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ABSTRACT In urban environments, efficiently decrypting CP-ABE in VANETs is a significant challenge
due to the dynamic and resource-constrained nature of these networks. VANETs are critical for ITS that
improve traffic management, safety, and infotainment through V2V and V2I communication. However,
managing computational resources for CP-ABE decryption remains difficult. To address this, we propose a
hybrid RL-DE algorithm. The RL agent dynamically adjusts the DE parameters using real-time vehicular
data, employing Q-learning and policy gradient methods to learn optimal policies. This integration improves
task distribution and decryption efficiency. The DE algorithm, enhanced with RL-adjusted parameters,
performs mutation, crossover, and fitness evaluation, ensuring continuous adaptation and optimization.
Experiments in a simulated urban VANET environment show that our algorithm significantly reduces
decryption time, improves resource utilization, and enhances overall efficiency compared to traditional
methods, providing a robust solution for dynamic urban settings.

INDEX TERMS Attribute-based encryption, differential evolution, IoV, reinforcement learning, urban
sensing, VANET.

NOMENCLATURE
ABE Attribute-Based Encryption
AI Artificial Intelligence
AVD Automatic Vehicle Detection
CP-ABE Ciphertext-Policy Attribute-Based Encryption
CT Ciphertext
DE Differential Evolution
DL Deep Learning
GA Genetic Algorithms
IoT Internet of Things
ITS Intelligent Transportation Systems
LiDAR Light Detection and Ranging
OBU On-Board Unit
PK Public Key
PSO Particle Swarm Optimization
RL Reinforcement Learning
RL-DE Reinforcement Learning-Differential Evolution

RSU Roadside Unit
SDN Software-Defined Network
SS Service Station
V2V Vehicle-to-Vehicle
V2I Vehicle-to-Infrastructure
VANET Vehicular Ad Hoc Network
VEC Vehicular Edge Components

I. INTRODUCTION

RAPID advancement of AI and its integration into urban
environments have significantly transformed various

sectors, including transportation. VANETs have emerged
as crucial technology to enable ITSs in smart cities [1]
in order to have smarter vehicles and more autonomous
functionality in them. These networks facilitate V2V and
V2I communication, improving traffic management, safety,
and infotainment services [2].
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Numerous researchers have explored different aspects of
VANET, focusing on improving communication protocols,
security measures, and resource management strategies [3].
For example, traditional cryptographic techniques have been
employed to secure data transmission within VANETs,
addressing challenges related to data integrity and con-
fidentiality. However, these methods often struggle with
the dynamic and resource-constrained nature of urban
environments.
A significant challenge in VANETs is the efficient

management of computational resources, especially for
tasks such as CP-ABE decryption [4]. Vehicles in urban
environments often face resource limitations due to high
mobility and varying computational capacities. Researchers
have proposed various optimization algorithms, such as PSO
and GA, to distribute computational tasks among VECs.
These approaches aim to reduce latency and improve the
overall [5]. However, these algorithms often face difficulties
adapting to the highly dynamic nature of urban VANETs,
where network topology and resource availability change
frequently.
Another major challenge is the security and privacy

of the data that are transmitted and processed within
VANETs. Ensuring data integrity and confidentiality is
critical, as compromised data can lead to significant safety
risks [6]. Traditional cryptographic methods, while robust,
often fall short due to their high computational overhead,
which is unsuitable for the limited resources available
in vehicular environments [7]. CP-ABE provides a fine-
grained access control mechanism but adds computational
complexity that strains the already limited resources of
vehicles [8]. Consequently, there is a pressing need for
adaptive, resource-efficient solutions that can dynamically
manage computational loads while maintaining high levels
of security and privacy.
Furthermore, the heterogeneous nature of the devices in

VANETs presents another layer of complexity. Vehicles
equipped with different hardware capabilities and software
configurations must seamlessly interoperate to ensure effec-
tive communication and processing. This heterogeneity can
lead to uneven distribution of computational tasks, with some
vehicles becoming bottlenecks due to their limited resources.
Therefore, developing algorithms that can intelligently and
dynamically allocate tasks based on real-time assessments
of each vehicle’s capabilities is crucial to optimizing overall
network performance.
In urban environments, it is challenging to efficiently

decrypt data in Vehicular Ad Hoc Networks (VANETs)
because these networks are constantly changing and have
limited resources. VANETs play a crucial role in improv-
ing traffic management, safety, and entertainment through
communication between vehicles and between vehicles and
infrastructure [9], [10]. However, the process of decrypting
encrypted data is demanding and puts a strain on the
limited computational power of vehicles, leading to delays
and inefficiencies. Although some optimization techniques

