
Received 28 February 2024; revised 10 July 2024; accepted 23 September 2024.
Date of publication 26 September 2024; date of current version 9 October 2024.

The associate editor coordinating the review of this article and approving it for publication was E. E. Tsiropoulou.

Digital Object Identifier 10.1109/TMLCN.2024.3469131

Optimizing Resource Fragmentation in
Virtual Network Function Placement Using

Deep Reinforcement Learning

RAMY MOHAMED 1 (Member, IEEE), MARIOS AVGERIS 1 (Member, IEEE),
ARIS LEIVADEAS 2 (Senior Member, IEEE),

AND IOANNIS LAMBADARIS 1 (Senior Member, IEEE)
1Department of Systems and Computer Engineering, Carleton University, Ottawa, ON K1S 5B6, Canada

2Department of Software and IT Engineering,École de technologie supérieure, Montreal, QC H3C 1K3, Canada

Corresponding author: Ramy Mohamed (ramy.mohamed@carleton.ca)

This work was supported in part by Ericsson Canada, and in part by the Natural Sciences and Engineering Research Council of Canada
(NSERC) under Grant ALLRP 561415-20.

ABSTRACT In the 6Gwireless era, the strategical deployment of Virtual Network Functions (VNFs) within
a network infrastructure that optimizes resource utilization while fulfilling performance criteria is critical
for successfully implementing the Network Function Virtualization (NFV) paradigm across the Edge-to-
Cloud continuum. This is especially prominent when resource fragmentation –where available resources
become isolated and underutilized– becomes an issue due to the frequent reallocations of VNFs. However,
traditional optimization methods often struggle to deal with the dynamic and complex nature of the VNF
placement problem when fragmentation is considered. This study proposes a novel online VNF placement
approach for Edge/Cloud infrastructures that utilizes Deep Reinforcement Learning (DRL) and Reward
Constrained Policy Optimization (RCPO) to address this problem. We combine DRL’s adaptability with
RCPO’s constraint incorporation capabilities to ensure that the learned policies satisfy the performance and
resource constraints while minimizing resource fragmentation. Specifically, the VNF placement problem is
first formulated as an offline-constrained optimization problem, and then we devise an online solver using
Neural Combinatorial Optimization (NCO). Ourmethod incorporates ametric called Resource Fragmentation
Degree (RFD) to quantify fragmentation in the network. Using this metric and RCPO, our NCO agent is
trained to make intelligent placement decisions that reduce fragmentation and optimize resource utilization.
An error correction heuristic complements the robustness of the proposed framework. Through extensive
testing in a simulated environment, the proposed approach is shown to outperform state-of-the-art VNF
placement techniques when it comes to minimizing resource fragmentation under constraint satisfaction
guarantees.

INDEX TERMS Resource fragmentation, neural combinatorial optimization, reinforcement learning, ser-
vice function chaining, virtual network function placement, 5G, 6G.

I. INTRODUCTION

THE dawn of 5G/6G networking era revealed the
importance of Network Function Virtualization (NFV),

a paradigm that enables decoupling network functions (e.g.,
Network Address Translation - NAT, Firewall, etc.) from
purpose-specific hardware and implementing them as soft-
ware instances running on conventional servers on the Cloud.
NFV conceptualizes end-to-end network services as Ser-
vice Function Chains (SFCs), i.e., graphs of interconnected

Virtual Network Functions (VNFs) representing the
requested services [1]. Within the SFC graph, vertices rep-
resent the VNFs, and edges define the virtual communication
links between them. The underlying Network Function
Virtualization Infrastructure (NFVI) is also modeled as a
graph, where vertices represent the computing (servers) and
forwarding nodes (routers), and edges the physical commu-
nication links. Leveraging the flexibility of virtualization,
SFCs can be potentially deployed in the proximity of end

VOLUME 2, 2024

 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

1475

https://orcid.org/0000-0003-3995-1295
https://orcid.org/0000-0003-4883-930X
https://orcid.org/0000-0002-2996-6824
https://orcid.org/0000-0003-4686-9433

users, at the network Edge, shortening propagation delays
and overall latency and resulting in improved QoS. Evidently,
the Virtual Network Functions Chain Placement Problem
(VNF-CPP) emerges from the need to deploy the SFCs while
optimizing various criteria like operational costs, service
delays and resource utilization under the system’s constraints,
such as limited resource capacities [2]. For a complete list of
acronyms used in this paper, refer to Table 1.

VNF-CPP is an inherently complex and dynamic prob-
lem since it involves making decisions based on fluctuating
network conditions and service requirements and has been
proven to be NP-hard [3]. To enhance resource utilization
efficiency and maximize the number of successful SFC
deployments within the network infrastructure, many VNF
placement algorithms have been introduced ranging from
traditional heuristics [3], [4], [5] to modern learning-based
solutions [6], [7]. These algorithms usually consider only
the initial deployments of SFC requests in the infrastruc-
ture. However, in realistic scenarios, the dynamic arrival and
departure of VNFs can have an adverse effect on the resource
availability of the substrate network if they are not placed
carefully. Unplanned VNF placement in infrastructure can
lead to resource fragmentation, an often overlooked situation
where available resources are not efficiently utilized and are
dispersed in a non-optimal manner [8]. This can lead to
reduced serving rates, higher operational costs, and generally
increased complexity in resource management, as the infras-
tructure providers need to invest in more hardware or allocate
additional resources to maintain Service Level Agreements
(SLAs).

To mitigate this phenomenon, in this paper we propose
a novel online VNF-placement framework for edge/cloud
infrastructures, based on Fragmentation-Aware Neural
CombinatorialOptimization withReward constrained Policy
optimization, FANCORP. Our approach combines the capa-
bility of Deep Reinforcement Learning (DRL) to learn
optimal policies in dynamic environments, with Reward
Constrained Policy Optimization (RCPO) [9], which allows
for incorporating additional constraints that are imposed by
network operators and SLAs. Specifically, we employ the
Lagrange relaxation technique to convert the constrained
VNF-CPP optimization problem into an unconstrained one,
by introducing a Lagrange multiplier for each constraint.
These multipliers are then used to form the Lagrangian
function, which consists of two parts: a reward based on
the original objective function and a penalty signal formed
by the weighted sum of constraints violation degrees. The
DRL technique we implement for solving the unconstrained
problem is Neural Combinatorial Optimization (NCO). NCO
employs neural networks to solve combinatorial optimization
problems by learning a representation of them, which is then
used to make decisions or predictions about the optimal solu-
tion [10]. By combining NCO with RCPO during training,
we utilize the penalty signal to direct the VNF placement
policy towards feasible solutions that minimize resource
fragmentation by specifically targeting the automatic update

of the Lagrange multipliers. In this way, we ensure that the
learned policies will satisfy the system’s constraints. The
main contribution of this paper is threefold:

1) We re-formulate the classic VNF-CPP problem for
dynamic edge/cloud infrastructures by introducing the
Resource Fragmentation Degree (RFD) metric [8] into
the objective function. Solving the emerging offline
Integer Linear Programming (ILP) problem results in
resource-efficient placement decisions that minimize
resource fragmentation under the system’s constraints.

2) We transform the above ILP problem into a Constraint
Markov Decision Process (CMDP) and we propose
FANCORP, a novel online fragmentation-aware VNF
placement framework that leverages NCO and RCPO
to solve it. We combine the NCO’s adaptability with
the RCPO’s constraint incorporation capabilities to
ensure that the learned placement policies will sat-
isfy the various performance and resource constraints.
The robustness of this mechanism is enhanced by a
complementary heuristic algorithm that validates the
feasibility of the produced solutions and takes correc-
tive actions in case of minor miscalculations.

3) We demonstrate the effectiveness of our proposed
framework through extensive simulations and compar-
isons with state-of-the-art VNF placement techniques,
showing that our approach yields superior performance
in terms of optimizing resource fragmentation and
serving rate under the given constraints. Additionally,
we provide insights into the scalability and adaptability
of our approach, highlighting its potential for practical
deployments in real-world network scenarios.

The remainder of this paper is organized as follows: Section II
highlights the related works. The system model and the
fragmentation-aware VNF-CPP ILP formulation follow in
Section III. The CMDP formulation as well as the NCO-
RCPO-based solution are detailed in Section IV. In Section V
we present the obtained results from the performance evalu-
ation. Finally, in Section VI we summarize our conclusions
and propose some future work directions.

II. RELATED WORK
A. VNF-CPP
During the last few years, VNF-CPP in edge/cloud infrastruc-
tures has been tackled in various ways. In [5], the authors
propose a mechanism for placing delay-sensitive SFCs in a
Mobile Edge Computing (MEC) – Cloud infrastructure. This
sub-optimal but fast approach is based on the Tabu Search
meta-heuristic and drives the system towards a low end-to-
end communication (E2E) delay and a minimum deployment
cost. A heuristic solution is proposed as well in [11], only
this time for placing VNFs on mobile compute nodes (i.e.,
robots and drones). Here, the bin packing-inspired algorithm
efficiently tackles both the radio coverage and the resource
restrictions in this volatile 5G environment. Mao et al.
in [12], come up with a two-part approximation algorithm

1476 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

TABLE 1. List of acronyms.

that prioritizes SFC placement at the edge in a way that the
remaining VNFs need as few cloud resources as possible
and the edge-cloud communication latency is minimized.
On the other hand, Tran et al. in [13] break the problem down
into a two-step process, which brings this work closer to a
network planning solution: i) VNF placement and ii) VNF
migration; for the former, a dynamic programming-based
heuristic solution is utilized to place the VNFs considering
the current traffic conditions. A similar solution is used for the
migration, which serves as a corrective measure for when the
traffic deviates significantly. Similarly, a VNF placement-
migration framework is proposed in [14]. However, this time,
the problem is tackled jointly as an online optimization prob-
lem. In particular, the solution aims to migrate some deployed
VNFs to make room for more arriving requests to be accepted
when the remaining resources in the infrastructure are low,
and request rejections are observed.

