
The Journal of Systems and Software 220 (2025) 112261 

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

An exploratory empirical eye-tracker study of visualization techniques for
coverage of combinatorial interaction testing in software product lines✩

Kambiz Nezami Balouchi a, Julien Mercier b, Roberto E. Lopez-Herrejon a,∗

a Department Software Engineering and IT, École de technologie supérieure, Montreal, Canada
b Department of Computer Science, Université du Québec à Montréal, Montreal, Canada

A R T I C L E I N F O

Keywords:
Software product lines
Combinatorial interaction testing
Covering array
Parallel dimensions plot
Scatter plot
Eye-tracker study

A B S T R A C T

Software Product Lines (SPLs) typically provide a large number of configurations to cater to a set of diverse
requirements of specific markets. This large number of configurations renders unfeasible to test them all
individually. Instead, Combinatorial Interaction Testing (CIT) computes a representative sample according to
criteria of the interactions of features in the configurations. We performed an empirical study using eye-tracker
technologies to analyze the effectiveness of two basic visualization techniques at conveying test coverage
information of ten case studies of varying complexity. Our evaluation considered response accuracy, time-on-
task, metacognitive monitoring, and visual attention. The study revealed clear advantages of a visualization
technique over the other in three evaluation aspects, with a reverse effect depending on the strength of the
coverage and distinct areas of visual attention.
1. Introduction

Testing is an essential activity in any software development project.
This activity becomes more challenging when multiple variations of
a software system must be considered simultaneously as it is the
case of Software Product Lines (SPLs). Several approaches to test SPLs
have been proposed over the last years (Lopez-Herrejon et al., 2015).
Salient among them are those based on Combinatorial Interaction Testing
(CIT), whereby different combinations of selected and non-selected
features are considered for testing according to different criteria. These
approaches typically yield a large number of combinations, even for
SPLs with a small number of features, which are commonly presented
to software engineers in textual format. But using this format, tasks
such as assessing whether a combination is covered or not by a test
suite becomes more error-prone and time consuming.

The motivation of our work is to assess empirically the suitability of
basic visualization techniques for conveying the information required
to perform simple testing tasks of CIT applied to SPLs. Thus, for our
exploratory study, we selected two of the most basic visualization
techniques (Ward et al., 2010; Telea, 2015; Ware, 2015), and devised
an experiment to discern their relative trade-offs. We chose tasks drawn
from various SPL case studies commonly used by the research commu-
nity (Ferreira et al., 2021). Our analysis focused on: (i) the accuracy
of responses, (ii) how quick were those responses, (iii) how confident
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were participants in their responses, and (iv) the visual attention effort
required by participants. The latter aspect was analyzed by employ-
ing eye-tracker techniques on distinct areas of the visualizations that
contained the elements to solve the required tasks. Our study revealed
clear advantages of one visualization technique over the other one in
three of the evaluated aspects with distinguishable predominant areas
of interest in the visualization stimuli.

We start by providing the background of our study, the illustration
of the visualization techniques, and the description of the experimental
design, followed by a detailed presentation of the results obtained
and their analyses. We continue with the description of the threats to
validity identified and how we addressed them. We conclude with an
extensive related work, a summary of the main findings, and a sketch
of further research avenues.

2. Background

In this section, we present the basic background required to describe
our empirical study and put in context the results obtained. We start
with an overview of Software Product Lines, followed by Combinatorial
Interaction Testing applied to this software domain. Then, we present
the basics of eye-tracking technologies and the mental models that
constitute the theoretical framework of our work from a cognition
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Fig. 1. Feature diagram of the running example Graph Product Line (GPL) rendered with FeatureIDE.
perspective. The last subsection describes the metacognitive aspects
(i.e. the capacity of an individual to evaluate his/her own performance)
that our study considered. Because of its relevance to our work, we
provide a basic introduction to Software Visualization in Section 3,
prior to describing the visualization techniques that we evaluated.

2.1. Software Product Lines (SPLs)

Software Product Lines (SPLs) typically provide a large number of
possible configurations to meet the needs of specific organizations
and users. In this context, the set of valid configurations is expressed
by variability models of which feature models are the de facto stan-
dard (Benavides et al., 2010; Heradio et al., 2016). The visual depiction
of a feature model is called a feature diagram. An example of feature
model and its feature diagram is shown in Fig. 1.1 This tree-like struc-
ture represents the features in the configurations as labeled boxes, their
relations as lines with annotations, and additional cross-tree constraints
with propositional logic.

The Graph Product Line (GPL), depicted in Fig. 1, is a canonical
SPL of basic graph types and algorithms that work with them (Lopez-
Herrejon and Batory, 2001). We use GPL as a running example through-
out the paper to illustrate both the background concepts and the
visualization techniques used (see Section 3). This feature diagram
indicates that feature GPL is always present (i.e. it is the root of the
tree), and, for instance, that all configurations have graphs (manda-
tory feature Graph), some of them with weights (optional feature
Weighted). Similarly, some configurations provide graph searching
capability (optional feature Search), which can be either depth-first
search (feature DFS) or breadth-first search (feature BFS) but not
both (i.e. they form an alternative group). All configurations support
graph algorithms (mandatory feature Algorithms) in different valid
configurations (i.e. form an or group whereby at least one feature must
be selected). For example, the algorithm that computes connected com-
ponents (feature Connected) requires searching capability (feature
Search), which is denoted as Connected => Search as shown in
the figure.

Notice also from this model, that a configuration that contains
both features DFS and BFS is not valid because these features are
part of an alternative group. Similarly, a configuration with shortest
path algorithm (feature ShortestPath) but without weighted graphs

1 The figure was rendered using the default layout of FeatureIDE (https:
//www.featureide.de/), a leading open-source tool in the SPL research com-
munity. We use it as is because visualization of feature models is outside the
scope of our research work.
2 
(i.e. feature Weighted not selected) is also invalid as it violates
one of the cross-tree constraints. This simple feature diagram of GPL
contains 18 features and denotes 73 valid configurations. Please refer
to Benavides et al. (2010) and Heradio et al. (2016) for further details
on feature diagrams and their formal semantics, and to Lopez-Herrejon
and Batory (2001) for the GPL case study.

2.2. Combinatorial Interaction Testing (CIT)

Combinatorial Interaction Testing (CIT) is a testing approach whose
main objective is computing a representative sample of configurations
of a software system (Kuhn et al., 2016). When applied to SPLs,
this sample contains configurations that are valid according to the
corresponding variability model, commonly expressed as a feature
model (Lopez-Herrejon et al., 2015, 2016). A sample is called a covering
array of strength t, if its configurations contain at least one instance
of all possible feature combinations (i.e. valid selected and unselected
features) of a given size t.

For instance, when t=2, all the possible valid combinations of two
features, or pairs, must be considered. In our running example GPL,
the pair formed by features Search and DFS, and the pair formed by
features MSTPrim and Weighted are two of the 418 total number
of pairs that GPL contains. Another example of pair is that formed by
features Cycle and !Weighted. Notice that this pair will be present
in those configurations that have feature Cycle selected while feature
Weighted is not selected, fact denoted by the symbol !.

When t=3, all possible valid combinations of three features, or
triplets, must be considered. In GPL, two examples of triplets are: (i) the
combination of features GPL, DFS, and Cycle, and (ii) the combina-
tions of features Undirected, !ShortestPath, and !Directed.
For GPL, there are 3322 possible triplets.

Over the last decade, multiple approaches have been proposed to
compute covering arrays of different t values. They all provide differ-
ent advantages and trade-offs (e.g., Hervieu et al., 2011; Garvin et al.,
2011; Johansen et al., 2012; Lopez-Herrejon et al., 2013; Henard et al.,
2014; Lopez-Herrejon et al., 2016; Ahmed et al., 2017). For example,
for GPL the optimal2 covering array for t=2 has 13 configurations, and
for t=3 the covering array has 27 configurations.

Even in a small feature model example with a few features, there
is a large amount of information regarding the pairs, triplets, covering
arrays, etc. that must be conveyed to the testing engineers. Currently,

2 A covering array is optimal if it has the minimum number of
configurations possible that cover all the required pairs or triplets.

https://www.featureide.de/
https://www.featureide.de/
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all this information is, at best, made available as plain text. This lim-
itation negatively affects the performance of testing tasks for variable
software systems (Lopez-Herrejon et al., 2018; Medeiros et al., 2023).
Thus, the driving motivation of our work is exploring the cognitive
ffort required to perform CIT tasks that use alternative visualization
echniques to convey the required information. We performed our
nalysis based on data captured with eye-tracking technology and self-
ssessment of metacognition monitoring as will be described in the
ollowing subsections.

2.3. Eye-tracking basics

Eye-tracking methodology involves applying techniques that mea-
sure eye movements to study visual attention and the cognitive process-
ing of visual information while performing specific tasks (Duchowski,
2017). Eye-trackers use near-infrared lights, invisible to the human eye,
hat are directed towards the center of the eyes causing reflections on
he pupil and the cornea. These reflections are used to gather informa-
ion about the eye movements and directions (Duchowski, 2017). The
remise is that visual attention triggers the cognitive processes required

for the comprehension and resolution of tasks. Then, such cognitive
rocesses direct the visual attention to specific locations on the visual
ield of the participants. Therefore, the allocations involving visual
ttention can be used as a proxy of the cognitive demands required
y a task.

Two assumptions ground this relationship between eye movements
nd cognitive processes and are foundational in interpreting eye-

tracking data (Just and Carpenter, 1980): (i) eye-mind assumption, and
(ii) immediacy assumption. Respectively, these assumptions state that
‘‘there is no appreciable lag between what is being fixated and what is
being processed’’ and that ‘‘the interpretations at all levels of processing
re not deferred; they occur as soon as possible’’ (Just and Carpenter,

1980).
Consequently, eye-tracking is one of the best and most direct ap-

proaches to analyze how visual attention is allocated for performing
tasks and for learning in highly visual domains (Peterson et al., 2004;
Lai et al., 2013). As such, eye-tracking methodology has led to an
xtensive and long-standing body of research, both basic and applied
e.g., Duchowski, 2017; Holmqvist and Andersson, 2017), and has been

employed to study cognitive constructs such as attention, comprehen-
sion, retention in memory, and processing difficulty in tasks involving

ritten text, figures and diagrams (Rayner, 1998, 2009). The works by
Obaidellah et al. (2018), and Sharafi et al. (2015a, 2020) summarize
the research done with eye-tracking in the field of software engineering.

As defined by Sharafi et al. a visual stimulus is any object required
to perform a task whose visual perception triggers the participant’s
cognitive processes to perform some actions related to the task (Sharafi
et al., 2020). In our empirical study, the core of the visual stimuli is the
visualization of the covering arrays as will be detailed in Sections 3 and
4.

