2) ≥ k
⇒ ∆i∂ f (α|qi p1αp2q′i) = 0

}
(10)

We now understand that an additive cost function FG(0) is a 0-additive cost function.
Specifically, if in the definition it is found that l(p) = 0, this indicates that p is an empty
path, which is in line with the definition given in Equation (6)

The main concepts presented in this section are illustrated in Figure 1, which represents
a section of a graph G.

(a) (b)
Figure 1. Representation of differential analysis tools on finite graph. (a) Representation of ∆∂ f (α|p).
(b) Representation of the condition that f ∈ FL(k).

Figure 1a illustrates the difference in ∂ f along the edge α between two paths q1 and
q2. Figure 1b, on the other hand, shows that if ∂ f on edge α remains constant when
coming from two distinct paths q1 and q2, both distant by k nodes, then the cost function
is k-additive. Specifically, the equality between f (q1 pα)− f (q1 p) and f (q2 pα)− f (q2 p),
representing the differential of f on the edge α from paths q1 p and q2 p (i.e., ∂ f (α|q1 p) and
∂ f (α|q2 p), respectively), confirms these k-additive characteristics.

Property 2. Let us consider the three sets FL
G(k), F

R
G(k) and FLR

G (k), as defined in Equations (8)–(10).
Thus, we can write:

∀k ∈ N :


FL

G(k)⊆FL
G(k + 1),

FR
G(k)⊆FR

G(k + 1),

FLR
G (k)⊆FLR

G (k + 1)

(11)

Proof of Property 2. Let f ∈ FL
G(k). By Definition 1 of FL

G(k) given in Equation (8), we have:

∀p, e | l(p) ≥ k, ∆i∂ f (qi pe) = 0 (12)

This expression states that for any path p and node e where the length of p (i.e.,
l(p)) is at least k, the variation ∆i in the partial derivative ∂ f of the function f along the
concatenated path qi pe equals zero.

Mathematics 2024, 12, 2995 7 of 24

We define p′ = vp with p = p1 . . . pk, and p1 ∈ N (v), which implies p′ ∈ P and
l(p′) = k + 1. Therefore, we have:

∆i∂ f (q′i p
′e) = ∆i∂ f (q′ivpe) (13)

Given that q′′i = q′iv, ∀i, it follows that:

∆i∂ f (q′i p
′e) = ∆i∂ f (q′′i pe) (14)

Or, ∆i∂ f (q′′i pe) = 0, which implies that f ∈ FL
G(k + 1). This sequence of equalities

demonstrates that the function f , which shows no change in differential after extending the
path beyond k nodes, belongs to FL

G(k + 1).
For FR

G(k) ⊆ FR
G(k + 1), and FLR

G (k) ⊆ FLR
G (k + 1) the proof is conducted with the

same methodology and inverting path order.

Using the mathematical expressions and properties defined above, we can now repre-
sent a cost function as the sum of its local variations, as detailed in Property 3.

Property 3. f ∈ FG(k) is k-additive because we can reduce its differential form (c.f. Equation (5))
to a sum of terms with the path considered being only k nodes long :

f (p) = f (p1 . . . pk) +
l(p)−1

∑
i=k

∂ f (pi, pi+1|pi+1−k . . . pi+1) (15)

This formulation is particularly useful for shortest path problems when the cost functions are non-
additive. By using the local variations, we can better understand how the costs accumulate along
the different segments of a path, even when the overall cost function is not simply the sum of the
costs of each segment.

There are certain cases where the form of the cost function adds complexity to solving
the shortest path problem. This complexity arises when the variations in the cost function
depend on paths of arbitrary lengths. Such a situation occurs with k-additive functions
when k→ ∞. This set of functions, which includes all other sets of functions, represents the
most challenging category to analyze within this context.

Definition 4. The general cost function set on G can be defined as:

FX
G(∞) := FX

G(k)
⋃

FX
G(k), ∀k ∈ N, X ∈ {L, R, LR} (16)

Using Definition 4, we can conclude that if a function belongs exclusively to FX
G(∞)

and to no other defined set of functions, it cannot be solved using the methods presented
in this paper for the shortest path problem.

3.4. Examples of Classification

Here, we provide two examples of cost functions which can be classified based on the
definitions proposed in the previous sub-sections.

3.4.1. A Classical FG(0) Function

Let us consider that each edge α ∈ E of a graph G is associated with a weight wα. A
classical and trivial cost function would be to compute the cost of a path by summing the
weights of its constituent edges. This cost function is commonly used in many shortest
path problems. Although it is a simple model, it is often sufficient to solve the problem
under consideration. It can be defined as follows:

Mathematics 2024, 12, 2995 8 of 24

f (p) = ∑
α∈̃p

wα (17)

Given the structure of the cost function, it can be easily demonstrated that f ∈ FG(0),
meaning that f is additive.

3.4.2. A Simple General FL
G(k) Function

Let us consider the sliding product window function fn, defined such that:

fn(p) =
l(p)−n

∑
i=1

(
i+n

∏
k=i

pk

)
(18)

where pk ∈ R.

Property 4. Using the definition proposed in Section 3.3, it can be shown that:

fn(p) ∈ FL
G(n) ∩ FL

G(n− 1). (19)

Proof of Property 4. Let α = (u1, u2) ∈ E, and p = p1 . . . pl(p) : pi ∈ V. Using the
definition of fn(p) in Equation (18), fn(pα) can be developed as follows:

fn(pα) =
l(p)−n

∑
i=1

(
i+n

∏
k=i

pk

)
+ u1

 l(p)

∏
k=l(p)−n+1

pk

+ u1u2

 l(p)

∏
k=l(p)−n+2

pk


= fn(p) + u1

 l(p)

∏
k=l(p)−n+1

pk

+ u2

 l(p)

∏
k=l(p)−n+2

pk

 (20)

Then, by using the definition of ∂ f given in Equation (2), we can write:

∂ fn(α|pα) = fn(pα)− fn(p)

= u1

 l(p)

∏
k=l(p)−n+1

pk

+ u2

 l(p)

∏
k=l(p)−n+2

pk

 (21)

By assuming that p′ = vi pα where vi ∈ V can vary, we can study if the variation of vi
modifies the cost f (α|p′) :

• l(p) ≥ n⇒ ∆i∂ fn(α|vi pα) = 0, thus fn ∈ FL
G(n)

• l(p) = n− 1⇒ ∆i∂ fn(α|vi pα) = ∂ fn(α|pα)∆vi ̸= 0, thus fn ∈ FL
G(n− 1)

This result demonstrates that based on l(p), the cost function fn may either belong to
the set FL

G(n) or to the set FL
G(n− 1). Consequently, fn is a member of the intersection of

these two sets, implying that fn(p) ∈ FL
G(n) ∩ FL

G(n− 1).