In the 6G context, the need for low-latency services
becomes even more prominent. To efficiently meet the
emerging stringent service requirements, VNF placement and
scheduling during SFC deployment needs to be carried out
jointly. That is what the authors in [15] explore; after for-
mulating VNF-CPP as an ILP problem, they suggest two
efficient heuristics, namely a greedy-based one and a Tabu
search-based algorithm, to jointly solve the problem in an
effort to maximize the stakeholders’ profits. On a similar
note, Bagaa et al. in [16] investigate the orchestration of
VNFs over multiple cloud domains, a common scenario in
6G deployments, and introduce three optimization solutions
that consider two conflicting objectives: minimizing end-to-
end delay and VNF relocations. By leveraging methods from
the bargaining game theory for Pareto efficiency, they achieve
near-optimal results for both objectives.

B. LEARNING-BASED SOLUTIONS
Traditional optimization methods like ILP solvers and
meta-heuristic algorithms often struggle to cope with VNF-
CPP’s complexity, especially in highly dynamic environ-
ments [4]. Following the recent interdisciplinary trend of
learning-based solutions, several recent research works have
proposed deep reinforcement learning (DRL) andmulti-agent
deep reinforcement learning (MADRL) methods to address
it.

For example, Solozabal et al. in [17] present a DRL-based
method for optimizing the power consumption of the VNF
Placement by extending the Neural Combinatorial Optimiza-
tion (NCO) theory and combining it with heuristics. The
importance of this novel mix ofmethods is the conclusion that
highly competitive results can be achieved using relatively
simple algorithms. Similarly, in [18] the authors formulate
VNF-CPP as a Markov Decision Process (MDP), and a
Q-Learning algorithm’s variation is used to solve it. This
variation takes into consideration the available computing
and communication resources of the infrastructure. Their
practical solution is shown to achieve near-optimal perfor-
mance, close to that of the policy iteration-based algorithm.
On the other hand, in [19], the authors explore the Age of
Information (AoI) concept in multiple-source systems and its
relation to the VNF placement. They propose a DRL-based
approach that optimizes the acceptance ratio and minimizes
the average AoI at the destination. Leveraging cooperation
between agents, in [6] the authors propose a MADRL-based
method for joint VNF placement and routing that adapts to
changing network topologies and addresses multiple concur-
rent service requests with different delay and cost demands.
This framework is shown to outperform its alternatives in
terms of service cost and delay, while offering higher flex-
ibility for personalized service requirements.

C. RESOURCE FRAGMENTATION IN VNF-CPP
In the NFVI domain multiple requests for SFCs and their
VNFs can be deployed on top of a physical substrate network.
Over time, with these VNFs’ random arrivals and departures,
the network’s computing and communication resources can
become isolated or dispersed. This creates a phenomenon
often overlooked in the literature called resource fragmenta-
tion which results in inefficient infrastructure utilization [8].

Recently, there has been increasing individual research
interest in addressing the issue of resource fragmentation on
networking infrastructures [20]. For instance, Bari et al. [21]
are some of the first ones that acknowledge resource fragmen-
tation in VNF-CPP and define a dual cost to represent server
and link resource fragmentation. Then, they incorporate it
in their ILP formulation which they solve by introducing a
near-optimal dynamic programming-based heuristic. How-
ever, such solutions, while innovative, lack flexibility and
real-time adaptability in dynamic network environments. A
different metric is introduced by the authors in [8], called
Resource Fragmentation Degree (RFD), which quantifies
the fragmentation of resources at substrate nodes and links,

VOLUME 2, 2024 1477

motivated by the conception of connectivity in graph theory
and shortest path models. Using this metric the problem
of embedding virtual networks into the substrate network
is formulated as a mixed-integer programming problem.
Then, a proactive and a reactive online heuristic algorithm
are suggested to solve the problem efficiently while con-
sidering resource fragmentation. Although promising, this
technique does not account for the unpredictable nature
of network demands, as it does not inherently learn from
past experiences. On the other hand, Fu and Li in [22]
resolves to a reactive-only solution to reduce fragmen-
tation in cloud infrastructures. Specifically, an automatic
VNF migration approach is devised to mitigate the load
imbalance in the infrastructure, a factor identified as a crit-
ical cause of resource fragmentation. While the proposed
scheme demonstrates improvements in resource utilization
and load balancing, it primarily focuses on basic resource
metrics, potentially overlooking more complex factors such
as VNF migration overhead and predictive VNF load
management, which could lead to suboptimal deployment
decisions.

A different approach to reducing resource fragmentation
during SFC deployment is followed in [23]; here, the authors
suggest sharing the deployed VNF instances among different
SFCs with the dual aim of improving the resource utiliza-
tion and reducing the resource fragmentation generated by
deploying many VNF instances. To this end, they intro-
duce a weight-based VNF sharing scheduling approach that
seemingly achieves fair scheduling among the SFC requests.
However, the complexity introduced by the need for precise
calculation and allocation of resources based on min-plus
algebra might not be easily scalable in real-world scenar-
ios with highly dynamic traffic patterns and diverse service
requirements. Additionally, the requirement for accurate traf-
fic prediction and service demand estimation to allocate
weights and resources fairly could be challenging.

Similarly, Guo et al. in [24] propose a scheduling mecha-
nism for sharing the already deployed VNF instances among
different SFC requests, however utilizing dynamic weights
this time in the objective model. Their heuristic approach
based on Steiner Trees and Markov Decision Processes
demonstrates near-optimal results in minimizing a cost that
reflects internal resource fragmentation among others. How-
ever, VNF instance sharing can increase forwarding costs due
to longer paths for some SFCs. This happens when SFCs are
not deployed on the shortest path, potentially outweighing the
cost savings from reduced VNF instance creation. Addition-
ally, the complexity of the heuristic algorithm, although lower
than MILP, may still be substantial for large-scale networks,
affecting scalability and practicality.

D. DISCUSSION
The proposed FANCORP framework sets itself apart
by leveraging DRL to learn optimal placement policies
that dynamically adapt to network changes. This adapt-
ability allows for continuous optimization of resource

fragmentation, unlike the static or semi-dynamic approaches
of prior works. By incorporating NCO with RCPO, we allow
our solution to automatically learn the appropriate Lagrange
multipliers. Unlike similar mechanisms where the multi-
pliers are manually selected [17], this automated learn-
ing process driven by a penalty signal, systematically
guides the placement policy towards constraint satisfac-
tion, enhancing adaptability and ensuring efficient resource
allocation.

Our mechanism is complemented by a greedy error correc-
tion heuristic that strengthens the robustness of our approach
by ensuring that even when the agent’s decisions are imper-
fect, there is a systematic method to correct them and
maintain service quality. This comprehensive and responsive
strategy positions our framework as an advanced solution
capable of adapting to the current network state while proac-
tively adjusting for future demands. The current work is an
extension of our previous work in [25]. In particular, our
extensions can be summarized as follows. Firstly, the system
model has been revamped, and the ILP problem, the CMDP
formulation, and the Lagrange relaxation are presented in
depth. Secondly, a new objective is used for the emerging
unconstrained optimization problem, and formal algorithmic
descriptions are now provided for both the NCO-RCPO agent
training as well as the FANCORP operation as a whole.
Thirdly, the error correction mechanism has been updated
with an improved strategy. Finally, we conduct additional
experimentation that highlights the efficacy and efficiency of
the proposed solution in various scenarios.

III. SYSTEM MODEL
A. EDGE/CLOUD INFRASTRUCTURE & SFC REQUESTS
We model the physical infrastructure as a 3-tier network,
consisting of the Edge, Transport, and Cloud tiers, as shown
in Fig. 1. Specifically, we define an undirected graph G =
(H,L), where H denotes the set of nodes and L the set of
links. The nodes can be either servers N ⊂ H or routers
W ⊂ H, with N ∪ W = H. Servers are further divided
based on their location into edge servers NE ⊂ N and cloud
servers NC ⊂ N, with NE ∪ NC = N. Similarly, the routers
are divided into gateway routers q ∈ WQ ⊂ W, which are
the network’s entry points from where end-users connect to
their requested SFCs, and traffic routers o ∈ WO ⊂ W that
interconnect the network tiers, with WQ ∪WO = W. Finally,
each server n ∈ N is attributed a vector of available resources
Rn (i.e., CPU, memory and storage), while every physical
link (u, v) ∈ L has a bandwidth capacity B(u,v) and a fixed
propagation delay d (p)(u,v), u,v∈H.

We also assume a set of available VNFs F that are used
to build the different types of requested network services
offered as SFCs, represented by set S. To accurately formu-
late an SFC request ri ∈ S, first we define the topological
structure of its interconnected VNF components, such that
fi = {fi,0, fi,1, . . . , fi,|fi|} ⊆ F, where fi,0 must be placed
on the gateway router, i.e., q ∈ WQ, from which a user
requesting the SFC ri is connected to the network. VNFs

1478 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

FIGURE 1. Resource fragmentation in VNF-CPP.

can be interconnected in various ways (e.g., linear or bifur-
cated), as explained in [26]. We define the matrix of a
request’s resource demands as σ i = (σ i,0, σ i,1, . . . , σ i,|fi|),
where σ i,k is the vector of resource demands (i.e., CPU,
memory and storage) of VNF fi,k ∈ fi with k ∈ [0, |fi|].
Next, we define the vector of maximum processing delays
that need to be satisfied for the request’s VNF compo-
nents as D(c)

i = (D(c)
i,0,D

(c)
i,1, . . . ,D

(c)
i,|fi|

). We note that the
incurred processing delays depend on the capabilities of
the servers that will host the particular VNFs, d (c)i,k,n, i ∈
|S|, k ∈ |fi|, n ∈ N. Following this convention, we intro-
duce the vectors of an SFC’s bandwidth demands bi =
(bi,0,1, bi,0,2, . . . , bi,|fi−1|,|fi|) and the maximum propagation
delays D(p)

i = (D(p)
i,0,1,D

(p)
i,0,2, . . . ,D

(p)
i,|fi−1|,|fi|

). Finally, each

SFC can tolerate a maximum end-to-end delay of D(t)
i . Based

on the above, we define an SFC request ri ∈ S as:

ri = {fi, σ i,bi,D
(c)
i ,D

(p)
i ,D

(t)
i } (1)

Fig. 1 shows an overview of the physical infrastructure along-
side two SFC requests and their placements.