There are numerous types of eye-tracker data and metrics that
ave been classified among several dimensions and relate to cognitive
rocessing in different ways (Duchowski, 2017; Sharafi et al., 2020;

Holmqvist and Andersson, 2017; Albert and Tullis, 2023). One im-
ortant of data is fixations which are eye movements that stabilize
he eye on an object of interest from a visual stimulus (Duchowski,

2017). The duration of fixations varies by the task performed and by
he participants, with typical values ranging from 100 to 400 mil-
iseconds (Duchowski, 2017; Holmqvist and Andersson, 2017). Com-
only, fixations are analyzed on concrete areas of the visual stimulus

called Areas Of Interest (AOIs) where the researcher is interested in
gathering data because they are considered relevant to perform a
task (Holmqvist and Andersson, 2017). Another important type of
collected data is saccades, that are rapid eye movements, ranging from
10 to 100 milliseconds, and occur between two fixations.

The most pertinent metrics for a study must be selected according
to the characteristics of the cognitive task under study. For our ex-
ploratory study, further details on the metrics used are presented in
Section 4.1.
3 
2.4. Theoretical framework

Our study focuses on combinatorial Interaction Testing (CIT) tasks
pplied to Software Product Lines. From a cognitive perspective, these
asks are considered as comprehension tasks that build, manipulate,
nd compare mental models with different components that intervene
n their resolution (Sepasi et al., 2022; Détienne, 2001; Bidlake et al.,

2020).
Mental models are representations of reality constructed by an

individual, on which cognition operates through reasoning to make
decisions. In the general context of program comprehension, a mental

odel consists of two parts (Sepasi et al., 2022; Détienne, 2001; Bidlake
et al., 2020): (i) a program model that is constructed by programmers
based on the structural knowledge of the code, and (ii) a domain model
that is an abstract representation of the code built using knowledge
of the domain and the real-world situation of the program code. Intu-
itively, the first part corresponds to the syntactic representation and its
well-formedness, whereas the second part corresponds to its semantics
or meaning in a real-world context.

We posit that two equivalent counterparts can be distinguished in
the mental models required to comprehend and manipulate the visual
stimuli of the CIT tasks of our study: (i) visualization model that is
onstructed based on the understanding of the visualization technique
nd its elements (e.g. geometric figures and lines connecting them), and
ii) domain model that is also an abstract representation of a domain in

the real world, namely the SPL whose elements will be tested.
From this perspective, a CIT task is performed via a sequence of

steps to build and operate on these mental models. The cognitive
load of these tasks stems from the manipulation of the information
necessary to accomplish them successfully, considering the typical
limits of working memory in terms of capacity and duration (Chen
et al., 2021). Inaccurate answers or unsuccessful performance com-

only occurs when such limits are surpassed or when performing the
asks requires updates or repairs of the mental models already built.
o notice that the visual nature of the visualization model (i.e. the

irst mental model of our CIT tasks) enables the use of eye-tracking
echnologies in our study.

2.5. Metacognitive monitoring accuracy

Metacognitive monitoring refers to the individual’s capacity to self-
valuate the outcome of a task and other various aspects of its per-

formance (Winne, 1996). This capacity is critical for successful task
performance because it is the only mechanism to detect and cor-
ect inconsistencies or errors while tasks are being carried out and

afterwards.
The regulation of cognition has the following main components:

lanning the task; managing the information and monitoring its com-
rehension; and evaluating the performance (de Blume, 2022). Global
udgements can concern a whole test or a whole performance. These
re driven by more superficial information such as self-efficacy and

familiarity with the task domain. In contrast, local or item-specific
judgments refer to a single test item or subtask and are based on
task-specific information. Discrepancies between the judgement and the
actual achievement on the task have been termed the ‘‘illusion of not
knowing’’ in the case of underconfidence and ‘‘illusion of knowing’’ in
the case of overconfidence (Serra and Metcalfe, 2009).

Two main factors can explain inaccurate answers of participants.
The first factor is the incapacity of participants to provide judgments
that are more accurate. This is explained by the lack of access to
item-specific cues like item difficulty, ease of cognitive processing, or
bility to explain meaning. The second factor is the potential lack of
otivation from participants to make more accurate judgments because

f the effort required or because they simply do not understand the
alue of doing that. Additionally, participants might be biased be-
ause of motivational influences such as wishful thinking (Händel and

Bukowski, 2019). In our study, participants perform the metacognitive
monitoring after each task using two common self-assessment metrics
as described in Section 4.1.
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3. Visualization techniques

Let us start by defining some basic terminology. A visualization
is the visual representation of a domain space using graphics, im-
ges, animated sequences, and sound augmentation to present the
ata, structure, and dynamic behavior of large, complex data sets that
epresent systems events, processes, objects, and concepts (Williams,

1995). Furthermore, information visualization is visualization applied to
bstract quantities and relations to get insight in the data (Chi, 2002;

Spence, 2014; Ware, 2015). The most common examples of information
visualization techniques are trees, maps, and graphs (Telea, 2015).
Finally, software visualization is the art and science of generating visual
representations of various aspects of software and its development
process (Diehl, 2007). The driving motivation of software visualization
is to help the comprehension of software systems and to improve the
productivity of the software development process (Diehl, 2007). Thus,
he visualization techniques that we developed for our exploratory
tudy, fall within the scope of software visualization because their goal
s to support testing related tasks for Software Product Lines.

The CIT covering arrays, defined in Section 2.2, can be regarded as
multidimensional data whereby the strength of the array corresponds
to the number of dimensions. Hence, natural choices for visualizing the
covering arrays are visualization techniques tailored for multidimen-
sional data (Ward et al., 2010; Telea, 2015; Ware, 2015). We surveyed
ifferent alternative visualization techniques (e.g., Ward et al., 2010)
nd implementation platforms. Our purpose was to select — as start-
ng point — two existing, basic, and commonly-used visualization
echniques for multidimensional data that were implemented in an
pen-source tool capable of generating visualizations in a common and
ccessible format like HTML. From our survey, we selected for our
xploratory study scatter plots3 and parallel dimensions plots,4 imple-
ented using the Python-based library Plotly.5 This library permits

the generation of the visualizations in HTML format with basic support
for user interaction as described below.

Fig. 2 illustrates the visualization techniques for our running exam-
le GPL. We have made available in our public Dataverse repository
he four visualizations of this figure in standard HTML format (Lopez-
errejon and Nezami Balouchi, 2024). Notice that the names of the

features have been obfuscated with sequential integer numbers with the
format 𝐹 𝑖, with 𝑖 = 0..𝑁 − 1 where 𝑁 is the number of features. The
symbol ! is prefixed to a feature to indicate that it has not been selected
in a pair or in a triplet. Renaming the features in our experiment
prevents any interference with any knowledge that participants may
have about the application domain of the feature models. Note as well
that the values along the axes are not sorted in any particular order
and come from the tool used to compute the CIT covering arrays as
explained in Section 4.

Scatter plots. The first visualization technique selected is the scatter
lot (Ward et al., 2010; Telea, 2015; Ware, 2015). This type of plot

is based on the Cartesian plane with dots located at the intersection
of the values shown on the axes. In our study, the values on the axes
represent the features (selected and not selected) that form the pairs
or triplets (two or three axes) of the covering array that is visualized.
Hence, a dot in the plane corresponds to a single pair or triplet of
a covering array, located at the intersection of the coordinates that
correspond to the features that form such pair or triplet. The color of
a dot represents the configuration or solution that covers the pair or
triplet.6 Thus, the number of dot colors used in this visualization is the
umber of solutions in the covering array visualized. Furthermore, this

3 Also known as scattered plots.
4 Also known as parallel coordinates plots.
5 Python version 3.10.4 and Plotly version 5.7.0, https://plotly.com/.
6 In the case that a pair or element is covered by more than one solution,

one color is assigned.
4 
visualization has as navigation aid a small window that pops up while
the user hovers over a dot. This window shows the dot’s feature names
(i.e. the coordinates of the dot) and the name of the solution that covers
it.

Let us illustrate this visualization for the case of pairs using our
unning example GPL. For instance, consider the pink colored dot at the
pper right corner of Fig. 2a. When the user hovers over it, the window
hat pops up indicates that this dot represents the pair (!F4,F6) —
ocated at the intersection of !F4 and F6 — and that it is covered by
olution S6. This covering array of GPL has 13 solutions. Consequently,
his figure has 13 distinct colors for the dots. The pink dots in this figure
epict then all the pairs covered by solution S6.

Let us now illustrate scatter plots for CIT covering arrays of 𝑡 = 3.
Fig. 2b shows the visualization of such covering array for our running
xample GPL. The dots are now depicted in a Cartesian plane of three
imensions, where the coordinates represent the values of the three
eatures (selected and not selected) that form a triplet of the covering
rray. For instance, consider the upper right dot in this figure. When
he user hovers over it, the window that pops up indicates that this dot
epresents the triplet (F10,!F12,F13) — located at the intersection
f F10, !F12, and F13 — and that it is covered by solution S22. This
overing array has 27 configurations or solutions. Thus, the dots in this
igure have a color chosen from a palette of 27 different colors.7 In the
xample dot, the pink color corresponds to solution S22.

Our scatter plots for 𝑡 = 3 have an additional navigation aid.
onsider that a dot in a three-dimensional Cartesian plane sits at the

ntersection of three two-dimensional planes, one plane intersecting
ach dimension at the value of the corresponding axis. In our example
ot, we can think of a plane intersecting axis x at feature F10, a

second plane intersecting axis y at feature !F12, and a third plane
intersecting axis z at feature F13. When the user hovers over this dot,
our visualization displays black lines that sketch the borders of those
hree planes, thus facilitating the location of the features along the axes.

Parallel dimensions plots. The second visualization technique selected
was the parallel dimensions plot (Ward et al., 2010; Telea, 2015;
Ware, 2015). This technique was proposed by Inselberg in 1985 for
studying geometries of higher dimensions. This visualization depicts
the axes evenly spaced in parallel rather than orthogonal. A data point
corresponds to a polyline that joints together the corresponding values
of each dimension in the order of the axes.

In our plots, the parallel dimensions are structured as follows:

• Solutions dimension: the dimension (axis) depicted at the right of
the visualization whose values are the names of the solutions
(a.k.a configurations) that conform the covering array. Each value
in this dimension has a name of the form Si and it is repre-
sented by a rectangle of a distinct color value whose height is
proportional to the number of pairs or triplets covered by the
corresponding solution.

• Feature dimensions: the two or three dimensions (axes) whose
values are the names of the features (selected and not selected)
that respectively constitute either the pairs or triplets of the
covering array. Each value in these dimensions is visualized by
a group of adjacent rectangles that represent the contribution of
the feature to each solution. These rectangles are arranged in the
same order as in the Solutions dimension. Their color matches
the color of the solution they contribute to, and their height is
proportional to the number of pair or triples they contribute to a
particular solution.

In our parallel dimensions plots, each polyline:

7 The scatter plots visualization for 𝑡 = 3 also contains a legend on the right
side of the figure with a list of solutions (e.g. S0) and their corresponding
color. This legend is not shown in the figure for simplicity.

https://plotly.com/
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Fig. 2. Illustration of visualization techniques for GPL running example.
• Represents a pair or a triplet covered by a solution in the covering
array that is visualized.