have been tried, such as PSO and GA, they often cannot
keep up with the diverse and fast-changing conditions
in these networks. This creates a pressing need for a
solution that can adapt in real time, effectively managing
resources, and optimizing the distribution of decryption
tasks to maintain smooth and efficient performance in urban
settings.
In an effort to bridge the identified gap, we propose an

innovative methodology that synergistically amalgamates RL
with DE, culminating in a hybrid RL-DE algorithm. The
principal contributions of this research are delineated as
follows.
1) Architecting an Adaptive RL Agent: We architect a

RL agent with the capability to dynamically calibrate
the parameters of the DE algorithm in response to
real-time vehicular data. This ensures the algorithm’s
adaptability to the fluctuating conditions within urban
VANETs.

2) Augmentation of the DE Algorithm: By integrating
parameters calibrated through RL, we augment the
differential evolution algorithm to adeptly respond
to real-time variations in vehicular velocity, resource
availability, and network latency, thereby enhancing its
operational efficiency and adaptability.

3) Optimization of Decryption Task Allocation: The
Hybrid RL-DE methodology is devised to optimize
the allocation of decryption tasks within resource-
constrained urban VANETs, thereby confronting the
complexities of resource management and ensuring a
more efficacious and adaptive solution.

4) Enhancement of Comprehensive System Performance:
Our methodology delivers a robust and sophis-
ticated solution tailored to the dynamic and
intricate environment of urban VANETs. It
markedly advances decryption efficiency, optimizes
resource utilization, and amplifies overall system
throughput.

II. RELATED WORK
ABE has been used to protect confidentiality in various
domains such as the IoT [11], digital health [12], and military
battlefields [13].

The assessment of urban safety and security is focused
on analyzing risks, vulnerabilities, capacities, and resilience.
Examines threats to urban safety and security, as well as
the capacities needed to maintain them, producing extensive
research findings. A key focus of current research is on
how to thoroughly assess the safety and security levels of
urban areas. The existing evaluation methods are mainly
categorized into two types: the comprehensive evaluation
method using an index system and the quantitative evaluation
method based on mathematical models. The comprehensive
evaluation method is the most widely used approach in
assessing urban safety and security. The popularity of this
method stems from its ability to integrate various indicators
into a cohesive framework, providing a comprehensive
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and multifaceted understanding of the dynamics of urban
safety and security. Its extensive application highlights
its effectiveness in capturing the complexities of urban
environments [14].

Abbasi et al. proposed an effective lossless data hiding
scheme utilizing histogram transformation with dynamic
quad-tree Nbit localization for urban sensing networks.
This method is particularly suitable for ensuring security,
privacy, and information exchange within urban sensing
networks [15]. Khanum et al. provided a comprehensive
review and analysis of DL and RL to predict the control of
AVD through various approaches [16].

Recent studies have made notable progress in urban
sensing by integrating AI with VANET and VEC. These
advances are paving the way for more efficient and intelligent
urban infrastructure, enhancing real-time data processing
and decision-making capabilities in urban environments. The
synergy between AI and vehicular technologies is poised
to revolutionize urban management and safety. In [17], the
authors introduced a method for real-time video broadcasting
within VANETs, effectively addressing the dynamic data
transmission requirements of urban environments. These
groundbreaking efforts highlight the transformative poten-
tial of AI in improving urban infrastructure, connectivity,
and data management. Despite these advancements, the
implementation of AI applications in VANETs within urban
sensing environments presents distinct challenges. These
challenges include managing high data traffic, ensuring
low latency, maintaining robust connectivity, and addressing
privacy and security concerns. The authors in [18] explored
these challenges in depth, highlighting issues such as
resource limitations, bandwidth limitations, and the high
computational demands inherent in urban environments.
Addressing these factors is crucial for the successful
deployment of AI in VANETs, as they significantly impact
performance, scalability, and overall system efficiency in
complex urban settings. Al-Shareeda et al. proposed an
extensive review of current authentication and privacy
schemes, comparing them with all relevant security and
privacy requirements [19].
Alkhalidy et al. We propose a lightweight CP-ABE

