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Abstract. The characterization of hydroelectric turbine runners’ dynamic behaviour is essential for accurate
stress and fatigue life prediction leading to design andmaintenance adapted to the fluctuating power demand. As
the modal parameters of runners depend on the operating regime and coupling effects, a representative
estimation of these parameters relies on the analysis of in-operation data. However, harmonics contained in
Francis runners strain response complexify the use of traditional operational modal analysis methods. This
paper proposes a steady-state harmonic modal analysis method using Non-Trivial Rotor-Casing Interactions
(NTRCI). The Bayesianmethod used to identify the parameters is first presented. Then themethod is evaluated
on a ground truth system obtained with an analytically generated strain response and then deployed on
operating runner strain gauge measurements. The paper concludes with a discussion and future works related to
the exhaustivity of the proposed model and additional signal processing needs.

Keywords: Hydroelectric turbines / synchronous vibrations / operational modal analysis / Bayesian inference
/ steady-state
1 Introduction

Hydroelectric turbines are mechanical systems converting
water flow energy to electricity. In a Francis turbine, the
spiral casing creates a free water swirl (see Fig. 1). The
runner transfers the water swirl’s kinetic and potential
energy in shaft torque by the transfer of momentum from
the deflection of the water. By its function, the runner
response is characterized by high dynamic stresses and its
failure represents a costly loss of production [1]. The recent
arrival of intermittent energy sources on the power grid
stretches the operating range of those hydroelectric
turbine-generator units. Off-peak operations of turbines
result in new loadings accentuating fatigue degradation
runners [2,3]. This new reality combined with the financial
criticality of the integrity of the runner entails the need to
comprehend its dynamic behaviour and loadings. This
understanding should improve fatigue analysis, life
estimation and diagnosis tools, and allow better-suited
design of turbines to the fluctuating demand.
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Typically, the modal characterization method for the
runner is numerical simulations using an axisymmetric
runner in a constrained acoustic fluid volume. Such a
method usually considers isolated components like the
runner with or without the shaft. Experimental methods
are sometimes used to validate and calibrate numerical
simulations [5–7]. Those experimental methods, however,
consider the sole runner in air or standstill water ([5,8–10])
which is insufficient to capture the actual fluid-structure
coupling effects found in operation. In essence, Operational
Modal Analysis (OMA) methods use in situmeasurements
which account for the actual geometry of the runner and
coupling and added mass effects. Such an identification
approach is output-only assuming white noise excitation
from the environment [11]. To account for uncertainty,
Dollon et al. (2020) proposed a Bayesian modal analysis
method using strain gauge measurements on runner blades
in transient regimes [12]. However, in steady-state regimes
near the Best Efficiency Point (BEP), periodic excitations
dominate stochastic excitations, limiting the use of
traditional OMA methods. Using runner strain measure-
ments, Dollon et al. (2023) observed unexpected resonance
between rotation speed harmonics and natural modes of
the runner [4]. The author proposed a steady-state periodic
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
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Fig. 1. Principal components of Francis turbines from Dollon et al. (2023).
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forced response model to describe those Non-Trivial
Runner-Casing interactions (NTRCI). The proposed
model generalizes the Rotor-Stator Interactions (RSI)
theory, which is the interaction of the rotating runner with
the fixed ZG guide vanes [13,14]. The identification of the
periodic forced response model using strain gauge measure-
ments presents an opportunity to achieve a harmonic-
based modal analysis of the turbine runner, i.e., its
harmonic modal analysis.

This paper presents a Bayesian inference method for
the harmonic modal analysis of a Francis turbine runner
using in situ strain gauge measurements. The paper is
structured as follows. Section 2 presents the runner blades’
periodic forced response model. Section 3 proposes an
inference methodology to evaluate the runner’s NTRCI
excitation and modal parameters. Section 4 circumscribes
the range of applicability of the algorithm through a
synthetic data study. Section 5 presents the implementa-
tion of the method on an operational prototype runner
under a NTRCI excitation. Section 6 discusses perspectives
on future developments and applications of the method
before concluding in Section 7.
2 Periodic forced response model