• Intersects all the feature dimensions at the corresponding feature
name value.

• Has its right extreme ending at the solution that covers the
corresponding pair or triplet.

• Has the color of the solution that covers it.
Let us illustrate this visualization with our running example GPL

for the case of pairs. Fig. 2c shows this visualization. From the left, the
first and second axes are the feature dimensions of the pairs labeled
5 
respectively as Feature1 and Feature2. The axis at the right shows
the solutions dimension. In this case, the axis has 13 solutions and
thus 13 distinct colors for depicting them. As an example, consider the
polyline at the top of the visualization. This polyline connects the left
dimension at feature !F0, the middle dimension at feature !F2, and
the right dimension at solution S0. Thus, this polyline visualizes the
pair (!F0,!F2) covered by solution S0. Notice that the polyline and
all the intersecting rectangles share the same solution color. Similarly,
Fig. 2d shows our visualization for the triplets of the GPL example. This
figure has three feature dimensions and the solution dimension which,
for this covering array, has 27 solutions.
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Our parallel dimensions visualization has two types of interactions
to help the navigation. The first navigation aid highlights the entire
polyline while the user hovers over it. For the second aid, when the
user hovers a rectangle in an axis, a small window pops up that shows
the number of polylines that intersect the rectangle and highlights all
those polylines across all the dimensions. For example, Fig. 2e shows
9 as the number of polylines in solution S0 and highlights all those
olylines. As another example, Fig. 2f shows feature F7, and its top

rectangle intersects with 12 polylines and highlights them across all
dimensions.

From the plot description, it can be inferred that the total number
of polylines in a plot is the summation of the number of pairs or triples
covered by each solution of the covering array depicted. For the GPL
example, its 418 pairs are covered by 13 solutions amounting to 1269
polylines. For the case of triplets, the covering array has 27 solutions
totaling 9643 polylines. Even though these numbers of polylines may
appear to be large numbers, we should keep in mind that the navigation
aids help to prune significantly the search space while the users perform
the tasks.

For both visualization techniques, we have chosen color palettes
provided by default in our implementation library Plotly. The palettes
worked well for the number of colors in our case studies and they were

ell evaluated in our pilot study. Neither experimenting with different
color palettes nor assessing accessibility issues, such as color-blindness,
are part our of exploratory study.

4. Experimental design

In this section, we present the experimental design of our ex-
ploratory study. We followed the Goal/Question/Metric (GQM) method
(Wohlin et al., 2012). Thus, we first introduce the main goal of our
study, its research questions, and their corresponding metrics. Then,
we present the study delimitations and describe the feature models
selected for computing the covering arrays of our experiment. We close
with a detailed description of the entire experiment design, including
the definition of the areas of interest of visual attention, and the data
processing workflow.

4.1. Goal, questions, and metrics

The goal of our research study is the following:

Goal: Compare the visualization techniques scatter plots and par-
allel dimension plots in terms of response accuracy, time-on-task,
metacognitive monitoring, and visual attention during the execution
of a test coverage task in Software Product Lines.

In Section 3 we have described how scatter plots and parallel dimen-
ions plots work. Now, we present and illustrate the test coverage task

of our study followed by the research questions and their corresponding
metrics.

Task description. Our study focuses on the most basic task concern-
ng test coverage of SPLs. This task has two purposes. First, it aims
t asserting whether a pair or triplet is covered or not by a solu-
ion (i.e. configuration of a covering array) using one of the two

visualization techniques considered for our study. Second, it collects
elf-assessment information to gather the perception of the participants.

Each task performed in our experiment consists of three parts:

1. A coverage question with the following form:
Is this set <SET> covered by <SOLUTION>?

where <SET> and <SOLUTION> respectively correspond to a
pair or triplet and a named solution. The possible answers to
each coverage question are either Yes or No. As an example,
consider the task shown in Fig. 3 which uses the parallel dimen-
sions visualization for the coverage of a pair. The corresponding
question is: Is this set (!F8,F1) covered by S3?
 s

6 
2. A Certainty Assessment (CA) self-reported question based on the
NASA-TLX index (Hart and Staveland, 1988): How successful were
you in accomplishing what you were asked to do?. The values range
from Perfect to Failure, which are selected by participants
via a slider widget that interactively shows the chosen value on
a Likert scale from 0 to 20.

3. A Difficulty Assessment (DA) self-reported question based on
the NASA-TLX index (Hart and Staveland, 1988): How mentally
demanding was the task?. The values range from Very easy
to Very difficult, selected also via a slider that shows the
value transformed to a Likert scale from 0 to 20.

Research questions and metrics. The research questions of our study
are divided in the following categories: response accuracy, time-on-
task, metacognition monitoring, and visual attention.

Research Question 1 (RQ1): Is there any effect of the number of
elements of a covering array and the visualization technique on the
accuracy of task responses?

Metric: Response Accuracy. This metric simply counts the number
of accurate and inaccurate responses given by the participants to
each coverage question of their tasks.

For a more detailed analysis, we break down RQ1 in two questions,
one question for the effect of pairs and one question for effect of triplets.

Research Question 2 (RQ2): Is there any effect of the number of
elements of a covering array and the visualization technique on the
time-on-task?

Metric: Time-On-Task. This metric is the elapsed time that goes
from the moment a coverage question is shown on the screen
until the participant selects a response and clicks the space bar to
continue. See Fig. 3 for an example.

Like before, we break down RQ2 in two questions, one question for
the effect of pairs and one question for the effect of triplets.

Research Question 3 (RQ3): Is the response accuracy related to
the metacognition monitoring metrics Certainty Assessment or Dif-
ficulty Assessment?

We want to explore the relationship between Certainty Assessment
CA) and Difficulty Assessment (DA) as described in Section 4.1, both

for pairs and triplets.

Research Question 4 (RQ4): Is there a relationship between the
different AOIs of the visual stimuli in terms of the proportion of
visual attention given to them while responding the question of the
test coverage tasks?

Recall from Section 2.3 that fixations are movements that stabilize
the retina on the visual stimulus and that the Areas Of Interest (AOIs)
are regions of the visual stimulus deemed relevant for performing of a
task. To answer RQ4, we consider the following two metrics:

Metric: Fixation time. The aggregated duration of all the fixations
on a specific Area of Interest (AOI).

Metric: Fixation count. The number of fixations on a specific Area
of Interest (AOI).
These two metrics are typically used to infer the mental effort of

participants while performing a visual task (Zagermann et al., 2016).
ore concretely, low fixation time and low fixation counts indicate

ess effort in cognitive processing of visual information, while long
ixation time and high fixation counts indicate more effort (Obaidellah

et al., 2018). In Section 4.5, we present further details on the AOIs of
ur study. Like the previous questions, we broke down RQ4 into two
ub-questions, namely for pairs and triplets.
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Fig. 3. Example of pair coverage question of parallel dimensions visualization.
4.2. Exploratory study delimitations

Every experiment has research aspects that are outside its scope. In
our case, we explicitly state that two delimitations of our exploratory
study are color accessibility and color perception issues. In other words,
though they are important aspects of visualization techniques, they are
not part of the independent variables considered in our experiment
design.

In addition, outside the scope of our study is a comparison between
using the visualization techniques versus using only the default textual
information of the covering arrays. The large amounts of textual output,
the limited eye-tracker distinguishability among text components, and
the implied extension of the duration of the participants’ experiment
time were the reasons behind this decision. However, all the textual
information of the covering arrays of all the case studies is available in
our Dataverse repository (Lopez-Herrejon and Nezami Balouchi, 2024).

4.3. Selection of feature models and computation of their covering arrays

We based the selection of the feature models used in our study on
the community-wide dataset collected in the work of Ferreira et al.
(2021). This dataset contains 30 case studies of different domains and
complexity that have been extensively used by the research community
in the area of t-wise testing of SPLs. We adapted the SPLCAT tool
(Software Product Line Covering Array Tool),8 proposed by Johansen
et al. (2012), to compute the pairs, triplets, and covering arrays of our
exploratory study.

We generated the visualizations of the 30 case studies using the
two visualization techniques of our study, for pairs and triplets.9 We
performed several tests in terms of legibility and selected ten case
studies whose visualizations were suitable for the coverage tasks that
are the focus of our study. The selected case studies are shown in
Table 1. Their number of features ranges from 10 to 21, the number
of pairs from 66 to 440, and the number of triplets from 144 to 3583.

8 https://martinfjohansen.com/splcatool/.
9 All the generated visualizations are available in our Dataverse reposi-

tory (Lopez-Herrejon and Nezami Balouchi, 2024).
7 
Table 1
Selected feature models.

Case study Features Pairs Triplets

ArgoUML-SPL 10 114 476
ATM 10 127 473
Companies 13 209 1143
Email 11 119 463
GPL Modified 21 387 2491
MinePump 11 136 565
Prop4J 17 440 3583
UnionFindSPL 10 66 144
VendingMachine 10 127 499
ZipMe 15 208 1029

The remaining 20 feature models from the original community-wide
dataset were excluded from our study because their large number of
pairs or triplets produced visualizations that were too crowded or not
legible enough to perform the coverage task,10 hence our selection
of the experiment corpus was influenced by these aspects. Exploring
alternative visualizations or more sophisticated forms of interaction and
navigation for larger number of pairs and triplets is part of our future
work.

4.4. Experiment design

We followed a standard approach for the selection of our exper-
iment design (Wohlin et al., 2012; Lazar et al., 2017; Cunningham
and Wallraven, 2019) and adhered to the guidelines proposed by
Sharafi et al. for using eye-tracking technology in Software Engineering
research (Sharafi et al., 2020).

We recruited 26 participants for our study, primarily graduate
students from our institution who had no prior familiarity with feature
models or combinatorial interaction testing. We randomly selected two

10 The visualizations of the excluded feature models had large numbers of
visual components. This fact causes a size reduction of the components which
renders them hard to read (e.g., the feature names), even in a large screen.
This reduction also made the components hard to distinguish from each other
when analyzing the gaze with the eye-tracker.

https://martinfjohansen.com/splcatool/
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Table 2
Task visualization distribution, types of plots, type of elements to cover pairs/triples,
number of colors, number of polylines.