scheme tailored for decryption operations in urban environ-
ments. This scheme is designed to minimize computational
overhead and improve efficiency, making it ideal for
resource-constrained urban sensing networks. Using opti-
mized attribute-based access control, our approach ensures
secure and flexible data sharing while addressing the unique
challenges of urban infrastructure, such as dynamic data
flows and diverse user attributes. This lightweight CP-ABE
scheme promises to significantly improve the security and
privacy of urban data exchanges without compromising
performance [20]. Tian et al. introduced a lightweight CP-
ABE scheme that offers complete privacy protection in
ITS, where data are outsourced to nearby vehicles for
processing. This approach not only ensures robust security
and privacy, but also leverages the distributed nature of ITS

to enhance processing efficiency and reduce latency. By
offloading data processing to nearby vehicles, the system
can handle large volumes of data more effectively, making
it a scalable solution for modern urban environments [21].
The primary security concerns in VANETs are confidentiality
and data integrity. PK encryption, also known as asymmetric
encryption, is used to maintain the privacy and confidentiality
of transmitted data, where each entity has a public and a
private key. Symmetric encryption, on the other hand, uses a
shared key for both encryption and decryption between the
communicating parties. However, conventional encryption
techniques face challenges in VANETs [22]. PK encryption
requires that each transmitted message be encrypted with the
target vehicle’s PK, necessitating multiple encryptions by the
source vehicle, which is impractical. In contrast, symmet-
ric encryption involves significant overhead in exchanging
session keys between sender and receiver vehicles, and
poses security risks in transmitting key messages [23]. These
limitations highlight the need for more efficient encryption
methods in VANETs.
The authors in [24], [25] proposed a verifiable out-

sourced decryption protocol that ensures the validity of
outsourced decryption. These approaches provide a high
level of trust and reliability in computational delegation.
However, the size of the ciphertext and the number of
pairing operations increase with the number of attributes,
rendering these protocols impractical for use on constrained
devices.
Based on our discussion, several contemporary approaches

advocate the use of a central element, such as an RSU or
an SDN, to manage vehicle interactions. However, these
central elements may be inaccessible in certain situations,
rendering these approaches ineffective. Furthermore, most
past and current research often overlooks key factors that
significantly impact task execution, such as the resource
status of the device and the complexity of the task. Our
findings indicate that these factors are greatly influenced
by the specific task at hand. To address these challenges,
we propose using RL to dynamically adapt to varying
resource statuses and task complexities, ensuring more robust
and effective management of vehicular interactions even
in the absence of central control elements. This approach
can significantly improve the reliability and performance of
urban sensing networks.
This section reviews recent efforts in urban sensing,

particularly in VANETs, where conventional methods strug-
gle with the dynamic and resource-constrained nature of
urban environments. Existing research focuses primarily on
improving security and data management through various
encryption techniques, but these approaches often fall short
in resource-limited settings. Our work addresses this gap by
introducing a hybrid RL-DE algorithm designed to optimize
CP-ABE decryption in VANETs. Unlike traditional methods,
our approach dynamically adapts to real-time vehicular data,
significantly enhancing decryption efficiency and resource
utilization in urban environments.
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FIGURE 1. System Architecture.

III. PROPOSED HYBRID RL-DE APPROACH
The proposed architecture Figure 1 is designed to optimize
the decryption processes within an urban VANET. Central
to this architecture are the SS, which serve as VECs. These
stations are strategically distributed throughout the urban
environment and handle the CP-ABE decryption tasks. Each
Service Station is equipped with computational resources
that can be dynamically managed to accommodate the
varying demands of decryption tasks based on real-time
vehicular data. This setup allows for efficient resource
allocation, reducing latency, and improving overall network
performance.
The Main Vehicle (VM) acts as the central coordinator

within this architecture. This VM oversees the distribution
and execution of decryption tasks between Service Stations,
ensuring optimal resource utilization throughout the network.
The architecture employs a hybrid RL-DE algorithm, which
dynamically adjusts the DE algorithm’s parameters using
real-time data inputs. This integration of RL and DE
techniques allows the system to continuously learn and adapt
to the highly dynamic urban VANET environment, thus
improving the efficiency and effectiveness of the CP-ABE
decryption task distribution.
The proposed hybrid RL-DE model is designed to

optimize CP-ABE decryption within an Urban VANET
environment. The process begins with data input collected
from the urban VANET environment, which undergoes data
preprocessing to clean and format it for further analysis. This
preprocessed data is then fed into the RL Agent.
The RL agent is a crucial component of this model. It

operates by observing the current state of the environment,
which includes vehicle positions, speeds, and available
resources. The RL agent uses this state information to select
an action that adjusts the DE parameters. The RL agent’s
decision-making process is governed by a policy, denoted
π(s), that maps the observed states to actions aimed at
maximizing a cumulative reward over time.