Dollon et al. (2023) proposed amodel to estimate the forced
response of a runner blade to a purely periodic excitation by
the analysis of one runner blade. The model states that, in
the modal basis, the excitation generates Q harmonics per
nodal diameter v, Q being a number depending on the
considered bandwidth. The number of nodal diameters v is
a quantity used to characterize the spatial shape of a mode
of vibration in an axisymmetric structure [9,14]. Runner
nodal diameters v are integers from � � ZR=2;ZR=2½ if the
number of blades ZR is odd or [(1�ZR)/2, (ZR� 1)/2] if ZR
is even. The rotating runner’s gyroscopic effect splits each
stationary modes of a given nodal diameter v in two
traveling waves±v. In this paper, negative nodal diameters
are counterrotating (backward) modes, and positive nodal
diameters v (or ND) are corotating (forward) modes. Nodal
diameter v=0 is a standing vibration, considered as a
backward mode in the model.
As described per Dollon et al. (2023), on an observed
point n on the blade, the corotating angular position u
dependant shape F(u) of the periodic excitation force in the
physical basis can be expressed by a set of Fourier
coefficients {Fp}. For a ZR-bladed runner, the force
projected in the modal basis, using a cardinal sine function,
generates a harmonic excitation as expressed in equation (1)
(q∈ [1, Q]).

cq;n ¼
X

p∈ℤ
F�

p sinc q � pð Þpþ pn

ZR

��

e
i q�pð Þpþ pn

ZR

h i
≈F1Zf1Z

q;n: ð1Þ

In equation (1), cq,n∈ℂN�1 contains the excitation Fourier
coefficients, F1Z∈ℂN�(2P+1) contains a finite quantity P of
force Fourier coefficients for a one-per-revolution force, N
stands for the number of observations on a blade and
f1Z
q;n∈ℂ

2Pþ1ð Þ� 1 is the transformation vector expressing the
excitation force in the modal basis as illustrated in Figure 2.
In Figure 2, on the left, are the Fourier coefficients {Fp}
definingtheoneperbladeperrevolution(ZRperiodic) runner
excitation expressed inPower Spectral Density as a function
of multiples p of the harmonic orders ofZR. On the right, the
same excitation is expressed in themodal basis as a set of ZR
Q nodal diameter specific Fourier coefficients {cq,v} in
relation to the harmonic order of the runner rotation
frequency V at an observed point n.

In the periodic response (see Eqs. (2) and (3)), an
excitation harmonic’s cq,n magnitude is modulated according
to its frequency proximity to corresponding natural frequen-
ciesvn,l,withmodel∈ [1,L] of givennormalizedmode shape
cn,l∈ℂN�1. The gyroscopic effect from rotation at frequency
V causes eachmode to split in conjugated forward (v+n,l and
c+n,l) and backward (v�n,l and c�n,l) modes [4,15]. As
developed in [4], themodel deals with a single mode per nodal
diameter. Here, the forced response model was adapted to a
multimode l contribution and expressed in the frequency
domain in equations (2) and (3).

xq;þn¼
X

l

ffiffiffiffiffiffi
2p

p
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In equations (2) and (3), xq,n ∈ ℂN�1 contains the qth

response harmonic for all observed points N on the blade,
A+n,l A�n,l and A�n,l Element of ℂN�N are the residual
matrices of the lth forward and backward conjugated
modes of nodal diameter n, respectively. A residual matrix
An,l depends on normalized mode shape cn,l as
An;l ¼ cn;lc

H
n;l. For a given excitation periodicity, equa-

tions (1), (2) and (3) can be combined in a matrix stacking
all N�Qharmonics related to a given forward or backward
nodal diameter n as shown in equation (4):

Xn ¼
X

l
An;lFFnWn;l ð4Þ

where Xn∈ℂN�Q contains the response harmonics,
F ¼ F0 F�p Fp½ �∈ℂN � 2Pþ1ð Þ, with p∈ [1, P], contains
the excitation Fourier coefficients,Fn ¼ f0 f�p fp

� �T
∈ℂ 2Pþ1ð Þ�Q is the transformation matrix andWn,l∈ℝQ�Q

is a diagonal matrix with element Wqq ¼
ffiffiffiffiffiffi
2p

p
vþn;l� qZRþnð ÞV orffiffiffiffi

2p
p

�v�n;l� qZR�nð ÞV for forward or backward modes.
Francis turbines’ excitation inevitably contains rotor-

stator interactions (RSI), which are ZG-periodic forces. To
obtain an excitation model accounting for RSI, a ZG
periodic excitation is added to the initial 1Z excited
model as: X1Z;ZGZ

n ¼
X

l
An;lF

1Z;ZGZf1Z;ZGZ
n Wn;l, where

X1Z;ZGZ
n ∈ℂN �Q is the strain response matrix, F1Z;ZGZ

¼ F1Z FZGZ
� �

∈ℂN � 2 2Pþ1ð Þ andf1Z;ZGZ
n ¼ f1Z

n fZGZ
n

� �T
∈ℂ2 2Pþ1ð Þ�Q are respectively the combined 1Z and RSI
force coefficients and modal transformation matrices. To
infer the excitation coefficients F of a given excitation, the
mode shapes cn,l and natural frequencies vn

l, the
ncontribution of a specific excitatioon the harmonics is
isolated so that Xn ¼ X1Z;ZGZ

n �X
n
Z .

