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Abstract: In recent years, the use of smart in-ear devices (hearables) for health monitoring has gained
popularity. Previous research on in-ear breath monitoring with hearables uses signal processing
techniques based on peak detection. Such techniques are greatly affected by movement artifacts
and other challenging real-world conditions. In this study, we use an existing database of various
breathing types captured using an in-ear microphone to classify breathing path and phase. Having a
small dataset, we use XGBoost, a simple and fast classifier, to address three different classification
challenges. We achieve an accuracy of 86.8% for a binary path classifier, 74.1% for a binary phase
classifier, and 67.2% for a four-class path and phase classifier. Our path classifier outperforms existing
algorithms in recall and F1, highlighting the reliability of our approach. This work demonstrates the
feasibility of the use of hearables in continuous breath monitoring tasks with machine learning.

Keywords: breathing; in-ear audio; respiratory phases; hearables; breathing type

1. Introduction

Respiration is one of the most continuously monitored vital signs, which assists experts
in detecting or predicting critical illnesses [1]. Several diseases such as asthma, bronchitis [2],
chronic cough [3] and other pulmonary diseases involve the respiratory system, and can
cause wheezing, sleep apnea [4], chest tightness, shortness of breath [5], and arrhythmia [6].
As the disease progresses, these symptoms become more severe [7]. For instance, chronic
coughs are defined as coughing that continues for at least eight weeks [3] and acute
bronchitis lasts more than three weeks [2]. Thus, long-term monitoring is required which
implicates measuring under daily motion artifacts and real-world conditions. In addition
to disrupting the patient’s daily life due to the associated symptoms, long-term monitoring
using traditional methods would pose an unmanageable burden.

In primary care settings, generally, clinicians measure respiration by manually count-
ing the number of breaths that patients take over a given time period. This process is not
suitable for long-term monitoring, and is dependent on the operators who are experts
in doing this task [8]. Sensors have been developed to measure the breathing rate of hu-
mans: Respiratory Inductance Plethysmography (RIP) measures chest movement caused
by breathing [9,10], and is commonly used in medical and sports activity monitoring tools.
However, this device, in addition to being expensive, large and uncomfortable for those
who use it for a long period like while sleeping or in occupational settings, is also cum-
bersome, because RIP needs access to the entire chest and abdomen circumference to be
able to do the measurement [11,12]. Monitoring respiration without disrupting the tasks
that are being performed simultaneously would be beneficial. Also, it allows clinicians or
even patients to recognize changes in breathing patterns over time which may cause early
intervention, especially in progressive diseases such as chronic obstructive pulmonary
disease (COPD) [13], for which early detection can be very helpful.
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Existing contact-based methods, which include RIP, derivation of respiratory rate from
electrocardiography (ECG) [14], or pulse oximetry, measure nasal airflow [15] or diaphragm
movement [6]. However, they typically rely on specialized equipment and may require
trained personnel to operate.

Within breathing analysis, the detection and classification of breathing path (nasal and
oral) and breathing phase (inhalation and exhalation) are also of importance for diagnosis
of a varied range of illnesses [16]. Mouth breathing is a voluntary and undesired way of
breathing which affects the perioral muscles, tongue and cheeks [17]. Also, in [18], it was
demonstrated that oral breathing can cause significant decreases in cognitive tasks, such as
memory and learning capability. It is also a risk factor for dental health [18]. On the other
hand, nose breathing, which is involuntary [19] and considered as “normal” breathing [20],
may positively impact sleep quality, immunity, and body fat reduction [21]. More investiga-
tion in [18] shows nasal breathing causes more brain activation and connectivity compared
to oral breathing.

Additionally, inhalation and exhalation, along with their respective characteristics, are
vital for precise predictions and the effective management of infectious disease transmission.
This importance arises from the fact that the exhaled air from infected individuals serves
as a primary source of contagious viruses [22]. Additionally, monitoring the patterns of
successive inhalation and exhalation can aid in anticipating the onset of neurodegenerative
diseases, such as Parkinson’s disease [23].

