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Abstract: The inherent instability of laser welding, particularly keyhole instability, poses significant
challenges in industrial applications, leading to defects such as porosities that compromise weld
quality. Various forces act on the keyhole and molten pool during laser welding, influencing process
stability. These forces are categorized into those promoting keyhole opening and penetration (e.g.,
recoil pressure) and those promoting keyhole collapse (e.g., surface tension, Darcy’s damping forces),
increasing instability and defect likelihood. This paper provides a comprehensive instability analysis
to uncover key factors affecting keyhole and process instability, presenting future avenues for im-
proving laser welding stability. Using a novel numerical method for simulating laser spot welding
on aluminum with COMSOL Multiphysics 5.6, we investigated the effect of laser pulse shaping on
keyhole and process instability. Our analysis focused on keyhole morphology, fluid flow behaviour,
and force analysis. The results indicated that the curvature effect, Marangoni effect, and Darcy’s
damping force are primary contributors to instability, with the curvature effect and Darcy’s damping
force being the most dominant. Additionally, erratic and high-velocity magnitudes induce intense
fluid flow behaviour, exacerbating keyhole instability. Moreover, single/quadruple peak triangular
and variant rectangular ramp-down pulse shapes produced the least instability, while multi-pulse
rectangular shapes exhibited intense instability. It was found that combining triangular/rectangular
pulse shapes can reduce force and keyhole instability by smoothing spontaneous force spikes, re-
sulting in a more stabilized welding process. Controlling fluid flow and abrupt force changes with
appropriate pulse shaping is key to defect-free welded products.

Keywords: keyhole; instability analysis; velocity; curvature effect; Marangoni effect; Darcy’s
damping force