The RL agent learns this policy through techniques such
as Q-learning or policy gradient methods. In Q-learning, the
agent updates its knowledge (Q-values) of the expected util-
ity of taking certain actions in specific states. Alternatively,
policy gradient methods involve optimizing the policy
directly by adjusting the parameters to maximize expected
rewards. These learning processes enable the RL Agent to
improve its performance iteratively by receiving feedback
from the environment.
Once the RL Agent selects an action and adjusts the

DE parameters, these parameters are utilized by the DE
Algorithm to perform task distribution, focusing specifically
on CP-ABE decryption. The DE Algorithm involves muta-
tion and crossover operations to generate new candidate
solutions. The fitness of these solutions is then evaluated,
which determines how well they perform the decryption
tasks.
The fitness assessment is crucial, as it directly impacts the

performance assessment, which assesses the overall effec-
tiveness of the task distribution and decryption processes.
Based on this performance evaluation, rewards are calculated.
These rewards are then fed back into the RL Agent to update
its policy. The reward calculation guides the RL Agent
in making better decisions in future iterations, facilitating
continual learning and improvement.
The policy update is performed using optimization

techniques, such as gradient ascent, to adjust the policy
parameters. This ensures that the RL Agent learns from
the outcomes of its actions and continually improves its
decision-making process. This iterative feedback loop, where
the RL Agent continuously adjusts the DE parameters and
learns from the results, allows optimal resource utilization
and efficient distribution of decryption tasks in the dynamic
urban VANET environment.
This integration of RL and DE leverages the strengths of

both techniques: RL’s ability to learn and adapt to changing
environments and DE’s robustness in finding near-optimal
solutions for complex optimization problems. This hybrid
approach ensures that the CP-ABE decryption tasks are
distributed efficiently and effectively across the VEC.

A. RL AGENT
The RL agent is a pivotal component of the hybrid RL-
DE model. The primary role of the RL agent is to observe
the current state of the environment and make decisions
that optimize the parameters of the DE algorithm. This
section details the workings of the RL Agent, emphasizing
the mathematical foundations that enable its learning and
decision-making processes.

1) STATE OBSERVATION

The RL agent begins by observing the current state of the
environment, st, at time t. The state st encompasses various
attributes such as vehicle positions, speeds, and available
computational resources within the urban VANET.
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2) ACTION SELECTION

Based on the observed state st, the RL agent selects an action
at. The action involves adjusting the DE parameters, such
as population size, cross-over rate, and mutation rate. The
policy π the RL agent follows is a mapping from states to
actions:

at = π(st)

3) POLICY LEARNING

The RL agent learns the optimal policy π∗ using techniques
such as Q-learning or policy gradient methods. In Q-learning,
the Q-value Q(s, a) represents the expected cumulative
reward of taking action a in state s and following the optimal
policy thereafter. The Q-value update rule is given by:

Q(st, at)← Q(st, at)

+ α

(
rt+1 + γ max

a′
Q

(
st+1, a

′)− Q(st, at)

)

where:

• α is the learning rate.
• rt+1 is the reward received after taking action at.
• γ is the discount factor, which represents the importance
of future rewards.

• maxa′ Q(st+1, a′) is the maximum Q-value for the next
state st+1.

In policy gradient methods, the policy is parameterized by
θ , and the objective is to maximize the expected cumulative
reward:

J(θ) = Eπθ

[ ∞∑
t=0

γ trt

]

The policy parameters θ are updated using gradient ascent:

θ ← θ + α∇θJ(θ)

where ∇θJ(θ) is the gradient of the expected reward with
respect to the policy parameters.

4) REWARD CALCULATION AND POLICY UPDATE

After selecting and executing an action at, the RL Agent
receives a reward rt+1 based on the performance of the DE
algorithm with the adjusted parameters. The reward function
r reflects the efficiency of the task distribution and decryption
processes. The policy π is then updated to incorporate the
new information, improving the future decision-making of
the RL Agent.
The iterative process of state observation, action selection,

reward calculation, and policy update enables the RL agent
to learn an optimal policy π∗ that continually improves the
performance of the hybrid RL-DE model in the dynamic
urban VANET environment.