Currently, wearable devices are increasingly being used to monitor vital signs [24],
track body conditions like stress or fatigue level [25,26], and classify non-verbal events
such as coughing or teeth clicking sounds [27]. Wearables could contain blood pressure
sensors [28], accelerometers [29], and ECG and PPG sensors [30], which could track var-
ious health parameters such as heart rate, activity level, sleep, and respiration patterns.
Among the various wearables equipped with different sensors and requiring placement
on various parts of the body, in-ear wearables, or hearables, stand out for their ability to
capture many signals while positioned inside or around the ear [27,31,32]. These devices
can integrate a multitude of sensors, such as PPG, EEG, and ECG, enabling the monitoring
of the wearer’s blood flow, brain, and heart activities [31]. Another way to track physiolog-
ical signals with a hearable, is by using audio signals derived from non-contact [8,33] or
contact microphones [34,35]. Generally, audio signals are an efficient method of tracking
respiration [34,36]. These audio signals could be captured through microphones placed in
mobile phones [33,37] and the recorded audio would be analyzed with phone applications
to give information to the user. Despite the popularity and accessibility of this method,
when the mobile phone is away from the user, monitoring and recording would be dis-
continued, requiring the mobile phone to always be nearby. Also, built-in microphones
are more prone to record ambient noise which makes tracking respiration through audio
somewhat inaccurate, and sounds may not be captured with sufficient clarity [38,39].

In addition to this method, physiological acoustic signals could be captured using
the in-ear microphone (IEM) of a hearable [32,40]. Such a device was used in [32] to
detect heartbeat and respiratory rate using traditional signal processing techniques such
as envelope detection. This method relies on a proper acoustical seal between the earplug
and the user’s ear canal to ensure a sufficient level for the breathing sounds [41]. Indeed,
this acoustic seal attenuates the ambient sounds and, because of the occlusion effect,
the low-frequency sounds of the wearer are amplified [42]. As a result, respiration sounds
propagated to the ear canal through bone and tissue conduction are amplified and can be
captured by the IEM for health monitoring applications [32].

Contributions: To the best of our knowledge, this is the first work that classifies the
phase and path of different types of breathing captured from an IEM. We present the param-
eters required for pre-processing the IEM signals to optimize the classification performance.
We achieve approximately 87% accuracy when classifying breathing path. We present a
4-class classifier that detects both breathing path and phase with good performance. We
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benchmark our phase classifier against existing solutions, where it is shown to surpass the
performance in recall and F1, demonstrating the reliability of our algorithm.

Outline: The remainder of this paper is organized as follows: Section 2 describes the
dataset, data pre-processing, feature engineering, and proposed ML algorithms. The results
are provided in Section 3, followed by the discussions and conclusions in Sections 4 and 5,
respectively.

2. Methodology
2.1. Materials and Data Acquisition

The data used in this work (approved by the Comité d’éthique pour la recherche, the inter-
nal review board of École de technologie supérieure) comes from an existing database of in-ear
captured audio signal and body-captured physiological signals, iBad, as described in [32].
The database contains 160 recordings, which were captured from inside the left and right
ear simultaneously using earpieces developed by the ÉTS-EERS Industrial Research Chair
in In-Ear Technologies. The earpieces contained two microphones, one placed inside of the
ear and one placed outside of the ear, as shown in Figure 1. The IEM enables the capture of
audio signals through the occluded ear canal. The audio was recorded at a sampling rate of
48 kHz with 24-bit resolution. While recording audio from inside the ears, the BioHarness
3.0 wearable chest belt (Zephyr Technology Corporation, Annapolis, MD, USA) was used
to capture ECG signals and respiration simultaneously to serve as a ground truth reference.
Before each audio recording, the participants were instructed to breathe at different paces
and intensities through their noses and mouths separately. As a result, the collected dataset
contains recording that can represent the wide span of real-life breathing sounds. Table 1
summarizes the information related to the database, including the breathing types and their
corresponding times, and abbreviations. A summary of the mean durations for inhales
and exhales as well as the mean respiration rates for each breathing group are presented
in Table 2. Some samples from the dataset were excluded due to the recordings being
inaudible or the earpieces not being properly placed in the ear canal and failing to create
an acoustical seal. Figure 2 presents a sample from the database of a participant breathing
normally from the nose. It compares the respiration recordings obtained from the IEM and
the chest belt, as well as a mel-spectrogram derived from the IEM signal.