1. Introduction

Laser welding is widely employed in automobile and aerospace manufacturing due
to its ability to deeply penetrate materials, particularly aluminum alloys, which possess
reliable characteristics such as lightweight, good corrosion resistance, and high strength as
highlighted by Miller et al. [1], Wang et al. [2], and Schubert et al. [3], just to name a few.
The fundamental processes occurring during laser–material interaction in high-energy-
density laser processing encompass a range of intricate physical phenomena. These include
dynamics related to surface tension, the generation of recoil pressure from vaporization,
the formation of vapour plumes, attenuation and scattering of the laser beam by condensed
plume materials, phase transitions such as melting, solidification, and vaporization, thermo-
capillary driven flows (Marangoni convection and curvature effects), flow induced by recoil
pressure, multiple reflections of the incident laser beam, and high-speed rates of heating
and cooling [4–6]. During laser welding, a high-intensity laser beam creates a ‘keyhole’
by heating the material above its vaporization point. This causes vaporization and mass
loss, forming a hole. The resulting vapour pressure, or recoil pressure, helps penetrate
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the material and keep the keyhole open [7]. Keyhole formation and stability through-
out the laser welding process are influenced by various forces, including recoil pressure,
surface tension (Marangoni and curvature effects), buoyancy, hydrostatic pressures, and
gravity. These forces cause fluctuations in the keyhole and affect its propagation. Among
them, recoil pressure and surface tension emerge as dominant factors, with recoil pressure
opening the keyhole and surface tension attempting to close it [8]. D. Schauer et al. [9]
emphasized the importance of surface tension and recoil pressure on the keyhole wall. They
identified a critical equilibrium point where these forces balance each other. Below this
point, recoil pressure dominates, while above it, surface tension prevails. When surface ten-
sion becomes dominant, keyhole stability is compromised, potentially leading to collapse.
Figure 1 illustrates a schematic 3D depiction of laser welding, showing how the process
instability causes periodic keyhole openings and collapses, as reported by Jiang et al. [10]
and Zhang et al. [11]. Understanding this dynamic behaviour and fluctuations in the key-
hole, along with the inherent instability in laser welding, has constrained its widespread
adoption within the industrial manufacturing sector, as noted by You et al. [12]. Instabil-
ities in laser welding, particularly with aluminum, lead to defects such as porosities [2],
humps [13], spatters [14], and other imperfections, significantly undermining the reliabil-
ity of manufactured products. Most defects in laser welding of aluminum and its alloys
mainly arise from aluminum’s material properties [15], its rapid solidification rate [15],
process-related instability [12], and high reflectivity [16]. Zhang et al. [17] found that insta-
bility in the process directly leads to defect formation and You et al. [12] highlighted that
keyhole instability causes bubble formation in aluminum alloys. Huang et al. [15] noted
that the rapid solidification rates of molten aluminum trap bubbles at the solidification
front, resulting in porosities. Therefore, controlling fluctuations in the keyhole and melt
pool is crucial for process stability and aluminum welding quality, as keyhole instabilities
are a common cause of porosity, as emphasized by Lin et al. [18]. A variety of experimental
methods were employed in scholarly research to understand the laser welding process.
Techniques included ex situ X-ray tomography for porosity analysis [19], in situ high-speed
imaging of the melt pool [20] and vapour plume [21], and synchrotron-based X-ray imaging
to observe melt pool dynamics and keyhole formation [22]. These setups are often costly
and complex, with some facing limitations in spatial or temporal resolution, hindering
detailed observation of rapid phenomena. In addition, obtaining high-quality welds in
high thermal conductivity materials or volatile elements, like aluminum and certain alloys
(e.g., 5000 or 7000 series), frequently depends on a trial and error approach. The narrow
welding parameter window for these materials further complicates experimentation, as
keyhole and weld pool behaviour exhibit erratic fluctuations [23]. Hence, experimentation
might fail to reliably identify the causes of keyhole instability, dominant forces, and fluid
flow behaviour contributing to process instability and defect formation. Numerical simula-
tions alternatively offer significant advantages over experimental methods for modelling
and understanding keyhole dynamics and instabilities, providing a more efficient and
cost-effective solution [24]. Pulsed wave (PW) lasers are ideal for welding aluminum and
its alloys, as they effectively overcome aluminum’s reflectivity by providing high energy
density at the start of the pulse while regulating the average power to reduce overall
heat [25,26]. Wang et al. [27] noted that using pulse wave modulation (PWM) in laser
beams enhances welding stability. By adjusting laser characteristics like frequency, am-
plitude, and power, the size and stirring intensity of the molten pool can be effectively
controlled. Matasunawa et al. [28] conducted an extensive study on the dynamics of the
molten pool and the keyhole, revealing that PWM significantly reduces porosity formation.
They attributed this reduction to the efficient elimination of holes from the preceding
pulse by the subsequent pulse, given an appropriate overlapping ratio. In another paper,
Tsukamoto et al. [29] confirmed that modulating laser power in pulses effectively stabilizes
the keyhole and reduces porosity, particularly when the modulation frequency aligns with
the natural oscillation frequency of the molten pool. Moreover, Heider et al. [30] studied
power modulation when performing laser welding on copper, demonstrating that modulat-
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ing power and frequency effectively reduced weld defects and increased penetration depth
by up to 30%. Volpp et al. [31] also investigated methods to improve the Gaussian beam
welding stability and discovered that the laser beam shaping helps keep the keyhole open,
preventing its collapse. This highlights the importance of modifying the laser beam shape
to ensure welding stability. However, these studies did not provide information on the
dominant forces causing instability and defects, nor did they address how modulating laser
power affected these forces. To evaluate the effect of laser pulse modulation on the stability
of keyhole mode laser welding, numerical models must account for fluid flow dynamics in
the melting pool and accurately capture the dynamic evolution of the keyhole, considering
heat transfer, fluid motion, and phase transitions. Scientists employed various modelling
approaches to address these factors in their simulations. Pang et al. [32] employed the
Level Set (LS) method to simulate keyhole formation and investigated the mechanisms of
keyhole instability with varying heat inputs. Courtois et al. [5] proposed a detailed laser
welding model utilizing the LS method to trace the vapour/liquid interface, encompass-
ing all metal phases. However, using a higher laser wavelength than typical industrial
standards raises concerns about its practicality. Moraitis et al. [33] employed the Finite
Element Method (FEM) to develop a localized model that predicts keyhole morphology
according to temperature profile. The model was based on solid mechanics and excluded
fluid convection or the evolution of the free surface. Previous studies primarily focused
on reducing defects through various operational and laser parameters but often lacked
detailed explanations of the forces and fluid flow behaviours causing instabilities, both
quantitatively and conceptually. Furthermore, the impact of pulse modulation on these
instabilities and defect reduction was not thoroughly explored. While several studies have
explored defect reduction and laser welding in other materials, a significant gap remains in
understanding how advanced pulse modulation techniques, particularly non-rectangular
and combined pulse shapes, can be used to control keyhole instabilities in aluminum. This
research uniquely addresses this gap by offering both quantitative and conceptual new
insights that have the potential to optimize laser welding processes and enhance industrial
applications in fields such as automotive and aerospace manufacturing. Understanding
these aspects is crucial for comprehending how laser–material interactions, molten pool
dynamics, and keyhole behaviour contribute to instability, and how these factors can be
controlled. Most research concentrated on rectangular pulse shapes and materials like steel
and copper, with limited theoretical studies on aluminum. The present study addresses
the gap in conducting pulse shaping in keyhole mode laser spot welding on aluminum
using various triangular, variant rectangular pulse shapes, and their combinations. The
aim was to investigate how pulse shaping can be used to control keyhole instability and
improve process stability, and to assess the sensibility of instability on these pulse shapes.
A quantitative analysis of instability-inducing forces, fluid flow behaviour, and keyhole
morphology was conducted to analyze the instability. This study employed a novel numer-
ical model using modified techniques, including a modified mixture theory, a modified LS
method, and the enthalpy–porosity technique, to investigate phase transformations and
coupled physics in a 2D axisymmetric configuration. The modified mixture theory was ap-
plied comprehensively across liquid, solid, and gas phases, while the modified LS method
tracked the vapour/liquid interface and included evaporation effects throughout the laser
welding process. The enthalpy–porosity technique enhanced the model’s capability to
accurately capture phase transformations and fluid flow dynamics.
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Figure 1. Schematic 3D representation of (a) the 2D axisymmetric laser welding setup with Gaussian
beam profile, (b) laser-based welding process with keyhole collapse (closed keyhole) induced by
instabilities, and (c) laser-based welding process with keyhole stability (open keyhole).

2. Materials and Methods

This research developed a 2D axisymmetric model of laser spot welding on aluminum
to investigate the impact of pulse shaping on keyhole stability and process instabilities. This
study analyzed triangular and rectangular pulse shapes and their combinations to improve
efficiency and understand the forces and fluid behaviours causing instabilities. The choice
of these particular pulse shapes was made based on their potential to reduce instabilities
and defects in keyhole mode laser welding, as suggested by preliminary studies [34]. These
shapes were chosen to explore the full spectrum of their effects on keyhole instabilities and
fluid dynamics through a thorough instability analysis.