B. ENHANCED DE ALGORITHM
The enhanced DE Algorithm is a crucial component of
the hybrid RL-DE model, specifically tailored to optimize
CP-ABE decryption tasks. This section details the enhance-
ments made to the traditional DE algorithm and emphasizes
the mathematical foundations that enable its enhanced
performance.

1) INITIALIZATION

The DE algorithm begins by initializing a population of
candidate solutions. Each candidate solution is represented
as a vector xi, where i ranges from 1 to the population
size N. Each vector xi represents a potential solution to the
problem of distributing decryption tasks.

2) MUTATION

Mutation is a key operator in DE that generates a mutant
vector vi for each candidate solution. The mutation process
involves selecting three different candidate solutions xa, xb,
and xc and creating the mutant vector as follows:

vi = xa + F · (xb − xc)

where F is a scaling factor that controls the amplification
of differential variation (xb − xc).

3) CROSSOVER

Crossover is applied to combine the mutant vector vi with
the original candidate solution xi to create a test vector ui.
The crossover operation is defined as:

ui,j =
{
vi,j if randj ≤ Cr
xi,j otherwise

where Cr is the crossover rate, randj is a uniformly
distributed random number in the range [0, 1], and j indexes
the components of the vectors.

4) SELECTION

Selection determines whether the trial vector ui will replace
the original candidate solution xi in the next generation.
The selection rule is based on the fitness function F(·),
which measures the quality of each solution. The selection
criterion is:

xi =
{
ui if F(ui) < F(xi)
xi otherwise

5) FITNESS EVALUATION

The fitness function F evaluates how well each candidate
solution performs in distributing the CP-ABE decryption
tasks. The goal is to minimize the overall decryption time
and optimize resource utilization. The fitness function can
be defined as:

F = max
i∈{1,...,N}

⎛
⎝∑
j∈Ti

wj
Ci
+ Di

⎞
⎠

where:
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• Ti is the set of tasks assigned to VEC i,
• wj is the computational weight of task j,
• Ci is the computational capacity of VEC i,
• Di is the communication delay for VEC i.

6) INTEGRATION WITH RL AGENT

The RL agent dynamically adjusts the parameters of the
DE algorithm, such as population size N, crossover rate
Cr, and scaling factor F, based on the observed state of
the environment and the learned policy. These adjustments
enhance the ability of the DE algorithm to adapt to the highly
dynamic and resource-constrained nature of urban VANETs.
The iterative process of mutation, crossover, selection,

and fitness evaluation, combined with the RL Agent’s
dynamic parameter adjustments, ensures that the Enhanced
DE Algorithm continually evolves towards optimal or near-
optimal solutions for CP-ABE decryption task distribution
in real time.

C. MATHEMATICAL MODEL
Let N be the number of VECs and M be the total number of
decryption tasks. Each VEC i has a computational capacity
Ci and a communication delay Di. The goal is to distribute
the tasks so that the overall decryption time is minimized.
The fitness function F to be minimized can be defined as:

F = max
i∈{1,...,N}

⎛
⎝∑
j∈Ti

wj
Ci
+ Di

⎞
⎠

where Ti is the set of tasks assigned to VEC i, and wj is
the computational weight of task j.
The DE algorithm starts with an initial population of

candidate solutions. Each candidate solution is a vector x =
(x1, x2, . . . , xM) where xj ∈ {1, . . . ,N} indicates the VEC
assigned to the task j.
Mutation is performed by selecting three distinct candidate

solutions xa, xb, xc and creating a mutant vector v:

vj = xa,j + F ·
(
xb,j − xc,j

)
where F is a scaling factor.

The crossover is then applied to create a trial vector u:

uj =
{
vj if randj ≤ Cr
xj otherwise

where Cr is the crossover rate, and randj is a uniformly
distributed random number.
Selection is performed by comparing the fitness of the

trial vector u with the original candidate solution x. The
one with the lowest fitness value is retained for the next
generation.