SPK

OEM

IEM

Figure 1. Illustration of the device worn by participants including an in-ear microphone (IEM),
an outer-ear microphone (OEM), and a speaker (SPK).
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Figure 2. Respiration signal during normal nasal breathing captured simultaneously using an in-ear
microphone (a) and the BioHarness 3.0 wearable chest belt (b). The mel-spectrogram of the in-ear
microphone signal is presented in (c).

Table 1. An overview of the dataset.

Groups Abbreviation Number of Recordings Length (s)

Mouth breathing after exercise BE 20 180
Normal mouth BN 20 240
Deep mouth BP 20 90
Fast mouth BR 20 30
Nose breathing after exercise NE 20 180
Normal nose NN 20 240
Deep nose NP 20 90
Fast nose NR 20 30
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Table 2. Mean durations of inhales, exhales, and overall respiration rates for each group.

Group Inhale (s) Exhale (s) Respiration Rate (bpm)

BE 2.14 ± 0.8 2.1 ± 1.03 15.57 ± 4.15
BN 2.82 ± 1.16 2.31 ± 0.97 13.51 ± 4.91
BP 4.09 ± 1.5 3.4 ± 0.82 8.78 ± 3.3
BR 0.75 ± 0.45 0.78 ± 0.43 51.39 ± 25.42
NE 2.07 ± 0.78 2.16 ± 0.69 15.24 ± 3.47
NN 2.94 ± 1.12 2.61 ± 1.37 12.39 ± 4.04
NP 5.50 ± 2.96 3.96 ± 1.12 7.53 ± 3.13
NR 0.8 ± 0.45 0.8± 0.54 49.83 ± 24.90

The natural variations in ear canal shape between the right and left ear result in
differences in fit, consequently yielding distinct audio signals from each ear. These signals
represent the same physiological event captured simultaneously by both the left and right
IEMs. For the purposes of this work, a sub-group of high-intensity signals, qualified
as “Forced”, was created. The whole dataset is, hence, divided into two main groups
based on the intrinsic intensity of the signals: namely Forced, as just described, and All,
containing all the respiration signals. Signals labelled as Forced include nasal and oral fast
and deep breathing, while signals labelled as All include Forced, normal nasal and oral
breathing, as well as nasal and oral breathing after exercise. In Figure 3, which shows
four normal nasal breathing after exercise, differences in the level of breathing among
participants are observable. For example, in Figure 3c, the participant breathed calmly
and steadily after exercise, making it barely audible and distinguishable, while others
had higher intensity in their breathing. Conversely, in Figure 4, where participants were
instructed to breathe deeply through their mouths, although there are still differences in
breathing patterns between participants, the spectrograms show consistent amplitude and
clarity across all recordings.
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Figure 3. Cont.
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Figure 3. Mel-spectrogram obtained from the data captured by hearables. (a–d) show four randomly
selected participants breathing normally through their noses after exercise. As depicted in the figures,
each participant had a different breathing pattern, level and pace based on their physical fitness level
and morphology. For example, in (b), the participant was breathing relatively fast and deeply while
the participant in (c) had normal nasal breathing which was barely audible and distinguishable.

(a) (b)

(c) (d)

Figure 4. Examples of mel-spectrograms created from the IEM recordings. (a–d) illustrate breathing
cycles, inhaling and exhaling, for four randomly chosen participants who were breathing deeply
through their mouths. Individual differences did not significantly obscure the data; the recordings
remained distinct and discernible.
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2.2. Pre-Processing