The goal was to control and reduce these instabilities for defect-free weldments. Case
studies based on various pulse shaping trends are detailed in Table 1 and Figure 2.

Table 1. Corresponding details of the case studies.

Case
No. Laser Power Pulse

Width
Total

Laser Energy
Number
of Pulses Pulse Shape Total

on Time

1 2 kW 10 ms 20 J 1 Continuous 10 ms
2 4 kW 5 ms 20 J 1 Rectangular constant 5 ms
3 1–3 kW 2.5 ms 20 J 1 Rectangular: ramp up–ramp down 10 ms
4 0.5–4 kW 2.5 ms 20 J 1 Rectangular: ramp down 10 ms
5 1–3 kW 2 ms 20 J 1 Rectangular: ramp down 10 ms
6 1–3 kW 2 ms 20 J 1 Rectangular: ramp up 10 ms
7 1.5–3 kW 2 ms 20 J 1 Rectangular: ramp down-up-down 10 ms
8 0–4 kW 10 ms 20 J 1 Triangular: single peaks 10 ms
9 0–4 kW 5 ms 20 J 2 Triangular: double peaks 10 ms

10 0–4 kW 2.5 ms 20 J 4 Triangular: quadruple peaks 10 ms
11 0–4 kW 1.25 ms 20 J 8 Triangular: octuple peaks 10 ms
12 0–6 kW 1 ms 18 J 3 Rectangular 3 ms
13 0–6 kW 2 ms 18 J 3 Triangular 6 ms
14 0–6 kW 1–2 ms 18 J 3 Rectangular–triangular 4 ms
15 0–6 kW 2 ms 18 J 3 Triangular–rectangular 6 ms
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Figure 2. Full schematic illustrating the pulse shapes implemented for pulse modulation.

2.1. Model Geometrics, Material, and Laser Heat Source

All simulations and generation of the results were conducted using the COMSOL
Multiphysics 5.6 graphical user interface. The software allows an immediate transition from
a 2D axisymmetric model to a 3D model and imposes symmetry conditions for axisymmet-
ric assumptions. Aluminum, with dimensions of 4.5 mm (height) × 3 mm (width), was
chosen as the base metal, with its thermophysical properties listed in Table 2. Aluminum
was selected as the base material due to its widespread use in industrial applications,
particularly in the automotive and aerospace industries. Its high thermal conductivity,
reflectivity, and challenging weldability make it an ideal candidate for studying the effects
of pulse modulation on keyhole stability and understanding the underlying reasons behind
keyhole instability through sensibility analysis. A Gaussian laser distribution represented
the heat source for stationary laser welding. The 3D schematic of the simulated 2D ax-
isymmetric configuration is shown in Figure 1. This model was used because stationary
spot laser welding keeps the laser beam fixed, ensuring rotational symmetry about the
vertical z-axis as shown in Figure 1a. This assumption was necessary to validate the nu-
merical model and provided a robust foundation for future enhancements, facilitating the
transition to more complex setups, including moving lasers and ensuring alignment with
industrial applications.

Table 2. Thermal and physical characteristics of aluminum [35–37].

Property Symbol Magnitude

Solidus temperature Ts 847 (K)

Liquidus temperature Tl 905 (K)

Vaporization temperature TV 2743 (K)

Thermal conductivity of solid ks 238 (W/m/K)

Thermal conductivity of liquid kl 100 (W/m/K)

Density of solid ρs 2700 (kg/m3)

Density of liquid ρl 2385 (kg/m3)

Latent heat of melting Lm 3.896 × 105 (J/kg)

Latent heat of vaporization LV 9.462 × 106 (J/kg)

Specific heat capacity of solid Cp,s 917 (J/kg/K)

Specific heat capacity of liquid Cp,l 1080 (J/kg/K)

Convective heat transfer coefficient h 20 (W/m2/K)
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Table 2. Cont.

Property Symbol Magnitude

Coefficient of linear thermal expansion β 2.36 × 10−5 (1/K)

Dynamic viscosity µ 1.6 × 10−3 (Pa.s)

Coefficient of surface tension σ 0.95 × (1 + 0.13 × (1 − T/Tm))1.67 (N/m)

Temperature-dependent surface
tension coefficient ∂σ/∂T −0.3 × 10−3 (N/m/K)

Radiation emissivity ξ 0.2

2.2. Heat and Fluid Flow Model

This study used the modified LS method, an Eulerian technique, to capture the
behaviour of the free surface and the vapor/liquid interface, and to compute the normal
and tangential elements of the free surface. Moreover, previous studies utilized the modified
mixture theory to model the simultaneous existence of solid and liquid phases within the
mushy zone [35,38]. The current study extended the mixture theory to include all three
phases (solid, liquid, and gas) within the whole domain, accounting for molten, vaporized,
and solidified material. The mixture properties were defined by volume fractions of solid,
liquid, and gas, ensuring an accurate representation of phase transitions and their impact
on material behaviour during welding. These methodologies were employed to simulate
keyhole formation and molten pool behaviour, taking into account free surface dynamics,
recoil pressure, surface tension effects, buoyancy forces, evaporation effects, and mass loss
due to vaporization. The numerical investigation was based on the following assumptions:

• The movement of molten material in the fusion zone was simulated assuming Newto-
nian behaviour, incompressibility, and laminar flow characteristics.

• Temperature-dependent changes in aluminum’s thermophysical properties were disre-
garded. Instead, the modified mixture theory was applied to calculate thermophysical
properties, such as thermal conductivity, specific heat, and density, for each element
by utilizing fixed values for the solid, liquid, and gas phases of aluminum. These
properties were then averaged according to the phase proportions within each element,
yielding an effective constant thermophysical property for the simulation [34].