B. RESOURCE FRAGMENTATION
Fig. 1 additionally depicts instances of resource fragmenta-
tion within the network. Without loss of generalization, let us
assume that the placement of the two SFC requests saturates
the hosting servers and physical links. Under this assumption,
servers n2 and n3 contribute to compute resource fragmen-
tation since they are available but cannot be used due to
bandwidth saturation of the adjacent links. Such isolation of
resources reflects amisalignment between a server’s potential
and its role in the network’s active traffic flow, leading to
suboptimal resource exploitation. In contrast, physical link
(o2, o3) showcases communication link fragmentation as,
despite its bandwidth availability, it is inaccessible because
the surrounding servers and links have reached their resource
limits. This condition creates bottlenecks that prevent effi-
cient data transit, even when the network has latent capacity.

To quantify the degree of fragmentation in the infrastruc-
ture, we adopt the Resource Fragmentation Degree (RFD)
metric first introduced in [8]. This metric is designed to
quantitatively measure the status of resource fragmentation
at substrate nodes and links by assessing how scattered or
isolated resources are in relation to their neighboring entities,
either nodes or links. The concept builds on principles from
graph theory, where the notion of connectivity describes the
robustness of a graph. The principle behind this metric is that
the resource availability of a server (or link) is determined by
the remaining link and server resources around it.

To calculate the RFD, two additional metrics need to be
determined: i) the connectivity of substrate nodes, κn, and ii)
the connectivity of substrate links, κ(u,v). The former mea-
sures how ‘‘connected’’ a server n∈N is as follows:

κn =
1
δτn

N∑
n′ ̸=n

ρ′n η
τ
n′,n, (2)

where, δτn represents the number of nodes whose distance
from server n is no longer than τ hops, ρ′n is the residual ratio
of compute resources capacity of server n′ (ratio between
available and total resources), and ητn′,n is the residual band-
width ratio of the path between n′ and n that is no longer
than τ hops (ratio between available and total bandwidth).
Similarly, κ(u,v) measures the ‘‘connectivity’’ of a link (u, v) ∈
L. To avoid overloading the notation, we reuse symbols from
Eq. (2) for analogous metrics, and we define κ(u,v) as:

κ(u,v) =
1

δ(u,v)

L∑
(u′,v′)̸=(u,v)

ρ(u′,v′) η(u′,v′),(u,v), (3)

where δ(u,v) is the number of adjacent links to (u, v), i.e.,
the links that share a node with (u, v), ρ(u′,v′) is the residual
bandwidth ratio of the adjacent link (u′, v′), and η(u′,v′),(u,v)
is the residual ratio of compute resources capacity on the
shared node between link (u′, v′) and link (u, v). The RFD
for both servers and physical links is then computed as the
complement of their respective connectivities, as follows:

ζn = 1− κn, (4)

ϵ(u,v) = 1− κ(u,v). (5)

Higher values indicate higher degrees of fragmentation.

C. PROBLEM FORMULATION
The problem we solve in this work is described as follows:
considering the physical network of the infrastructure and an
estimation of the incoming number of SFC requests, their
type, and their expected entry point/gateway, find the VNF
placement that minimizes network resource fragmentation
alongside with resource utilization. This solution should sat-
isfy the constraints of both the infrastructure provider and
the users requesting the SFCs. In this direction, we also
make the following assumption that leads our formulation
and approach to solving VNF-CPP: when considering where

VOLUME 2, 2024 1479

to place VNFs, both the network’s edge and cloud com-
partments provide distinct advantages. On the one hand, the
centralized and resilient cloud allows for better resource
aggregation, dynamic allocation, and better adaptation to
changing traffic patterns and service demands. On the other
hand, the edge significantly reduces service latency and pro-
motes localized data processing for quick decision-making
and effective traffic offloading, potentially reducing cloud
congestion. Though necessary for providing low latency and
real-time processing, we consider edge resources scarcer and
more ‘‘expensive’’ than those in the centralized cloud. More-
over, we assume that the network’s edge can be easily clogged
because of the bottleneck that can form when many services
try to use edge resources simultaneously. In combination
with the increased hardware heterogeneity and diversity at
the edge, placing an SFC there poses an increased risk of
fragmenting the network’s resources.

We formulate the above problem as an Integer Linear
Programming (ILP) problem. To this end, two binary decision
variables are introduced for the placement of an SFC ri ∈ S;
i) xi,k,n that is set equal to 1 if the VNF fi,k ∈ fi is placed on
server n ∈ N and ii) yi,k,k

′

(u,v) which is set equal to 1 if the virtual
link between fi,k and fi,k ′ ∈ fi is routed over the physical
link (u, v) ∈ L. Hence, the fragmentation-sensitive objective
function for the VNF-CPP can be expressed as:

O=
|S|∑
i=1

(
|fi|∑
k

N∑
n

µn ζn xi,k,n +
|fi|∑
k

|fi|∑
k ′

L∑
(u,v)

ϵ(u,v) y
i,k,k ′
(u,v)), (6)

where µn is a binary cost for server n ∈ N. In particular, µn
takes the value of 1 if n is an edge server and 0 otherwise,
reflecting in this way the higher cost and increased risk of
fragmentation of the edge resources. We note that, despite
reducing the emphasis on cloud resource fragmentation opti-
mization, we do include cloud resources in the VNF-CPP
optimization for completeness; this way we ensure that SFCs
can leverage the cloud’s abundant resources as a contingency
option, thereby complementing the edge in a realistic setting.
Furthermore, as part of our first contribution, incorporating
the RFD metrics into the objective function guarantees that
the solution not only minimizes resource consumption and
communication costs but also optimally distributes the VNFs,
resulting in reduced resource fragmentation. Thus, hereafter
we will refer to the evaluation of this objective function as
the fragmentation cost. The placement of a batch of requested
SFCs S is denoted as:

β = {xi,k,n, y
i,k,k ′
(u,v) || ∀i[0, |S|],

∀k, k ′ ∈ [0, |fi|],∀n ∈ N,∀(u, v) ∈ L}, (7)

and the family of all possible placements is denoted as B.
We also identify the following constraints in our system:

|fi|∑
k

(
N∑
n

d (c)i,k,nxi,k,n +
|fi|∑
k ′

L∑
(u,v)

d (p)(u,v)y
i,k,k ′
(u,v)) ≤ D

(t)
i ,

∀i ∈ [0, |S|] (8)

N∑
n

d (c)i,k,n xi,k,n ≤ D
(c)
i,k ,∀i ∈ [0, |S|],

∀k ∈ [0, |fi|], (9)
L∑

(u,v)

d (p)(u,v)y
i,k,k ′
(u,v) ≤ D

(p)
i,k,k ′ ,∀i ∈ [0, |S|],

∀k ̸= k ′ ∈ [0, |fi|]. (10)

Constraint (8) guarantees that the end-to-end delay demand
is respected for every placed SFC. Constraints (9) and (10)
make sure that the individual processing delay demands for
each VNF and the individual propagation delay demand for
each virtual link of an SFC are respected. Also, the com-
putation and communication resources of the infrastructure
must not be oversubscribed (constraints (11) and (12) respec-
tively):

|S|∑
i=1

|fi|∑
k

σ i,k xi,k,n ≤ Rn,∀n ∈ N, (11)

|S|∑
i=1

|fi|∑
k

|fi|∑
k ′
bi,k,k ′ (y

i,k,k ′
(u,v)+ y

i,k,k ′
(v,u))≤B(u,v), ∀(u, v)∈L. (12)

The flow conservation constraint (13), ensures the intercon-
nection of the VNFs by performing the routing between the
source and destination of each virtual link.∑
v∈H

(yi,k,k
′

(u,v) − y
i,k,k ′
(v,u))

= xi,k,u − xi,k ′,u, ∀u ∈ H,∀i ∈ [0, |S|],∀k ̸= k ′ ∈ [0, |fi|].

(13)

Finally, we need to ensure that each VNF will be placed at
only one node, with constraint (14), provided that the specific
node is a server, constraint (15). We should also ensure that
the first VNF of an SFC is placed on the entry gateway of the
user requesting the SFC, as designated in constraint (16).∑

h∈H

xi,k,h = 1, ∀i ∈ [0, |S|], ∀k ∈ [0, |fi|], (14)∑
n∈N

xi,k,n = 1, ∀i ∈ [0, |S|] ∀k ∈ [1, |fi|], (15)∑
q∈WQ

xi,0,q = 1, ∀i ∈ [0, |S|]. (16)

To this end, the offline optimization problem for minimizing
resource fragmentation while successfully placing a batch of
incoming SFC requests can be formulated as:

P(1) :min
β∈B

(6) (17a)

s.t. (8)− (16) (17b)

As an extension of the classic VNF-CPP, this fragmentation-
aware formulation falls into the category of the virtual
network embedding problems, thus it is classified as NP-
hard [3]. This means that traditional ILP-based methods fall
short of providing real-time solutions, especially in highly

1480 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

TABLE 2. Summary of the key notation.

dynamic environments as the one envisioned. We note that
the key notation used for the system model and subsequent
mathematical formulation is provided in Table 2.