Pre-processing was performed to remove unrelated components to the breathing phase
and path. Due to the bandwidth of bone and tissue conduction and the occlusion effect,
an amplification of low and mid frequencies inside the occluded ear, no relevant information
can be retrieved past 2 kHz [27,43]. To constrain the bandwidth of the relevant information,
all signals were downsampled to 8 kHz. This choice, rather than downsampling to 4 kHz,
was made to minimize the impact on the resolution of lower frequency components. The
bandwidth of respiration signals recorded inside the ear typically falls between 150 and
2000 Hz. Therefore, all signals were filtered using a fifth-order Butterworth bandpass filter
at those cutoff frequencies to remove any undesired noise. In the existing literature, which
covers biosignal classification and detection, a 400 ms frame size with a 50% overlap was
typically utilized to segment signals [27,44]. However, none of these prior works dealt with
breathing signals in particular which led us to investigate this open research question by
exploring what the optimal frame size for the breathing signal would be. The investigation
involved comparing the frame sizes commonly found in the literature with those we
empirically determined were the most effective for our purpose, as presented in Section 3.
It should be noted that all the classifiers were trained and tested in two datasets with
different segment lengths: once with 400 ms and 50% overlap which was chosen based on
the literature [27,44], and once with 200 ms with 25% overlap after empirical testing.

2.3. Feature Extraction

In Section 2.1, how the fit level of each earpiece varies due to differences in the shape
of the ear canals on the left and right sides was discussed. As a means of data augmentation,
left and right recordings were considered separate signals thus duplicating the number of
recordings [27].

Different time-domain and frequency-domain features were extracted from each
recording. The time-domain features used were the Zero-Crossing Rate (ZCR) [33] and Root
Mean Square (RMS) energy. Mel-frequency features simulate the auditory characteristics
of the human ear and are widely used for the analysis of speech and acoustic breath
signals [45]. Thus, the frequency-domain features extracted were the Mel-Frequency
Cepstral Coefficients (MFCCs) and their derivatives (MFCCs delta and MFCCs delta delta),
as well as spectral centroid (SC) and spectral roll-off (SR).

For each segment, 13 MFCCs, MFCCs delta and MFCCs delta delta were extracted,
concatenated and considered as one feature named MFCC. Then, the MFCC feature vector
was concatenated with the time-domain features to create the feature vector for each
segment. This led to high-dimensional feature vectors (dimensionality of 604); therefore,
Principal Components Analysis (PCA) [27,33] was used to reduce the number of variables
in the feature space (reduced dimensionality of 35). Due to different measurement scales
in the derived features, the feature vector was standardized to have a zero mean and unit
standard deviation before forwarding it to the ML algorithm.

2.4. Machine Learning Classification Model

Three classification tasks were performed in this study. First, a binary classification
of the breathing path into two classes, nose and mouth. Second, a binary classification
of breathing phases, inhale and exhale. Third, a four-class classifier, combining the two
binary classifiers. It was decided to merge the two first classifiers in order to determine
if any enhancement in performance was possible. All three classifiers followed the same
procedure. The same classifier was utilized to do the classification and compare the
results. XGBoost was trained on the feature vectors derived from IEM signals as described
in Section 2.3. To implement the algorithm, the Scikit-Learn library [46] in Python 3.2
language was used. To achieve the best performance, hyperparameters were optimized
using Randomized Search Cross-Validation (RSCV). RSCV goes through a limited number
of hyperparameter settings. It randomly moves within the grid to determine the optimal
set of hyperparameters. As a result, unnecessary computations are reduced, and the tuned
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parameters are identified [46]. See Table 3, for the results of hyperparameter tuning carried
out using RSCV. An overview of the proposed pipeline is presented in Figure 5.

Figure 5. Proposed processing pipeline illustrating the three classifiers.

Table 3. Hyperparameter tuning using RSCV. These results were derived from various combinations of
the hyperparameters and evaluating the impacts of each combination on the algorithm’s performance.

XGBoost Description Value
Hyperparameter

Learning rate Regularization parameter. It shrinks feature weights in each boosting step. 0.1
max_depth Maximum tree depth 6
min_child_weight Minimum weight sum needed in a leaf node to stop partition. 1
subsample Ratio of the training data sampled in each boosting iteration to grow the trees. 0.8

2.5. Evaluation

Due to the limited amount of data, Cross-Validation (CV) was used to evaluate the
performance of each classifier [46]. This method, also known as K-fold CV, divides the data
into ‘K’ number of smaller groups to train the algorithm on ‘K-1’ groups and then test on
one remaining group. In this work, the proposed classifiers’ performance was evaluated
using a 5-fold CV. All classification models were divided into folds with equal distribution.
Performance was evaluated using accuracy (ACC), precision (PR), recall (RE), and F1-Score.