4. Line Graph Application for k-Additive Functions

In 1932, Whitney [35] introduced a new construction for undirected graphs, called line
graphs. This concept was further extended to directed graphs (line digraph) with the study
proposed by Harary and Norman [36]. Line digraphs are particularly useful in applications
where the relationships between the edges of a graph are as important as the relationships
between the vertices themselves. Consequently, they can be used to account for constraints
in a graph by converting problems stated in terms of edge connectivity into equivalent
problems stated in terms of vertex connectivity, which are often easier to analyze and solve
using existing graph algorithms.

Mathematics 2024, 12, 2995 9 of 24

4.1. Introduction to Line Graphs

Basically, a line digraph H = (VH , EH) ∈ Gd of a given digraph G = (VG, EG) ∈ Gd is
a graph that represents the adjacencies between the edges of G = (VG, EG). The line graph
is constructed using a transformation denoted as H = Ld(G), and based on the following
conditions:

VH = {u|u = α ∈ EG}
EH = {(α, β)|α, β ∈ VH |α2 = β1}

(22)

In Equation (22), the first condition means that each vertex of H = (VH , EH) cor-
responds to an edge of the original graph G = (VG, EG), while the second condition
implies that two vertices in H = (VH , EH) are connected by an edge if and only if their
corresponding edges in G = (VG, EG) share a common vertex.

The transformation H = Ld(G) can be seen as a mapping application from the set of
digraphs to itself, denoted as: Ld : Gd → Gd. It is important to note that there is a similar
mapping application L : G → G for undirected graphs; however, here, we only focus on
directed graphs. Indeed, any undirected graph G can be converted into a directed graph
G′ by transforming each undirected edge {u, v} ∈ EG into two directed edges (u, v) ∈ EG′

and (v, u) ∈ EG′ . Therefore, without loss of generality, the discussion in the remainder of
this paper will focus exclusively on directed graphs. Consequently, the notation Ld(·) will
be simplified to the more general notation L(·).

Figure 2 illustrates a example of the process of generating a line digraph G1 = L(G0)
from the original digraph G0. As shown in this figure, the first step of the transformation
involves replacing each edge of the original digraph G0 with a vertex in G1. The new
vertices in G1 are labeled to indicate the direction of the original edge in G0 they represent.
For example, the edge from vertex 1 to 4 in G0 becomes a vertex in G1 labeled as “14” (i.e.,
1 to 4). Subsequently, all vertices created in G1 are connected with directed edges based on
a specific rule: if two edges in G0 share a common vertex, and one edge’s arrival vertex is
the other edge’s departure vertex, then the corresponding vertices in G1 are connected by a
directed edge. For example, since G0 has edges from 1 to 4 and from 4 to 2, then in G1, the
vertex representing “14” will have a directed edge to the vertex representing “42”.

1 2

43

1 2

43

31

12

34

4214

43

31

12

34

4214

43

G0: G1:

Figure 2. Illustration of line graph transformation.

In this paper, we will use several iterations of L(·). The sequence of graphs G built by
the iteration of L(·) can be noted as:

G0, G1 = L(G0), G2 = L(L(G0)) = L2(G0), . . . , Gm = Lm(G0) (23)

This sequence was studied by van Rooij et al. [37], who demonstrated that if a graph
contains a cycle, the sequence will never end with an empty graph. They also found that
the size of graphs could increase without bounds. This aspect can cause problems if L(·)
must be numerically iterated a significant number of times.

Figure 3 illustrates a more general procedure for generating the transformation
L(Gn−1) from the graph Gn.

Mathematics 2024, 12, 2995 10 of 24

u1,...,un v1,...,vn

(uv)
w1,...,wn

(vw)

(uv) = u1,...,un,vn
= u1,v1,...,vn

(vw) = v1,...,vn,wn
= v1,w1,...,wn

uv vw
(uvw)

(uvw) = u1,...,un,vn,wn
= u1,v1,...,vn,wn
= u1,v1,w1,...,wn

Gn-1:

Gn:

Figure 3. General transformation from Gn−1 = Ln−1(G) to Gn = Ln(G).

4.2. Algebraic Formulation of the Adjacency Matrix of a Line Graph Sequence

One of the fundamental tools in graph analysis is the adjacency matrix. This binary ma-
trix captures all connections between the vertices of a graph, thereby defining its structure.
However, graph transformations completely redefine these connections. Consequently, it
becomes necessary to determine the equivalent adjacency matrix for a line graph G(n) that
results from applying the transformation Ln(G) multiple times.

For this purpose, we introduce the application E(·), which is a matrix transformation
that squares the size of the matrix. This transformation is defined as follows:

E :Mn →Mn2

A 7→ E(A) = (A⊗A)⊙ ∆n
(24)

where⊙ represents the Hadamard product, or element-wise product, and ∆n ∈ Mn2({0, 1})
is built such that:

∆n =

Dn
1 . . . Dn

n
...

...
Dn

1 . . . Dn
n

, with [Dn
k]i,j = δi,k (25)

and Dn
k is filled with zeros, except on the kth row filled with ones.

Theorem 1. Let A ∈ Mn({0, 1}) be the adjacency binary matrix associated with the digraph
G ∈ Gd. The matrix composed of non-zeros rows and columns from E(A) is the adjacency matrix
of L(G).

Proof of Theorem 1. Let G, H ∈ Gd, such that L(G) = H, and let AG be the adjacency ma-
trix associated with G. In this proof, we will construct the adjacency matrix AH associated
with H.

Let us assume that we do not know if an edge exists; we will then consider all
possibilities. Each node u in VG can potentially be connected to any other node v in VG,
including itself (if we allow self-loops (u, u)). This results in |VG|2 possible connections. If
we denote |VG| = n, therefore, the size of the matrix AH will be n2 × n2.

Let us keep the order of the nodes used in the adjacency matrix AG as follows:

u1, u2, · · · , un

We choose the order of the nodes for AH as follows:

Mathematics 2024, 12, 2995 11 of 24

(u1, u1), (u1, u2), · · · , (u1, un), (u2, u1), · · · (u2, un), · · · , (un, un)

Thus, we can say that:

• There could be a one in the line k = in + v, corresponding to αk = (ui, uv) in AH only
if [AG]i,v = 1; meaning that αk = (ui, uv) ∈ EG.

• There could be a one in the kth line, with k = in + v, and the lth row, with l = jn + w,
corresponding to the connection (αk, αl) only if v = j; meaning that (αk)2 = (αl)1 (i.e.,
the second node of αk is equal to the first node of αk).