Scatter plots tasks
Task no. Case study Pairs Triplets No. colors

Task 5 UnionFindSPL ✓ 6
Task 6 VendingMachine ✓ 7
Task 7 Prop4J ✓ 11
Task 8 Companies ✓ 8

Task 13 UnionFindSPL ✓ 6
Task 14 Email ✓ 37
Task 15 GPL modified ✓ 31
Task 16 MinePump ✓ 20

Parallel dimensions plots tasks
Task no. Case study Pairs Triplets No. colors No. polylines

Task 1 ATM ✓ 11 392
Task 2 Email ✓ 7 292
Task 3 Prop4J ✓ 11 1386
Task 4 MinePump ✓ 7 309

Task 9 ArgoUML-SPL ✓ 22 1896
Task 10 UnionFindSPL ✓ 6 291
Task 11 GPL Modified ✓ 31 20 259
Task 12 ZipMe ✓ 15 4078

of these students to conduct a pilot study to help us refine the scope and
uration of the experiment, and to fine tune the experiment conditions
e.g., lighting, screen and keyboard layout, etc.). Thus, our experiment

gathered the data of 24 participants, i.e., 𝑛 = 24.
For our experiment, we chose a within-subjects11 design whereby

ach participant in the experiment is exposed to all experimental
reatments (Lazar et al., 2017). This design is suitable for small samples

and isolates the effects of individual differences. By contrast, within-
subject designs may produce a learning effect (i.e. participants get
better as they learn how to perform a task) and may result in fatigue
(i.e. participants get tired or distracted of repeating the same task).
We addressed these limitations in two ways. First, to prevent learning
effect, we applied a unique and random order of treatments (i.e. tasks)
for each participant. Second, informed by our pilot study, we limited
the number of treatments to 16 tasks so that participants could finish
the entire experiment within a reasonable time.

The structure of each task was already described in Section 4.1 and
heir visualizations were split into four groups: (i) four scatter plot
isualizations of pairs, (ii) four scatter plot visualizations of triplets, (iii)

four parallel dimensions plot visualizations of pairs, and (iv) four paral-
lel dimensions plot visualizations of triplets. The questions for the tasks
were defined as a mix of Yes and No answers, and a distribution of gaze
scan paths across the different regions of the visualizations. Table 2
shows the distribution of the 16 tasks across: visualization techniques,
asks, case studies, pairs or triplets, number of colors, and number of
olylines for parallel dimensions plots. The visualizations of the 16
asks, their questions, and their images with the AOIs are available in
ur public Dataverse repository (Lopez-Herrejon and Nezami Balouchi,

2024).
Our study was conducted in a dedicated research room for user

studies at our institution. During the experiment, participants were
sitting alone in the room, while the experimenter monitored them
from an adjacent observation room. This setup ensured a consistent
and undisturbed environment, with controlled variables such as room
lighting and participant positioning relative to the screen, keyboard,
and eye-tracker. We used the Tobii Pro Fusion bar eye-tracker and Tobii
Pro Lab tool,12 two commonly used industrial hardware and software

11 Also known as within-participant of within-group designs.
12 Further details in: https://www.tobii.com/products/eye-trackers/screen-
ased/tobii-pro-fusion and https://www.tobii.com/products/software/

behavior-research-software/tobii-pro-lab.
8 
tools, for capturing and analyzing gaze data. Our setup consisted on
 standard 27-inch screen, with wireless and ergonomic keyboard and
ouse.

The session of each participant followed the next sequence of steps:

• Start with a brief introduction of the experiment by the experi-
menter, describing its objective and the procedure to follow.

• Sign the consent form approved by the ethics committee of our
institution.

• Watch a training video (approximately 17 min) and clarify any
questions or issues that the participants may have. The train-
ing video is also available in our Dataverse repository (Lopez-
Herrejon and Nezami Balouchi, 2024).

• Set up of the experiment web interface with the corresponding
sequence of tasks for the participant.

• Calibrate of the eye-tracker using Tobii Pro Lab tool, based on the
adjusted position of the participant.

• Perform a warm-up practice with two tasks to gain familiarity
with the graphical interface and recording the responses. No
feedback is given to participants.

• Perform the 16 tasks, each participant in an unique and random-
ized order.

• Respond to a semi-structured interview recorded to gather further
insights from the participant.

4.5. Definition of Areas of Interests (AOIs)

This section explains the Areas of Interest (AOIs) defined for our
stimuli. We illustrate this process with the visualization of pairs in a
arallel dimensions plot used in the coverage question shown in Fig. 3.

To this figure we superimpose orange rectangles to indicate the AOIs
s shown in Fig. 4.

All the stimuli in our tasks the AOIs are of the following types:

• Question AOI ➀: shows the text of the question.
• Answer AOI ➁: contains the radio buttons that permit the partic-

ipant to answer Yes or No to the question.
• Axial AOIs ➂: contain the axes in the visualization that the partic-

ipants’ gaze must traverse to find the answer to the question. The
axes contain the feature names and the solution names. The width
of these AOIs were defined based on gaze heat maps during the
pilot study and the specifications of the eye-tracker we employed.

• Target AOIs ➃: contain the feature names (selected and unse-
lected) mentioned in the question. Target AOIs are located within
their corresponding axial AOIs. Notice that nesting AOIs enables
to compute the attention metrics of navigating the axes and of
locating the feature names within the axes. In Fig. 4, the target
AOIs contain feature !F8 and feature F1 respectively.

• Solution AOI ➄: contains the solution name mentioned in the
question. The solution AOI is located within the axial AOI that
contains the solution names.

• Navigation AOI ➅: contains the entire area of the visualization.
We use this AOI to compute the metrics of navigating the vi-
sualization outside the axes (i.e. by subtracting the metrics of
the Axial AOIs from the Navigation AOI metrics). In the case of
parallel dimensions plots, the navigation metrics corresponds to
the data that results from the user following and interacting with
the polylines.

• Stimulus AOI ➆: contains the entire visual stimulus. We use this
AOI to compute the metrics of gazes outside all other AOIs and
to perform several data consistency checks.

The other three visualizations have a similar scheme of AOIs. For
triplets and parallel dimensions plots, the difference is the additional
axis to contain the third element of the triplet. Thus, this visualization
adds an extra Axial AOI and an extra Target AOI contained within
it. For the scatter plots visualizations, the main difference is that

https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
https://www.tobii.com/products/eye-trackers/screen-based/tobii-pro-fusion
https://www.tobii.com/products/software/behavior-research-software/tobii-pro-lab
https://www.tobii.com/products/software/behavior-research-software/tobii-pro-lab
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Fig. 4. Example of Areas of Interest (AOIs) for a coverage question in Fig. 3. AOIs: Question AOI ➀, Answer AOI ➁, Axial AOIs ➂, Target AOIs ➃, Solution AOI ➄, Navigation
AOI ➅, Stimulus AOI ➆.
there is no Axial AOI that contains the Solution AOI. In our Dataverse
repository, we share pictures of the actual AOIs for all the questions in
our study (Lopez-Herrejon and Nezami Balouchi, 2024). These pictures
were exported using the TobiiPro Lab tool.

4.6. Data processing

This section summarizes the data processing workflow that we
followed to collect the data of our experiment as illustrated in Fig. 5.
We developed an R script to generate random numerical sequences for
the tasks assignments of the participants. Each participant has his/her
own unique sequence used as the Experiment Configuration ➀ for the set
up of the Experiment Task Manager ➁, a customizable HTML/Javascript
application that handles the sequences of the experiment’s tasks and the
collection of their data. Each participant performs two warm up tasks
followed by his/her unique sequence of tasks ➂. Once a participant
completes all the tasks, the Experiment Task Manager generates a Perfor-
mance Data file ➃ that contains all the tasks’ responses and time-on-task
data for the participant.

At the end of the session of the participant, the experimenter carries
out an offline manual Eye-Tracker Data Curation process ➄ with the
aid of the Tobii Pro Lab tool. During this process, the eye-tracker
data is segmented in 16 Excel files, i.e. the Raw Eye-Tracker Data ➅,
where each file contains the data of one task13 We developed a series
of R scripts, i.e. Eye-Tracker Data Aggregation ➆, to process the vast
amounts of eye-tracker data and aggregate the metrics required by
our research questions in a single file per participant, i.e. Eye-Tracker
Data ➇. Lastly, the data of all the participants were aggregated via other
R scripts, i.e. Experiment Data Aggregation ➈, into a dataset for the entire
experiment, i.e. Complete Experiment Data ➉.

In Fig. 5, we add one of the following words in parenthesis to
each element: (a) open when the data is publicly available in our
Dataverse repository (Lopez-Herrejon and Nezami Balouchi, 2024), (b)
restricted when the data cannot be openly shared according to
the ethics guidelines of our institutions because they contain human

13 The results of the warm up questions are neither stored nor analyzed.
9 
subjects information, and (c) when there is a manual process tailored
to the dataset that cannot be automated or replicated.

5. Results and analysis

In this section, we present the results and analysis for each of the
research questions. Our analyses are divided in the specific descriptive
and inferential statistics for each questions as well as the interpretation
of its results. We conclude the section with a general summary of our
findings.

5.1. Response accuracy results (RQ1)

This section presents the descriptive statistics and the analysis of the
results of the Research Question 1 regarding accuracy of responses.

5.1.1. Descriptive statistics
In total, out of the 384 responses (24 participants × 16 tasks),

325 (84.64%) were accurate and 59 (15.36%) were inaccurate. Fig. 6
shows the distribution of all responses by participant and by question
respectively, while Table 3 summarizes the accurate responses. In
the participants’ perspective, Fig. 6a, there were six participants that
responded all the task questions accurately. Per participant, the average
was 13.54 accurate responses with the minimum was eight responses.
From the point of view of task questions, Fig. 6b, the average was
20.31 accurate responses, with the minimum of ten (Task 14) and the
maximum of 24 accurate responses, in the case of four tasks (Task 4,
Task7, Task 8, and Task 15).

Fig. 7 shows the distribution of accurate and inaccurate responses
across the strength 𝑡 of the covering array and the visualization tech-
nique. For 𝑡 = 2 and scatter plots, participants got the highest number
(94) of accurate responses.14 In contrast, for 𝑡 = 3 and also scatter
plots, participants got the lowest (70) number of accurate responses.
The results for parallel dimensions plots were very similar, with 81 and
80 accurate responses respectively for 𝑡 = 2 and 𝑡 = 3.

14 Recall that there were 24 participants and 4 tasks per participant for each
combination of 𝑡 value and visualization technique. Thus the maximum value
is 96.
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Fig. 5. Data processing workflow, open — publicly available data, restricted — private data, manual — manual process for curating eye-tracker data.
Fig. 6. Response accuracy results per participant and per task question.
Fig. 8 breaks down the accuracy results by showing the number
of pairs or triplets for each combination of 𝑡 value and visualization
technique. For 𝑡 = 2 and scatter plots, response accuracy varies slightly
as the number of pair increases. Interestingly, here the questions with
perfect accurate scores are those with higher number of pairs, followed
very closely with 23 accurate responses those that have lower number
of pairs. For 𝑡 = 2 and parallel dimensions plots, response accuracy
varies regardless of the number of pairs. For 𝑡 = 3, response accu-
racy varies regardless of the number of triplets in both visualization
techniques.