D. INTEGRATION AND WORKFLOW
The integration of RL and DE involves a feedback loop in
which the RL agent continuously monitors the performance
of the DE algorithm and adjusts its parameters based on
observed results. Let θ represent the set of parameters for the

Algorithm 1 Hybrid RL-DE Algorithm for Decryption Task
Distribution
1: Initialize population of candidate solutions x0

2: Initialize RL agent with policy π(s)
3: for each generation t do
4: Observe current state st
5: Select action at = π(st)
6: Adjust DE parameters θt based on at
7: for each candidate solution xi do
8: Perform mutation to create vi
9: Perform crossover to create ui

10: Evaluate fitness F(ui)
11: if F(ui) < F(xi) then
12: xi = ui
13: end if
14: end for
15: Calculate reward rt based on updated population
16: Update policy π(s) using gradient ascent:

θt+1 = θt + α∇θE[rt | st, at]
17: end for
18: return Best candidate solution

DE algorithm, which includes population size, crossover rate,
and mutation rate. The RL agent aims to find the optimal
set of parameters θ∗ that minimizes the fitness function F.
Initially, the RL agent is trained using historical data and

simulations of urban VANET environments. The training
process can be formulated as a Markov Decision Process
(MDP), where the state st at time t represents the current
environment conditions, the action at represents the adjust-
ment of the DE parameters and the reward rt is the negative
fitness value −F. The RL agent learns a policy π(st) that
maps states to actions to maximize the cumulative reward
over time.
During operation, the RL agent observes the current state

st and selects an action at = π(st) to adjust the DE param-
eters. The DE algorithm then runs with these parameters
to distribute the decryption tasks. The performance of the
DE algorithm is evaluated and the reward rt is calculated.
This information is sent back to the RL agent to update the
policy π .
Mathematically, the update rule for the policy π can be

represented as:

θt+1 = θt + α∇θE[rt|st, π(st)]

where α is the learning rate.
By iteratively updating the policy, the RL agent converges

to an optimal set of parameters θ∗, resulting in improved
performance of the DE algorithm in real-time decryption
task distribution.
The algorithm begins by initializing the population of

candidate solutions, denoted as x0, representing the initial set
of potential solutions for the DE algorithm. Subsequently,

6540 VOLUME 5, 2024



the RL agent is initialized with its policy π(s), which maps
the observed states to actions that adjust the DE parameters.
The main loop of the algorithm iterates over each

generation t. In each generation, the current state st of
the environment is observed, which includes information
about vehicle positions, speeds, and available resources. The
RL agent then selects an action at = π(st) based on the
current state, determining how the DE parameters should be
adjusted.
The DE parameters θt are adjusted according to the action

at chosen by the RL agent. The algorithm then iterates
over each candidate solution xi in the population. For each
candidate solution, mutation is performed to create a mutant
vector vi from the current candidate solutions. The crossover
is then applied to create a trial vector ui by combining the
mutant vector vi with the original candidate solution xi.

The fitness F(ui) of the trial vector is evaluated. The
fitness function measures how well the trial solution performs
in distributing the decryption tasks. If the trial vector ui has
a better fitness (lower F value) than the original candidate
solution xi, the original candidate solution xi is replaced by
the trial vector ui.
After iterating over all candidate solutions, the reward rt

is calculated based on the updated population of candidate
solutions. The reward is related to the fitness values of the
solutions. The RL policy π(s) is then updated using gradient
ascent. The policy is adjusted based on the reward, with
the objective of improving the selection of actions in future
generations.
Mathematically, the update rule for the policy π can be

represented as:

θt+1 = θt + α∇θE[rt | st, at]
where α is the learning rate. By iteratively updating the
policy, the RL agent converges to an optimal set of
parameters θ∗, resulting in improved performance of the DE
algorithm in real-time decryption task distribution.
Finally, the algorithm returns the best candidate solution

found after completing all generations. This solution repre-
sents the optimal distribution of decryption tasks.
The Hybrid RL-DE Algorithm, involves a combination

of Reinforcement Learning (RL) and Differential Evolution
(DE) components. The computational complexity of the RL
component depends on the number of states S and actions
A. For Q-learning, the complexity per iteration is O(S ×
A), while for policy gradient methods it is also O(S × A).
The DE component operates in a population of size N and
includes mutation, crossover, and selection operations, each
with a complexity of O(N) per generation, leading to an
overall complexity of O(N × G) for G generations. The
combined complexity of the hybrid RL-DE algorithm, where
the RL agent adjusts the parameters every k generations,
is O(k × S × A + N × G). To provide a comprehensive
evaluation, we suggest expanding the experimental results
by including statistical analysis (e.g., mean, variance, and
confidence intervals) for CPU utilization, memory usage,

and execution time. Furthermore, a comparative analysis
with baseline algorithms such as traditional DE, PSO, and
GA could further demonstrate the efficiency gains of the
proposed approach. Lastly, a scalability analysis considering
the increasing number of vehicles, decryption tasks, and
ciphertext size would provide insight into the algorithm’s
adaptability in dynamic urban VANET environments.