• The mushy zone was treated as a porous medium permeated by molten metal [35].
• Plasma effects and the Knudsen layer were excluded from the model.
• Multiple reflections of the laser beam within the keyhole were disregarded in this

study. This assumption is justified for scenarios with low penetration depths, as
multiple reflections become significant primarily in cases of deeper weld penetration
(greater than 600 µm) [7]. Moreover, the laser beam coefficient of absorption was
assumed constant at keyhole walls.

• The vaporized material was modelled as an ideal gas that is transparent to the incom-
ing laser beam.

The transport phenomena in all three phases (solid, liquid, vapour) present during the weld-
ing process were addressed by solving the conservation equations of energy (Equations (1)–(9)),
mass conservation (Equation (10)), and momentum (Equations (11)–(15)). Also, the modi-
fied conservative equation of the LS method was solved to account for evaporation (Equa-
tions (16) and (17)). The governing equations are briefly provided below, with more detailed
information available in our previous article on pulse wave modulation [34].

• Energy equation and its concerning parameters

The thermal field calculations were performed by solving the transient heat conserva-
tion equations across both the solid/liquid and gas regions:

ρCp
∂T
∂t

+ ρCp
→
u .∇T = ∇.(k∇T) + (qLaser − Qvapor)δ(ϕ) (1)
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qLaser =
α2PLaser

πR2
e f f

exp(
−2r2

R2
e f f

)Bt (2)

Bt =

{
1, t ≤ tp
0, t > tp

(3)

Qvapor = −LV
.

mH−L (4)

.
mH−L =

√
M

2πR
Psat(T)√

T
(1 − βr) (5)

PSat = Patmexp
[

MLv

RTv

(
1 − Tv

T

)]
(6)

where T represents temperature, t denotes time, ρ is the density, Cp stands for specific

heat capacity, k is the thermal conductivity, and
→
u is the velocity vector. qlaser and Qvapor

are the heat sources, representing the laser energy and the energy loss by evaporation. α
is aluminum’s absorptivity. PLaser represents the peak laser power, and Bt refers to the
temporal distribution of the laser, applied to simulate the effects of the pulse wave laser
welding, respectively. Re f f refers to the effective radius of the laser beam spot and tp
represents the duration of the pulse. To apply the laser heat flux to the material surface
and account for evaporation-induced energy loss, the delta function associated with the LS
variable (δ(ϕ)) was used. The energy loss through evaporation was deducted from the laser
energy density, and the remaining energy was multiplied by the delta function of the LS
variable to apply these effects on the vapour/liquid interface. In addition,

.
mH−L represents

the evaporative mass loss, while PSat denotes the saturated vapour pressure expressed by
the Hertz–Langmuir relation and the Clausius–Clapeyron law, respectively [39]. βr stands
for the retro-diffusion coefficient, whereas R refers to the universal gas constant and M rep-
resents the molar mass of vaporized particles. The enthalpy of fusion Lm and evaporation
LV were introduced through equivalent specific heat using Equations (7)–(9) [39,40].

Cpe f f = Cpsl + LmDm + LV DV (7)

Dm =
exp

(−(T−Tm)2

dTm2 )√
πdTm

2
, (8a)

Tm − dTm → Tm + dTm (8b)

DV =
exp

(
−(T−TV )2

dTV
2 )√

πdTV
2

, (9a)

TV − dTV → TV + dTV (9b)

The functions Dm and DV are Gaussian functions centred around the melting temper-
ature (Tm) and vaporization temperature (TV), respectively. The equivalent specific heat
capacity was determined by incorporating the specific heat of the solid/liquid mixture Cpsl
into the calculation (mixture theory), as outlined in Equation (7). The smoothing range
for the melting (dTm) was chosen to be 29 K, based on half the difference between the
solidus and liquidus temperatures of the material ( (T l − Ts)/2) [39]. For vaporization, the
smoothing range (dTV) was selected to be 50 K, as suggested by Tomashchuk et al. [40].

• Modified mass conservation equation and recoil pressure

The impact of recoil pressure was added to the continuity equation using a source
term, which was suggested by Zhang et al. [35] and Courtois et al. [41] as presented in
Equation (10):

∇.
→
u = δ(ϕ)

.
mH−L(

ρl − ρv

ρ2 ) (10)
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where δ(ϕ) introduced a Heaviside function for the LS variable to ensure smooth phase tran-
sitions and interface traversal in finite element computations [35]. This method minimized
discontinuities, particularly for temperature-sensitive material properties and forces such
as surface tension, recoil pressure, and the laser heat source, which are confined to the inter-
face. Multiplying these forces by δ(ϕ), they were confined to the vapour/liquid interface
during calculations, ensuring they only had non-zero values at that precise location.

• Momentum equation:

ρ

(
∂
→
u

∂t
+

→
u .(

→
∇.