3. Results

Three classifiers were trained on samples of different lengths. Table 4 presents a sum-
mary of the number of samples used for each of the trained classifiers for every class. The
initial classifier was trained to classify the breathing path, distinguishing between breaths
originating from the nose and those from the mouth. The average confusion matrices (CM)
of the breathing path classification across all CV folds with 400 ms segments are shown
in Figure 6a for Forced and Figure 6b for All. The mean precision of the path classifier for
Forced was 85.7% ± 0.4%, and All was 75.1% ± 0.2%. The rest of the evaluation parameters
and their respective values are presented in Table 5. Further analysis to assess how the
segments’ length would affect the classification was carried out with 200 ms segmentation.
With a 200 ms frame length the mean precision of the classifier for Forced was 86.9% ± 0.2%,
and 76.4% ± 0.1% for All. All evaluation parameters for the path classifier of 200 ms
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frames are presented in Table 6, and their corresponding confusion matrices are shown in
Figure 6c,d. It is important to highlight that the average precision showed an increase of
1.1% for the Forced category and 1.2% for the All category when the segment length was
reduced from 400 to 200 ms.

Table 4. Summary of the number of audio samples for each classifier and sample length.

Classifier Data Group Class Samples

400 ms 200 ms

Phase Forced Exhale (0) 13,004 20,286
Inhale (1) 17,004 25,874

All Exhale (0) 74,614 78,492
Inhale (1) 86,548 91,695

Path Forced Mouth (0) 23,258
Nose (1) 22,902

All Mouth (0) 90,487
Nose (1) 79,700

4-class Path and Phase Forced mouth exhale (0) 10,538
Mouth Inhale (1) 12,720
Nose Exhale (2) 9748
Nose Inhale (3) 13,154

All Mouth Exhale (0) 41,949
Mouth Inhale (1) 48,538
Nose Exhale (2) 36,543
Nose Inhale (3) 43,157

Table 5. The mean and standard deviations of accuracy, precision, recall, and F1-score for the
Nose/Mouth classifier were computed across all five folds using 400 ms data. Overall, when consider-
ing both Forced and All categories, the performance was superior in the Forced category.

Evaluation Parameters

Group ACC (%) PR (%) RE (%) F1 (%)

Forced 85.7 ± 0.4 85.7 ± 0.4 85.7 ± 0.4 85.6 ± 0.4
All 75.1 ± 0.2 75.1 ± 0.2 75.1 ± 0.2 75.1 ± 0.2

Table 6. The average and standard deviation values for accuracy, precision, recall, and F1-score of the
Nose/Mouth classifier were computed across all five folds using 200 ms data. When assessing both
Forced and All categories, the overall performance was better in the Forced category.

Evaluation Parameters

Group ACC (%) PR (%) RE (%) F1 (%)

Forced 86.8 ± 0.2 86.9 ± 0.2 86.8 ± 0.2 86.8 ± 0.2
All 76.1 ± 0.1 76.4 ± 0.1 75.7 ± 0.1 75.8 ± 0.1

For both categories, Forced and All, the classifier’s performance was better for the
200 ms frames than with 400 ms frames. Thus, only the performance results of other
classifiers are reported only for the 200 ms frames. For the phase classification, Inhale/Exhale,
the average precision across all folds for Forced was 73.0% ± 0.5%, and for All, the average
precision was 64.0% ± 0.1%. Table 7 and Figure 6e,f present all the evaluation parameters
and corresponding CMs, respectively. As can be drawn from Figure 6e,f, the model
performed effectively in identifying inhales, as evidenced by a high number of true positives.
However, it struggled with the classification of exhales, with a notable presence of false



Sensors 2024, 24, 6679 10 of 15

positives and false negatives. Finally, the four-class classifier exhibited a mean precision
of 68.7% ± 0.2% for Forced and 53.6% ± 0.1% for All. Table 8 and Figure 7 present the
performance results of the four-class classifier.

