Efficient MPEG-4 to H.264 transcoding exploiting
MPEG-4 block modes, motion vectors, and residuals

Isabelle Metoevi and Stéphane Coulombe
Department of Software and IT Engineering
Ecole de Technologie Supérieure
1100 Notre-Dame Ouest, Montréal, Qc, H3C 1K3

E-mail: yehouessi-isabelle.metoevil@etsmtl.ca,

Abstract—In this paper, we present an efficient algorithm
to transcode MPEG-4 to H.264. The algorithm exploits the
information decoded from the MPEG-4 stream to reduce H.264
encoding complexity. This information includes the MPEG-
4 block modes, motion vectors, and residuals. The algorithm
proceeds in two steps. First, a small set of most probable
H.264 block mode candidates are obtained from an MPEG-4
to H.264 block mode conversion table. Then, motion estimation
is performed for the candidate modes where, based on the
residual information, the MPEG-4 motion vectors are either
reused or refined. Experimental results show that the algorithm
can speed-up the transcoding of QCIF and CIF sequences, from
MPEG-4 visual simple to H.264 baseline profiles, by a factor
of 2 to 3, with an acceptable loss in quality compared to the
cascade spatial domain transcoding approach. It also provides
significantly improved quality relative to current state-of-the-art
methods.

I. INTRODUCTION

The diversity of multimedia applications and terminals in-
evitably causes interoperability problems. For instance, current
mobile terminals support different video standards, such as
H.263, MPEG-4 [1], and H.264/AVC [2]. The transcoding
of video content to specific resolution, standard, and bit rate
constraints has become a necessity in order to ensure the suc-
cess of evolving multimedia communications. The MPEG-4
visual simple profile (VSP) is widely used in today’s multime-
dia services, including mobile videoconferencing, multimedia
message service (MMS), and streaming within the scope of
3GPP/3GPP2 [3]-[6]. The more recent H.264/AVC standard
provides significant improvements in compression efficiency
and is expected to replace the earlier standards, thereby making
transcoding from MPEG-4 to H.264 inevitable.

Several studies have investigated the problem of video
transcoding in general and MPEG-4 to H.264 in particular
[7]-[13]. Their goal has been to reduce processing complexity
while maintaining the best video quality. The most obvious
transcoding approach, the cascade approach, consists of fully
decoding the MPEG-4 video bitstream to the spatial (pixel)
domain and then re-encoding it according to the H.264 spec-
ification. The best video quality is reached with this type of
transcoding. Unfortunately, it is highly computationally com-
plex, which is not always suitable for real-time applications.
H.264 encoding is especially complex, because of its more
sophisticated coding tools. H.264 uses several block modes: 4
inter modes (16x16, 16x8, 8x16, and 8x8), 4 sub-modes (8x8,

stephane.coulombeletsmtl.ca

8x4, 4x8, and 4x4), a SKIP mode, and two intra prediction
modes (16x16 and 4x4). To determine the best block coding
mode, H.264 uses rate distortion optimization (RDO). So, for
several candidate modes, it will perform motion estimation
(ME) and motion compensation (MC) (up to 41 ME operations
at quarter-pixel precision for a single macroblock (MB)).

Several methods have been proposed to reduce this com-
putational complexity [8], [9], [11], [12]. The most efficient
of these exploit the information available from the MPEG-4
decoder to reduce the number of block modes to evaluate,
thereby reducing ME complexity. In [8], the authors exploit
the frequency distribution of the H.264 block modes for a
given MPEG-4 block mode in order to derive an MPEG-4
to H.264 block mode conversion table. An example of such
a table is presented in Table I. Motion vectors (MVs) from
MPEG-4 are then reused after a refinement process. However,
they do not provide much detail on the refinement process,
and the simulation results are not extensive. In [9], an arbitrary
mapping between MPEG-4 block modes and H.264 candidate
block modes is presented (without much justification), for both
intra and inter blocks. MVs are either directly reused (in 16x16
mode) or become the starting points for ME (in 16x8 and 8x16
modes, for instance). They obtain very good speed-ups, but the
quality is degraded by 1 to 2dB, which may be unacceptable
in some applications.

In this paper, we propose to exploit the decoded residual in-
formation, in addition to the block modes and MV information
gathered from the MPEG-4 decoding stage, to further improve
MPEG-4 to H.264 transcoding performance in terms of speed
and quality. The system is illustrated in Fig.1. The algorithm
proceeds in two main steps. First, we reduce the number of
H.264 candidate block modes based on the decoded MPEG-4
block modes using a table similar to that in [8], but enriched
with the residual and MV information. Then, we determine
the MVs for the candidate modes. The MVs are only refined
when required based on residual data. We evaluate the SAD
for all candidates and select the optimal block mode from
conventional H.264 RDO.