→
u )

)
=

→
∇.[−pI + µ(

→
∇→

u + (
→
∇→

u )
T
)]) + ρ

→
g − ρl βl(T − Tmelting)

→
g ϕ − µlK

→
V + (γ.nk −∇sγ.t)δ(ϕ) (11)

→
F st = (γ.nk −∇sγ.t)δ(ϕ) (12)

→
F Buoyancy= − ρl βl(T − Tmelting)

→
g ϕ (13)

FDarcy Damping = −µlK
→
u (14)

K =
180
d2 (1 − Vl)

2

Vl
3 + b

, (15a)

Vl =


1, T > Tl

T−Ts
Tl−Ts

, Ts ≤ T ≤ Tl

0, T < Ts

(15b)

where µ is the dynamic viscosity, and
(→
∇→

u
)T

indicates the transpose of the gradient of

the velocity vector
→
u . ρg represents the effect of gravity,

→
F st is the surface tension effect,

→
F Buoyancy is the buoyancy effect with βl serving as the liquid’s volume expansion coefficient,
and FDarcy Damping is Darcy’s damping force. b was used to avoid division by zero, d is a
constant proportional to the dendrite size and set to 10−2 cm [42], and Vl is the volume
fraction of the fluid.

• Modified transport equations of the LS method

The vapour/liquid interface tracing was carried out using the modified LS method,
as described in Equation (16). This study introduced an improved conservative Level
Set method, combining the Volume of Fluid (VOF) approach with the narrow band LS
method and included a gas dynamic source term [43]. This source term accounted for
evaporation effects, caused by vapor pressure and mass loss at the interface. The equations
were as follows:

∂ϕ

∂t
+

→
u .∇ϕ − δ(ϕ)

.
mH−L

(Vf ,1

ρv
+

Vf ,2

ρl

)
+ γls∇.(ϕ(1 − ϕ)

∇ϕ

|∇ϕ| − ϵls∇ϕ) = 0 (16)

ϕ(x, y, t) =


0, T > TV , y < −ϵls

0.5, Tl < T < TV , y = 0

1, T < Tl , y > ϵls

(17)

where γls refers to the reinitialization parameter associated with the flow velocity, while
ϵls regulates the thickness of the interface. Additionally, ϕ is the LS variable that varies
smoothly between 0 and 1 within the interface layer, being set to 0.5 at the vapour/liquid
interface, as shown in Equation (17). Defining this variable across all elements of the
computational domain, and transporting it through fluid flow calculations, facilitated
tracking the vapor/liquid interface and distinguishing between condensed and gaseous
phases. The third term on the left side of Equation (16) is the source term added to the
standard transport equations of the LS equation, enhancing the effect of evaporation-
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induced mass loss at the interface. This term facilitated the smooth transport of the LS
variable (ϕ) in finite element calculations on both sides of the interface by using the δ(ϕ), as
well as the volume fractions and densities of the liquid and gaseous phases. Additionally,
Vf ,1 represents the volume fraction of gas, and Vf ,2 denotes the volume fraction of a
solid/liquid mixture.

• Boundary and initial conditions

As depicted in Figure 1a, a Gaussian laser heat flux is applied to boundary CD, which
is also subjected to convective heat transfer to the environment (h(Text − Ta)) and radiative
heat transfer (ξKb

(
T4 − Ta

4 ), where Kb is the Stefan–Boltzmann constant, and Ta is the
ambient temperature. The initial temperature was set to 296 K, with the initial velocity
and pressure values considered zero at the surface and for all solid surfaces far from the
heat source. Boundary AE was designated as the axis of symmetry, ensuring that no flow
crosses the axis (AE), and the temperature gradient remains zero along the axis. A wetted
wall condition was imposed on boundaries BD, DF, and EF. All other boundaries were
treated as thermally insulated.

2.3. Numerical Considerations

Melting and solidification were modelled using the thermal enthalpy–porosity tech-
nique [35], while evaporation was simulated with the modified conservative LS method [43].
Additionally, the modified mixture theory was employed to account for mixture effects,
simplifying finite element calculations at the interface, particularly for the elements con-
taining multiple phases [35,38]. The modified mixture theory, Level Set (LS) method, and
enthalpy–porosity technique were employed due to their strong capability to model phase
transformations, fluid flow, and keyhole morphology. These methods facilitate a com-
prehensive understanding of the complex vapour/liquid and solid/liquid interactions,
thereby ensuring high fidelity and reliable results. Each of these methods was indepen-
dently implemented within the LS, heat transfer in fluids, and laminar flow modules of
COMSOL Multiphysics. To account for the coupling effects between the incorporated
methods and interfaces, two COMSOL Multiphysics coupling interface modules were
employed. The LS, mixture properties, and laminar flow were coupled using the two-phase
flow interface. Additionally, the non-isothermal Multiphysics interface was used to couple
the heat transfer in fluids and laminar flow interfaces. Finally, these two coupling modules
were further integrated under the overarching Multiphysics interface within COMSOL to
ensure comprehensive calculations.

2.3.1. Numerical Setup

The model was developed in the Multiphysics interface of COMSOL Multiphysics 5.6,
using the coupling heat transfer, fluid motion, and transport equations of LS. A mapped
mesh with quadrilateral elements and extra-fine meshes was used and calibrated for fluid
dynamics (Figure 3). The element size chosen for the mesh was set at 0.02 mm. The
simulation, which modelled 10 ms of laser welding over 17 h, was run on a Lenovo
ThinkStation P720 workstation, equipped with an Intel® Xenon® Gold 5118 CPU (12 cores,
24 logical processors) with 128 GB RAM. The CPU was manufactured by Intel corporation,
headquartered in Santa Clara, CA, USA. The system was assembled by LENOVO, based
in Beijing, China. Time steps were set at 10 µs. For fluid flow calculations, a PARDISO
direct solver with a nested dissection multithreaded preordering algorithm was used,
while the LS transport and heat transfer equations employed a PARDISO direct solver
with an automatic preordering algorithm. Before running the simulation, mesh element
count, reinitialization parameter, and interface thickness were verified to ensure reliable
outcomes. Sensitivity analysis was conducted iteratively, refining parameters by monitoring
convergence trends and keyhole depths. Mesh sensitivity analysis involved testing four
different mesh counts: 16,968, 24,320, 37,500, and 48,045 elements. The optimal mesh
element count was determined to be 37,500, as keyhole morphology and depth showed no
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significant changes with more elements. The best reinitialization parameter and interface
thickness values for the LS technique were found to be 5 m/s and 0.03 mm, respectively,
which provided better computational efficiency and convergence. Further variations in
these parameters showed no significant impact on keyhole depth and morphology.
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2.3.2. Model Validation