(a) (b) (c)

(d) (e) (f)

Figure 6. This figure depicts the mean CM values across all CV sets. (a) shows the results of
Nose/Mouth classifier applied on Forced with the segment length of 400 ms, and (b) on All. The results
of Nose/Mouth classifier applied on Forced and All with the segment duration of 200 ms are shown in
(c,d), respectively. Finally, (e,f) represent the results of Inhale/Exhale classifier trained on Forced and
All with the segment length of 200 ms, respectively.

(a) (b)

Figure 7. Mean confusion matrices showing four-class classifier results from using XGBoost and
200 ms segments. (a) shows the confusion matrix of Forced and (b) the confusion matrix of All.
In both matrices, the confusing class was “Exhalation” showing that regardless of respiration path
distinguishing exhalation from inhalation is complicated. Comparing (a,b), this gets worse when the
algorithm is tested in All.
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Table 7. Comparison of Inhale/Exhale classifier performance on Forced and All categories. The 200 ms
data were used for training and testing. Given all evaluation parameters in both Forced and All,
the algorithm outperformed in Forced.

Evaluation Parameters

Group ACC (%) PR (%) RE (%) F1 (%)

Forced 74.1 ± 0.4 73.0 ± 0.5 85.4 ± 0.3 78.7 ± 0.2
All 64.6 ± 0.1 64.0 ± 0.1 78.3 ± 0.2 70.4 ± 0.1

Table 8. The mean ± standard deviation of the four-class classifier accuracy, precision, recall and
F1-score across all five folds. The results were produced from 200 ms data. Across all evaluation
parameters for both categories, the algorithm demonstrated better performance in Forced.

Evaluation Parameters

Group ACC (%) PR (%) RE (%) F1 (%)

Forced 67.2 ± 0.1 68.7 ± 0.2 66.4 ± 0.1 67.0 ± 0.1
All 51.4 ± 0.1 53.6 ± 0.1 50.7 ± 0.1 51.2 ± 0.1

4. Discussion

Only two studies that can be compared to our work were found in the
literature [34,47]; however, both of these studies utilized data recorded by cellphone micro-
phones. The abundance of data in these studies enabled the use of deep learning-based
methods. The first study, named “Breeze” [34], focused on classifying breathing phases as
a three-class classification: inhale–pause–exhale. In this study, participants were instructed
to breathe at intervals of 4–2–4 s. In addition to instructing participants to breathe with
specific timing intervals, they were asked to inhale through the nose and exhale through
the mouth. Consequently, the data used in Breeze not only had defined timing, but also
followed a specific sequence, enabling the algorithm to learn this temporal relationship
and respiratory pattern [47]. The algorithm used in this work was convolutional recurrent
neural network (CRNN), which yielded a precision of 69.02% [34].

In the second study, named “BreathTrack” [47], participants were not asked to breathe
with a specific timing or pattern with a binary classification task: inhale or exhale. Con-
volutional neural network (CNN) was employed in this work, achieving a precision of
77.65% [47]. Additionally, BreathTrack utilized a dataset of 131 subjects, which was much
larger compared to ours, allowing for a greater diversity of breathing patterns in the data.
They were able to train the CNN with audio frames divided into 500 ms segments.

In our dataset, participants could breathe at different intervals based on their breathing
patterns, and even these time intervals could vary within each breathing cycle covering
a more realistic range of possible breathing patterns. Figure 8 compares the performance
of our algorithm for classifying breathing phases using data collected from IEM to the
performance of “Breeze” and “BreathTrack”, the two algorithms for data collected from
mobile phones. Looking at the bar chart, it seems that although our algorithm’s accuracy
and precision may not be as high as the other two, its recall and F1-score are much better in
both the Forced and All categories. This means our model is better at identifying actual posi-
tive instances, which is crucial for medical applications and achieving accurate predictions.
Although extensive research has been conducted on breathing, to the authors’ knowledge,
no other literature exists classifying Nose/Mouth breathing using audio signals.