Using Properties 1–3, we can deduce that:

[AH]k,l = [AG]i,v × [AG]j,w × δv,j (26)

where k = in + v and l = jn + w.
By definition of the Kronecker product (⊗) and using the definition of E(·) and ∆n in

Equations (24) and (25), respectively, we can write:

AH = (AG ⊗AG)⊙ ∆n = E(AG) (27)

This last result thus demonstrates that E(AG) is the adjacency matrix of AH .

The result of Theorem 1 can be generalized to a line digraph Gm resulting from
m-transformations, using the following theorem:

Theorem 2. Let A ∈ Mn({0, 1}) be the adjacency binary matrix associated with the digraph
G ∈ Gd. The matrix defined by:

Em(A) =
[

2m⊗
i=1

A
]
⊙ Km : K1 = ∆n ; Km+1 = (Km ⊗ Km)⊙ ∆n2m+1 (28)

is the adjacency matrix of Gm = Lm(G)

Proof of Theorem 2. Let AGm ∈ Mn. We can demonstrate the result shown in Theorem 2
using a proof by induction. For this purpose, let us denote (∗) as the property we want to
demonstrate.

• For m = 1: the proof of Theorem 1 demonstrates that the property (∗) is true.
• For m + 1: we assume that the property (∗) is true for a given m, meaning that:

AGm =

[
2m⊗
i=1

A
]
⊙ Km (29)

is the adjacency matrix of Gm = Lm(G).

Using the result of the proof of Theorem 1, we can say that AGm+1 = E(AGm) is the
adjacency matrix of L(Gm) = Gm+1, and we can write:

E(AGm) = (AGm ⊗AGm)⊙ ∆X (30)

To determine the value of X, we need the size of AGm . If AG is a n× n matrix, then
AG1 is a n2 × n2 matrix. By induction: AGm is a n2m × n2m

so X = n2m+1
, since:

E(AGm) = (AGm ⊗AGm)⊙ ∆n2m+1

=

({[
2m⊗
i=1

A
]
⊙ Km

}
⊗
{[

2m⊗
i=1

A
]
⊙ Km

})
⊙ ∆n2m+1

(31)

Mathematics 2024, 12, 2995 12 of 24

Using the direct product and Kronecker product rules, and arranging the terms of the
equations, we obtain :

E(AGm) =

[
2×2m⊗
i=1

A
]
⊙ (Km ⊗ Km)⊙ ∆n2m+1 (32)

Based on the definition of Km+1, we can write:

E(AGm) =

2m+1⊗
i=1

A

⊙ Km+1 (33)

This last result implies that
[⊗2m+1

i=1 A
]
⊙ Km+1 is the adjacency matrix of Lm+1(G).

Thus, the property (∗) is true for m + 1.
In conclusion, the property (∗) is true for all m ∈ N∗

Finally, Theorem 3 can be used to quantify the upper bound of the complexity of the
iterated line graphs in terms of the number of edges, considering that while the structure
becomes increasingly interconnected, it is still finite and bounded as a function of the
number of vertices n and the number of iterations m.

Theorem 3. For any graph G, the number of edges of its associated mth line graph Lm(G) is
bounded. This aspect implies: ∀G ∈ G, |VG| = n⇒ |ELm(G)| ≤ nm+2

Proof of Theorem 3. Let us define the application S(·) as the sum of all terms of a matrix,
such as:

S : M→ R

A 7→ S(A) =
n

∑
i=1

n

∑
j=1

aij
(34)

The application S(·) can be used to count the number of edges in a graph given its
adjacency matrix. Specifically, for a graph G ∈ G with its associated adjacency matrix AG,
applying S(AG) yields the number of edges, represented as |EG|.

Considering that A and Km are binary matrices, we can write :

S(Em(A)) ≤ S(Km) (35)

We need to know the value of S(Km) depending on m. Let Km ∈ Mn and Km+1 =
(Km ⊗ Km)⊙ ∆n. Thus, [Km+1]n(i−1)+v,n(j−1)+w = [Km]iv × [Km]jw × δjv, and:

S(Km+1) =
n2

∑
k=1

n2

∑
l=1

[Km+1]kl (36)

Let k = n(i − 1) + v and l = n(j − 1) + w with i, j, v, w ∈ J1, nK. We can therefore
rewrite the previous equation as follows:

Mathematics 2024, 12, 2995 13 of 24

S(Km+1) =
n

∑
i=1

n

∑
j=1

n

∑
v=1

n

∑
w=1

[Km]iv × [Km]jw × δjv

=
n

∑
i=1

n

∑
j=1

n

∑
w=1

[Km]ij × [Km]jw

=
n

∑
i=1

n

∑
w=1

(
n

∑
j=1

[Km]ij × [Km]jw

)
︸ ︷︷ ︸

[K2
m]iw

=
n

∑
i=1

n

∑
w=1

[K2
m]iw = S(K2

m)

(37)

which means that ∀m ∈ N∗, S(Km+1) = S(K2
m).

Moreover, if a graph has n nodes, it implies that K1 ∈ Mn2 . We find that S(K1) = n3.
Additionally, ∀m ∈ N∗, the relationships S(K2

m) = n · S(Km) holds.
By integrating all this information, we deduce that S(Km) = nm−1 · S(K1) = nm+2.
Finally, we can conclude that |ELm(G)| ≤ nm+2.

As shown in Figure 4, the size of the iterated line graph could increase exponentially
with the number of transformations m. For instance, by considering a digraph G with
n = 10 nodes, the associated 6th line digraph, i.e., L6(G), will have a maximum of 107 nodes.
This aspect represents one of the main drawbacks of using multiple transformations, as it
could become too time-consuming to generate the mth line digraph.

0 1 2 3 4 5 6 7

m

101

102

103

104

105

106

107

108

109

|E
L
m

(G
)
|

n = 2

n = 4

n = 6

n = 8

n = 10

Figure 4. Evolution of the maximal size of the digraph.

5. Application of Line Graph Sequences for Non-Additive Shortest Path Problems

This section provides a comprehensive procedure for solving the shortest path problem
using non-additive cost functions. Several algorithms are proposed to be used for (1)
constructing the line digraph, (2) adding conditional weights to the generated line digraph
to include constraints, and (3) adapting Dijkstra’s algorithm to the line digraph. In addition,
a proof of the optimality of the proposed methodology is also provided.

5.1. Problem Definition

Let consider the following optimization problem associated with a digraph G =
(VG, EG) ∈ Gd:

Mathematics 2024, 12, 2995 14 of 24

min
p∈PG

f (p)| f ∈ FG(k)

s.t.


p1 = s

pn = t, with n = l(p)

∀i ∈ J1, nK | (pi, pi+1) ∈ EG

(38)

This problem is similar to the shortest path problem, except that the cost function is a
k-additive cost function. The only constraints are that the first and the last vertices of the
path are imposed: s for the source, and t for the target, and that the path can only follow
the edges of the graph.