The current numerical model was validated with the experimental work of Qin
et al. [44] and presented in our previous article [34]. Correspondingly, the keyhole penetra-
tion depth, shape, and width obtained from the current numerical model were compared to
the observed keyhole morphology from Qin et al.’s experiments [44], as shown in Figure 4.
The simulation used the same laser characteristics: total laser energy of 18 J, pulse width
of 3 ms, and spot radius of 300 µm with the one utilized by Qin et al. [44]. The numerical
results showed a keyhole penetration depth of 3.837 mm, closely matching the experimental
value of 3.824 mm. Simulated and experimental keyhole spot diameters on the surface
were approximately 0.937 mm and 0.936 mm, respectively. The maximum keyhole width
reported experimentally was about 0.407 mm, while the numerical simulations showed a
width range of 0.310 mm and 0.51 mm. The model accurately predicted the keyhole depth
and diameter, with slight deviations of 6–12% in keyhole width. These discrepancies could
be attributed to differences in material properties, the neglect of multiple laser beam reflec-
tions, and assumptions about metallic vapour transparency and plasma effects. Despite
these factors, the model successfully correlated with the experimental results, effectively
predicting keyhole diameter and depth, and providing acceptable keyhole width values.
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2.3.3. Instability Analysis Procedure

Increased instability directly correlates with keyhole collapse probability, leading to
severe fluctuations, collapses, and defect formation. This study investigates the parameters
contributing to keyhole instability by examining three main criteria as follows:
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Geometry: keyhole stability is achieved by maintaining an open keyhole with slight
fluctuations and a symmetrical shape with smooth transitions from top to bottom. Ensuring
these geometrical characteristics reduces the risk of keyhole collapse. Force analysis: a
stable keyhole is characterized by the equilibrium between the driving forces acting on
the keyhole and the molten pool. Stability and a fully open keyhole are maintained as
long as the equilibrium between recoil pressure and the forces contributing to keyhole
collapse—such as surface tension, Darcy’s damping force, gravity, and buoyancy—is
preserved [8,9]. The sensibility of these driving forces across different cases with various
pulse shapes presented in this article was analyzed to understand the impact of fluctuations
and magnitudes of these collapse-inducing forces on keyhole instability and overall process
stability. Fluid behaviour: high-velocity magnitudes and multiple peaks indicate intense
fluid flow behaviour, which might contribute to keyhole instability. Intense fluid flow
within the keyhole and molten pool might increase instability due to chaotic fluid motion,
leading to irregular keyhole walls and a higher risk of collapse.

3. Results and Discussion

This section provides an in-depth analysis of the impact of pulse shaping on keyhole
instability and penetration depth. Keyhole instability is examined through detailed assess-
ments of morphology, geometry, quantitative force analysis, and fluid flow behaviour, as
discussed in the following sections.

3.1. Keyhole Geometry Analysis

Keyhole mode laser welding begins with irradiating high laser energy density on the
material, raising its temperature. When the material’s temperature exceeds the melting and
vaporization points, it undergoes fusion and evaporation, forming and propagating the
keyhole due to recoil pressure and mass loss from the surface. Figure 5 shows different
keyhole geometries at the end of the welding process, considering various laser energy
pulse shapes defined in Table 1 and Figure 2. The penetration depth in Case 2 with PW
laser welding was significantly greater than in Case 1 with continuous wave welding
(CW), attributable to PW’s higher laser energy density, which accelerated recoil pressure
domination and keyhole formation. Moreover, both Cases 1 and 2 exhibited symmetrical
keyholes. However, Case 2 demonstrated slightly steeper wall angles at the top, which
suggests increased fluctuations, likely due to the use of higher initial laser power. For
Cases 3 to 7, variant rectangular pulse shapes with fixed total laser energy of 20 J were
analyzed, showing stable and cylindrical keyhole shapes. With higher initial laser power,
Case 5, featuring a ramp-down pulse shape, generated a deeper and narrower keyhole
compared to Case 6, which had a ramp-up shape. The faster keyhole formation and the
dominance of recoil pressure in Case 5 contributed to greater penetration and concentrated
energy at the bottom part of the keyhole, rather than dispersing it along the walls to
widen the keyhole. Moreover, Case 4 showed a higher potential for keyhole collapse
at the top due to steeper wall angles, leading to pinching and potentially causing the
keyhole to become narrower and less stable. Additionally, the significant power drop
from 4 kW to 2 kW at the second rectangular step promoted solidification and allowed
other driving forces to dominate over recoil pressure, closing the keyhole. Simultaneous
ramp-down/up pulse shapes, as seen in Cases 3 and 7, resulted in smoother transitions
from top to bottom, enhancing stability without significantly affecting penetration depth.
Cases 8 to 11 investigated triangular pulse numbers, maintaining total laser energy at 20 J.
Increasing from one to eight triangular pulses (single, double, quadruple, and octuple
peaks), Cases 8 and 10 exhibited more stable keyholes with smoother transitions from top
to bottom. Case 8 showed a narrower and deeper keyhole compared to the wider keyhole
in Case 10, and both cases showed no wall fluctuations or inward pulling of the walls in
the top part of the keyhole. In contrast, Cases 9 and 11 displayed wall fluctuations and
inward pulling of the keyhole walls at the top. Cases 12 to 15 explored higher laser energy
densities with shorter pulse periods, reducing total laser energy to 18 J. Despite lower total
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energy, full penetration depth increased due to higher starting laser powers and accelerated
keyhole formation. However, significant wall fluctuations were noted, indicating instability
and collapse risk. Case 12 had the highest penetration depth but also the greatest instability.
Mixed high-energy rectangular and triangular pulses (Cases 13 and 15) resulted in more
stable keyholes, balancing depth and width to reduce collapse risk.
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3.2. Instability-Inducing Forces: Quantitative Analysis