3 Model-based inference algorithm

The method used to fit the model to the measured strains
synchronous harmonics of the runner is based on the
Prediction Error Method (PEM) (Eq. (5)) [16]. The error e
between themeasured harmonics X̂n∈CN �Q and the model
Xn is proposed complex Gaussian e ∼nC 0; s2I2NQZR

� �
with s2 the variance of error e.

X̂n ¼ Xn þ e: ð5Þ
Using Bayes’ Theorem [17] with a uniform prior, the

posterior density of probability of the model given the data,
PðXn ; s

2 jX̂n Þ, is expressed proportional to the likelihood
LðX̂n jXn ; s

2 Þ of the data: PðXn ; s
2 jX̂n Þ∝LðX̂n jXn ; s

2 Þ.
The resulting complex Gaussian likelihood is expressed in
equation (6).

L X̂n jXn ; s
2

	 

∝

1

s2NQ
e
� 1
s2
tr ðX̂n �XnÞH ðX̂n �XnÞ½ � ð6Þ

From the likelihood, a conditional probability density is
derived in Sections 3.1–3.3 for the error, the excitation and
mode shapes enabling Gibbs sampling [17]. Since the
conditional probability density shape of the natural
frequencies is unknown, as shown in Section 3.4, a
Metropolis-Hastings step is implemented leading to a
Metropolis-Within-Gibbs algorithm [18].

3.1 Error sampling Kernel

The error depends on all response harmonics of the N
observed points. Therefore, the conditional probability
density is the product of every nodal diameter probability
density. The obtained conditional probability density for
the homoscedastic variance s2 is an inverse gamma
distribution g�1 as shown in equation (7).

pðs2jrestÞ∝g�1ð
X
n

2NQ� 1;
X
n

‖X̂n � Xn‖2Þ ð7Þ

with rest being all the other parameters.

3.2 Excitation sampling Kernel

The excitation associated to an observed point n depends
on each of its response harmonics. Using equation (6) and

the model (Eq. (4)) as a vector vec
	
½ReðXnÞ ImðXnÞ�T




¼ ~Pnvecð~F


, equation (8) expresses the conditional

probability of the excitation, p (F|rest).
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T
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X
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with transformation matrix ~Pn ¼ ½Reð
X

l
Wnl

TFn
T � AnlÞ

Imð
X

l
Wnl

TFn
T �AnlÞ�T∈R2NQ� 2Nð2Pþ1Þ, the Kronecker

product ⊗, and with ~F ¼ ½Reð½F0 Fp �Þ ImðFpÞ �
∈ℝN �ð2Pþ1Þ being the excitation coefficients matrix expressed
in the real space.

3.3 Mode shape sampling Kernel

Mode shapes are normalized complex vectors. Each mode l
has an associated mode shape. The conditional probability
density for a given mode shape cn,l is evaluated with
measured harmonics X̂n,l considering the contribution of
other modes as described in equation (9).

X̂n;l ¼ X̂n �
X

z≠lAn;z FFn Wn;z: ð9Þ



Fig. 2. Transformation of the excitation from the physical to the modal basis.
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From the proposed likelihood (Eq. (6)), mode shape
vectors contained in residual matrices An;l ¼ cn;lcn;l

H are
factorized in equation (10) using the cyclic shift invariance
of the trace.

L X̂n;ljXn;l ; s
2

	 

e
tr cn;l

H �1
s2

FFn;lWn;lWn;l
TFn;l

HFH�X̂n;lWn;l½
	h

HFn;l
HFp

H � FFn;lWn;lX̂n;l

H �Þcn;l�: ð10Þ

From equation (10), using Hoff (2009) developments, a
vector Bingham conditional probability can be derived for
a vector in ℂN�1, hence the normalized complex mode
shape cn,l.