IV. ONLINE FRAGMENTATION-AWARE VNF
PLACEMENT USING NCO AND RCPO
To efficiently solve problem (17), we seamlessly combine the
powers of Neural Combinatorial Optimization (NCO) [10]
and Reward Constrained Policy Optimization (RCPO) [9]
into an online, fragmentation-aware VNF placement mech-
anism for edge/cloud infrastructures. In this context, the
Constrained Markov Decision Process (CMDP) serves as a
suitable modeling framework. This formulation allows us
to incorporate constraints into the decision-making process,
ensuring that while the NCO agent learns to maximize its
rewards, it also respects the system’s constraints.

A. CONSTRAINT MARKOV DECISION PROCESS
FORMULATION
In classic Markov Decision Processes (MDP), an agent inter-
acts with a stochastic environment aiming to optimize a
cumulative reward over time. The agent is characterized by
the tuple {S,A,P,R, γ }, where S is the set of states in
the environment, A is the set of possible actions for the
agent, P is the next state’s transition probability function,
R is a function which represents the immediate reward
received by the agent and 0 < γ < 1 is the discount
factor that determines the present effect of future rewards.
A CMDP extends the MDP framework by introducing addi-
tional constraints on the expected cumulative cost of certain
actions or state transitions. Here we have the augmented tuple
{S,A, C, α,P,R, γ }, where the cost function C quantifies
the expense or penalty of taking an action while transitioning
to the next state. The threshold value α denotes the sys-
tem tolerance before penalties are applied. We consider the
decision-making slotted in timeslots t ∈ Z+. As the state in
our case is high-dimensional, the transition probabilities P
cannot be accurately obtained. Thus, the CMDP is simplified
into a model-free processM = {S,A, C, α,R, γ } with the
following components:

1) STATE
At each decision-making time t , the agent observes the
system state. Before defining the system state, we need to
introduce two auxiliary variables, R′ and B′ which contain
the currently available resources for every server n ∈ N and
available bandwidth capacity for every physical link (u, v) ∈
L. Using Eqs. (11) and (12), we have:

R′ = {Rn −

|S|∑
i=1

|fi|∑
k

σ i,k xi,k,n | ∀n ∈ N},

B′={B(u,v)−
|S|∑
i=1

|fi|∑
k

|fi|∑
k ′
bi,k,k ′ (y

i,k,k ′
(u,v)+ y

i,k,k ′
(v,u)) |∀(u, v)∈L}.

We design our online placement mechanism to place only
one requested SFC at each timeslot. Therefore, we drop the
notation i ∈ |S|. We now define the system state st ∈ S as a
combination of information regarding the currently requested
SFC, the previously placed SFCs, and the state of the physical
network in terms of resource availability:

st = {r,β,R′,B′}, (18)

2) ACTION
The action at ∈ A taken by the agent at timeslot t concerns
the placement of the VNFs f of SFC request r:

at = {xk,n, y
k,k ′
(u,v) | ∀k, k

′
∈ [0, |f|],∀n∈N,∀(u, v)∈L}, (19)

3) COST
The cost in our environment reflects the degree of constraint
violations. Assuming a system constraint of the generic form
φ : Ax ≤ B then the degree of constraint violation is given as

VOLUME 2, 2024 1481

cφ = B−Ax. Therefore, we formulate the cost of our system
as the aggregated degree of constraint violations that occur
due to performing action at while in state st and transitioning
to state st+1:

C(st , at) =
(16)∑
φ= (8)

max{0, cφ − α | st , at }. (20)

Since we want the placement policy to result in actions that
do not violate any constraints, we set α = 0. An action that
results in a cost greater than zero is considered infeasible.

4) REWARD
After performing action at on state st , the agent gets a
feedback which directly determines its strategy. As our opti-
mization objective is to minimize the fragmentation in the
network infrastructure while respecting all the identified con-
straints, we formulate the reward as the scaled inverse of the
sum of the fragmentation cost obtained from Eq. (6):

R(st , at) = Z exp(O | st , at)−1, (21)

where Z ∈ R is an empirically selected tuning coefficient
that adjusts the magnitude of the reward to ensure it is
appropriately balanced for the agent’s training. This reward
form emphasizes the impact of fragmentation costs; small
decreases in fragmentation cost lead to significant increases
in the reward, encouraging actions that reduce fragmentation
even further.

B. LAGRANGE RELAXATION & NCO-RCPO-BASED
SOLUTION
The first step to solving the CMDP formulation is to
define the primal problem, the solution of which will pin-
point the optimal placement policy π (a | s) ∈ 5 that
maximizes the expected cumulative reward over time, JπR =
Eπ [

∑
∞

t=0 γ
tR(st , at)], while ensuring that the expected

cumulative cost JπC = Eπ [
∑
∞

t=0 γ
tC(st , at)] does not exceed

the system’s tolerance. The latter translates directly in the
requirement that the expected degrees of constraint viola-
tions, Jπcφ = Eπ [

∑
∞

t=0 γ
tcφ] do not exceed the threshold

α = 0:

P(2) :max
π∈5

JπR (22a)

s.t. Jπcφ ≤ 0, ∀φ ∈ (8)− (16). (22b)

To solve the above primal problem, we implement an NCO
agent by using a Sequence-to-Sequence (S2S) neural network
consisting of a Long Short-Term Memory (LSTM) encoder
and a decoder. In order to significantly reduce the action
space dimensions and accommodate the applicability of NCO
to our environment, we decompose the action calculation of
Eq. (19) into two stages; in the first stage, the agent produces
at , i.e., a sequence of servers n ∈ N where the VNFs of the
requested SFC will be placed into. In the second stage, the
well-known Dijkstra’s Algorithm produces the routing deci-
sions by calculating the shortest paths, i.e., the physical links

that will be utilized to interconnect the SFC’s VNFs f ∈ f.
Using the S2S model allows for using the Bahdanau attention
mechanism that improves the agent’s efficiency as we are
now mapping the input sequences of the request’s VNFs to
the output sequences of the infrastructure’s servers [27]. The
neural network denoted by its weights θ infers the emerging
parameterized placement policy πθ (a | s).
For the NCO agent to work, we additionally need to inte-

grate the expected constraint violation costs of the primal
problem into the objective function. To do so, we utilize the
Lagrange relaxation technique. The primal problem is thus
transformed into the following dual unconstrained optimiza-
tion problem:

P(3) : min
∀λφ∈λ

max
θ

Lθλ = min
∀λφ∈λ

max
θ

[JπθR−
(16)∑
φ= (8)

λφJπθcφ], (23)

where Lθλ is the Lagrangian, representing the penalized
reward, and λφ ≥ 0,λφ ∈ λ are the Lagrange multipliers
(penalty coefficients) for the constraints cφ . We notice that
as these multipliers grow, the solution approaches this of the
primal problem, i.e., Eq. (22). Here, we identify a weakness
in related works in the literature, for example, in [17], where
the Lagrange multipliers are selected manually. To improve
the efficiency of this procedure, we incorporate the RCPO
technique in our mechanism, a multi-timescale approach for
constrained policy optimization that uses a penalty signal to
guide the policy towards a constraint-satisfying one and even-
tually selects the Lagrange multipliers automatically. As the
guiding penalty signal we choose the expected weighted con-
straint violation degree

∑(16)
φ= (8) λφ J

πθ
cφ , the second term of

the Lagrangian Lθλ.
Calculating the weights θ together with the multipliers λφ

requires training our agent once and offline, using a training
dataset of S′ SFC requests in batches of B ⊂ S′. According
to the RCPO suggestions, we introduce a two-timescale train-
ing process that involves fast and slow update intervals: the
weights θ are updated through the guidance of Eq. (23) on
the fast timescale, whereas on the slow timescale the λφ mul-
tipliers are increased gradually until the constraint violation
degree vanishes. When iteratively repeated this procedure
results in convergence as proven in [9]. We use ṫ to denote
an epoch of the training process.

On the fast timescale, in order to compute the S2S
weights θ of the NCO agent that optimizes Lθλ, we use the
Monte-Carlo Policy Gradients and the gradient descent as
follows:

θṫ+1 = θṫ + ψ1(ṫ)∇θL
θṫ
λṫ
, (24)

where ψ1(ṫ) ∈ [0, 1] is the fast timescale learning rate.
To calculate the gradient of the Lagrangian, we use the log-
likelihood approach [28]:

∇θLθλ = Eπθ [[R−
(16)∑
φ= (8)

λφ cφ]∇θ logπθ | s, a]. (25)

1482 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

Since the exact computation of the gradient is a computation-
ally challenging task in a highly dimensional environment
like ours, we approximate it with Monte-Carlo sampling:

∇θLθλ≈
1
|B|

B∑
r

[(R−
(16)∑
φ= (8)

λφcφ−wθ ′)∇θ log πθ |s : r, a : r],

(26)

where wθ ′ is the baseline estimator [29]; the baseline is a
state-dependent supporting model that estimates the reward
minus the cost yielded as a result of the placement action
of the NCO-RCPO agent under the current placement policy.
This estimator helps reduce variance, accelerate convergence,
and improve sample efficiency during training. We imple-
ment it as an auxiliary LSTM encoder connected to a
feedforward Multilayer Perceptron (MLP) output layer with
weights θ ′. The baseline is trained using gradient descent
to minimize the Mean Squared Error (MSE) between the
predicted and the real values:

MSEθ
′

w =
1
|B|

B∑
r

||(R−
(16)∑
φ= (8)

λφ cφ)− wθ ′ | s :r, a :r||2. (27)

We update the baseline’s weights on a timescale faster than
the one for the S2S weights as follows:

θ ′ṫ+1 = θ
′

ṫ − ψw(ṫ)∇θ ′MSEθ
′

w , (28)

where ψw(ṫ) ∈ [0, 1] is the baseline’s learning rate and
∇θ ′MSEθ

′

w is the gradient of Eq. (27) with respect to the
weights θ ′. On the slow scale, we update the Lagrange mul-
tipliers as follows:

λṫ+1φ = 0[λṫφ − ψ2(ṫ)∇λφL
θṫ
λṫ
],∀φ ∈ (8)− (16), (29)

∇λφL
θ
λ = −J

πθ
cφ , (30)

where ψ2(ṫ) ∈ [0, 1] is the slow timescale learning rate and
0 restricts the value of λφ by projecting it into the range
[0,3],3≫ 0. This projection prevents extreme updates that
could destabilize the optimization process.