Table 3 also summarizes the response accuracy per participant by
covering array strength and visualization technique . Please recall that
each participant performed 8 tasks per value of 𝑡 and 8 tasks per
10 
visualization technique. For 𝑡 = 2, participants got between 4 and 8
accurate responses with an average of 7.29. In contrast, for 𝑡 = 3, the
minimum value was 3 accurate responses, with maximum value 8 and
average value 6.25. In terms of visualization technique, for scattered
plots participants obtained between 5 and 8 accurate responses with
an average of 6.83. In contrast, for parallel dimensions plots, the range
was between 3 and 8 accurate responses, with average of 6.70.

5.1.2. Analysis
Research question RQ1 was answered using multilevel modeling

with participants as nesting variable and tasks as repeated measures
(Raudenbush and Bryk, 2001). Multilevel modeling has to be used
because the assumption of independence of observations is violated
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Fig. 7. Response accuracy results summary.

Fig. 8. Accuracy results per number of pairs and triplets with visualization technique.
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Table 3
Accurate responses summary.

Per participant
Criteria Mean Min Max Std Dev

All 16 tasks 13.54 8 16 2.28

Array strength
𝑡 = 2 7.29 4 8 1.08
𝑡 = 3 6.25 3 8 1.48

Visualization technique
Scatter plots SP 6.83 5 8 1.09
Parallel dimensions plots PD 6.70 3 8 1.48

Per task
All participants 20.31 10 24 4.31

because participants contribute observations to a series of questions
that are analyzed separately. We performed our analysis with the SPSS
Generalized Mixed Linear Models procedure. With this approach, the
following two assumptions must be met15: (i) normality (i.e. that the
error terms at every level of the model are normally distributed), and
(ii) homoscedasticity (i.e. variances of dependent variables are equal
etween groups—levels of independent variables).

For Questions RQ1a and RQ1b, a logit function was used to predict
the binary outcome variable (accurate-inaccurate response) from two
factors: visualization technique (categorical), and number of pairs or
triplets (ordinal).

Question RQ1a. Effect of number of pairs and visualization technique on
esponse accuracy. There is an effect of visualization technique (𝐹1184 =
8.24, 𝑝 < .001), and number of element pairs (𝐹5184 = 67.53, 𝑝 < .001)
n response accuracy. The scatter plots visualization technique (2D-
P) produces more accurate responses compared to parallel dimensions
lots (2D-PD), 54% and 46% respectively. The interaction effect of
isualization technique and number of elements is also significant
𝐹1184 = 12.60, 𝑝 < .001). The number of accurate responses varies
cross the number of pairs, and the gain of 2D-SP over 2D-PD is more
vident in the lower number of pairs.

Question RQ1b. Effect of number of triplets and visualization technique
on response accuracy. There is an effect of visualization technique
(𝐹1184 = 14.08, 𝑝 < .001), and of number of triplets (𝐹5184 = 27.30,
𝑝 < .001) on response accuracy. The better performance with parallel
dimensions plots (3D-PD) compared to scatter plots (3D-SP) is evident
across numbers of triplets, and its effect on response accuracy does not
show any clear pattern. The interaction effect of visualization technique
and number of triplets is borderline (𝑝 < .062) so it is not further
analyzed. Of the accurate responses, 53% were with parallel dimensions
plots (3D-PD), while 47% for scatter plots (3D-SP). The number of
accurate responses varies across number of triplets, but in no clear
pattern.

Discussion for RQ1. The visualization technique of scatter plots seems to
improve performance for pairs (2D-SP), while the parallel dimensions
plots improves performance for triplets (3D-PD). Considering that the
number of pairs and triplets to visualize is similar in both techniques,
this finding suggests that the answer accuracy difference lies at how
the visualization mental models (see Section 2.4) are built and accessed
or each visualization technique. For pairs, there is a clear advantage

of 2D-SP for which response accuracy does not appear to be affected
as the number of pair increases. In contrast, 2D-PD has more varied
response accuracy. This fact suggest that navigating the additional

15 There are two other assumptions, linearity and no perfect multicollinear-
ty, that also must be met for this approach but that are not applicable in our
ase.
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Table 4
Time-on-task summary with time in seconds.

Criteria Mean Min Max Std Dev
seconds seconds seconds seconds

All 16 tasks 1047.50 367.50 1497.60 304.41

Accuracy
Accurate responses 64.30 4.25 465.55 51.03
Inaccurate responses 71.86 16.21 161.98 37.72

Array strength
𝑡 = 2 49.38 7.98 208.21 31.46
𝑡 = 3 81.54 4.25 465.55 57.91

Visualization technique
Scatter plots SP 69.84 4.48 465.55 59.74
Parallel dimensions plots PD 61.08 4.25 199.13 35.45

visual elements present in parallel dimensions plots such as lines may
cause more cognitive load in detriment of response accuracy. For
triplets, the situation seems to be reversed where the additional visual
clues provided by 3D-PD seem to have a positive impact on response
accuracy.

5.2. Time-on-task results (RQ2)

This section presents the descriptive statistics and the analysis of the
esults of the Research Question 2 regarding time-on-tasks.

5.2.1. Descriptive statistics
Please recall from Section 4.1 that the time-on-task is the elapsed

ime from the moment when a task is displayed on the web interface
o the submission of the response by clicking the space bar to move
n to the next task. In contrast, the time captured by the eye-tracker is
nalyzed in Section 5.4.

Table 4 summarizes the results of time-on-task. Participants took
etween 367.5 seconds (6.12 min) and 1497.60 seconds (24.96 min)
o respond all the 16 questions. The average per participant was
047.50 seconds (17.45 min) with a standard deviation of 304.41 sec-
nds (5.07 min). In terms of response accuracy, the accurate responses
howed a large range of time-on-task going from 4.25 seconds to
65.55 seconds (7.75 min) with an average of 64.30 seconds (1.07 min)
nd standard deviation of 51.03 seconds. In contrast, the range of inac-
urate responses was from 16.21 seconds to 161.98 seconds (2.69 min)
ith an average of 71.86 seconds (1.97 min) and a standard deviation
f 37.72 seconds.

The distribution of time-on-task over covering array strength 𝑡 was
as follows. For 𝑡 = 2, the range was from 7.98 seconds to 208.21 sec-
onds (3.47 min) with an average of 49.38 seconds, and standard
eviation of 31.46 seconds. For 𝑡 = 3, the range went from 4.25 sec-
nds to 465.55 seconds (7.75 min) with an average of 81.54 seconds
1.35 min), and standard deviation of 57.91 seconds.

In terms of visualization techniques, the responses for scatter plots
took between 4.48 seconds and 465.55 seconds (7.75 min) with an av-
erage of 69.84 seconds (1.16 min), and standard deviation of 59.74 sec-
onds. In the case of parallel dimensions plots, responses took be-
ween 4.25 seconds and 199.13 seconds (3.31 min) with an average

of 61.08 seconds (1.01 min), and standard deviation of 35.45 seconds.
Fig. 9 summarizes the time-on-task across covering array strength 𝑡

nd visualization techniques. For 𝑡 = 2 and scatter plots, the values
of the accurate responses ranged from 7.98 seconds to 208.21 sec-
nds (3.47 min), with an average of 41.83 seconds. In contrast, there
ere only two observations of inaccurate responses, 81.85 seconds

1.35 min) and 87.39 seconds (1.45 min), averaging 84.62 seconds
1.41 min).

For 𝑡 = 2 and parallel dimensions plots, the accurate responses
ranged from 15.77 seconds to 156.55 seconds (2.60 min) with an
average of 54.22 seconds, whereas for inaccurate responses the range
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Fig. 9. Time-on-task results summary.
was from 23.24 seconds to 156.70 seconds (2.61 min) with an average
of 65.85 seconds (1.09 min).

For 𝑡 = 3 and scatter plots, the accurate responses had values
from 4.48 seconds to 465.55 seconds (7.75 min),16 with an average
100.41 seconds (1.67 min). For inaccurate responses, the values were
from 24.86 seconds to 161.98 seconds (2.69 min) with an average of
87.67 seconds (1.46 min).

For 𝑡 = 3 and parallel dimensions plots, the time of accurate
responses went from 4.35 seconds to 199.13 seconds (3.31 min), with
an average of 69.30 seconds (1.15 min). For inaccurate responses, the
values went from 16.20 seconds to 133.98 seconds (2.23 min), with an
average of 50.19 seconds.

Fig. 10 breaks down the time-on-task results by the covering array
strength 𝑡, visualization technique, response accuracy, and number of
pairs or triplets. For 𝑡 = 2 and scatter plots, the accurate responses
are mostly below the 60 seconds threshold. The two inaccurate re-
sponses had 66 pairs and 127 pairs, with time-on-task of 81.85 seconds
(1.36 min) and 87.39 seconds (1.45 min) respectively. For 𝑡 = 2 and
parallel dimensions plots, the ranges of the boxplots overlap along
response accuracy, except for the case of 136 pairs where there were
no inaccurate responses.

For 𝑡 = 3 and scatter plots, only one inaccurate response appears
at the case of 144 triplets and its time is at in the middle of the
range of the accurate responses. For the cases of 463 and 565 triplets,
the medians of the inaccurate responses are higher than those of the
accurate responses. For the largest case, 2491 triplets, there were no
inaccurate responses, and the median time of the accurate responses
for this case was higher than any other of the cases. For 𝑡 = 3 and

16 This value is an outlier which is not shown in the figure to visually
facilitate the comparison with same time scale of the other three combinations.
13 
parallel dimensions plots, the cases with 144 and 1029 triplets present
each seven inaccurate responses, and their times are within the ranges
of the accurate responses for those cases. The cases with 476 triplets
and 2491 triplets have each a single inaccurate response that fall within
the time range of their accurate response counterpart.

5.2.2. Analysis
Question RQ2 was also answered using multilevel modeling with

participants and questions as nesting and repeated measures variables,
with SPSS Generalized Mixed Linear Models procedure (Raudenbush
and Bryk, 2001). For research questions RQ2a and RQ2b, a linear
function was used to predict the continuous outcome variable, time-
on-task, from the same 2 factors: visualization technique (categorical),
number of pairs or triplets (ordinal). Within the rationale of mental
chronometry (Posner, 1993), the analysis was conducted using only the
accurate responses.

Question RQ2a. Effect of number of pairs and visualization technique on
time-on-task. There is an effect of number of elements (𝐹5184 = 7.43, 𝑝 <
.001) on time-on-task. The increasing number of elements produces a
longer time-on-task, but this tendency is not distributed evenly across
the number of elements. The effect of visualization technique is also
significant (𝐹1184 = 7.04, 𝑝 < .001). The scatter plots (2D-SP) produce
shorter time-on-task values. Finally, the effect of the interaction of
visualization technique and number of elements is not significant (𝑝 >
.05).