3.4 Natural frequency sampling Kernel

From the likelihood LðX̂n;ljXn;l ; s
2 Þ (see Eq. (10)), the

natural frequency vn,l in the diagonal of Wn,l has an
intractable kernel shape. In a random walk Metropolis-
Hastings step [17], candidates vn,li

at iteration i are
sampled in a Gaussian distribution ? vn;li�1

; sl
2

� �
with a

user-defined variance sl
2. To maximise the acceptance

ratio of a given natural frequency vv,l, variance sl
2 can be

defined natural frequency specific considering the signal-to-
noise ratio (SNR) of given harmonics. In our case, as the
rotating runner is expected to be excited from a point of the
fixed domain, forward modes have lower SNR because they
are excitedbyhigherorderharmonics thanbackwardmodes.
Therefore, the inference of forward natural frequencies is
more sensitive to stochastic excitation bias (see Sect. 4.1.3).

A hypothesis is made on mode-split from the gyroscopic
effect, stating that the frequency gap between conjugate
modes is in the range of 0Hz to 10Hz. A forward natural
frequency density of probability p(v+n,l |rest) is then
weighted by a Gaussian prior p (v+n,l|v+n,l)=� (v+n,l�
v�n,l)

2/2k2 given the backward natural frequency value
v�n,l and a user-defined variance k2 influencing the natural
frequency vn,l samples.

pðvþn;ljrestÞ∝LðX̂n jXn ;S Þpðvþn;ljv�n;lÞ: ð11Þ
In the Metropolis-Hastings step of the algorithm, user-

defined variances sl
2 are tuned according to the noise level

and the quantity N of observed points (sensors) considered
for the inference to maximize the acceptance ratio of each
natural frequency.
Many vibration modes can be associated with a given
nodal diameter± n, e.g., a type of mode shape. The
sampling of each nodal diameter-specific natural frequen-
cies is executed sequentially. To ensure stability in the
sampling, the order of those natural frequencies is
constrained from the lower frequency mode to the higher
frequency mode so that vn,l<vn,l+1.

4 Synthetic data study

The probabilistic modal identification algorithm is
intended to be deployed on in situ measurements. It,
therefore, needs to be evaluated on a representative
synthetic dataset. Three groups of parameters interreact:
the excitation periodicities, the number of harmonics
accessible from the measured response and the number of
modes contained in the analyzed frequency band.

4.1 Range of applicability

The measured synchronous harmonics in the studied
datasets are observed up to around the 40th to 50th
harmonic. In this frequency band, for our studied Francis
runner, 3 to 7modes l per nodal diameter n are expected. In
this sense, as the harmonic order considered by the
algorithm increases, so does the complexity of the forced
response model to infer.
4.1.1 Minimal quantity of harmonics

Let’s consider a systemwith twomodes per nodal diameter,
excited by a periodic force composed of a fundamental and
three harmonics. This system is solved with five observed
points n on one runner blade. From the experimentation
results, the minimal number of harmonics required for
Markov Chain Monte-Carlo (MCMC) convergence is
ZRQ=39 for a ZR=13 blades runner, e.g., Q=3 response
harmonics per nodal diameter n. When the periodic force is
described by more (Q > 3) harmonics in the spectral
domain, the MCMC stability for the excitation decreases.
This observation is also made when the number of observed
points n increases. However, this stability loss can be solved
by adding higher-order response harmonics.

From the two mentioned limitations, the inference of a
2Z pattern or higher periodicity excitation, like RSI, from
the ZRQ ∼ 50 observable response harmonics in the



Fig. 3. Algorithm mode under-definition bias effect on 2nd modes.
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response is unattainable. The one or two RSI-specific
excitation harmonics observable can be ignored if still three
harmonics per ND can be used for the inference. RSI
excitation’s amplitude contribution to 1Z-affected har-
monics can be considered using a pseudo-inverse function
to infer a residual amplitude for the RSI contribution to the
harmonics.

4.1.2 Minimal quantity of modes

When the algorithm is tested on systems containing more
than two modes per nodal diameter (ND), it causes a
divergence in the excitation sampling. For a given nodal
diameter n, the modal residue induced by higher frequency
modes introduces some inaccuracies in the inference,
leading to a bias in the inference of the highest natural
frequency, from now on called 2nd mode. The lowest
natural frequency, e.g., first mode, is less altered suggesting
that the higher frequency acts as a firewall that captures
the higher frequency modes bias. A test was carried out
where the algorithm tried to characterize two modes per
ND from a synthetic signal generated using four modes per
ND. Figure 3 illustrates the bias obtained for mode ND5-2
(2ndmode of the 5th nodal diameter).Without a frequency
maximum constraint, some Markov Chains of the natural
frequencies were also observed to drift towards higher
frequencies in a multimodal shape.