C. NCO-RCPO AGENT TRAINING
Algorithm 1 formally describes the steps of the training
process for the fragmentation-aware NCO-RCPO agent. The
goal is to train the agent to optimally place the VNFs of
an SFC request in the network, considering both the frag-
mentation cost and the adherence to the system’s constraints.
The input is a training dataset S′ of SFC requests and the
size of each training batch |B| (mini-batch training). At first,
the weights of the two S2S neural networks are randomized,
and the values of the Lagrange multipliers are set to zero.
During the training, at each epoch ṫ the gradients are ini-
tially set equal to zero to avoid summing them over multiple
batches. Then, a batch of SFC requests B is sampled, and
for each request r, the system state is computed, a placement
action is performed, the reward is gathered, and the constraint
violation penalties are calculated. Having this information

FIGURE 2. NCO-RCPO agent overview.

available, the weight and Lagrange multiplier-related gradi-
ents are computed; then, the weights of the agent’s neural
networks and the Lagrange multipliers are updated accord-
ingly. The algorithm returns the agent’s trained weights.
Fig. 2 gives an overview of the NCO-RCPO agent and the
training process.

D. GREEDY CORRECTION HEURISTIC – RUNTIME
ROBUSTNESS
As with every RL agent, the expected penalty when
the NCO-RCPO agent has converged is zero with slight
deviations [30]. Therefore, theoretically, during the online
phase, the agent could make infeasible placement decisions.
To address these potential infeasibilities and robustify the
operation of our framework, we propose the Greedy Correc-
tion (GC) heuristic that complements the agent in runtime
with an error correction mechanism. Here, the infeasible
placement is used as a starting point, and we incremen-
tally improve it in a step-by-step, best-effort manner until it
becomes feasible. First, the servers are sorted in ascending
order based on their available resources. Then, for every
placed VNF in the infeasible action, we change the selected
server to one of the sorted ones sequentially, starting from
the one with the least available resources. This selection
criterion serves as a computationally cheap way of keeping
the fragmentation cost low during this infeasibility repair.
If the new placement reduces the constraint violation cost,
we update the action accordingly. We repeat for every placed

VOLUME 2, 2024 1483

Algorithm 1 NCO-RCPO Agent Training

1 Input: SFC Training dataset S′, batch size |B|
2 Initialize: randomize θ , θ ′ and λφ = 0,∀φ ∈ (8)− (16)
3 for ṫ = 0, 1, 2, . . . do
4 Reset gradients ∇θLθλ, ∇θ ′MSEθ

′

w , ∇λφL
θ
λ;

5 Sample batch B;
6 for r ∈ B do
7 Compute the system state s;
8 Perform action a based on policy πθ ;
9 Compute rewardR;

10 Compute constrained violation degrees cφ,∀φ;

11 Compute ∇θ ′MSEθ
′

w using Eq. (27);
12 Compute ∇θLθλ using Eq.(26);
13 Compute ∇λφL

θ
λ,∀φ using Eq. (30);

14 Update θ ′, θ,λφ .

15 Return θ

VNF or until the placement action becomes feasible. If the
resulting action is still infeasible, the request is rejected. This
fast and simple heuristic solidifies the proposed framework
with a backup plan. In this way, we provide an NCO-RCPO
agent that ensures robust, high-quality, fragmentation-aware
SFC placement, which importantly can also mitigate its own
miscalculations; this concludes the second contribution of
this work.

E. FANCORP FRAMEWORK OVERVIEW
In this subsection, we summarize the online operation of
the proposed FANCORP framework. Once an SFC request
arrives, the system state is observed, and the NCO-RCPO
agent takes a server placement decision for each one of
the requested VNFs, using its fragmentation-aware learned
policy. Then, the well-known Dijkstra’s Algorithm is used
to find the shortest paths that interconnect the SFC’s VNFs,
completing in this way the placement action. At this point, the
feasibility of the action is checked; if the placement violates
any constraints, the GC heuristic is triggered and attempts to
repair the infeasibility. Should it fail to do so, the request is
rejected. Algorithm 2 gives a detailed outline of the proposed
framework’s operation.

V. NUMERICAL RESULTS
In this section, we evaluate the efficiency of the proposed
FANCORP framework through extensive simulation. First,
we present the experimentation setup. Then, we compare the
proposed NCO-RCPO-based Lagrange multiplier learning
technique against a related work. Finally, the whole operation
of the FANCORP framework is evaluated and benchmarked
against state-of-the-art solutions from the literature.

A. EXPERIMENTATION SETUP
We perform our simulations on four representative network
topologies: a simple star network that was used in [17] (for

Algorithm 2 FANCORP Online Operation

1 Input: NCO-RCPO agent’s trained weights θ
2 for t = 0, 1, 2, . . . do
3 Receive SFC request rti ;
4 Compute the system state st ;
5 Select action at based on policy πθ ;
6 if C(st , at) == 0 then//Feasible Placement
7 Perform action at ;
8 else // Greedy Correction
9 while (k ≤ |fi|) && (C(st , at) > 0) do

10 N′← N sorted in ascending R′n order;
11 repeat
12 Pop server n′ ∈ N′;
13 Place VNF fi,k on n′ ⇒ a′t , s

′
t ;

14 until C(st , a′t) < C(st , at);
15 at ← a′t , k ← k + 1;

16 if C(st , at) == 0 then
17 Perform action at ;
18 else
19 Reject SFC request rti ;

one-to-one comparison purposes), depicted in Fig. 3a; a more
realistic metropolitan network topology, depicted in Fig. 3b
which was provided by an industrial partner and represents
a typical edge/cloud infrastructure [31]; and two additional
topologies, Abilene and New York, sourced from the SNDlib
library [32].

In detail, the Star network consists of |N| = 11 homo-
geneous edge servers equipped with 10 CPU cores, 10GB
of RAM and 1000GB of storage, and |W| = 2 routers, one
of which serves as a gateway and one as a traffic router.
Each physical link has a bandwidth capacity of 100Mbps
and induces a propagation delay of 1µs. On the other hand,
the Metropolitan network is designed to reflect the complex-
ity and variability of urban network infrastructures. In our
adaptation, the topology has been slightly modified from the
real one to simplify connectivity between sites. However, the
network configuration and resource distribution still reflect
a real operational environment, providing a solid basis for
evaluating VNF placement strategies on realistic scenarios
that our industrial partner has encountered. It consists of
|N|=11 heterogeneous servers (n2 and n6 are cloud servers)
the resources of which range between 10− 50 CPU cores,
10−50GB of RAM and 1000−5000GB of storage capacity.
Additionally, |W| = 8 routers are found in this network,
4 of which serve as gateways and 4 as traffic routers. Each
physical link has a bandwidth capacity of 100Mbps and
induces a propagation delay that ranges between 1µs−0.1 s.
For further details, readers can refer to the figures.

The Abilene network is a backbone network with
high-capacity links and a few highly connected nodes for
long-distance communication across the U.S. In contrast, the
NewYork network is an urban networkwith a dense topology,

1484 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

FIGURE 3. Network topologies used for the evaluation.

more nodes, and high traffic capacity within a metropolitan
area. Including the Abilene network aids in further evaluating
our scheme in large-scale backbone infrastructures, while
the New York network evaluates the performance in dense
urban environments. The Abilene network consists of |N| =
12 servers, |W| = 8 routers, 4 of which are gateway routers,
and 15 physical links, while the NewYork network comprises
|N| = 16 servers, |W| = 20 routers, 4 which are gateway
routers, and 49 physical links. Similar to the Metropolitan
network, each server in both networks is equippedwith 10−50
CPU cores, 10−50GB of RAM, and 1000−5000GB of storage
capacity. Their physical links have a bandwidth capacity of
100Mbps and a propagation delay ranging between 1µs−
0.1 s.

Regarding the SFC requests, we utilize the 3 SFC topolo-
gies introduced in [26], with lengths varying from 3 to 5
VNFs, unless stated otherwise. We want our design to emu-
late Ultra-Reliable Low-Latency Communication (URLLC)
scenarios where low latency is crucial. Therefore, each SFC
is designed with an end-to-end delay tolerance of 1ms. Each
VNF’s resource demands range between 1− 4 CPU cores,
1− 8GB of RAM, and 100− 200MB of storage, while its
processing delay tolerance ranges between 60− 100 µs. For
the virtual links, we consider a propagation delay tolerance of
60−400 µs and a bandwidth requirement of 10 − 20Mbps.
The selection of the above parameters is in sync with up-to-
date specifications for similar environments [33], [34], [35].