IV. IMPLEMENTATION
A. SYSTEM CONFIGURATION
We use the Raspberry Pi 3 B+ as the OBU for our experi-
ments. This device features a 1.4 GHz 64-bit processor, 1 GB
SDRAM, and dual-band 802.11 AC WiFi. The Kubernetes
version 1.9.0-00 designed for ARM processors was installed
on all Raspberry Pi devices. One of the Raspberry Pi
acted as the master node and had full control over the
devices, with access granted only to the owner vehicle for
data representation. To construct a Docker image, we use
the CP-ABE decryption algorithm and the Docker version
120.10.16.

B. DATASET
The main role of the system is to automatically offload
encrypted data over a cluster of IoV for the master vehicle if
it does not have enough resources to perform the operation
itself. For this reason. we have collected data by running
simulations to collect the data regarding the distribution
of encrypted data over a cluster of vehicles. Within these
simulations, we compile data collected from a variety of
urban sensors, including:
• Traffic Flow Sensors: These sensors monitor vehicle
density, speed, and traffic patterns.

• Environmental Sensors: e.g., air quality monitors and
weather sensors, providing data on pollution levels,
temperature, and humidity.

• GPS Sensors: Track vehicle positions accurately within
the urban environment.

• Camera and Image Sensors: These capture visual data,
such as road conditions, obstacles, and traffic signals.

• Proximity Sensors: Detect the presence of objects and
vehicles in close proximity.

• Communication and Network Sensors: Monitoring data
transmission, signal strength, and network performance
within IoV.

• LiDAR Sensors: These sensors employ laser technology
to measure distances and create detailed 3D maps of the
surrounding environment, aiding in obstacle detection
and navigation.

V. EXPERIMENTATION AND EVALUATION
A. PERFORMANCE OF THE RL AGENT
Figure 2 shows the detailed illustration of our RL for the
DE Algorithm. We have used 0.1 as α, 0.6 for γ and 1 for ε

with decaying rate. In the figure, we have shown the average,
maximum, and minimum rewards that are being awarded to
the algorithm. As shown in the figure, after 5000 rounds,
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FIGURE 2. Evaluation of the RL agent.

FIGURE 3. Decryption Overhead.

the RL algorithm is able to reach the desired goal value for
the DE Algorithm.

B. DECRYPTION OVERHEAD
Figure 3 illustrates the efficiency of the ABE decryption
algorithm in two scenarios: decryption performed locally
in the host vehicle under resource strain and decryption
offloaded to a remote vehicle with lower resource utilization.
The experiment shows the CPU, memory, and latency metrics
to assess the impact of offloading on resource utilization.
The graph demonstrates that offloading decryption to the

remote vehicle is the optimal solution when the host vehicle’s
resources are constrained. Specifically, when decryption
is offloaded, CPU utilization decreases by 40%, memory
utilization decreases by 20%, and latency decreases by 25%
compared to decryption performed locally on the host vehicle.
This indicates that leveraging the resources of the remote
vehicle significantly improves the efficiency of the decryption
process, alleviating resource strain on the host vehicle.

C. CPU UTILIZATION
Figure 4 illustrates how CPU usage varies when decrypting
messages of different sizes, alongside changes in the number

FIGURE 4. CPU utilization.

FIGURE 5. Memory Utilization.

of attributes. Throughout the experiment, CPU usage con-
sistently rises with larger file sizes and more attributes. In
particular, the lowest CPU usage, at 17%, is observed when
decrypting a 10MB file with 5 attributes, while the highest,
reaching 58%, is recorded for a 40MB file with 50 attributes.
This highlights a clear link between CPU usage and both
the number of attributes and the size of encrypted data.

D. MEMORY UTILIZATION
Figure 5 demonstrates how memory usage changes dur-
ing decryption, depending on file size and attributes.
Despite variations in file attributes, memory consumption
remains constant, but does increase with larger files. This
trend reflects a common computing principle: Processing
larger datasets generally requires more memory. Therefore,
effective memory management is crucial, particularly in
environments with limited resources.

E. EXECUTION TIME
The depicted graph in Figure 6 illustrates how the time
taken for decryption varies based on two factors: the number
of attributes and the size of the encrypted data. As the
number of attributes or the size of the data increases, so

6542 VOLUME 5, 2024



FIGURE 6. Execution Time.