To minimise the modal residue effect, forward and
backward 2nd mode natural frequencies ND2-2 to ND6-2
are sampled using an independent Metropolis-Hastings
method [17] based on a Gaussian distribution
? v± n;2IW ; sl2

� �
with a constant defined mean v±n,2 IW

near the expected 2nd mode natural frequency and a
variance sl

2 ¼ 100. A Gaussian prior g (vn,l|v�n,l) given
the conjugate mode, and as initially defined for forward
modes (Sect. 3.4), is also added on all 2nd modes sampling.
The additions constrain the 2nd modes sampling around
the expected 2nd mode natural frequency value to
minimize the modal under-definition bias.
4.1.3 Stochastic excitation bias

On Francis turbine runners around the best efficiency point,
stochastic excitations, dominatedbyperiodic excitations, are
marginalbutnon-zero.Asthemodelledexcitationisproposed
as purely periodic, the stochastic excitation contribution
biases themodel.Thenoisefloorofstrainmeasurementsonan
operating runnerwas analyzed at 70%, 50%and20%of guide
vanes opening (GVO) to evaluate the stochastic excitation
level at each opening. For the analysis, the measured
stochastic contribution to the signal at the three guide vanes
openings isnormalizedusing thenoisefloor level |2g|2nearthe
first harmonic order in the power spectrum and the power of
thefirst synchronousharmonic |A1|

2 as log [|2g|2/|A1|
2].Noise

floor levels in the range of 20 GVO to 70GVOwere observed
between log [|2g|2/|A1|

2]=� 7.5and log [|2g|2/|A1|
2]=� 9.2,

hence a lower stochastic contribution near the BEP.
The algorithm’s sensitivity to the stochastic bias was

evaluated using added Gaussian stochasticity to the
excitation generating a harmonic to stochastic ratio
(HSR) log [|2g|2/|A1|

2] near the one measured at the tested
GVO. The resulting absolute amplitude error for excitation
parameters is of order 10�2N·s to 10�1N·s for Gaussian
stochastic contributions considered equivalent to 20 GVO
and 70 GVO conditions. As the amplitude of the periodic
excitation’s Fourier coefficients increases, the bias becomes
negligible. The stochastic bias sensitivity analysis showed
that the proposed Gaussian stochastic excitation has no
critical effect on the excitation parameters around BEP,
e.g., log [2g/|A1|

2]≈� 9, although the bias should be
considered for better accuracy.

In the preceding analysis, the interaction between the
stochastic excitation and the system was not considered.
The resonance between the runner’s vibration modes and
the stochastic excitation could generate a non-negligible
bias on the synchronous harmonics and should be
investigated.

4.2 Synthetic data study case

The algorithm is evaluated using the 3ZR first harmonics
produced by a fourmodes perND,model under a combined 1Z
and RSI excitation observed by 10 sensors. The forces Fourier
coefficients are defined using uniform distributions U. The
fundamentals distributions are F0,1Z=U [85, 115]Y N · s and
F0,RSI=U [985, 1015]YN · s,withbinaryvariableY=±1with
equal probability. The harmonics distributions are defined as
Fp,1Z=U [� 80, 80] and Fp,RSI=U [� 710, 710]. Turbine
parameters are ZG=24 guide vanes, ZR=13 runner blades
and a V=1.25Hz rotating frequency. The observed RSI
harmonic is considered using a pseudo-inverse function. To
simulate a 70% guide vane’s opening with a non-negligible
stochastic contribution to the periodic excitation based on
Section 4.1.3 analysis, a Gaussian noise is added generating a



Fig. 4. Excitation harmonics (red) modulated in the strain response (black).
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HSR log [|2g|2/|A1|
2]=� 8.13. Mode shapes are randomly

generated, and natural frequencies are chosen in an actual
runner-like range (seeTab.1)basedonpreviousmodalanalysis
ofthestudiedrunnerusingfiniteelementanalysis instandstill
water. In Figure 4, excitation harmonics generated by
coefficients cq,n are represented in red. Each harmonic’s
amplitude varies according to its proximity to the nodal
diameter and companion-specific modes resulting in the
strain response Xn in black. Forward modes harmonics are
indicatedby theminus sign.For visualization, thenoisefloor
is represented among the harmonics. The probabilistic
algorithm is set to infer the two firsts of the defined four
modes per ND and three of the five defined excitation
harmonics to reproduce an under-definition of the system as
may occur on field measurements deployment.
4.3 Results on synthetic data

The model inference results over 60,000 iterations are
shown in Table 1. The Most Probable Value (MPV) per
natural frequency is compared to the defined target value
by a relative error in percentage.