When looking at the performance of classifiers, the best results belonged to the
Nose/Mouth classifier. Although the classifier performed well along both Forced and All
and both segmentation lengths, the highest outcomes were observed for Forced with 200 ms
length. As Forced included recordings with fast and deep breathing, and all participants
were instructed to breathe fast and deeply through both their nose and mouth, the data
had a unified context. Thus, the algorithm successfully learned the context despite the



Sensors 2024, 24, 6679 12 of 15

individual variations in breathing patterns. On the other hand, in All alongside Forced
items, other categories that were inherently challenging to identify were considered. In
Figures 2c and 3c, it can be seen that the normal breaths were so soft, and the distinguishing
features had a level similar to the noise floor of the microphone. The recordings were
also barely visible to the human eye in some cases in this category, which is obvious in
Figure 3c. Additionally, normal breathing after exercise for both nose and mouth were
dependent on the participant’s physical fitness level and inevitably influenced the out-
comes. For instance, individuals who lead extremely sedentary lives, in comparison to
well-trained people, are more likely to have deep breathing after doing exercise instead
of breathing normally [48]. These differences are also observable in Figure 3. Also, given
the Inhale/Exhale classifier results, it is clear that exhales were hard to classify. While
breathing phase audio classification has shown higher accuracy in previous studies, it is
important to emphasize the distinction between capturing breath sounds in front of the
mouth versus within an occluded ear. Bone and tissue conduction act as a low pass filter,
attenuating the acoustic features that differentiate an inhale from an exhale. The primary
distinction lies in the exhale’s gradual rolling edge, where intensity and resolution steadily
decrease, as opposed to the sharp edge of an inhale. In future work, it would be valuable
to explore whether incorporating the OEM, as shown in Figure 1, could enhance classifier
performance, given its bandwidth is more comparable to that of a cellphone microphone.
As it is known that breathing through the nose and mouth results in unique sound patterns
because of structural distinctions in the air passages [47], it can be interpreted that when the
path of inhalation and exhalation is identified, the algorithm’s performance to classify the
breathing phase increases. This performance improvement is observable in our four-class
classifier. As shown in Figure 7, it can be concluded that knowing the breathing path
beforehand improves the accuracy of classifying breathing phases, although the majority
of errors still remain between distinguishing the exhale and the inhale. As an example,
in Figure 7, the greatest error relates to misclassifying mouth exhalation (Ex-Mouth(0)) as
mouth inhalation (In-Mouth(1)). Compared to the Forced category, this error is even higher
when All is used.

The limitations of our work stem from the restricted number of participants and
recordings. A limited number of recordings were conducted across a wide variety of
breathing types, all using the same microphone. While this diversity provided a range
of signals, it also resulted in fewer instances of each type, potentially making it harder to
reinforce specific patterns for learning. Additionally, using the same microphone across all
recordings limits the generalizability of our model, as the microphone’s frequency response,
particularly in the low-frequency range, may have an important effect on the signal content.
In addition, the quality of the recorded signals relied heavily on how well the hearable was
placed in the ear canal. This resulted in participants having either a high occlusion effect,
amplifying soft signals like normal breathing, or a low occlusion effect, which reduced
the amplification of such signals. Consequently, this variability limited the performance
of our classifiers, particularly in the All category. Despite these limitations, our findings
provide valuable insights into breathing path and phase monitoring with hearables. Future
endeavours will involve collecting more extensive datasets from a wide range of subjects
and different types of microphones used in hearables, enabling the exploration of a larger
group of breathing patterns in challenging conditions. This will allow us to employ both
deep learning and unsupervised methods and compare algorithm performance.
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Figure 8. Comparison of ’BreathTrack’, ’Breeze’, and the proposed Inhale/Exhale classifier. Based on
the figure, our proposed algorithm exhibits a higher recall and F1-score than the two other algorithms
available in the literature.

5. Conclusions

We proposed a breathing phase and path classifier for breath sounds captured with
an in-ear microphone that can achieve high accuracy using limited data. We reached
optimal pre-processing parameters using a 200 ms window with 25% overlap. Using a
simple and fast classical machine learning algorithm, XGBoost, trained on a small dataset,
the breathing path classifier achieved an accuracy and recall of 86.8% when tested on
clean data. An accuracy of 74.1% was achieved for the phase classifier with a recall of
85.4% under the same conditions. The results demonstrate the reliability of our proposed
method in successfully classifying respiration path and phase. This suggests its potential
application in long-term, real-life respiratory monitoring situations, offering a convenient
solution for individuals who need to be observed continuously.
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