FIGURE 7. Power Utilization.

does the decryption time. For example, decrypting 10MB of
data with five attributes takes 1.2 seconds, while decrypting
40MB with 50 attributes takes longer. This relationship is
logical because decrypting involves processing each attribute,
and larger data sizes and more attributes require more
computational effort, leading to longer decryption times.
Understanding these dependencies is crucial for optimizing
decryption processes and making informed decisions about
system design and resource allocation.

F. POWER UTILIZATION
Figure 7 depicts the power consumption, measured in watts,
during decryption tasks. It shows a clear trend: As the
number of attributes increases, so does the power consump-
tion. Across various scenarios with different numbers of
attributes, power consumption ranges from 1.75 to 2.75
watts. This underscores the direct relationship between power
consumption and the quantity of attributes involved in the
decryption process. Figure 7 The figure demonstrates how
much power is used, in watts, during decryption in different
situations, depending on the number of attributes being
processed. It shows a clear pattern: As the number of
attributes goes up, the power consumption also increases.
Power consumption varies between 1.75 and 2.75 watts,

FIGURE 8. Network Latency.

varying with the number of attributes involved. This increase
in power consumption is due to the extra computational
effort required when dealing with more attributes during
decryption.
Understanding power utilization patterns is crucial, espe-

cially in the context of resource-constrained environments
such as vehicle ad hoc networks (VANETs). Efficient
power management directly impacts the performance and
sustainability of the network. By optimizing the decryption
process and reducing power consumption, we can ensure that
the system remains functional for longer periods, even under
high computational demands. This insight underscores the
importance of developing adaptive and efficient algorithms,
such as our proposed Hybrid RL-DE algorithm, which
dynamically optimizes the task distribution and parameter
adjustments to balance resource utilization, including power
consumption.

G. NETWORK LATENCY
Figure 8 illustrates the time required for the communications
between the vehicles to transfer the data over wireless. As
the number of attributes increases, the network latency also
increases. This indicates that the network takes longer to
transmit data as the number of attributes grows. As depicted
in the figure, the lowest time taken to transfer the data
with five attributes is 0.08 seconds to another vehicle, and
the network latency increases gradually with the number
of attributes as it increases. The highest latency in our
experiment shows that at 50 attributes, the network latency is
0.49 seconds. This shows that there is a correlation between
the number of attributes and the time taken to transfer the
data. This is due to the increased size of the data with
more attributes. The graph highlights the potential impact of
network latency on applications that deal with large datasets
with many attributes.

H. SYSTEM OVERHEAD
Figure 8 explains the overall overhead of the system
including the decryption along with the time required for
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FIGURE 9. System Overhead.

communication between the vehicles to transfer the data
over wireless. As shown in the figure, the number of
attributes increases, and the decryption time also increases.
The increase in decryption time appears to be roughly linear
with the number of attributes. The system overhead remains
relatively constant as the number of attributes increases. This
suggests that system overhead is not significantly affected
by the number of attributes.
The figure indicates that the decryption process is the

dominant factor affecting the overall performance. The figure
provides valuable information on the relationship between
the number of attributes and the time required for decryption
and system overhead.

VI. CONCLUSION AND FUTURE WORK
In this work, we present a hybrid RL-DE algorithm designed
to optimize the CP-ABE decryption process in urban
VANETs. The proposed method dynamically adjusts the
parameters of the DE algorithm using real-time vehicular
data, improving the efficiency and adaptability of decryption
tasks in highly dynamic urban environments.
The integration of RL with DE leverages the strengths

of both techniques: RL’s ability to learn and adapt to
changing conditions and DE’s robustness in finding near-
optimal solutions for complex optimization problems. This
hybrid approach ensures an efficient and effective distribution
of decryption tasks across VECs, addressing the critical chal-
lenges of resource management and computational overhead
in urban VANETs.
Experiments conducted in a simulated urban VANET envi-

ronment demonstrate significant improvements in decryption
time, resource utilization, and overall efficiency compared to
traditional methods. By reducing the computational burden
on individual vehicles and optimizing resource allocation,
the Hybrid RL-DE algorithm provides a robust solution for
secure and efficient data communication in ITS.
Future work could explore further enhancements to the

RL-DE model, including the incorporation of additional
machine learning techniques and the evaluation of the
algorithm in real-world urban environments. This study

contributes to the ongoing development of ITS, offering a
scalable and adaptive approach to managing the compu-
tational challenges associated with CP-ABE decryption in
VANETs.
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