This section presents a quantitative analysis of forces contributing to keyhole collapse
and instability, including surface tension forces (curvature effect and Marangoni effect),
Darcy’s damping forces, gravity, and buoyancy, as illustrated in Figure 6. It was found
that buoyancy and gravity forces had a negligible impact compared to other forces. The
surface tension force in the axial direction (curvature effect) was more intense than in
the radial direction (Marangoni effect), creating a pressure difference across the keyhole
walls that pulled them inward, increasing the likelihood of collapse. The next dominant
force was Darcy’s damping force in the axial and radial directions, which contributed to
keyhole instability by resisting fluid motion within the mushy zone. At the beginning
of the laser pulse, a large amount of energy was abruptly deposited into the material,
causing rapid temperature increases, intense fusion, vaporization, and keyhole formation.
As vapour pressure rapidly increased due to steep temperature gradients, there was a
sharp spike in Darcy’s damping force and surface tension. As the laser continued to
interact with the material, the system reached a quasi-steady state where the molten pool
and keyhole stabilized to some extent with a fully opened keyhole, causing the forces
to equilibrate. According to the diagrams, both the curvature and Marangoni effects
are greater for PW compared to CW due to greater laser energy deposition in shorter
pulse periods. Additionally, more erratic behaviour was seen for Darcy’s damping force
after turning off the laser in PW. In correlation with the keyhole morphology presented
in Figure 5, it was found that erratic variations in Darcy’s damping force and greater
curvature and Marangoni effects contributed to steeper keyhole wall angles and inward
pulling in the upper part of the keyhole, indicating more instability. Analyzing Cases 3
to 7, Case 3, which used a ramp-down varying rectangular pulse shape, exhibited the
maximum curvature effect with multiple peaks and erratic behaviour compared to other
cases. This was supported by data indicated in Figure 5, showing less keyhole wall stability.
The steeper wall angles at the top of the keyhole resulted from the inward pulling due
to greater pressure differences associated with the higher curvature effect. Ramp-down
varying rectangular pulse shapes (Cases 4, 5, and 7) showed faster force stabilization
around and after 0.002 s compared to ramp-up cases (Cases 3 and 6), which exhibited
prolonged fluctuations. Cases 5 and 7, with gradual ramp down and gradual ramps of
down-up-down, showed fewer fluctuations and faster force stabilization. For Cases 8 to
11, increasing the number of triangular pulse peaks correlated with heightened erratic
fluctuations, instabilities in the forces, and multiple peaks. Case 8 demonstrated relatively
smoother force variations, which in correlation with its keyhole morphology, contributed to
a smoother transition from the top to the bottom of the keyhole, resulting in greater stability.
In comparing Cases 12 through 15, it was observed that Cases 12 and 14, utilizing single
multi-pulse rectangular and triangular shapes, experienced stronger curvature effects and
Darcy’s damping forces than the combined multi-pulse shapes in Cases 13 and 15. This
led to increased keyhole instability and greater fluctuations along the keyhole walls. Case
15 showed the least curvature effect and fluctuations in the Marangoni effect, along with
the least Darcy’s damping force, all contributing to a more stable and open keyhole, as
corroborated in Figure 5.
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3.3. Fluid Behavior

This section presents the impact of pulse shaping on fluid flow behaviour, using
diagrams and comparisons of velocity magnitudes for the investigated cases, as shown in
Figure 7. The maximum velocity within the keyhole and molten pool correlates with the
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fluid flow behaviour inside these regions. High and erratic velocity magnitudes suggest
strong convective currents, irregular heat and mass transfer, chaotic fluid motion, irregular
keyhole walls, and higher chances of collapse. As shown in Figure 7, upon exposure to
high laser energy density, followed by material fusion and evaporation, fluid velocity
increased, exhibiting fluctuations in response to laser deactivation between pulses or due
to specific flow dynamics and the influence of multiple forces. It was noted that PW
had higher velocity magnitudes compared to CW due to the utilization of higher laser
powers, which started to diminish after turning the laser off. As for the variant rectangular
pulse shapes, Case 4 had the greatest velocity magnitudes with sudden spikes and falls,
leading to more abrupt fluid flow behaviour within the keyhole, contributing to keyhole
wall instability as corroborated in Figure 5 for keyhole morphology. Additionally, it was
demonstrated that the reason for the more stable keyhole and stability in cases with single
and quadruple triangular peaks compared to double and octuple triangular peaks is their
smoother and lower velocity magnitudes. This led to smoother fluid flow, contributing to a
more stabilized keyhole, as shown in their keyhole morphology in Figure 5. Similarly, it
was further proved that the greater and more spontaneous velocity variations in Cases 12
and 14, compared to Cases 13 and 15, led to more spontaneous fluid flow, contributing to
greater keyhole wall fluctuations and instability.
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3.4. Understanding the Instability Nature of Selected Cases