II. DETERMINATION OF CANDIDATE BLOCK MODES

Current video compression standards use two key tech-
niques: motion compensated predictive coding and transform
coding. Predictive coding reduces the temporal redundancy

© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current
or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine
© 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

mstewart
Texte tapé à la machine

TABLE I
STATISTICAL MAPPING OF THE BLOCK MODES FROM MPEG-4 TO H.264 FOR QCIF CARPHONE VIDEO AT 128 KBIT/S USING INTEL’S H.264 ENCODER.
THE CANDIDATE BLOCK MODES USED IN [8] ARE SHOWN IN BOLD.

MPEGS H264 coding| 1ntra | Intra | SKIP | Inter | Inter | Inter | Inter | sb8X8 | sb8X4 | sb4X8 | sb4X4
coding modes modes| 4x4 | 16x16 16x16 | 16x8 | 8x16 8x8

Intra 49.2% 41.4% 21% 4.8% 1.1% 0.5% 0.9% 68.8% 0.0% 12.5% 18.7%
Interl6x16(64%) 0.0% 0.0% 31.3% | 61.6% 3.2% 2.9% 1.0% 92.7% 1.9% 4.4% 1.0%

Inter8x8 (25%) 0.0% 0.0% 2.8% 37.7%

15.6% | 19.3% | 24.6% | 88.7% 3.4% 4.9% 3.0%

Skip(11%) 0.0% 0.0% 89.3% | 10.2%

0.3% 0.2% 0.0% 0.0% 0.0% 0.0% 0.0%

Motion Vector
Coding block modes
Residual information

[———————
=
bitstream - - +
Residual Tﬁ(\/
frame "'

MPEG-4 decoder H.264 codec

Fig. 1. Proposed fast MPEG-4 to H.264 transcoder architecture reusing
MPEG-4 block modes, motion vectors, and residual information.

between frames by subtracting a predicted frame, obtained
from the ME process, from the frame to encode in order to
produce a prediction error frame (also know as residual infor-
mation). The residual information typically has significantly
less energy than the original image and can therefore be coded
with fewer bits. The more accurate the prediction process is,
the less energy will be contained in the residual information.
Therefore, this information can be used as a measure of the
efficiency of the ME process, including the suitability of the
MYV and the block mode (if we have selected the right block
sizes).

Studying the cascade transcoding of MPEG-4 to H.264 led
us to the following observations, which are exploited in our
MPEG-4 to H.264 block mode conversion table:

o MPEG-4 blocks using 16x16 Inter mode are most often
coded as either H.264 SKIP or 16x16 Inter blocks. Indeed,
if 8x8 blocks would have been better in H.264, then this
mode would most likely have been chosen for MPEG-4
too.

MPEG-4 blocks using 16x16 Inter mode are most often
coded as H.264 SKIP blocks if the residual energy is low
and the MV is close to the predicted MV.

MPEG-4 blocks using 16x16 Inter mode are most often
coded as H.264 16x16 Inter blocks if the residual energy is
high (but not so high that Intra mode is preferable).
MPEG-4 blocks using 8x8 Inter mode may be coded in a
variety of H.264 modes, including SKIP, 16x16, 18x8, 8x16,
8x8, etc. However, 8x4, 4x8, and 4x4 modes are rarely used
[14].

MPEG-4 SKIP and 16x16 Inter modes are used most often

in video coding applications and have the most impact on
computational complexity (which is not to say that 8x8
should be ignored) [14].

e MPEG-4 Intra blocks represent a small percentage of all
coded blocks in a mobile video application, since key frames
are infrequent to maintain coding efficiency and therefore
have a small impact on computational complexity [2].

We now present some definitions. Let I(x,y) and J(x,y)
with 0 < z,y < 15 be MBs of the original and predicted
images respectively. The residual for the MB is defined as:

The residual energy for the MB is defined as:
15 15 15 15
E=Y"N"R(zy =YY [y -Jxy] @

z=0 y=0 =0 y=0

It is often useful to determine the residual energy for each
8x8 sub-block of an MB. Let us define Ej, the energy of the
residual information of a k-th 8x8 sub-block of an MB, as
follows:

7 7
By => > R+ Prery +Pry) 3)

z=0 y=0

with py = [Pka,Pry] for 0 < ¢ < 3, where pg = [0,0],
p1 = [8,0], p2 = [0, 8], and p3 = [8, 8]. Clearly, the residual
energy E of an MB is the sum of the energies . of the four
8x8 blocks, expressed as E = Zi:o Eg.