5.2. Proposed Methodology—Conditional Weighting Shortest Path (CWSP)

To solve the optimization problem presented in Equation (38), it is first necessary to
construct a substitute graph, and then to use the properties of the k-additive cost functions
established in Section 3 to add weights to this substitute graph. Extra weighted edges
can be introduced to connect the original graph G with the substitute graph H. Finally,
Dijkstra’s algorithm can be adapted and applied to the weighted substitute graph to solve
the optimization problem in Equation (38). Algorithms 1–3 can be applied for that purpose.

Algorithm 1: Construction of a line graph L(G)

Input: Graph G = (VG, EG).
Result: L(G).
VL(G) ← {(α) : α ∈ EG}
EL(G) ← ∅
for α ∈ EG do

for β ∈ EG do
if α2 = β1 then

EL(G) ← EL(G) ∪ {(α, β)}
end

end
L(G)← (VL(G), EL(G))

end

Algorithm 1 is proposed for constructing the line digraph L(G) associated with the
digraph G. This transformation converts the original problem, which is stated in terms of
edge connectivity, into a substitute (or equivalent) problem expressed in terms of vertex
connectivity. Figures 5 and 6 illustrate an example of the application of Algorithm 1.
Figure 5a shows the original digraph G, while Figure 5b shows the resulting line digraph
L(G) = H. The line digraph in Figure 5b is then completed to include all entering nodes,
as shown in Figure 6. These nodes represent the entry nodes into the original graph, i.e., all
nodes that have only one connection with another node in the original digraph G.

Once the line digraph L(G) is constructed, it serves as the substitute graph. The edges
of this new graph must be weighted based on the static weights present in the original
digraph G, as well as on various constraints typically captured by the k-non-additive
cost function f (p). This process is performed with Algorithm 2. For instance, using the
the sliding product window fswp(p) as defined in Equation (18), and considering the
line digraph in Figure 6, we can determine the weight for the edge ((2, 6), (6, 8)) to be
∂ f2(6, 8|2, 6, 8) = 96. Similarly, for an entering edge such as (3, (3, 4)), the weight would be
fswp(3, 4) = 12.

Mathematics 2024, 12, 2995 15 of 24

Algorithm 2: Conditional weighting of a substitute graph
Input: Graph: G = (VG, EG).

Cost function : f .
k order of additivity of f

Result: H = (VH , EH , WH).
H ← Lk(G) ▷ Using Algorithm 1
for (p, q) ∈ EH do

▷ l(p) = l(q) = k + 1
(u1 . . . uk+1)← p
(v1 . . . vk+1)← q
β← (uk+1, vk+1) ▷ β ∈ EG
wα ← ∂ f (β|α)

end
VH ← VH

⋃
VG

for p ∈ VH do
p1 ← u
γ← (u, p) ▷ γ is an enter edge from G to H
EH ← EH

⋃{γ}
wγ ← f (p . . . pk)

end
WH ← {wα : α ∈ EH}

Algorithm 3: Dijkstra for a substitute graph
Input: Graph H = (VH , EH), source node s, and target node t.
Result: p∗

for v ∈ VH do
cost[v]← ∞
predecessor[v]← ∅

end
cost[s]← 0
Q← VH
while Q ̸= ∅ do

u← extract-min(Q)
for α = (u, v) do

if cost[v] > cost[u] + wα then
cost[v]← cost[u] + wα predecessor[v]← u

end
if vk+1 = t then

ulast = v
break

end
end

end
p∗ = (t)
u = ulast
while l(u) = k + 1 do

v = u
u← predecessor[v]
p∗ ← (uk+1, p∗)

end
p∗ ← (v1 . . . vk, p∗)

Mathematics 2024, 12, 2995 16 of 24

1

2

3
4 5

6

7

8

910

(a)

1
2

2
1

2
5

2
6

6
8

8
5

5
7

8
9

1
3

3
4

1
4

4
2

7
10

10
3

9
10

10
9

(b)
Figure 5. Illustration of a digraph G and its transformation H = L(G). (a) Original digraph G.
(b) Resulting line digraph H = L(G).

1
2

2
1

2
5

2
6

6
8

8
5

5
7

8
9

1
3

3
4

1
4

4
2

7
10

10
3

9
10

10
9

2

1

3

4

6

8

5

9
7

10

Figure 6. Line graph with entering nodes.

Finally, using the conditional weighted line digraph H = (VH , EH , WH) obtained with
Algorithm 2, the shortest path from the source node s to the target node t in H can be
determined using Dijkstra’s algorithm (see Algorithm 3). It is important to consider that
a node v in H represents a series of node in G. This configuration implies that the target
node t ∈ VG is reached when the last element of v ∈ VH is t, and the length of v is k + 1.
The stop criterion in Dijkstra’s algorithm will be achieved when vk+1 = t.

The set of the three Algorithms 1–3 constitutes the conditional weighting shortest path
(CWSP) method for solving a shortest path problem when the cost function is k-left-additive
FL(k) or k-right-additive FR(k).

5.3. Proof of Optimality and Algorithmic Cost

The optimal path p∗ returned by Algorithm 3 represents the shortest path between the
source node s and the target node t within the substitute graph H. This optimal path can be
transferred to the original graph G, and the next Property 5 guarantees that the transferred
path is indeed the optimal path that minimizes the cost function described in Equation (38).

Property 5. The path returned by Algorithm 3 is a path that minimizes the cost function f (p),
such that:

p∗ ∈ argmin{ f (p)|p ∈ P , p1 = s, pn = t} (39)

Mathematics 2024, 12, 2995 17 of 24

Proof of Property 5. First of all, because f ∈ FG(k), we can break it into the sum of local
differentials using Property 1:

f (p) = ∑
α∈̃p

∂ f (α|p) (40)

Let us define q ∈ PH , such that:

q1 = p∗1
qi = p∗i . . . p∗k+i for i = 1 . . . n− k

(41)

and let us define TH = {v ∈ VH |vk+1 = t}.
Dijkstra’s algorithm ensures that:

q ∈ argmin

{
∑
α∈̃q

wα | q1 = s, qn ∈ TH

}

and:
∑
α∈̃q

wα = f (p∗1 . . . p∗k) + ∑
α∈̃q\q1

∂ f (β|α) with β = (αk+1αk+2) (42)

Since l(α \ β) = k and f ∈ FG(k), we find that ∆r∂ f (β|rα) = 0. In addition, ∀α ∈̃ q, it
follows that α ∈̃ p∗. Therefore, we can substitute ∂ f (β|α) = ∂ f (β|p∗).