We implement the NCO-RCPO as a four-layer S2S neural
network with a hidden size of 128 for each LSTM. The base-
line estimator model consists of a four-layer LSTM encoder
with a hidden size of 128 as well. Its MLP component has
two hidden layers equipped with 128 neurons each. For all
the experiments, we train the agent for placing up to |B|=100
SFC requests in a training session of 30 × 103 epochs. The
extensive training of 30× 103 epochs ensures that the model
thoroughly learns the complex patterns for efficient SFC
placement across diverse network scenarios. The ψ1 learning
rate is set to 10−4 for updating the S2S weights. The baseline
model has a significantly higher learning rate of ψw= 10−1,
while the slow learning rate for the Lagrange multipliers is
set to ψ2 = 10−5. The Adam optimizer is used to solve
Eqs. (24), (28) and (29); specifically, we treat these equations
as loss functions and iteratively update the weights in the
direction that maximizes Eqs. (24) and (28) and minimizes
Eq. (29). To train the agent, we used a Google Cloud Virtual
Machine equipped with a system RAM of 83.5GB, a GPU
A100 (40GB version) and a storage capacity of 166.8GB.
The training lasted 80min for the Star network and 130min
for the Metropolitan network. The results were averaged over
ten experiment repetitions to reduce variability. For repro-
ducibility, the link to the GitHub repository containing the
code implementation used in the simulation is provided.1

B. NCO-RCPO-BASED LAGRANGE MULTIPLIERS
LEARNING
To demonstrate the efficacy of the NCO-RCPO-based
Lagrange multipliers learning, we benchmark it against the
methodology proposed by Solozabal et al. in [17], where
a similar approach for NCO-based VNF placement was
followed, however, with the energy saving criterion as the
objective. There, the authors employed the Lagrange relax-
ation method to transform the primal problem into an
unconstrained one, though the selection of Lagrange multi-
pliers was manual. Our aim in this subsection is to showcase
the benefits of the automatic, penalty-driven selection; thus,
to ensure a consistent basis for comparison, we temporarily
adopt energy saving as the objective of our agent and we
replicate the dynamic network environment presented in [17].

1https://github.com/RamyMo/vnf_placement_using_drl_rcpo

VOLUME 2, 2024 1485

FIGURE 4. Benchmarking costs evolution during training.

This environment considers SFCs with varying demands
and a length ranging from 12 to 18 VNFs arranged in a
linear bus topology and the exact same Star topology net-
work infrastructure. Additionally, instead of maximizing the
expected cumulative reward in the primal problem, we alter-
natively seek to minimize energy consumption, following the
approach of the compared work.

Figs. 4a and 4b showcase the VNF placement policy learn-
ing process of the NCO agent without and with incorporating
RCPO to learn the Lagrange multipliers. Here, the objective
cost is computed by summing up the energy cost of the VNF
placements using the objective function defined in [17]; the
penalty cost is the sum of all the constraint violation degrees
weighted by the Lagrange multipliers; the Lagrangian cost
is the sum of the energy cost and penalty cost; lastly, the
baseline is the estimate of the Lagrangian cost, which is
obtained using the supporting model wθ ′ . We observe that
in Fig. 4a, initially, all the costs are high, indicating that
the system starts with a suboptimal configuration. The agent
starts with a high objective cost and penalty, and as it learns,
it keeps adjusting its weights to minimize them until they are
stabilized.

Contrarily, in Fig. 4b, we see that the penalty starts at zero
as the initial values of all the Lagrange multipliers are set
to zero. Once the Lagrange multipliers are updated for the
first time using Eq. (29), the penalty cost sharply increases;
however, it decreases quickly over the next few epochs, indi-
cating that the agent learns to avoid constraint violations.
Compared to the manual selection, the average costs yielded
through the RCPO-based procedure are approximately 20%
lower than the manual selection after convergence. More-
over, the costs, particularly the Lagrangian and the penalty,
appear to converge more smoothly compared to the behavior
observed in Fig. 4a, suggesting a more stable and consistent
learning process. This improvement is achieved by involving
the penalty signal in the learning process of the NCO agent.
We conclude that the manual multipliers selection introduces
inefficiencies in the learning process due to reduced adapt-
ability in responding to constraint violations dynamically.

Having trained the two NCO agents (with and without
incorporating RCPO), we then assess their VNF placement
decisions and additionally compare them against the optimal

in terms of SFC placement success ratio, i.e., the ratio of
the number of successfully placed SFC requests to the total
number of requests made. To derive the optimal placement,
we solve the ILP formulation using Gurobi. Furthermore,
since benchmarking only concerns the Lagrange multipliers,
FANCORP’s greedy correction mechanism is deactivated to
ensure a fair comparison. Fig. 5a shows the success ratio
for SFC requests of increasing average length for the three
different placement algorithms. Naturally, this ratio declines
for all algorithms as the length grows. This is anticipated as
placing longer SFCs becomes increasingly difficult due to the
intensified resource and performance demands. Nevertheless,
FANCORP outperforms the manual approach across all SFC
lengths, scoring an average of 5% higher success ratio.

Moving on, Fig. 5b presents the average objective/energy
cost for the different SFC lengths. Again, we observe that
as the length grows, the average cost rises for all three
algorithms, which is expected since longer SFCs typically
necessitate allocating more resources. However, FANCORP
consistently exhibits better performance compared to the
manual approach across all SFC lengths by yielding an aver-
age of 2.5% lower cost while performing close to the optimal
(merely 1.5% higher). It is also worth mentioning that the
manual approach could not result in a successful placement
for any SFCs of length 18, which is why Fig. 5b does not pro-
vide cost data for this length. This happens because the longer
the SFCs, the higher the likelihood of constraint violations,
which highlights the weaknesses of the suboptimal manual
selection compared to the proposed automated process.

Fig. 5c illustrates the average constraint violation penalty
during the SFC placement when comparing our approach
with the manual one. The Gurobi method’s results are
omitted from this comparison since, as an optimal solver,
it either gives a solution for the problem or indicates that
a solution is infeasible. The findings here corroborate the
proposed method’s superiority. We observe that the average
penalty increases for both algorithms as the length of the
requested SFCs increases for the same reasons as before.
However, FANCORP manages to achieve approximately a
18% lower average constraint violation penalty than the man-
ual approach. We note that we do not provide penalty data
for SFCs of length 18 for the manual approach due to zero
placement success.

Overall, this study demonstrates the positive impact
of automatically learning the Lagrange multipliers for
VNF-CPP compared to manually selecting them. The latter
can be labor-intensive and lacks the adaptability required
for dynamic environments, leading to subpar solutions. It is
a solution inherently limited by the expertise and intuition
of the practitioner and fails to capitalize on the iterative
learning potential of DRLmethodologies, which can discover
complex patterns that lead to improved multiplier values. The
proposed automated learning process enables the framework
to dynamically adapt to changing network conditions and
constraints based on real-time feedback from the environ-
ment, ensuring a more robust and flexible approach to VNF

1486 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

FIGURE 5. FANCORP vs. Solozabal et al. (Manual) [17] vs. optimal.

placement. As a last remark, while the ILP-based approach,
Gurobi, serves as a valuable baseline for comparison, its
applicability in large-scale, dynamic VNF placement sce-
narios is limited. This is due to the inherent computational
complexity of exhaustively solving ILP problems, as hinted
in Fig. 5d, where the average runtime per SFC placement is
depicted. Once again we note that the plot does not include
data for the manual approach at an SFC length of 18 because
the placement success ratio for the manual plot is zero. All in
all, FANCORP offers a real-time, scalable, and near-optimal
solution.

C. RESOURCE FRAGMENTATION MINIMIZATION
In the following, we evaluate the efficiency of the FANCORP
framework in solving the fragmentation-aware VNF-CPP.
For this purpose, we perform two families of experiments,
one on the Star network and one on the Metropolitan net-
work. First, we examine the training and how the different
parameters, as well as the infrastructure complexity, affect
the fragmentation cost achieved. Then, we provide insights
into the impact the greedy correction mechanism has on
the overall robustness of FANCORP. The parameter τ that
determines the maximum hops for measuring node and link
connectivity when calculating the network’s RFD is set to 2.

1) STAR NETWORK
As in the previous experimentation we monitor various cost
metrics during the training phase of the NCO agent, including
the reward, and depict them in Fig. 6a. Notably, the frag-
mentation cost shows a rapid decrease and convergence after
the initially high values. This indicates the agent’s ability to
quickly learn the placement policy that results in the low-
est resource fragmentation. The reward follows the opposite
path as it increases when the fragmentation cost is reduced.
At the same time, the penalty cost starts low due to the
zeroed Lagrange multipliers and rapidly increases after the
first updates, guided by Eq. (29). Despite this initial surge,
it quickly converges to zero as the agent learns to avoid
violating the system’s constraints effectively.

Additionally, in Fig. 6b we give some insights of the pro-
gression and convergence of the nine Lagrange multipliers
that correspond to the system’s constraints, Eqs. (8)– (16),
over the course of training. A higher value indicates that the
corresponding constraint is critical for the system and the
optimization is sensitive to it. On the contrary, a lower value
suggests that the constraint does not affect the optimization
and barely limits the solution. Overall, this analysis demon-
strates the NCO-RCPO agent’s capacity to in-depth learning
and consistently applying a cost-effective VNF placement
strategy where the learned Lagrange multipliers effectively
guide the agent toward policy convergence, striking a balance
between minimizing resource fragmentation and adhering to
the system’s constraints.

Finally, in Figs. 6c and 6d we quantify the impact the
learning rates have on the fragmentation cost and the mean
Lagrange multipliers value respectively. A first observation is
that when the fast timescaleψ1 becomes even faster, the agent
converges earlier. However, if the learning rate is too high,
the agent overshoots and converges to a higher fragmentation
cost. A similar behavior is observed for the slow timescale,
where a lower ψ2 means that the agent takes more time
to converge and the mean Lagrange multipliers are higher,
which subsequently makes the penalty term dominant com-
pared to the fragmentation cost in the optimization. This leads
to even stricter constraint satisfaction, i.e., a lower average
penalty, but may have a negative impact on the fragmentation
cost.

2) METROPOLITAN NETWORK
The training evolution of the NCO-RCPO agent for this
topology is captured in Fig. 7a. The figure tracks the reward
and the various costs similar to the previous setup, providing
a clear picture of the agent’s adaptation to a more intricate
network. Additionally, Fig. 7b offers an insight into the evo-
lution of the Lagrange multipliers, showing how the agent
internally adjusts its penalty parameters in response to the
more diverse metropolitan topology. The ψ1 and ψ2 impact
analysis in Figs. 7c and 7d reveal similar patterns as in the

VOLUME 2, 2024 1487

FIGURE 6. Star network evaluation.