The Metropolis-Hasting candidate distribution for
forward and backward modes ND2-2 to ND6-2 was set
to a mean v±n,2IW= 50Hz and variance sl

2 ¼ 100 for the
inference.

In Table 1, torsion modes (ND0) harmonics have poor
signal-to-noise ratio (SNR) and lead to inconclusive
results. The obtained 95% credibility intervals (IC-95)
for 1st modes vary from 1.5Hz to 26.9Hz. Also linked to
low SNR harmonics, forward modes ND1*-1 to ND6*-1 are
inferred with a 10Hz to 20Hz larger IC-95 than backward
modes. The resulting IC-95 for 2nd modes, inferred with
the independent candidate method, is in the range of
7.0Hz à 24.6Hz. Although the inferred 2nd modes may be
biased, their consideration facilitates the inference of first
modes as ND1-1 to ND6-1 are inferred within a 3Hz error.
The error over 14% for mode ND4-1 results from a
bimodal posterior distribution for the parameter. The first
mode (MPV-1) is found near 23Hz and the second mode
(MPV-2) is found near 27Hz. Such a case shows that the
analysis of the shape of the posterior distribution is
necessary. The same analysis using 5 sensors showed
similar results. Finally, the defined 2% to 10% mode split
is within the error range.

5 Implementation on field measurements

The synthetic and the field measurements differ in the
stochastic excitation influence and damping effects,
among other epistemic uncertainties. To begin with,
the stochastic excitation bias added to the model
produces a constant broadband noise floor. In operation,
turbulence excitation, cavitation and vortices might
induce colored noise with an irregular floor interacting
with the vibration modes of the system. The biased
harmonics might be interpreted of higher amplitude than
expected by the model, increasing risks of excitation
overshooting or indetermination. Furthermore, damping
is not accounted for in the model. This omission might
lead to phase biases of the inferred excitation and mode
shapes, and to an overestimation of synchronous
harmonics amplitude for a given natural frequency.
The algorithm is deployed on field measurements to
evaluate the impact of the biases.

5.1 Field steady-state strain measurements

The studied runner is a low-head Francis turbine with
ZR= 13 blades, ZG= 24 vanes and a rotating speed of
V=1.25Hz. The strain and pressure measured points are
shown in Figure 4.

The pressure measurements are used to analyze the
possible excitation periodicities in the runner. As shown in
Figure 5a, a dominant 1-per-revolution synchronous
pressure amplitude is present in the system leading to
the consideration that there is a 1Z excitation of the runner.

The rotating speed of the runner is not perfectly
constant. Some runners’ rotating speed respond to the grid
power variations or are oscillating around a speed
command. The synchronous vibrations are therefore
extracted by synchronous averaging [20]. In Figure 6b,
in green, are the extracted harmonic values from the runner
strain response (black) measured by one of the strain



Table 1. Inferred natural frequencies from the modelled response.

Modes Target [Hz] MPV [Hz] Error % 95% interval Modes Target [Hz] MPV [Hz] Error% 95% interval

ND1-1 8.0 8.7 8.8 6.9–11.0 ND1–2 27.0 25.6 5.2 20.3–29.5
ND1*-1 10.0 7.5 25.0 1.5–23.2 ND1*–2 31.0 28.3 8.7 16.3–40.9
ND2-1 12.1 12.8 5.8 10.8–14.8 ND2–2 48.0 46.3 3.5 41.0–53.3
ND2*-1 14.1 13.7 2.8 3.4–27.4 ND2*–2 53.8 47.9 10.9 37.0–59.0
ND3-1 22.0 23.3 5.9 22.2–23.7 ND3–2 50.2 53.9 7.3 45.3–62.1
ND3*-1 24.0 25.8 7.5 14.8–36.9 ND3*–2 55.2 57.2 3.6 45.5–67.1
ND4-1 27.2 23.3 14.3 22.3–28.5 ND4–2 51.9 52.9 2.0 48.8–64.8
ND4*-1 29.2 26.5 9.2 14.2–37.1 ND4*–2 56.9 56.2 1.2 45.5–67.1
ND5-1 29.4 30.5 3.7 28.8–33.6 ND5–2 52.3 58.2 11.4 52.2–65.8
ND5*-1 31.4 30.7 2.2 20.2–39.4 ND5*–2 57.3 58.2 1.7 48.5–67.8
ND6-1 30.2 32.1 6.3 26.8–36.8 ND6–2 52.1 57.3 10.0 51.0–63.3
ND6*-1 32.2 31.6 1.9 22.8–39.2 ND6*–2 56.1 57.6 2.7 47.9–67.6
ND0-1 9.5 22.9 141.1 3.9–38.5 ND0–2 30.0 51.0 70.0 29.8–69.3

Fig. 5. Strain (red) and pressure (blue) measured points.
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gauges on the runner blade installed as shown in red in
Figure 5. The extracted harmonics (green) are used for the
inference of the model by the algorithm.