We can also change the sum of variables as follows:

α∈̃q \ q1 → β∈̃p∗ \ (p∗1 . . . p∗k) := p′ (43)

which leads to:

∑
α∈̃q

wα = f (p∗1 . . . p∗k) + ∑
β∈p′

f (β|p∗) = f (p∗) (44)

In conclusion, p∗ is indeed the minimum solution of the k-additive cost function
problem.

In addition to assessing optimality, it might also be interesting to determine the
algorithmic cost of the proposed CWSP method. This cost can be evaluated in terms of the
maximum number of iterations required to solve the optimization problem. This parameter
depends on two aspects: the size of the initial graph |VG|, and the order of the cost function
k. Property 6 can be used to determine this cost.

Property 6. Consider a graph G = (VG, EG) such as |VG| = n, and an associated cost function
f ∈ FX(k), where X = {R or L}. Thus:

1. The algorithmic cost of computing Lk(G) is at highest order O
(

m + nk+2
)

.

2. The algorithmic cost of the CWSP algorithm is, at highest order,O(nk+1(n+(k+ 1) log(n))).

Proof of Property 6.
1. The algorithm cost of computing L(G) is O(|EG|):

Theorem 1 establishes that at a given iteration i, the number of edges is bounded by
|ELi(G)| ≤ ni+2. Summing all the costs, we obtain the following result:

cost =
m

∑
i=0
|ELi(G)|

cost = m + n3 + n4 + . . . + nm+2

cost ∝ m + nm+2

(45)

Mathematics 2024, 12, 2995 18 of 24

2. The algorithmic cost of the CWSP with a Fibonacci heap [38]:
Since |ELk(G)| ≤ nk+2, and using the definition of L(·), we can write :

|VLk(G)| = |ELk−1(G)| (46)

which implies:
|VLk(G)| ≤ nk+1 (47)

The computational cost of Dijkstra’s algorithm is O|E|+ |V| log(|V|), and it is used
in the last step with Algorithm 3. By substitution we can upper-bound the number of
iterations, nit:

nit = |ELk(G)|+ |VLk(G)| · log(|VLk(G)|)
≤ nk+2 + nk+1 log(nk+1)

≤ nk+1(n + (k + 1) log(n))

(48)

Therefore, the computational cost is at most O(nk+1(n + (k + 1) log(n))).

6. Application: Case Study in Airport Trajectory Optimization

One of the main motivations for the development of the shortest path technique with
conditional weighting is to address problems where constraints, which can be geometric or
physical, can lead to the generation of paths that are infeasible in practice.

A typical example is the management of aircraft ground trajectories at airports. Indeed,
airports impose various types of restrictions and rules that pilots must comply with, such
as directional taxiways and prohibited turns to avoid sharp maneuvers or to account for the
size (or weight) of the aircraft. In addition, aircraft can accelerate or decelerate as they enter
or exit turns. Consequently, their ground speeds are influenced by their current trajectory
and the segment they will taxiing next. As illustrated in Figure 7a, these factors create areas
within the airport where the ground speed of an aircraft cannot be predetermined. In the
segments in the circled area in Figure 7a, the aircraft ground speed can vary according to
three scenarios: the aircraft can (1) maintain its ground speed if it continues on the straight
segment; (2) decelerate if it enters a turn; or (3) accelerate if it exits a turn. Additionally,
certain trajectories are prohibited due to restrictions on maneuvers, such as sharp turns.
For instance, as shown in Figure 7a, the aircraft is not authorized to perform a left turn to
enter the turn segment, or a right turn to exit the turn segment.

Due to these constraints, optimizing the ground trajectory of an aircraft within a graph that
replicates the topology of an airport, as illustrated in Figure 7b, presents significant challenges.

Undetermined speed zone

(a)

Legend:
Taxiways
Runways
Map nodes
Gate Positions
Parking Positions

−73.76 −73.75 −73.74 −73.73 −73.72

45.455

45.46

45.465

45.47

45.475

45.48

45.485

Longitude - [deg]

La
ti
tu

de
-
[d

eg
]

(b)

Figure 7. Illustration of a graph for an airport and constraint during ground operations. (a) Example
of restrictions along the path of an aircraft during taxi operation. (b) Example of a graph for Montreal
Trudeau International Airport (CYUL).

Mathematics 2024, 12, 2995 19 of 24

6.1. Model

In this section, we evaluate the effectiveness of the conditional weighting shortest path
method proposed in this paper for solving the shortest path problem in an airport, taking
into account constraints on sharp turns.

The cost function for this application is based on the total distance traveled by the
aircraft, while avoiding sharp turns. All sharp turns are determined a priori on the original
graph using a classification method that considers four nodes (or three edges) to verify if
the middle segment is allowed. Turn constraints are included in the cost function with a
barrier function b(·), defined as:

b : V4 → {1,+∞}

b(vi−1, . . . , vi+2) =

{
1 , if the turn is authorized

+ ∞ , if the turn is not authorized

(49)

By considering the function:
d : V2 → R+ (50)

which returns the distance between two points of the airport, the cost function can be
expressed as follows:

f (p) = d(v1, v2) +
l(p)−2

∑
i=2

d(vi, vi+i) · b(vi−1, . . . , vi+2) + d(vn−1, vn) · c(vn−3, . . . , vn) (51)

Using the definitions and properties introduced in Section 3.3, we can confirm that
f (p) belongs to FLR

G (2) (see Equation (10)). Indeed, the left–right k-additivity nature of the
cost function comes from the need to consider information about the edges preceding and
succeeding a given edge to accurately classify sharp turns.

6.2. Methodology and Results

To compare and validate the CWSP method, the optimization problem described
in Equation (38) was applied to Miami International Airport. In addition, 50 different
scenarios were considered to find the shortest path between two randomly selected points
on the airport graph, each separated by at least 20 nodes. For each scenario, the CWSP
method using the non-additive cost function specified in Equation (51) was applied. At
the same time, Dijkstra’s algorithm was also applied; however, since it cannot handle
non-additive cost functions, the cost function for this algorithm was limited to the total
distance traveled by the aircraft:

f ∗(p) =
l(p)−1

∑
i=1

d(vi, vi+1) (52)

which is additive by nature.
It should be noted that the optimal solution found by Dijkstra’s algorithm was further

evaluated using the cost function described in Equation (51). This evaluation determined
whether the solution provided by Dijkstra’s algorithm was reliable (i.e., feasible) or not. If
the value of the cost function was finite, this indicated that Dijkstra’s algorithm had found a
viable solution. Conversely, if the value of the cost function was infinite, this suggested that
the solution was not feasible in practice, as it included at least one prohibited sharp turn.