We performed extensive simulations on QCIF (176 x 144)
and CIF (352 x 288) videos at different bit rates with the
cascade approach to analyze the probability distribution of
mapping decisions from MPEG-4 information (block modes,
MYVs, and residual energy) to H.264 block modes. The test
set included videos with various characteristics in terms of
motion and details. We used Intel’s video codecs for MPEG-
4 and H.264 implementations (some details and justifications
are presented in section IV). In order to classify MBs having
low and high residual energy, we had to empirically set two
thresholds T'hr_low and Thr_high. The expectation was that
if Thr_low was set properly, 16x16 Inter blocks with a resid-
ual energy below T'hr_low and an MV similar to the predicted
MV would be coded as SKIP with a very high probability,
thereby eliminating the need to search for other candidates.
Similarly, we were expecting that if Thr_high was set prop-
erly, blocks with a residual energy above Thr_high would

be coded as Inter16x16 with a very high probability. We have
limited this strategy to 16x16 Inter blocks, since they represent
the highest percentage of MPEG-4 block modes (for most
mobile videos), and this alone brought important performance
improvements. However, the concept of partitioning based
on residual energy could be extended to 8x8 blocks. The

thresholds have been empirically set to {Thr_low = 125,

Thr_high = 5000} through careful analysis and comparison

of hundreds of simulations.

Table II shows the results obtained for the transcoding of the
QCIF Carphone video sequence. This sequence was initially
encoded in MPEG-4 VSP at 200kbit/s and then re-encoded in
H.264 baseline at 128kbit/s. Although the specific values vary
with each video sequence and bitrate, the distribution among
modes remains mostly the same. In the table, the rows are
partitioned as follows:

e Intra-I: MPEG-4 Intra MBs from an Intra frame. We can
observe that they tend to be re-encoded in Intra mode.

e Intra-P: MPEG-4 Intra MBs from an Inter frame. We
can observe that they tend to be re-encoded in SKIP or
Inter16x16 modes.

e Inter16x16_casel: MPEG-4 Interl6x16 MB with F <
Thr_low, |V, —Vp,| <1and |V, —pr\ <1, where V =
[V, V] is the decoded MPEG-4 MV and Vp = [Vp,, Vp,]
is the predicted MV from the H.264 encoding stage. We can
observe that, as expected, this type of MB tends to be re-
encoded as SKIP most of the time.

e Interl6x16_case2: MPEG-4 Interl6x16 MB with
Thr_low < E < Thr_high or such that £ < Thr_low
but [V, — Vp,| > 1 or [V, — Vp,| > 1. This type of MB
tends to be re-encoded as either SKIP or Inter16x16 most
of the time.

e Inter16x16_case3: an Inter16x16 MPEG-4 with the E >
Thr_high. This type of MB tends to be re-encoded as
Inter16x16 most of the time.

o Inter8x8: MPEG-4 Inter8x8 MB. Although half the time
these blocks are re-encoded in Inter16x16 mode, the remain-
ing half includes several modes with comparable probability.
However, blocks smaller than 8x8 are not highly probable
and could be ignored. This may be due to the Intel H.264
encoder’s behavior.

e SKIP: MPEG-4 SKIP MB. Usually re-encoded as SKIP.
Note that in the table the values under sb8x8, sb8x4,

sb4x8, and sb4x4 in the gray shaded area are respectively

the mapping percentages of the sub-blocks 8x8, 8x4, 4x8, and
4x4 with respect to the Inter8x8 mode. The table also shows
the distribution of each type of MB with respect to the Intra
and Inter modes. For instance, 91% of MPEG-4 Intra MBs
are Intra-1, while 9% are Intra-P. For MPEG-4 non Intra MBs,

17% are in Inter16x16_casel, 37% in Inter16x16_case2, 10%

in Inter16x16_case3, 25% in Inter8x8, and 11% in SKIP.

In Table II, the probabilities in bold represent those with
the highest probability. We propose to limit the set of H.264
candidate block modes to the ones associated with these bold
values. More specifically, the sets of H.264 candidate block
modes as a function of the various MPEG-4 block categories

are as follows:

Intra-I: The candidates are Intral6x16 and Intra4x4.
Intra-P: Inter16x16

Inter16x16_casel: SKIP

Inter16x16_case2: SKIP and Inter16x16

Inter16x16_case3: Inter16x16

Inter8x8: SKIP, Inter16x16, Inter16x8, Inter8x16, Inter8xS.
SKIP : remains SKIP.