FIGURE 7. Metropolitan network evaluation.

FIGURE 8. Benchmarking across network topologies.

Star network experiment, only this time the fragmentation
cost and the mean Lagrange multiplier values are higher,
as expected. Overall, we observe that in the Metropolitan
network, the agent takes almost twice the time to converge to a
placement policy that minimizes the costs, and these costs are
higher.

Adding to that, themultipliers exhibit a slower increase and
require more epochs to stabilize in complex topologies com-
pared to the Star topology. This is clearly evinced in Fig. 8a,
where we have isolated the mean values of the Lagrange
multipliers for all four infrastructures: Metropolitan, Star,
New York, and Abilene. A larger average multiplier value
reflects that when the infrastructure complexity increases so

FIGURE 9. GC Impact.

does the need for a detailed penalizing approach to min-
imize resource fragmentation under the given constraints.
Finally, a more complex network has a toll on the average
runtime, as depicted in Fig. 8. Placing a batch of requested
SFCs becomes increasingly slower as the batch size becomes
larger, and this is mainly attributed to Dijkstra’s algorithm
which struggles to find available paths to connect the servers
selected by the agent for placing the VNFs.

D. GREEDY CORRECTION EFFICIENCY
In every experimentation family so far, we observe that the
constraint violation penalty sharply rises to its peak, then
experiences a rapid decline and plateaus at the convergence

1488 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

FIGURE 10. FANCORP vs. VNE-RFD [8] vs. optimal.

very close to zero, oscillating slightly afterward. This slight
oscillation could potentially result in placement errors from
the agent, as discussed in Section IV-D. In this subsection,
we show experimentally why it is important to complement
the outcome of the NCO agent with the GC correctionmecha-
nism.We first remind the reader that the FANCORP agent has
been trained to place up to 100 SFC requests. This training
target is customizable and reflects the network operators’
estimations of the anticipated load, providing a flexible basis
for optimization to meet varying network demands. Out of
these 100 SFC requests, the agent has managed to place 95 of
them successfully on average in the Metropolitan network
topology; the rest of the placement actions resulted in some
constraints being violated, which deemed them initially infea-
sible. However, with GC’s intervention, these actions were
corrected, bringing this number to 100 on average, i.e., zero
request rejections.

To amplify the effect of GC’s corrective decisions, in the
following experiment, we proceed to request the placement
of more than 100 SFCs in three different network topologies:
Metropolitan, Abilene, and New York. This is the point at
which we expect the agent to start making significant mis-
calculations. Fig. 9 visually represents the placement error
percentage in relation to the number of SFCs requested for
these topologies. Solid lines represent the infeasible place-
ment percentage without the Greedy Correction mechanism,
whereas the dashed lines represent the infeasible place-
ment percentage with GC. We observe that the dashed lines
consistently show a lower percentage of i) VNE-RFD [8],
which first introduced the RFD concept and then solved
the fragmentation-aware VNF-CPP using a proactive and a
reactive online heuristic algorithm, and ii) the optimal solu-
tion of the ILP formulation, which is once more computed
through the Gurobi solver.uccessful SFC placements for up
to 200 requests, which increases to a 13% improvement for
300 and more requests. GC’s impact in improving robustness
is evident. Similar improvements are reported for the other
two networks, with the New York one having significantly
more infeasible placements due to complex node connections
and theAbilene network significantly less than theMetropoli-
tan network due to simpler structure.

E. BENCHMARKING
For the last part of this evaluation, we benchmark the end-
to-end operation of the proposed FANCORP framework on
the Metropolitan network against two baselines: i) VNE-
RFD [8], which first introduced the RFD concept and then
solved the fragmentation aware VNF-CPP using a proactive
and a reactive, online heuristic algorithm and ii) the opti-
mal solution of the ILP formulation which is once more
computed through the Gurobi solver. This analysis considers
both the fragmentation cost, as defined in Eq. (6), as well as
the SFC placement success ratio of up to 28 SFC requests.
The results of the former are depicted in Fig. 10a. Natu-
rally, as the number of SFC requests increases, all methods
incur higher fragmentation costs due to the growing decision
complexity in a resource-limited infrastructure. However,
FANCORP performs close to the optimal ILP solution results,
outperforming VNE-RFD. In Fig. 10b We depicted the aver-
age SFC placement success ratio in the same experiment.
We observe that VNE-RFD method starts rejecting place-
ments when more than 16 SFCs are requested. On the other
hand, FANCORP again performs near-optimally and man-
ages to successfully place all of the requested SFCs. This is
due to the fact that the proposed framework’s NCO-RCPO
component dynamically adjusts the Lagrangemultipliers dur-
ing training, allowing the agent to adapt to varying network
states and decisions that would lead to constraint viola-
tions and, eventually, placement failures. This adaptability
rooted in RL techniques, together with GC’s aid, ensures
FANCORP’s robust performance and represents a significant
advancement over static heuristic methods. This also makes
our framework suitable for real-time decision-making and
increases its scalability, as depicted in Fig. 10c. In particu-
lar, from this figure, we observe that FANCORP places the
batches of SFC requests in a fraction of the time required by
the two other algorithms.

VI. CONCLUSION
In this work, we proposed a fragmentation-aware Neu-
ral Combinatorial Optimization with a constrained Policy
Optimization (FANCORP) enabled framework for solv-
ing the VNF-CPP problem. This framework combines the

VOLUME 2, 2024 1489

advantages of deep reinforcement learning with those of
the reward-constrained policy optimization, enabling the
adaptive learning of Lagrange multipliers that lead to the
satisfaction of the system constraints under dynamic net-
working conditions. This contributes to a smoother and faster
learning process, further enhancing the framework’s effi-
ciency in calculating SFC placement policies that minimize
resource fragmentation in the infrastructure. The robustness
of the proposed mechanism is enhanced by a Greedy Cor-
rection mechanism, a complementary heuristic algorithm
that validates the feasibility of the produced solution and
takes corrective actions in case of minor miscalculations.
Our experimental study showcased the superiority of the
FANCORP framework in terms of minimizing resource frag-
mentation, the average placement cost and the constraint
violation degrees while maximizing the SFC placement
success ratio when compared to state-of-the-art methods.
In future work, we plan to extend the FANCORP frame-
work to address more complex network scenarios and
constraints and explore integrating a transformer model in
the S2S place to improve its performance. Another promising
direction we have pinpointed is investigating the poten-
tial of transfer learning and meta-learning approaches to
enhance the NCO-RCPO agent’s adaptability to network
dynamicity.

REFERENCES
[1] T. Gao et al., ‘‘Cost-efficient VNF placement and scheduling in public

cloud networks,’’ IEEE Trans. Commun., vol. 68, no. 8, pp. 4946–4959,
Aug. 2020.

[2] G. L. Santos et al., ‘‘Service function chain placement in distributed
scenarios: A systematic review,’’ J. Netw. Syst. Manage., vol. 30, no. 1,
p. 4, Jan. 2022.

[3] W. Attaoui, E. Sabir, H. Elbiaze, and M. Guizani, ‘‘VNF and CNF place-
ment in 5G: Recent advances and future trends,’’ IEEE Trans. Netw. Service
Manage., vol. 1, no. 2, pp. 1–16, Jul. 2023.

[4] D. Qi, S. Shen, and G. Wang, ‘‘Towards an efficient VNF placement in
network function virtualization,’’ Comput. Commun., vol. 138, pp. 1–28,
Apr. 2019.

[5] A. Leivadeas, G. Kesidis, M. Ibnkahla, and I. Lambadaris, ‘‘VNF place-
ment optimization at the edge and cloud,’’ Future Internet, vol. 11, no. 3,
p. 69, 2019.

[6] S. Wang, C. Yuen, W. Ni, Y. L. Guan, and T. Lv, ‘‘Multiagent deep
reinforcement learning for cost- and delay-sensitive virtual network func-
tion placement and routing,’’ IEEE Trans. Commun., vol. 70, no. 8,
pp. 5208–5224, Aug. 2022.

[7] N. He et al., ‘‘Leveraging deep reinforcement learning with atten-
tion mechanism for virtual network function placement and routing,’’
IEEE Trans. Parallel Distrib. Syst., vol. 34, no. 4, pp. 1186–1201,
Apr. 2023.

[8] H. Lu and F. Zhang, ‘‘Resource fragmentation-aware embedding in
dynamic network virtualization environments,’’ IEEE Trans. Netw. Service
Manage., vol. 19, no. 2, pp. 936–948, Jun. 2022.

[9] C. Tessler, D. J. Mankowitz, and S. Mannor, ‘‘Reward constrained policy
optimization,’’ 2018, arXiv:1805.11074.

[10] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, ‘‘Neural combina-
torial optimization with reinforcement learning,’’ 2016, arXiv:1611.09940.

[11] B. Németh, N.Molner, J. Martín-Pérez, C. J. Bernardos, A. de la Oliva, and
B. Sonkoly, ‘‘Delay and reliability-constrained VNF placement on mobile
and volatile 5G infrastructure,’’ IEEE Trans. Mobile Comput., vol. 21,
no. 9, pp. 3150–3162, Sep. 2022.

[12] Y. Mao, X. Shang, and Y. Yang, ‘‘Joint resource management and flow
scheduling for SFC deployment in hybrid edge-and-cloud network,’’ in
Proc. IEEE Conf. Comput. Commun., Jul. 2022, pp. 170–179.

[13] V. Tran, J. Sun, B. Tang, and D. Pan, ‘‘Traffic-optimal virtual network
function placement and migration in dynamic cloud data centers,’’ in
Proc. IEEE Int. Parallel Distrib. Process. Symp. (IPDPS), Jul. 2022,
pp. 919–929.

[14] Q. Zhang, F. Liu, and C. Zeng, ‘‘Online adaptive interference-aware VNF
deployment andmigration for 5G network slice,’’ IEEE/ACMTrans. Netw.,
vol. 29, no. 5, pp. 2115–2128, Oct. 2021.