Figure 8 shows examples of results comparisons for four different problems. In
this figure, the trajectory found by Dijkstra’s algorithm is highlighted in green, while
the trajectory found by the CWSP method is highlighted in blue. At a first glance, both
strategies were able to find a trajectory between the source and destination nodes. However,
when the trajectory found by Dijkstra’s algorithm was evaluated using the cost function in
Equation (51), an infinite cost value was observed. This result can be attributed to the fact

Mathematics 2024, 12, 2995 20 of 24

that the solution provided by Dijkstra’s algorithm contains sharp turns that are forbidden.
These turns are marked with red circles for each problem. In contrast, the CWSP method
successfully found a better and feasible solution without any forbidden turns.

CWSP Method

Dijkstras Algorithm

(a)

CWSP Method

Dijkstras Algorithm

(b)

CWSP Method

Dijkstras Algorithm

(c)

CWSP Method

Dijkstras Algorithm

(d)
Figure 8. Examples of results; comparison between a trajectory found by the CWSP method and
a trajectory found using Dijkstra’s algorithm. (a) Problem #4. (b) Problem #40. (c) Problem #47.
(d) Problem #49.

This analysis was repeated for all 50 problems. A table summarizing the results
for each problem is included in the Appendix A. By analyzing the results, it was found
that the CWSP method successfully solved all problems, consistently finding the shortest
feasible trajectory while avoiding sharp turns. Dijkstra’s algorithm was also able to find a
solution, but only 28% of these solutions were reliable (i.e., feasible without forbidden turns).
Interestingly, as shown in the table in the Appendix A, whenever Dijkstra’s algorithm found
an acceptable solution, it was identical to the solution found by the CWSP method. This
analysis is significant because it shows that the CWSP method is not only capable of finding
the shortest path in the sense of Dijkstra’s algorithm, it is also well-suited to handle complex
graphs with constraints or to deal with non-additive cost functions.

7. Conclusions

In this paper, we presented a generalization of classical cost functions on graphs,
traditionally called “additive” functions, which are part of the space of real edge functions.
This generalization leads to the development of real path functions, a category known as
non-additive or k-additive. While these functions are applicable to various shortest path
problems, their complexity makes traditional shortest path algorithms designed to optimize
real edge functions unsuitable.

Mathematics 2024, 12, 2995 21 of 24

To address a shortest path problem, our first step was to develop tools for characteriz-
ing and analyzing path functions. By studying the variations of these functions, we were
able to classify them into distinct sets.

Then, for a subset of these non-additive function sets, we proposed a technique for
solving the shortest path problem. This technique relies on the weighting of a substitute
graph, which is determined by successive iterations of transforming a graph into its
associated line graph. The proposed method has proven effective on a simple problem that
could not have been solved using Dijkstra’s algorithm alone, demonstrating its potential for
application to numerous physical and engineering problems requiring complex modeling.
This article establishes an initial framework and provides an exact solution that represents
a significant advance in the field of complex shortest path problems.

However, the computational cost of such a method is difficult to bound because it
strongly depends on the topology of the initial graph. Furthermore, the complexity of the
cost function rapidly increases with the size of the replacement graph used to accurately
solve the problem. Finally, this method, with its solid proof of convergence, can be used
to validate the efficiency of faster heuristic methods for solving the shortest path problem
with non-additive path functions.

The research initiated in this paper can be extended in several directions. Firstly, the
upper bound provided for the size of the linear graph sequence is highly dependent on the
structure of the initial graph. A tighter limit could potentially be obtained by examining
how the sequence of linear graphs evolves as a function of the topology of the initial
graph. Furthermore, it has been observed that when k is large, the cost of constructing
and weighting the line graph becomes significant. It would be useful to study and limit
the error introduced when approximating a k-additive cost function by a (k− n)-additive
cost function, where n < k. This approach could lead to faster solutions to the problem
while quantifying the associated error. Finally, the general concept of non-additive cost
functions encompasses different types of functions. The methodology proposed in this
paper is suitable for functions in F(k). However, we believe that exact methods applicable
to functions in F(∞) which are similar to quadratic forms such as f (p) = xTQx”, are also
worth exploring.

Author Contributions: Conceptualization, A.D.; funding acquisition, G.G. and R.M.B.; methodology,
A.D. and T.W.; project administration, G.G.; supervision, G.G. and R.M.B.; validation, A.D. and T.W.;
writing—original draft, A.D.; writing—review and editing, G.G. and R.M.B. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the Natural Sciences and Engineering Research Council of
Canada (NSERC: RGPIN-2022-03864), and by the Fonds de Recherche ÉTS sur les Changements
Climatiques (FRECC).

Data Availability Statement: Dataset available on request from the authors.

Acknowledgments: This research was performed at the Laboratory of Applied Research in Active
Controls, Avionics and AeroServoElasticity research (LARCASE). The authors would like to thank the
Fond de Recherche ÉTS sur les Changements Climatiques (FRECC) for their support of this project.

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

SPP Shortest Path Problem
USPP Universal Shortest Path Problem
QSPP Quadratic Shortest Path Problem
CWSP Conditional Weighting Shortest Path
LARCASE Laboratory of Applied Research in Active Control, Avionics and AeroServoElasticity

Mathematics 2024, 12, 2995 22 of 24

G Set of graphs
P Set of paths in a graph
H(P) Space of real path functions
G = (V, E) General graph
f (·) General cost function
∂ f (·|·) differential of f
∆i=1,2Xi Variation on any quantity Xi
p\α Path p deprived of edge α

FX
G(k) Set of k- additive cost function in direction X

A Adjacency matrix
∆n Binary matrix define in Equation (25)
L(G) Line graph of G

Appendix A. Results for All 50 Problems

N◦Problem Dijkstra’s Algorithm Dijkstra’s Algorithm Conditional Weighting
Solution Cost Solution Cost Method Considering

Ignoring Constraints Considering Constraints Constraints

1 1959.5 +∞ 2017.1

2 3945.8 +∞ 3983.9

3 768.1 768.1 768.1

4 2327.3 +∞ 2655.8

5 1128.2 1128.2 1128.2

6 308.8 +∞ 836.8

7 1014.6 1014.6 1014.6

8 2061.4 +∞ 2094.6

9 2297.5 +∞ 3940.0

10 1434.3 1434.3 1434.3

11 1720.5 +∞ 1889.7

12 2567.8 +∞ 4500.3

13 946.7 +∞ 1047.1

14 593.0 +∞ 648.0

15 607.2 +∞ 690.3

16 1389.8 +∞ 1828.7

17 2884.8 +∞ 2962.4

18 2751.1 +∞ 2958.0

19 2044.1 2044.1 2044.1

20 2023.3 2023.3 2023.3

21 1913.3 +∞ 2074.1

22 2249.4 2249.4 2249.4

23 3877.6 +∞ 4133.8

24 1340.1 +∞ 1421.6

25 3225.7 +∞ 3258.5

Mathematics 2024, 12, 2995 23 of 24

N◦Problem Dijkstra’s Algorithm Dijkstra’s Algorithm Conditional Weighting
Solution Cost Solution Cost Method Considering