As expected, the proposed method significantly reduces the
number of candidate modes tested relative to previous methods
[8], [9] where four candidate modes are typically tested.

III. EFFICIENT ME BASED ON RESIDUAL INFORMATION

Motion estimation is a very computationally intensive op-
eration in a transcoder. In order to reduce the computation
burden, state-of-the-art transcoding algorithms reuse the de-
coded MPEG-4 MVs as much as possible. However, the
compression performance of an encoder highly depends on
the MVs. A change in MV accuracy from quarter to half
pixel can increase the video quality by ~ 2 dB, depending
of the video type. In the H.264 standard, the MVs are at
quarter-pixel accuracy, while in the MPEG-4 standard they
can be at quarter- or half-pixel accuracy, depending of the
profile supported: half-pixel for the visual simple profile and
quarter-pixel for the advanced simple profile. In this paper,
we consider the VSP supported by most MPEG-4 mobile
applications [3]-[6]. To improve the accuracy of the MVs
from the MPEG-4 decoder, we should refine them from half-
pixel to quarter-pixel precision. Unfortunately, this refinement
is quite demanding computationally. In order to decrease the
complexity, we propose to refine the MVs only as needed. By
doing so, we can significantly reduce the complexity, contrary
to [9], where all the MVs are refined to quarter-pixel accuracy.

We propose to exploit the residual information once again,
in order to determine whether or not an MV requires refine-
ment. Indeed, we have already mentioned that the residual
information can be used as an efficiency measure of ME. For
each candidate mode, we propose to test the energy E or
E}, for the various regions to code. If the energy is below
a threshold, the MV will be kept as is, otherwise it will
be refined from half-pixel to quarter-pixel accuracy. We also
propose to use the fast refinement algorithm used in the Intel
MPEG-4 encoder [15]. According to that method, 5 half-pixel
positions p; are evaluated instead of 8 quarter-pixel positions
to find the best position. The refinement algorithm is described
in Fig. 2 where b; is the sum of absolute differences (SAD)
of the position pixel p;.

For the decision as to whether or not to refine, we used
two thresholds, Thr16 and Thr8, for Inter16x16 and Inter8x8
decoded MPEG-4 block modes respectively. Through analysis
and experimentation, we came to the conclusion that these
thresholds had to be bitrate-dependent in order to maintain
a certain level of quality. Indeed, as the bitrate is reduced,
the H.264 encoder’s RDO tends to map more MBs to the
SKIP mode, which has the effect of decreasing quality. As a
matter of fact, the smaller the bitrate, the smaller the SAD

TABLE I
PROPOSED STATISTICAL MAPPING OF THE BLOCK MODES FROM MPEG-4 TO H.264 FOR QCIF CARPHONE VIDEO AT 128KBIT/S. THE CANDIDATE
BLOCK MODES ARE SHOWN IN BOLD.

— H264 coding| Intra | Intra | SKIP | Inter | Inter | Inter | Inter | sb8X8 | sb8X4 | sb4X8 | sb4X4
coding modes modes| 4y4 16x16 16x16 | 16x8 | 8x16 8x8

oa " 54.3% | 457% | 0.0% | 00% | 00% | 00% | 00% | 00% | 00% | 0.0% | 00%

I(g;:)ra‘l’ 00% | 00% | 219% | 51.2% | 122% | 49% | 98% | 688% | 00% | 125% | 18.7%
1('1";2;16*‘16}3560 0.0% 00% | 73.6% | 25.3% | 0.6% 0.5% 0.0% 0.0% 0.0% 0.0% 0.0%
I(;‘;:)ﬂsxls_casel 0.0% 00% | 264% | 66.4% | 3.4% | 32% 06% | 980% | 06% | 0.6% | 08%
I(‘l‘ggj)”“"“_casez 00% | 00% | 1.9% | 81.3% | 7.2% | 57% | 39% | 892% | 28% | 6.8% | 12%

Bieyexs 00% | 00% | 2.8% | 37.7% | 15.6% | 19.3% | 24.6% | 88.7% | 84% | 4.9% | 8.0%

in 00% | 00% | 89.3% | 102% | 0.3% | 02% | 00% | 0.0% | 00% | 0.0% | 0.0%

. E‘l Hat x determination Canldldatltzn:gdes
a nter 16x
position 2% (b3-b0) < (b4-b0) j = -1; Inter 16x16 ves
e o o (b3-b0) > 2*(b4-b0) j = +1; E, 1E; " \7
s = . | 0
Po else j=0; |
pm o n o mP T S el Vo_|
Quarter y determination : Inter 16x16
e o position 2*(bl-b0) < (b2-b0) i = -1; E» !'Eg &7 | Refinement
(b1-b0) > 2% (b2-b0) i = +1; o V, [Halftoquarter
| | | | | | . E=E(+E(+E,+E3
D3 else i=0;