[15] N. Promwongsa, A. Ebrahimzadeh, R. H. Glitho, and N. Crespi,
‘‘Joint VNF placement and scheduling for latency-sensitive
services,’’ IEEE Trans. Netw. Sci. Eng., vol. 9, no. 4, pp. 2432–2449,
May 2022.

[16] M. Bagaa, D. L. C. Dutra, T. Taleb, and H. Flinck, ‘‘Toward enabling
network slice mobility to support 6G system,’’ IEEE Trans. Wireless
Commun., vol. 21, no. 12, pp. 10130–10144, Dec. 2022.

[17] R. Solozabal, J. Ceberio, A. Sanchoyerto, L. Zabala, B. Blanco, and
F. Liberal, ‘‘Virtual network function placement optimization with deep
reinforcement learning,’’ IEEE J. Sel. Areas Commun., vol. 38, no. 2,
pp. 292–303, Feb. 2020.

[18] C. R. de Mendoza, B. Bakhshi, E. Zeydan, and J. Mangues-Bafalluy,
‘‘Near optimal VNF placement in edge-enabled 6G networks,’’ in
Proc. 25th Conf. Innov. Clouds, Internet Netw. (ICIN), Mar. 2022,
pp. 136–140.

[19] Z. Chen, H. Li, K. Ota, and M. Dong, ‘‘Deep reinforcement learning for
AoI aware VNF placement in multiple source systems,’’ in Proc. IEEE
Global Commun. Conf., Dec. 2022, pp. 2873–2878.

[20] L. A. Grieco, G. Boggia, G. Piro, Y. Jararweh, and C. Campolo, ‘‘Ad-hoc,
mobile, and wireless networks,’’ in Proc. 19th Int. Conf. Ad-Hoc Netw.
Wireless, 2020, pp. 1–20.

[21] F. Bari, S. R. Chowdhury, R. Ahmed, R. Boutaba, and O. C. M. B. Duarte,
‘‘Orchestrating virtualized network functions,’’ IEEE Trans. Netw. Service
Manage., vol. 13, no. 4, pp. 725–739, Dec. 2016.

[22] J. Fu and G. Li, ‘‘An efficient VNF deployment scheme for cloud
networks,’’ in Proc. IEEE Int. Conf. Commun. Softw. Netw. (ICCSN),
Jun. 2019, pp. 497–502.

[23] B. Yi, X. Wang, and M. Huang, ‘‘A generalized VNF sharing approach
for service scheduling,’’ IEEE Commun. Lett., vol. 22, no. 1, pp. 73–76,
Jan. 2018.

[24] H. Guo et al., ‘‘Cost-aware placement and chaining of service function
chain with VNF instance sharing,’’ in Proc. IEEE/IFIP Netw. Oper. Man-
age. Symp., Apr. 2020, pp. 1–8.

[25] R. Mohamed, M. Avgeris, A. Leivadeas, and I. Lambadaris,
‘‘Fragmentation-aware VNF placement: A deep reinforcement learning
approach,’’ in Proc. IEEE Int. Conf. Commun. (ICC), vol. 135, Jun. 2024,
pp. 5257–5262.

[26] J. Halpern and C. Pignataro, Service Function Chaining (SFC) Architec-
ture, document RFC 7665, 2015.

[27] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by
jointly learning to align and translate,’’ 2014, arXiv:1409.0473.

[28] R. J. Williams, ‘‘Simple statistical gradient-following algorithms for con-
nectionist reinforcement learning,’’Reinforcement Learn., vol. 8, pp. 5–32,
May 1992.

[29] R. S. Sutton and A. G. Barto, Introduction to Reinforcement Learning,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

[30] H. Ma, C. Liu, S. E. Li, S. Zheng, W. Sun, and J. Chen, ‘‘Learn zero-
constraint-Violation safe policy in model-free constrained reinforcement
learning,’’ IEEE Trans. Neural Netw. Learn. Syst., vol. 2, no. 2, pp. 1–15,
Jul. 2024.

[31] R. Mohamed et al., ‘‘Service function chain network planning through
offline, online and infeasibility restoration techniques,’’ Comput. Netw.,
vol. 242, Apr. 2024, Art. no. 110241.

[32] S. Orlowski, R. Wessäly, M. Pióro, and A. Tomaszewski, ‘‘SNDlib
1.0—Survivable network design library,’’ Netw., Int. J., vol. 55, no. 3,
pp. 276–286, 2010.

[33] IBM Cloud Docs. Accessed: Jun. 30, 2024. [Online]. Available:
https://cloud.ibm.com/docs/bare-metal?topic=bare-metal-about-bm

[34] G. Papathanail, I. Sakellariou, L. Mamatas, and P. Papadimitriou,
‘‘Dynamic schedule computation for time-aware shaper in converged IoT-
cloud environments,’’ in Proc. 27th Conf. Innov. Clouds, Internet Netw.
(ICIN), vol. 16, Mar. 2024, pp. 1–8.

[35] D.M.Manias, I. Shaer, J. Naoum-Sawaya, andA. Shami, ‘‘Robust and reli-
able SFC placement in resource-constrained multi-tenant MEC-enabled
networks,’’ IEEE Trans. Netw. Service Manage., vol. 1, no. 1, pp. 1–19,
Jun. 2023.

1490 VOLUME 2, 2024

Mohamed et al.: Optimizing Resource Fragmentation in Virtual Network Function Placement Using DRL

RAMY MOHAMED (Member, IEEE) was born
in Alexandria, Egypt. He received the bachelor’s
degree in electronics and communications engi-
neering from theArabAcademy for Science, Tech-
nology and Maritime Transport, Aswan, Egypt,
in 2014, and the Master of Science degree in
electrical, electronics, and communications engi-
neering from Aswan University, Egypt, in 2018.
He is currently pursuing the Ph.D. degree with
the Systems and Computer Engineering Depart-

ment, Carleton University, Ottawa, ON, Canada. He is also a Teaching
Assistant and a Research Assistant with the Systems and Computer Engi-
neering Department, Carleton University. He is a Certified Cloud Systems
Specialist with CENGN, with more than eight years of professional and
research experience. His research interests include cloud computing systems,
5G/6G technologies, and machine learning applications in telecommu-
nications. He received several awards and honors, including the Queen
Elizabeth II Graduate Scholarship in Science and Technology (QEII-
GSST), the Dr. Roger Kaye Memorial Scholarship, and Ontario Graduate
Scholarship (OGS).

MARIOS AVGERIS (Member, IEEE) received
the Diploma degree from the Department of Elec-
trical and Computer Engineering (ECE), National
Technical University of Athens (NTUA), Greece,
in 2016, and the Ph.D. degree in dynamic resource
allocation and computational offloading from the
Network Edge for Internet of Things Applications,
in 2021. He is currently a full-time Postdoctoral
Fellow with Carleton University, Ottawa, Canada.
He is also affiliated with École de technologie

supérieure (ÉTS) and Ericsson. His research interests include control theory,
reinforcement learning, network virtualization, computational offloading,
edge and cloud computing, and the IoT. He has been awarded with
the 2023 CU-PSAC Postdoctoral Fellow Research Award.

ARIS LEIVADEAS (Senior Member, IEEE)
received the Diploma degree in electrical and com-
puter engineering from the University of Patras,
in 2008, the M.Sc. degree in engineering from
King’s College London, in 2009, and the Ph.D.
degree in electrical and computer engineering
from the National Technical University of Athens,
in 2015. From 2015 to 2018, he was a Post-
doctoral Fellow with the Department of Systems
and Computer Engineering, Carleton University,

Ottawa, Canada. In parallel, he was with Ericsson and later collaborated with
Cisco, Ottawa. He is currently an Associate Professor with the Department
of Software and Information Technology Engineering, École de technolo-
gie supérieure, Montreal, Canada. His research interests include network
function virtualization, cloud and edge computing, the IoT, and network
optimization and management. He received the best paper awards in ACM
ICPE’18, ACM ICPE’23, and the IEEE iThings’21 and the Best Presentation
Award in IEEE HPSR’20.

IOANNIS LAMBADARIS (Senior Member,
IEEE) was born in Thessaloniki, Greece.
He received the Diploma degree in electrical engi-
neering from the Polytechnic School, Aristotle
University of Thessaloniki, Thessaloniki, in 1984,
the M.Sc. degree in engineering from Brown Uni-
versity, Providence, RI, USA, in 1985, and the
Ph.D. degree in electrical engineering from the
Department of Electrical Engineering, Systems
Research Center (SRC), Institute for Systems

Research (ISR), University of Maryland, College Park, MD, USA, in 1991.
After finishing his graduate education, he was a Research Associate with
Concordia University, Montreal, QC, Canada, from 1991 to 1992. Since
September 1992, he has been with the Department of Systems and Computer
Engineering, CarletonUniversity, Ottawa, ON, Canada, where he is currently
a Professor. His interests lie in the area of applied stochastic processes
and their application for modeling and performance analysis of computer
communication networks and wireless networks. His current research inter-
ests include quality of service (QoS) control for IP and evolving optical
networks architectures and stochastic control/optimization in emerging
wireless networks. His research is done in close collaboration with his
students and colleagues in the Broadband Networks Laboratory. He received
a fellowship from the National Fellowship Foundation of Greece (1980–
1984) during his undergraduate studies. He also received the Technical
Chamber of Greece Award (ranked first in graduating class). He received
a Fulbright Fellowship (1984–1985) for graduate studies in USA. While at
Carleton University, he received the Premiers Research Excellence Award,
and the Carleton University Research Excellence Award (2000–2001), for
his research achievements in the area of modeling and performance analysis
of computer networks. Since 2022, he has been the Ericsson Chair of the 5G
Wireless Research, Carleton University.

VOLUME 2, 2024 1491