This section provides a comparative analysis of selected cases, considering all criteria
used for instability analysis. Specifically, Case 8 and Cases 12–15 were selected to explore
the correlation between keyhole stability, penetration, and process instability. Among
cases with identical pulse shapes, Case 8 was chosen for its higher keyhole stability and
penetration depth compared to Cases 1–11. In contrast, Cases 12–15, with multiple pulse
shapes, were selected for their higher penetration depths but greater instabilities, allowing
for a deeper understanding of instability behaviour and its underlying causes. Firstly,
Cases 8, 12, and 15 were chosen and compared to understand the reasons behind different
keyhole shapes and variant instabilities. Secondly, the impact of pulse shaping on reducing
instability was analyzed to improve understanding of factors responsible for keyhole and
process instability. As shown in Figure 8, Case 8 exhibited minimal keyhole instability
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with a smoother transition from top to bottom. In contrast, Case 12 showed significant
wall fluctuations along the keyhole walls, indicating a tendency to collapse and increased
instability. Case 15, however, provided a relatively shallow and wide keyhole with smoother
walls, reducing the possibility of collapse. The intense instability of Case 12 was attributed
to two main factors. Firstly, the utilization of high laser energy density resulted in greater
Darcy’s damping force and surface tension forces in both directions compared to Cases 8
and 15. Greater Darcy’s damping force increased resistance to fluid flow, while the stronger
curvature effect created a pressure difference across the keyhole walls, pulling them inward
and leading to pinching, making the keyhole narrower and less stable. Secondly, Case
12 exhibited the highest and most fluctuated velocity magnitudes, indicating erratic fluid
flow behaviour within the keyhole, contributing further to instability. Consequently, the
combination of high-velocity magnitudes, fluctuations, pronounced curvature, Marangoni
effects, and a stronger influence of Darcy’s damping force led to the increased instability
observed in Case 12.
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Figure 9 shows the impact of using combined pulse shapes in reducing the instabilities
and fluctuations in the forces, contributing to the keyhole stability. As demonstrated, using
combined pulse shapes significantly reduced instability, as illustrated for Cases 12 to 15.
The curvature and Marangoni effects are compared as examples to show how combined
pulse shapes improved process stability by reducing force instability and fluctuations.
Figure 9 depicts that using combined pulse shapes positively contributed to decreasing the
instability, fluctuations, and magnitudes of the curvature effect and Marangoni effect which
can be seen in the red dashed-line circle. This reduction explains the lower keyhole wall
instability observed in Cases 14 and 15 compared to Cases 12 and 13. Using pulse shaping,
the abrupt spikes and falls were effectively controlled and smoothed. It is also noted that a
similar impact was observed for Darcy’s damping forces, although the diagrams are not
provided here.
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4. Conclusions and Future Avenues

Introducing a novel numerical approach for simulating the keyhole mode laser weld-
ing on aluminum, the impact of pulse shaping was investigated on the instability of the
laser welding process. This study aims to improve the understanding of the underlying
criteria contributing to the instability of the keyhole and laser welding process. The insta-
bility was comprehensively examined using analysis of the keyhole morphology, velocity
magnitude and fluid flow behaviour, and instability-inducing forces such as surface tension,
and Darcy’s damping force. The following conclusions are observed:

• The combination of the curvature effect, Darcy’s damping force, and more intense fluid
flow behaviour contribute to the instability of the keyhole and the laser welding process.
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• Using short pulse periods with higher laser energy density enhances instability and the
possibility of keyhole collapse due to the increased curvature effect, Darcy’s damping
force, and more intense fluid flow behaviour.

• The instability of the keyhole and process can be controlled using variant rectangular
pulse shapes with gradual laser power ramp-up and -down pulse shapes due to
smoother variations in velocity, smoother flow behaviour, and fewer curvature effects.

• The instability of the keyhole and forces can be controlled using combinations of
triangular and rectangular pulse shapes.

• To minimize instability, the laser power should be high enough to induce evaporation
and recoil pressure for keyhole propagation but balanced to avoid the excessive
curvature effect, Darcy’s damping force, and fluid velocity that accompanies higher
power and leads to increased instability.

Overall, this research provides key insights into the factors driving keyhole and process
instability in aluminum laser welding. It quantitatively demonstrates how pulse shaping
can effectively control and minimize these instabilities by influencing the forces and fluid
flow behaviours involved. These findings advance understanding and offer a foundation
for future research aimed at optimizing laser parameters by enhancing the understanding
of the factors responsible for instability and offering strategies to control them to improve
weld quality. However, some limitations remain. One key limitation is the use of a 2D
axisymmetric model. While highly effective for simulating stationary spot welding and
serving as a crucial first step toward more complex models, it does not fully capture
the complexities of real-world laser welding scenarios that involve laser movement and
multiple reflections of laser beams. Future research could explore dynamic laser welding,
including the impact of multiple reflections within the keyhole on the instability and how
to control and minimize the instabilities induced by multiple reflections of laser beams.
This will pave the way for more advanced models with optimized welding parameters,
incorporating laser movement and other real-world conditions.
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