Ignoring Constraints Considering Constraints Constraints

26 2898.6 +∞ 2954.3

27 426.0 +∞ 1317.5

28 519.1 519.1 519.1

29 2282.8 +∞ 2695.8

30 2071.3 +∞ 2128.9

31 1838.7 1838.7 1838.7

32 2562.8 +∞ 2782.2

33 1408.9 1408.9 1408.9

34 365.6 +∞ 1266.3

35 1948.7 +∞ 2055.0

36 3694.3 +∞ 5595.6

37 951.5 +∞ 2937.5

38 1988.0 +∞ 1992.8

39 1294.4 1294.4 1294.4

40 2533.9 +∞ 2603.4

41 2934.4 2934.4 2934.4

42 2945.9 2945.9 2945.9

43 2512.1 2512.1 2512.1

44 1635.1 1635.1 1635.1

45 477.9 477.9 477.9

46 1506.4 1506.4 1506.4

47 1762.6 +∞ 1775.0

48 1380.4 +∞ 2324.4

49 1729.8 +∞ 2080.2

50 990.7 +∞ 1192.2

Number of solution Not applicable 14 50

References
1. Wang, R.; Zhou, M.; Wang, J.; Gao, K. An Improved Discrete Jaya Algorithm for Shortest Path Problems in Transportation-Related

Processes. Processes 2023, 11, 2447. [CrossRef]
2. Wahhab, O.; Al-Araji, A.S. An Optimal Path Planning Algorithms for a Mobile Robot. Iraqi J. Comput. Commun. Control Syst. Eng.

2021, 21, 44–58. [CrossRef]
3. Rosyida, I.; Asih, T.S.N.; Waluya, S.; Sugiyanto. Fuzzy Shortest Path Approach for Determining Public Bus Route (Case study:

Route planning for “Trans Bantul bus” in Yogyakarta, Indonesia). J. Discret. Math. Sci. Cryptogr. 2021, 24, 557–577. [CrossRef]
4. Priliana, C.Y.; Rosyida, I. The Ambulance Route Efficiency for Transporting Patients to Referral Hospitals Based on Distance and

Traffic Density Using the Floyd-Warshall Algorithm and Google Traffic Assistance. In Proceedings of the 4th International Seminar
on Science and Technology (ISST 2022), Palu, Indonesia, 2–3 November 2022; Atlantis Press: Amsterdam, The Netherlands, 2023;
pp. 349–360. [CrossRef]

5. Murrieta Mendoza, A.; Beuze, B.; Ternisien, L.; Botez, R.M. Branch & Bound-Based Algorithm for Aircraft VNAV Profile Reference
Trajectory Optimization. In Proceedings of the 15th AIAA Aviation Technology, Integration, and Operations Conference, Dallas,
TX, USA, 22–26 June 2015; American Institute of Aeronautics and Astronautics: Reston, VA, USA. 2015. [CrossRef]

6. Murrieta-Mendoza, A.; Hamy, A.; Botez, R.M. Four- and Three-Dimensional Aircraft Reference Trajectory Optimization Inspired
by Ant Colony Optimization. J. Aerosp. Inf. Syst. 2017, 14, 597–616. [CrossRef]

7. Murrieta-Mendoza, A.; Botez, R.M.; Bunel, A. Four-Dimensional Aircraft En Route Optimization Algorithm using the Artificial
Bee Colony. J. Aerosp. Inf. Syst. 2018, 15, 307–334. [CrossRef]

8. Murrieta-Mendoza, A.; Romain, C.; Botez, R.M. 3D Cruise Trajectory Optimization Inspired by a Shortest Path Algorithm.
Aerospace 2020, 7, 99. [CrossRef]

http://doi.org/10.3390/pr11082447
http://dx.doi.org/10.33103/uot.ijccce.21.2.4
http://dx.doi.org/10.1080/09720529.2021.1891692
http://dx.doi.org/10.2991/978-94-6463-228-6_39
http://dx.doi.org/10.2514/6.2015-2280
http://dx.doi.org/10.2514/1.I010540
http://dx.doi.org/10.2514/1.I010523
http://dx.doi.org/10.3390/aerospace7070099

Mathematics 2024, 12, 2995 24 of 24

9. Durand, A.; Toulet, M.; Ghazi, G.; Botez, R.M. An Innovative Approach to Aircraft Ground Trajectory Optimization using a
Bi-Directional A* Algorithm. In Proceedings of the Canadian Aeronautics and Space Institute (CASI) AERO23 Conference,
Ottawa, ON, Canada, 14–16 November 2023.

10. Dijkstra, E.W. A note on two problems in connexion with graphs. Numer. Math. 1959, 1, 269–271. [CrossRef]
11. Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst.

Sci. Cybern. 1968, 4, 100–107. [CrossRef]
12. Loui, R.P. Optimal paths in graphs with stochastic or multidimensional weights. Commun. ACM 1983, 26, 670–676. [CrossRef]
13. Sivakumar, R.A.; Batta, R. The variance-constrained shortest path problem. Transp. Sci. 1994, 28, 309–316. [CrossRef]
14. Sen, S.; Pillai, R.; Joshi, S.; Rathi, A.K. A Mean-Variance Model for Route Guidance in Advanced Traveler Information Systems.

Transp. Sci. 2001, 35, 37–49. [CrossRef]
15. Hu, H.; Sotirov, R. On solving the quadratic shortest path problem. INFORMS J. Comput. 2020, 32, 219–233. [CrossRef]
16. Rostami, B.; Malucelli, F.; Frey, D.; Buchheim, C. On the Quadratic Shortest Path Problem. In Proceedings of the Experimental

Algorithms, Paris, France, 29 June–1 July 2015; Springer: Berlin/Heidelberg, Germany, 2015; pp. 379–390. [CrossRef]
17. Rostami, B.; Chassein, A.; Hopf, M.; Frey, D.; Buchheim, C.; Malucelli, F.; Goerigk, M. The Quadratic Shortest Path Problem:

Complexity, Approximability, and Solution Methods. Eur. J. Oper. Res. 2018, 268, 473–485. [CrossRef]
18. Hu, H.; Sotirov, R. A Polynomial Time Algorithm for the Linearization Pproblem of the QSPP and its Applications. arXiv 2018,

arXiv:1802.02426.
19. Weiss, E.; Kaminka, G.A. A Generalization of the Shortest Path Problem to Graphs with Multiple Edge-Cost Estimates. In

Proceedings of the ECAI 2023, Kraków, Poland, 30 September–4 October 2023.
20. Turner, L.; Hamacher, H.W. On Universal Shortest Paths. In Proceedings of the Operations Research Proceedings 2010: Selected

Papers of the Annual International Conference of the German Operations Research Society, 1–3 September 2011; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 313–318. [CrossRef]

21. Turner, L. Variants of the Shortest Path Problem. Algorithmic Oper. Res. 2011, 6, 91–104.
22. Jiang, S.; Feng, Z.; Zhang, X.; Wang, X.; Rao, G. A Multi-dimension Weighted Graph-Based Path Planning with Avoiding Hotspots.