5.2 Results on field measurements

The excitation, mode shapes and natural frequencies
inference is completed with measurements from 10 strain
gauges on two blades of the same runner during stable
operation near the best efficiency point. The algorithm is set
to infer, over 200k iterations, 26 modes and a one-per-
revolution (1Z) excitation, considering the RSI response
harmonic, defined with one fundamental and three harmon-
ics. The first 15 of the 26 inferredmodes’ natural frequencies
of the runner are presented in Table 2. The inferred natural
frequencies are compared to numerical simulation results of
the studied runner in standstill water. As the numerical
simulation did not include the runner shaft, simulated ND1
natural frequencies are not considered.

From Table 2, the posterior distributions of forward
modes natural frequencies ND2*-1 to ND6*-1 show similar
IC-95, of 17.7Hz to 23.1Hz than the resulting distribu-
tions of the same modes with synthetic data. The MPV of
natural frequencies obtained on field measurements are all
within their IC-95 except for mode ND3-1 (22.1Hz) which
is only within its IC-99. The IC-95 obtained with blade 1
and 2 show a±4Hz consistency excepted for modes ND2-1
and ND2*-1. The IC-95 of those inferred natural
frequencies is 5.0Hz to 7.0Hz higher on blade 2 than
on blade 1.

The MCMC of the excitation parameters showed
partial stabilization. The reconstruction of the signal
harmonics with the inferred model shows an up to 104 me
overshoot of the harmonics over the 13th order and IC-95
on the excitation parameters of order 103N s.

On different tries with given measurements, a phase
variability between the excitation Fourier coefficients and
an up to 10Hz variability of the inferred natural
frequencies MPV were observed. As for the obtained
IC-95 they vary by±5Hz. The blade difference of the
MPV presented in Table 2 may therefore not only be
attributed to the local physical properties of the two
blades but to the variability of the different tries and the
indetermination of the excitation with the actual model
and data.

The omission of stochastic contribution to the system
and damping may be the root cause of the non-
repeatability and the partial stabilization of the excitation
entailing the consideration necessity of those effects. As the
proposed model is shown non-exhaustive for the used
measurements, the inferred modal parameters may not be
statistically conclusive.



Fig. 6. (a) 30°cm from leading edge intrados pressure measurements on blade 2. (b) Extracted harmonics (green) from the runner
strain response (black) measured by one of the strain gauges on the runner blade.

Table 2. Runner in steady-state operation inferred natural frequencies.

Modes Num.
sim. [Hz]

MPV
blade 1 [Hz]

Error % 95%
interval

MPV blade
2 [Hz]

Error % 95%
interval

Blade
difference [Hz]

ND1-1 – 3.85 – 3.3–14.1 6.8 – 6.2–14.2 3.0
ND1*-1 9.6 0.8–21.1 11.8 1.3–21.8 2.2
ND1-2 – 25.6 – 19.1–32.1 26.2 – 20.6–31.8 0.6
ND1*-2 27.4 – 16.8–40.3 25.2 – 20.6–39.6 2.2
ND2-1 12.1 7.18 40.7 5.1–13.1 14.7 –21.5 9.2–17.8 7.5
ND2*-1 7.37 39.1 0.9–18.6 13.9 –14.9 3.1–26.1 6.5
ND3-1 22.1 27.9 –26.2 22.3–34.4 26.5 –19.9 22.6–34.0 1.4
ND3*-1 28.8 –30.3 14.9–38.0 27.2 –23.1 13.6–37.5 1.6
ND4-1 27.2 30.8 –13.2 23.3–35.6 28.3 –4.0 23.9–39.9 2.5
ND4*-1 30.5 –12.1 17.6–39.2 35.4 –30.1 18.9–39.6 4.9
ND5-1 29.4 31.8 –8.2 24.4–36.6 28.8 2.0 24.4–35.3 3.0
ND5*-1 32.3 –9.9 16.8–39.3 30.0 –2.0 18.8–39.2 2.3
ND6-1 30.2 31.0 –2.6 25.7–38.3 32.6 –7.9 26.4–37.8 1.6
ND6*-1 31.9 –5.6 18.5–39.5 34.2 –13.2 21.0–39.5 2.3
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6 Discussion and perspectives