Question RQ2b. Effect of number of triplets and visualization technique
on time-on-task. There is an effect of visualization method (𝐹1184 =
11.97, 𝑝 < .001), and number of elements (𝐹5184 = 4.10, 𝑝 < .001) on
time-on-task. The effect of the interaction of visualization technique
and number of elements is also significant (𝐹1184 = 5.42, 𝑝 < .021).
The parallel dimensions plots (3D-PD) produce shorter response times
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Fig. 10. Time-on-task results per number of pairs or triplets, response accuracy, and visualization technique.
compared with the scattered plots (3D-SP), 66.1 seconds (1.10 min)
and 97.0 seconds (1.61 min) respectively. The increasing number of
elements produces a somewhat U-shaped curve of time-on-task values.

Discussion for RQ2. In the case of covering arrays of strength 𝑡 =
2, time-on-task relates to the number of pairs considered. This is
expected because having larger number of pairs to visualize and nav-
igate through increases the complexity of the mental models built by
the participants for answering the tasks. The fact that the visualiza-
tion techniques of pairs do not affect the time-on-task suggests that
both techniques seem equally interpretable by the participants, but it
should be noted from RQ1a that the success rate is better with parallel
dimensions plots (2D-PD).

In the case of covering arrays of strength 𝑡 = 3, despite comparable
success rates in terms of accurate answers (see RQ2b), the scatter plots
(3D-SP) induce longer time-on-task values than parallel dimensions
plots (3D-PD), indicating an additional difficulty in the construction
of the mental models required for the tasks, for which participants
compensate by increased cognitive efforts. Parallel dimensions plots
(3D-PD) seems the visualization technique of choice, both in terms of
accuracy and time-on-task.

5.3. Metacognitive monitoring results (RQ3)

This section presents the descriptive statistics and the analysis of
the results of the Research Question 3 regarding the metacognitive
monitoring results.

5.3.1. Descriptive statistics
Certainty assessment. Fig. 11a summarizes the data obtained for

the certainty self-assessment. Recall that for this aspect, the participants
were asked to rank how successful they think they were about their task
performance. The values range from 0 = Perfect (completely sure) to
20 = Failure (completely unsure). The most frequent value was 2 with
14 
111 responses, the second most frequent value was 4 with 57 responses,
and the third most frequent value was 3 with 56 responses. At the
other extreme for value 20, only 7 responses indicated that participants
were completely unsure about their performance. The fact that the
median was value 3 and that the third quartile was value 5, indicates
that, overall, most of the participants felt highly confident about their
performance.

Difficulty assessment. Fig. 11b summarizes the data obtained for the
difficulty self-assessment. Recall that participants were also asked to
evaluate how difficult the questions were. The values for difficulty
range from 0 = very easy to 20 = very difficult. The great majority of
responses, 368 out of 384 (95.83%), were ranked with value 1. The rest
of self-evaluation was divided as follows: (i) four responses for value
3; (ii) two responses each for values 4, 5, and 6; and (iii) one response
for values 2, 9, 10, 11, 13, and 20. Thus, in summary, the majority
of participants considered that the majority of tasks were very easy to
perform.

5.3.2. Analysis
In this section, we analyze the relationship between Certainty As-

sessment and response accuracy for pairs and triplets, and if this
relationship is modulated by the number of pairs or triplets and the
visualization techniques.

A linear mixed model was fitted to the data, with the Certainty
Assessment as the dependent variable and the number of pairs/triplets,
the visualization technique and the response accuracy as independent
variables.

We answered this research question using multilevel modeling with
participants as nesting variable and questions as repeated measures.
A linear mixed model was fitted to the data, with the Certainty As-
sessment as the dependent variable and the number of pairs/triplets,
the visualization technique, and the response accuracy as independent
variables. It should be noted that if a relation is found for each case
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Fig. 11. Metacognitive monitoring summary.

(pairs or triplets), i.e. the null hypothesis is rejected, we further analyze
whether the number of pairs or triplets and the visualization techniques
modulate this relation.

Question RQ3a. Relation between response accuracy and certainty assess-
ment for pairs. There is a relation between certainty assessment and
response accuracy (𝐹1179 = 5.11, 𝑝 < .025). The participants were more
certain of their response when their response was indeed accurate: the
metacognitive judgements of certainty are higher for accurate responses
(mean value 3.36) than for inaccurate responses (mean value 3.89).
It must be noted that the variance of metacognitive judgements of
certainty is much greater in the case of inaccurate responses compared
to accurate responses. This finding denotes some awareness that there
is some probability that the response is inaccurate. However, as we
recorded the certainty assessment after the end of each task, it is not
possible to assess whether the level of certainty changed while the
participants performed the tasks.

Analysis of modulation by visualization technique or number of pairs of
the relationship between response accuracy and Certainty Assessment. This
relation between certainty assessment and response accuracy is modu-
lated by number of pairs (𝐹3179 = 3.28, 𝑝 < .022) and by visualization
technique (𝐹1179 = 5.32, 𝑝 < .022). Regarding the number of pairs, an
increase causes an almost steady decrease in certainty. Our interpre-
tation of this is that the perception of task difficulty drives certainty
down. 2D-PD visualizations help participants predict the correctness
of their responses; they were more certain when responses are indeed
accurate. By contrast, mean levels of certainty are the same whether
the response is accurate or not in the case of 2D-SP visualizations. This
means that participants cannot predict the likelihood of an inaccurate
response when the task is supported by 2D-SP visualizations.

Question RQ3b. Relation between response accuracy and certainty assess-
ment for triplets. Our analysis found no relation between certainty
15 
Table 5
Fixation time and Fixation count summaries.

Fixation time
Array Visualization Mean Min Max Std Dev
strength technique seconds seconds seconds seconds

𝑡 = 2 Scatter plot SP 34.15 8.37 171.44 23.11
Parallel dimensions plot PD 45.09 13.02 133.77 25.93

𝑡 = 3 Scatter plot SP 79.88 8.92 408.14 61.83
Parallel dimensions plot PD 53.50 3.65 169.55 30.60

Fixation count
Array Visualization Mean Min Max Std Dev
strength technique

𝑡 = 2 Scatter plot SP 131.62 24 596 85.58
Parallel dimensions plot PD 142.80 48 459 76.43

𝑡 = 3 Scatter plot SP 266.34 31 987 172.83
Parallel dimensions plot PD 174.13 9 535 97.68

assessment and response accuracy when the task involves triplets of
features (𝑝 > .05). Consequently, we did not do any further analysis
(i.e. research sub-question) as we did for pairs.

Discussion for RQ3. For pairs, accurate responses are associated with
higher certainty, which is indicative of an adequation between the
judgement of the task outcome and the actual performance. The aug-
mentation of number of pairs makes the metacognitive assessment
of the task more difficult. Overall, tasks involving pairs yield higher
metacognitive monitoring accuracy, in the sense that participants are
metacognitively aware that they provided an accurate response or not,
and that aspects of the difficulty of the tasks such as the number of
pairs modulate their certainty accordingly. For triplets, the fact that
metacognitive judgements appear unrelated to response accuracy —
and the fact that it was for pairs — indicates that participants may
not be able to extract and record the necessary information to judge
their performance because the task is too cognitively demanding, or
that they are subject to either or both the ‘‘illusion of not knowing’’
and the ‘‘illusion of knowing’’. Overall, tasks involving triplets yield
lower metacognitive monitoring accuracy, to the point which the re-
sponse accuracy was not even statistically related to metacognitive
judgements.

5.4. Visual attention results (RQ4)

This section presents the descriptive statistics and the analysis of
the results of the Research Question 4 regarding the visual attention
information captured with the eye-tracker.

5.4.1. Descriptive statistics
Table 5 summarizes the descriptive statistics of fixation time and

fixation count across covering array strength 𝑡 and visualization tech-
niques. Fig. 12 complements this information by depicting the corre-
sponding boxplots across both factors.

Analyzing fixation time, for 𝑡 = 2, parallel dimensions plots have
median (36.73 seconds) and mean (45.09 seconds) higher than scatter
plots (28.92 seconds and 34.15 seconds respectively) although with a
narrower value range. Thus, for this combination, participants had on
average more fixation time for tasks using parallel dimensions plots
than for tasks using scatter plots. Interestingly, this observation is
reversed when 𝑡 = 3. Scatter plots exhibit a fixation time with a median
(66.87 seconds, 1.11 min) and a mean (79.88 seconds, 1.33 min)
significantly higher than for parallel dimensions plot (43.14 seconds
and 53.50 seconds respectively).

Concerning fixation count, for 𝑡 = 2, parallel dimensions plots
have median 122 and mean 142.80 which is again higher than scatter
plots (113 and 131.62 respectively), again in a slightly narrower range.
Thus, similarly to fixation time, in this combination participants had on
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Fig. 12. Fixation time and fixation count boxplots where 2D (𝑡 = 2), 3D (𝑡 = 3), Scatter Plot (SP), and Parallel Dimensions (PD).
average a larger number of fixations for tasks using parallel dimensions
plots than for tasks using scatter plots. Like before, this observation is
reversed for 𝑡 = 3 where scatter plots have median (232) and mean
(266.34) which is significantly higher than for parallel dimensions plots
(146.50 and 174.13 respectively).

Let us start with the proportion of fixation time (see Fig. 13a) for 𝑡 =
2. In scatter plots, the three leading AOIs are: (1) Navigation with
0.24, (2) Target with 0.22, and (3) Axial with 0.21. In contrast,
for parallel dimensions plots, there is a higher difference among the
three leading AOIs: (1) Axial with 0.36, (2) Navigation with 0.19,
and (3) Question with 0.15 but followed shortly by Target with
0.13. In summary, participants spent on average more proportion of
fixation time traversing the axes in parallel dimensions plots than in
scatter plots. This proportion difference can be explained as a result of
having more information in the axes (i.e. solutions and their polylines)
than just feature names. This increase came with a trade-off reduction
in the proportions of Navigation and Target. In other words, the
time spent exploring the solutions in the axes of parallel dimensions
plots reduced the time navigating the visualization and the time finding
the accurate solution.

We compare now proportion of fixation time for 𝑡 = 3. In scatter
plots, the three leading AOIs are: (1) Navigation with 0.29, (2)
Target with 0.22, and (3) Axial with 0.17. In contrast, for parallel
dimensions plots, there is again a higher difference among the three
leading AOIs: (1) Axial with 0.35, (2) Target with 0.16, and (3)
Navigation also with 0.16 and followed shortly by Target with
0.15. These differences also confirm the trade-off identified in 𝑡 = 2,
namely, that participants spend a higher proportion of fixation time
exploring the axes of parallel dimensions plots which in turn reduces
the time to navigate the visualization and locate the accurate solution.

Our focus now is proportion of fixation count for 𝑡 = 2, see Fig. 13b.
For scatter plots, the three leading AOIs are: (1) Navigation with
0.26, (2) Axial with 0.24, and (3) Target with 0.20. For parallel
dimensions plots, the leading AOIs are: (1) Axial with 0.36, (2)
Navigation with 0.24, and (3) Question with 0.18. These findings
show that the same three AOIs have the highest proportion of both
fixation time and fixation count for 𝑡 = 2 across both visualization
techniques.