In Proceedings of the Knowledge Graph and Semantic Computing: Semantic, Knowledge, and Linked Big Data, Singapore, 19–22
September 2016; pp. 15–26. [CrossRef]

23. Salzman, O.; Felner, A.; Hernández, C.; Zhang, H.; Chan, S.H.; Koenig, S. Heuristic-Search Approaches for the Multi-Objective
Shortest-Path Problem: Progress and Research Opportunities. In Proceedings of the Proceedings of the Thirty-Second International
Joint Conference on Artificial Intelligence, Macao, China, 19–25 August 2023; pp. 6759–6768. [CrossRef]

24. Vidhya, K.; Saraswathi, A. A Novel Method for Finding the Shortest Path with Two Objectives Under Trapezoidal Intuitionistic
Fuzzy Arc Costs. Int. J. Anal. Appl. 2023, 21, 121–121. [CrossRef]

25. Dodziuk, J. Difference Equations, Isoperimetric Inequality and Transience of Certain Random Walks. Trans. Am. Math. Soc. 1984,
284, 787–794. [CrossRef]

26. Woess, W. Random Walks on Infinite Graphs and Groups; Cambridge Tracts in Mathematics, Cambridge University Press: Cambridge,
UK, 2000. [CrossRef]

27. McDonald, P.; Meyers, R. Diffusions on Graphs, Poisson Problems and Spectral Geometry. Trans. Am. Math. Soc. 2002,
354, 5111–5136. [CrossRef]

28. Friedman, J.; Tillich, J.P. Calculus on Graphs. arXiv 2004, arXiv:cs/0408028. [CrossRef]
29. Friedman, J.; Tillich, J.P. Laplacian Eigenvalues and Distances Between Subsets of a Manifold. J. Differ. Geom. 2000, 56, 285–299.

[CrossRef]
30. Friedman, J.; Tillich, J.P. Wave Equations for Graphs and the Edge-Based Laplacian. Pac. J. Math. 2004, 216, 229–266. [CrossRef]
31. Elmoataz, A.; Lezoray, O.; Bougleux, S. Nonlocal Discrete Regularization on Weighted Graphs: A Framework for Image and

Manifold Processing. IEEE Trans. Image Process. 2008, 17, 1047–1060. [CrossRef] [PubMed]
32. Gilboa, G.; Osher, S. Nonlocal Operators with Applications to Image Processing. Multiscale Model. Simul. 2009, 7, 1005–1028.

[CrossRef]
33. Desquesnes, X.; Elmoataz, A.; Lézoray, O. Eikonal Equation Adaptation on Weighted Graphs: Fast Geometric Diffusion Process

for Local and Non-Local Image and Data Processing. J. Math. Imaging Vis. 2013, 46, 238–257. [CrossRef]
34. Mahmood, F.; Shahid, N.; Skoglund, U.; Vandergheynst, P. Adaptive Graph-Based Total Variation for Tomographic Reconstruc-

tions. IEEE Signal Process. Lett. 2018, 25, 700–704. [CrossRef]
35. Whitney, H. Congruent Graphs and the Connectivity of Graphs. Am. J. Math. 1992, 54, 150–168. [CrossRef]
36. Harary, F.; Norman, R.Z. Some Properties of Line Digraphs. Rend. Del Circ. Mat. Palermo 1960, 9, 161–168. [CrossRef]
37. van Rooij, A.C.M.; Wilf, H.S. The Interchange Graph of a Finite Graph. Acta Math. Acad. Sci. Hung. 1965, 16, 263–269. [CrossRef]
38. Fredman, M.L.; Tarjan, R.E. Fibonacci heaps and their uses in improved network optimization algorithms. J. ACM 1987,

34, 596–615. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1007/BF01386390
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.1145/358172.358406
http://dx.doi.org/10.1287/trsc.28.4.309
http://dx.doi.org/10.1287/trsc.35.1.37.10141
http://dx.doi.org/10.1287/ijoc.2018.0861
http://dx.doi.org/10.1007/978-3-319-20086-6_29
http://dx.doi.org/10.1016/j.ejor.2018.01.054
http://dx.doi.org/10.1007/978-3-642-20009-0_50
http://dx.doi.org/10.1007/978-981-10-3168-7_2
http://dx.doi.org/10.24963/ijcai.2023/757
http://dx.doi.org/10.28924/2291-8639-21-2023-121
http://dx.doi.org/10.1090/S0002-9947-1984-0743744-X
http://dx.doi.org/10.1017/CBO9780511470967
http://dx.doi.org/10.1090/S0002-9947-02-02973-2
https://doi.org/10.48550/arXiv.cs/0408028
http://dx.doi.org/10.4310/jdg/1090347645
http://dx.doi.org/10.2140/pjm.2004.216.229
http://dx.doi.org/10.1109/TIP.2008.924284
http://www.ncbi.nlm.nih.gov/pubmed/18586614
http://dx.doi.org/10.1137/070698592
http://dx.doi.org/10.1007/s10851-012-0380-9
http://dx.doi.org/10.1109/LSP.2018.2816582
http://dx.doi.org/10.2307/2371086
http://dx.doi.org/10.1007/BF02854581
http://dx.doi.org/10.1007/BF01904834
http://dx.doi.org/10.1145/28869.28874

	Introduction
	Notations for Graphs
	Classification of Graph Cost Functions
	Elements of Differential Analysis on a Finite Graph
	Additive and Non-Additive Cost Functions
	k-Additive Cost Function
	Examples of Classification
	A Classical FG(0) Function
	A Simple General FLG(k) Function

	Line Graph Application for k-Additive Functions
	Introduction to Line Graphs
	Algebraic Formulation of the Adjacency Matrix of a Line Graph Sequence

	Application of Line Graph Sequences for Non-Additive Shortest Path Problems
	Problem Definition
	Proposed Methodology—Conditional Weighting Shortest Path (CWSP)
	Proof of Optimality and Algorithmic Cost

	Application: Case Study in Airport Trajectory Optimization
	Model
	Methodology and Results

	Conclusions
	Results for All 50 Problems
	References