The previous sections showed the inference of a periodic
forced response model from synthetic data and operating
runner strain measurements using a Bayesian inference-
based algorithm. The complexity of the proposed model
and method is noteworthy. Improperly constructed model
matrices may lead to algorithm convergence but produce
unphysical results. Therefore, validating the model and
initially evaluating the algorithm on synthetic data are
crucial to ensure satisfying results. Although the inferred
natural frequency values in Section 5 are within the range
of simulated natural frequencies, the method would benefit
from future works to enhance the stability and resulting
95% credible intervals. Biases from stochastic excitations,
modal residues and damping effects should be considered
by the method. At first, stochastic excitations’ contribu-
tion should be considered in the analysis as synchronous
harmonics’ amplitude might contain a non-negligible
stochastic contribution that may cause the frequency-
varying noise floor observed in the strain response (see
Fig. 5b). If the noise floor variations are mainly random,
Discrete Random Separation (DRS) [21] could be used.
Other noise floor models or the combination of the
proposed deterministic harmonic modal analysis method
and stochastic excitation-based traditional OMA could be
of interest. This consideration could enhance the accuracy
and range of applicability of themethod in different turbine
operating regimes. Secondly, modal residue parameters
should be added to the model as the algorithm is limited to
the consideration of 2 modes per nodal diameter n. The
consideration could lead to a better accuracy in the 2nd
modes inference. Then, as damping may be difficult to
include as a parameter in the probabilistic algorithm,
sensitivity analysis or model selection methods using
proposed damping constants added to the model could be
of interest. The exploitation of a numerical simulation of
the studied runner could also be of interest. The simulated
natural frequencies could be used as constants in the
algorithm to estimate damping coefficients in the Metrop-
olis-hastings step. As 2ndmodes per nodal diameter may be
more damped [8] the consideration of damping could
correct the overshoot of the excitation and response
harmonics by the algorithm.
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A more exhaustive forced response model combined
with the better-suited algorithm could not only become a
useful tool for operating runner’s dynamics characteriza-
tion but also represent a harmonic modal analysis
opportunity on model scale runners. On model-scale test
benches, it may be possible to generate a controlled 1Z
excitation by moving a specific guide vane. With
mechanical homology principles [22], the natural frequen-
cies of operating runners could be deducted. This less
expensive and more flexible application of the method
could lead to new knowledge on runners’ dynamics and
loadings.

7 Conclusion

In operating hydro-turbines, Non-Trivial Runner-Casing
Interactions (NTRCI) can produce a wide range of
synchronous harmonics observable in strain gauge meas-
urements of the runner’s response. Dollon et al. (2023)
proposed a periodic forced response model, considering
gyroscopic effects, explaining the nodal diameter specificity
and amplitude of the harmonics. In this paper, a Bayesian
method is proposed to infer the roots of a periodic
excitation, modal characteristics, and uncertainties of
Dollon et al. (2023) NTRCI model from observed
harmonics in a Francis runner steady-sate strain response.
The proposed method is limited to a case study under a
one-per-revolution (1Z �NTRCI) and Rotor-Stator Inter-
action (RSI) combined excitation with dominant influence
from the first 2 modes of each specific nodal diameter. The
proposed algorithm inferred 15 of the first modes of an
operating Francis runner within a 7.5Hz difference of
simulated natural frequencies in standstill water and a 95%
credible interval (IC-95) of 8.0Hz to 23.9Hz. The
considered rotating frequency-dependent mode split effect
was shown insignificant compared to the quantified
uncertainties. The partial stabilization and non-repeat-
ability of the excitation inference imply the non-negligibil-
ity of stochastic excitations, modal residues and damping
effects.

Future works focussing on improving stochastic
excitation, modal residue and damping modelling could
bring a more representative physical model. The Bayesian
inference algorithm could benefit from combined blade
information in the statistical model and mode coupling
information. Parameter discrimination could be enhanced
by using model selection methods and prior information
from numerical simulations as Bayesian algorithms are well
suited for the addition of prior knowledge. Ultimately, this
harmonic modal analysis method could bring more
knowledge on runners’ dynamics and loadings, essential
for design, life analysis tools and health monitoring.
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