Finally, we proceed to the analysis of proportion of fixation count
for 𝑡 = 3. For scatter plots, the three leading AOIs are: (1) Navigation
with 0.28, (2) Target with 0.20, and (3) Axial with 0.19. For par-
allel dimensions plot, the leading AOIs are: (1) Axial with 0.35, (2)
Navigation with 0.21, and (3) Question with 0.19. These findings
show that for scatter plots, the leading AOIs are the same for both
proportion of fixation count and proportion of fixation time. However,
for the case of parallel dimensions plots, Axial and Navigation are
two of the leading AOIs and Question takes the third place instance
of Target. This suggests that participants look at the question more
times but for slightly shorter periods.
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5.4.2. Analysis
The fourth research question RQ4 explores the relationships be-

tween the stimuli components in terms of visual attention measured
with fixation count and fixation time. The seven AOIs we considered
are: Question, Answer, Axial, Target, Solution, Naviga-
tion and Stimulus. We use correlation matrices to analyze the
relationships between the AOIs, again divided by pairs and triplets.

Figs. 14 and 15 depict, for pairs and triplets respectively, the
correlations between the AOIs using Spearman’s rho rank correlation as
all the variable distributions were found to be non-normal. The circle
contains their 𝜌 value, while their radius and color shade respectively
represents the strength and the sign of the correlation.

Question RQ4a. Is there a relation between the visual processing of the
AOIs of the visual stimuli for pairs (𝑡 = 2)? As can be seen in Fig. 14a,
the majority of correlations have negative values, meaning that paying
more attention to certain AOIs is related to looking less at other ones. In
particular, in terms of moderate correlations, more time spent looking
at the Target is associated with less time spent looking at Axial (𝜌 =
−0.50, 𝑝 < .001). Also, results show that the more time spent looking at
Question, the less time spent in Navigation (𝜌 = −0.43, 𝑝 < .001).

When considering fixation counts, Fig. 14b shows two moderate cor-
relations. In particular, more fixations at the Question is associated
with less fixations at Navigation (𝜌 = −0.58, 𝑝 < .001). As observed
with fixation time, more fixations within the Target is associated with
less fixations in Axial (𝜌 = −0.57, 𝑝 < .001).

It is expected that spending a higher proportion of time looking at
the target is related to a lesser proportion of time scanning the axis to
find the target. The relationship between devoting more time looking
at the question and less time generally navigating is probably due to a
strategy of memorizing part(s) of the question (e.g. the features in the
pair) prior to finding the target.

Question RQ4b. Is there a relation between the visual processing of the
AOIs of the visual stimuli for triplets (𝑡 = 3)? In Fig. 15a, the more time
spent looking at Axial is related to less time in Navigation (𝜌 =
−0.50, 𝑝 < .001) and less time looking at Target (𝜌 = −0.48, 𝑝 < .001).
Also, more time spent on Navigation showed less time in Answer
(𝜌 = −0.52, 𝑝 < .001).

The results concerning the proportions of fixation counts, shown
in Fig. 15b, present moderate correlations between: (i) Axial and
Target (𝜌 = −0.53, 𝑝 < .001), (ii) Axial and Stimulus (𝜌 =
−0.47, 𝑝 < .001), (iii) Axial and Navigation (𝜌 = −0.45, 𝑝 <
.001), (iv) Question and Navigation (𝜌 = −0.46, 𝑝 < .001), (v)
Answer and Navigation (𝜌 = −0.41, 𝑝 < .001), (vi) Stimulus and
Solution (𝜌 = −0.45, 𝑝 < .001). These results show that Axial and
Navigation AOIs have a relation with most of the other AOIs and like
with pairs, more counts in navigating the axes implies lesser counts in
the target solution.

Discussion for RQ4. Our analysis of visual attention uncovered the fol-
lowing findings. The first finding is that there are advantages between
the visualization techniques. Scatter plots demand overall less visual
attention for pairs whereas parallel dimensions plots do for triplets.
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Fig. 13. Average proportions of fixation time and fixation count per t value and visualization technique.
The second finding is that there is a clear switch of attention focus
in the visualization techniques. In scatter plots the highest proportions
were all in the Navigation AOI, whereas in parallel dimensions plots
the highest proportions all were in Axial AOI. We found a difference
between 11% and 16% in the proportions of Axial, and a difference
between 2% and 7% in Navigation. We interpret these differences as
a materialization of the fact that the navigation mental models created
and accessed by participants to solve the tasks are indeed different.
In particular, the lines connecting the pairs and triplets in parallel
dimensions reduce the effort in navigating the visualization at the price
17 
of demanding more proportional effort in searching for the features in
the axes.

The third finding is that the relative ranks of the proportions of
effort of the AOIs in the visualization techniques vary slightly for the
three AOIs with most attention devoted to: Navigation, Target and
Axial. For example, Navigation got the most attention, proportions
of fixation time and count, in scatter plots for pairs and triplets.
Similarly, Axial got the most attention in parallel dimensions plots
also for both pairs and triplets.
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Fig. 14. AOIs correlation matrices for pairs (RQ4a).
Fig. 15. AOIs correlation matrices for triples (RQ4b).
The fourth finding is that the analysis of the correlation matrices
highlighted the AOIs that have moderate negative correlation values. In
the case of pairs, Question and Navigation exhibited this type of
relationship in proportions of fixation time and count, whereas Target
and Axial only in proportion of fixation time. We argue that these
relationships help to explain the differences found between scatter plots
and parallel dimensions plots. In the former, Target and Axial are
the second and third ranked AOIs whereas in the latter Axial is the
highest proportion followed by Navigation and Question on both
proportions of fixation time and count. In the case of triplets, Axial
and Navigation have a moderate negative correlation in proportion
of fixation time. In contrast, in proportion of fixation count: Axial
correlates with Target, Stimulus, and Navigation; Naviga-
tion correlates with Question and Answer; and Stimulus relates
with Solution. We argue that all these correlations confirm as well
the preponderance of Axial, Navigation and Target as the core
components of the visualization mental models.
18 
5.5. Summary of results

Our study found advantages, disadvantages and trade-offs between
the two visualization techniques across the aspects analyzed. In terms
of response accuracy, scatter plots performed better for the case of
pairs and seems to be unaffected by the number of pairs considered.
In contrast, for the case of triplets, parallel dimensions plots took the
lead, though in what appears to be a non-discernible pattern. Regarding
time-on-task, scatter plots produced shorter times for pairs while par-
allel dimensions did for triplets. For both techniques, we found effects
with the number of pairs and triplets.

Of the two metrics we used for metacognition monitoring, only
certainty assessment yielded interesting results. For pairs, participants
were more certain of the answers when they were indeed accurate.
Furthermore, they were equally certain for scatter plots whether they
were ultimately accurate or not, but they were more able to predict
the outcome using parallel dimensions plots. For the case of triplets,
we did not find a relationship between response accuracy and certainty
assessment.
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The eye-tracker data revealed the predominance of three AOIs while
solving the CIT tasks, namely: Navigation, Target, and Axial.
Hence they together constitute the core components of the mental mod-
els that participants built and manipulated to provide their responses.
It is important to highlight that fixation time and fixation count are
related across the AOIs. This means that a higher proportion of fixation
time of an AOI, in relation to other AOIS, more likely entails a higher
proportion of fixation count of that AOI.

In these terms, we unveiled two findings. We found a clear dif-
ference between visualization techniques. In scatter plots, the highest
proportion was in Navigation whereas in parallel dimensions plots
the highest proportion was in Axial. We argue that this switch of focus
comes from the fact that parallel dimensions plots ease the required
attention of the navigation with the polylines that connect the elements
of the pairs and the triples, while increasing the efforts of finding the
features in the axis of each dimension.

We also found that both visualization techniques have very similar
roportions for pairs and triplets for the same AOIs. These propor-
ion increased in scatter plots for Navigation while they decreased

slightly (<%5) for the other AOIs. In contrast, for parallel dimensions
plots, the proportions of Axial were preserved while for the other
AOIs they increased or decreased slightly (<%5). This means that the
proportions of the visual attention are basically preserved when the
value of 𝑡 increases.

6. Threats to validity

Our empirical study encountered several potential threats to valid-
ity, similar to other studies relying on eye-tracker measures (Sepasi
t al., 2022; Wohlin et al., 2012; Sharafi et al., 2020). In addressing the

robustness of our experimental results, we will delve into the four types
f threats proposed by Wohlin et al. (2012), namely internal validity,
xternal validity, construct validity, and conclusion validity.

Internal validity. Our work identified the following potential internal
alidity threats. The first threat concerns the selection of participants.

We addressed this issue by undertaking a recruitment strategy as
comprehensive as possible, ensuring a large and diverse participant
pool that considered aspects such as gender and technical knowledge
in Software Engineering.

The second threat refers to any learning effect or bias resulting from
he order in which the participants performed the select CIT tasks.

e addressed this threat by assigning a unique and random sequence
f tasks to each participant. In addition, we balanced the number of

tasks for the factors considered: covering array strength, visualization
technique, and number of pairs or triplets.

The third threat relates to issues coming from the instrumentation
rrors of the experimental design. To mitigate this threat, we devised
 meticulous experimental protocol based on guidelines and standards
f the research fields. Among the stringent measures taken, there
ere aspects such as the verification of the eye-tracker data accuracy,

correct calibration and adaptation steps of all the equipment for each
articipant, and adherence to the usage guidelines provided by the eye-

tracker manufacturer. Additionally, the implementation of both manual
and automated validation processes for the collected data played a
rucial role in enhancing the reliability of our measurements.

External validity. Regarding external validity threats, the first threat
dentified is the selection of the feature models for the tasks. To address

this threat, our feature models were chosen from a dataset that was
dentified as commonly used case studies in the field of SPL CIT
esting (Ferreira et al., 2021). We were careful in selecting an adequate

balance in terms of number of features and number of pairs or triplets
o cover. It is essential to acknowledge that opting for a different set of

feature models may yield different results.
The second threat is the choice of visualization techniques and the

tools to render them. We employed two of the most basic techniques
19 
implemented in a popular visualization tool. Hence, our results may
vary in other basic techniques or in other tools that could provide more
r different forms of interactions.

The third threat concerns the selection of the color palettes used
in the visualization techniques. The scope of our exploratory study did
not include color topics such as accessibility as experimental factors.
We chose simple and basic palettes that worked well in the pilot study
and the actual experiment. Certainly, the selection of different color
palettes may produce different results. However, we reiterate that the
isualization techniques chosen had additional navigation aids, such
hat the participants did not rely solely on the color of the visual
omponents to perform their tasks.

The fourth threat is the context where the experiment took place
nd the limited profiles of expertise studied. As described before, our
xperiment unfolded in an academic environment, involving partic-
pants who lacked prior knowledge in the SPL domain. While this
etting allowed us to glean valuable insights, caution must be exercised
n generalizing our results to other groups, particularly experienced
evelopers.

Construct validity. Concerning the construct validity threats, we identi-
fied the choice of both the measures and the statistical analysis used to
answer and interpret our research questions. In terms of measures, we
employed the standard measures of cognitive load, response accuracy,
time-on-task, and the proportion of fixation counts and proportion of
fixation time on different AOIs. In terms of statistical analysis, we
employed well-established and up-to-date statistical test procedures.
Thus by aligning with recognized cognitive load metrics and employing
standard statistical procedures (Gonçales et al., 2021; Holmqvist and
Andersson, 2017), we sought to minimize these threats, thus enhancing
the robustness and reliability of our analytical framework.

Conclusion validity. Regarding conclusion validity threats, we first
identified the experimental environment, which consisted in conduct-
ing the experiments in a purpose-designed laboratory, providing iden-
tical training materials, and presenting the same information to each
participant. To further maintain consistency, participants were not
llowed to pose questions after watching the training video, minimizing
he potential for technical discussions that could introduce bias. To

mitigate the threat, we ensured a consistent experimental environment
for all participants. We also must acknowledge as a potential threat
factors such as the participants’ individual conditions and motivation
uring the experiment may still exert an influence on the results. Rec-

ognizing these aspects helps contextualize the conclusions drawn and
underscores the need for cautious interpretation within the specified
experimental constraints.

7. Related work

There exists an extensive body of literature in the three main
research fields that intersect our exploratory study: Software Prod-
uct Lines, Software Visualization, and Eye-Tracking in Software Engi-
neering. In this section, we present a succinct summary of the most
pertinent publications for our study across these three fields.

Software Product Lines. Extensive and notable benefits such as en-
anced product customization and a shortened time to market have
ttracted the developers’ attention to Software Product Lines (SPL)
ver the past two decades (Czarnecki and Eisenecker, 2000; Clements
nd Northrop, 2002; Apel et al., 2013; Lopez-Herrejon et al., 2015).
owever, the extensive and intricate nature of SPL poses a substantial

challenge for developers when it comes to testing such systems. In
a comprehensive mapping study, Lopez-Herrejon et al. dug into the
andscape of SPL testing studies and identified Configuration Inter-

action Testing (CIT) as a viable solution for effectively testing com-
plex SPL systems (Lopez-Herrejon et al., 2015). More recent work
by Ferreira et al. looked at case studies commonly used in SPL CIT
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research (Ferreira et al., 2021). We used their work as the original
ataset for the selection of our tasks as indicated in Section 4.3.

Software Visualization. Broadly construed, Software Visualization is
the art and science of generating visual representations of various
aspects of software and its development process. The goal of soft-
ware visualization is to help the comprehension of software systems
and to improve the productivity of the software development pro-
cess (Diehl, 2007). Thus, in contrast with the fields of Information
Visualization (Spence, 2014; Ware, 2015) and Data Visualization (Ward
et al., 2010; Telea, 2015), the scope of software visualization is focused
n software development and software artefacts. In Data Visualization
nd Information Visualization, there exists multiple sources that pro-
ide useful and evidence-based guidelines for the design of successful
isualizations also involving multidisciplinary teams (e.g., Walny et al.,

2020; Few, 2012), among them are ten principles proposed by Midway
hat can serve as guidelines for designing data visualizations (Midway,

2020). To the best of our knowledge, there is only incipient work on
eneral guidelines for Software Visualization as described next.

Bedu et al. performed a thorough literature review spanning from
001 to 2018 that collected 48 software visualization studies (Bedu

et al., 2019). Their study revealed the widespread use of Software Visu-
lization across various software domains, notably in Software Archi-

tecture Visualization. Interestingly, a noticeable gap in the utilization
of visualization techniques within the software testing domain became
apparent in studies conducted between 2013 and 2019 (Chotisarn et al.,
2020).

Despite the numerous visualization techniques that have been pro-
posed for Software Engineering, a notable gap exists in terms of eval-
uation techniques for assessing them, as emphasized by Bedu et al.
(2019) and Merino et al. (2018). This deficiency in evaluation can
be addressed through the implementation of case studies and exper-
ments involving target participants (Merino et al., 2018). Among the

diverse methods for collecting participant data in experiments, the most
prevalent approach is the use of questionnaires (Merino et al., 2018).
While methods such as Think-Aloud, interviews, and surveys can aid in
comprehending the experiment process, it is essential to acknowledge
their susceptibility to potential influences from participants’ memory,
communication skills, and subjective judgment that may impact the
participants’ ability to provide accurate insights into their processes
and intentions (Sharafi et al., 2020; Cunningham and Wallraven, 2019;
Lazar et al., 2017).

There exists a significant body of research on software visualization
pplied to different aspects of Software Product Lines (Lopez-Herrejon
t al., 2018; Pleuss et al., 2011; Medeiros et al., 2023). The particular
hallenge in this domain is handling the variability in the artifacts and

the development process that can lead to a large number of feature
ombinations that must be effectively and efficiently managed. An ex-
mple is analyzing the vast volume of data generated during SPL testing

that can be a cumbersome and time-consuming endeavor as highlighted
y both Pleuss et al. (2011) and Lopez-Herrejon et al. (2018). Thus, a

pivotal objective within the SPL domain is to manage the complexity
through the implementation of visual and interactive techniques. The
mapping study conducted by Lopez-Herrejon et al. further underscores
the need of such techniques, revealing low levels of utilization of visu-
alization techniques in the SPL testing domain (Lopez-Herrejon et al.,
2018). The mapping study by Medeiros et al. highlight the diverse and
xtensive research on visualization techniques for variant-rich systems,
nd emphasizes the need for more formal empirical evaluations in
articular in industrial settings (Medeiros et al., 2023).

Eye-Trackers in Software Engineering. Utilizing eye trackers allows
for an in-depth exploration of participants’ cognitive processes during
edicated tasks (Sharafi et al., 2015b), particularly in understanding

how various stimuli can influence participants’ strategies in task com-
pletion and their cognitive effort (Sharafi et al., 2020). This recognition
f eye trackers as a useful instrument for conducting experiments
20 
in Software Engineering dates back to at least 2006, when the first
tudies were published (Sharafi et al., 2015b). Despite this fact, only
 limited number of software visualization studies have incorporated
ye tracking, for instance as attested in the literature review of Merino
t al. who surveyed works between 2002 and 2017 (Merino et al.,

2018). Similarly, another mapping study conducted by Goncales et al.
highlighted a lack of eye tracking studies, constituting only 6% of the
research conducted from 2009 to 2018 on cognitive load of software
engineers (Gonçales et al., 2019, 2021).

Performing studies with eye-trackers in Software Engineering come
with several challenges. For instance, designing stimuli for scenarios
involving scrolling and traversing between pages. In response to these
challenges, researchers have developed stimuli that can fit on a single
page (Sharafi et al., 2015b). But also, tools have been developed, as
demonstrated by Lankford (2000) and Walters et al. (2013), that ad-
dress some of the limitations associated with scrolling, thus enhancing
the experimental procedures.

Another important challenge is the accuracy of eye-trackers in de-
tecting eye positions that must be considered in the design and selection
of AOIs. For example, Sharafi et al. recommend a 1◦ gap between AOIs,
iming to enhance precision during the eye-tracking process (Sharafi

et al., 2020). In addition, researchers must carefully consider various
parameters related to the devices themselves. A crucial parameter is the
sampling rate, that can typically range from 10 Hz to 2000 Hz (Sharafi
et al., 2015b). A basic example choice is 60 Hz according to Poole and
Ball (2004).

Other important challenges to keep in mind are the careful selection
of other parameters of the experimental design and their interplay
with the visualization techniques. Among them are the data collection
method, the type of analysis, the number of participants, the num-
ber of tasks, the dependent and independent variables, and statistical
ests (Merino et al., 2018). Sharafi et al. provide valuable insights

and guidelines to aid researchers in designing experiments using this
technology (Sharafi et al., 2020). Our exploratory study followed these
guidelines.

While numerous studies have individually explored SPL testing,
Software Visualization, or using eye trackers, there is a notable absence
f studies combining these three subjects. For instance, Burch et al.

performed experiments utilizing eye-trackers to identify the optimal
visualization technique among traditional, orthogonal, and radial node-
link tree layouts (Burch et al., 2011). Their analysis encompassed a
comparison of accuracy and time spent on dedicated tasks, taking into
consideration the layout, orientation, and the number of marked nodes
as independent variables.

Closer to our work, more recently Sepasi et al. (2022) conducted an
eye-tracking study to assess participants’ cognitive effort during feature
model comprehension tasks. Researchers exploring eye movement met-
rics have considered various parameters to evaluate their studies, with
a particular focus on fixation-related metrics, as cognitive processes
mainly take place during fixations (Sharafi et al., 2015b). Examining
he ratio of fixation time, Sepasi et al. concluded that an extended

duration of fixation can lead to an incorrect response (Sepasi et al.,
2022). Similarly, they obtained the same results when assessing the
ratio of fixation count. Both the fixation count and fixation time were
analyzed in terms of the Number of Features (NoF) and Number of
Constraints (NoC) of the feature models with the aim of investigating
the cognitive load of checking the validity of configurations based on
the feature models.

8. Conclusions and future work

We presented an empirical study that evaluated two basic visual-
ization techniques, scatter plots and parallel dimensions plots, applied
to Combinatorial Interaction Testing covering arrays of strength pairs
(𝑡 = 2) and triplets (𝑡 = 3) for Software Product Lines. Each par-
ticipant in our study performed 16 simple test coverage tasks using
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both visualizations. We selected case studies from a dataset of fea-
ure models commonly used by the research community in that field.
ur analysis considered four aspects: response accuracy, time-on-task,
etacognition monitoring, and visual attention. The last one employed

ye-tracking measures to gauge at the distribution of attention effort
mong seven selected areas of the visualizations.

We found the following most salient findings. In terms of response
accuracy, time-on-task and visual attention, scatter plots exhibited ad-
vantages over parallel dimensions plots for the case of covering arrays
of pairs. In contrast, for triplets and the same three factors, parallel
dimensions plots were the clear winner. Regarding visual attention,
each visualization had a predominant area of interest where the highest
proportion of fixation time and proportion of fixation counts were
found. Concerning the metacognitive monitoring, we found only for the
case of pairs that there exists a relation of self-assessment of certainty
with response accuracy, this means that participants were more certain
of their answer when they were indeed accurate.

As part of our future work, we plan to explore the following points.
Our study used static visualizations of data from feature models with
a small number of features. We would like to study other visualization
techniques that permit richer forms of interactions (e.g. scrolling and
zooming) that would allow the depiction and manipulation of larger
number of pairs and triplets. The main challenge is developing the ad-
equate and flexible tool chain support that gather the information from
the eye-tracker in coordination with the customized user interfaces.
We plan to explore the application of more sophisticated statistical
analyses and machine learning algorithms to discover and predict
patterns of gaze and usage data and their relation with the accuracy and
performance of the tasks. We hope our work contributes to building a
foundation for the empirical evaluation of user-centered interfaces for
relevant software engineering tasks.
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