MPEG-4 MV H.264 MV

Fig. 2. Half- to quarter-pixel MPEG-4 MV refinement algorithm [15].

of an Inter block has to be in order to be assigned to Inter
mode (the overhead cost associated with transmission of MVs
becoming increasingly important). As a consequence, as the
bitrate becomes smaller, we have to reduce the thresholds to
increase the number of MVs that will be refined, leading to
smaller SAD values, and consequently increasing quality. The
determination of optimal thresholds as a function of the bitrate
in accordance with the RDO process could be the topic for
future research. Nevertheless, we obtained good results using
the same methodology as before, showing the benefits of the
proposed approach, by setting {Thr8 = 62.5, Thr16 = 500}
for small bitrates (64 kbits and below for QCIF sequences,
256 kbit/s and below for CIF sequences) and {Thr8 =
250, Thr16 = 2000} for higher bitrates. It is worth noting
that the threshold values have a direct impact on the tradeoffs
the system will make between computation complexity and
video quality. Small thresholds increase quality, but also
computational complexity, and they can be adjusted to meet
the specific transcoding system’s requirements.

Figs. 3 and 4 illustrate the MV determination and refinement
process of an MPEG-4 Inter16x16 and Inter 8x8 MB for Inter
candidate modes. The process is as follows for the various
decoded MPEG-4 MB modes:

e Inter16x16 with decoded MPEG-4 MV V: V, is refined
to quarter-pixel accuracy when the residual energy E >
Thr16; otherwise, we use V.

e Intra-P: The Inter16x16 MV is found by performing ME
(using the EPZS [18] algorithm in our simulations), since
there is no initial MV. But, because there are so few of these
types of MB, they have no noticeable impact on speed.

Fig. 3. Reuse and refinement of MPEG-4 MV in H.264 for the case of an
Inter16x16 MB.

o Inter8x8 with decoded MPEG-4 MVs V., 0 < k < 3: For
Inter8x8 candidate mode, a given Vy is refined to quarter-
pixel accuracy when the residual energy Ej > ThrS;
otherwise, we use V. For the candidate modes with a
partition larger than 8x8, we always refine the MV (although
we could extend our residual energy-based method to these
cases). For the case of the Inter16x16 candidate mode, we
compute the SAD, at half-pixel accuracy, with the four MV
candidates V, and select the one with smallest SAD. The
MV is then refined to quarter-pixel accuracy. A similar
process is performed on Inter16x8 and Inter8x16 candidate
modes.

Once the MVs and corresponding SADs have been deter-
mined for all candidate block modes, the final block mode is
selected using H.264 RDO.

IV. EXPERIMENTAL RESULTS

The proposed method, along with other state-of-the-art
methods, were implemented in the Intel IPP (Intel Integrated
Performance Primitives) code samples, version 5.3 [15]. These
video codecs are highly optimized compared to the MPEG-4
and H.264 reference codecs (MoMuSys [16] and JM [17]).
Although the H.264 JM is an excellent reference to validate
rate distortion performance, it is not optimized for speed and
therefore cannot be used as a reliable reference to measure
improvements in speed. The results on Intel’s codecs are
much more representative of the gains obtainable on a real
transcoding product, although it may also use less exhaustive
algorithms. The video sequences were initially encoded with

Candidate modes

Inter 16x16
]
0,V1,V2,\3? Inter 8x8
Inter 8x8 yes V):
Eo E4 Inter 16x8
AR i
9 Vo,V,? Inter 8x8
P4 = o
Ezv2 Eav3 no .| Vi
Inter 8x16
15y
?
o V4’ 1==1MV refinement
t--t Half to quarter
MPEG-4 MV H.264 MV

Fig. 4. Reuse and refinement of MPEG-4 MV in H.264 for the case of an
Inter8x8 MB.

high quality using MPEG-4 VSP at 30fps with one Inter
frame every 100 Inter frames (i.e. every 3.3s) at 200kbit/s and
720kbit/s for QCIF and CIF respectively (other initial rates
were tested with small differences in final performance). No
B frames were used. The H.264 encoding options were: RDO,
maximum quality, one reference frame, and SADT (sum of
absolute transform difference) instead of SAD.

We measured the quality (PSNR) and the computation
times of the following methods: cascaded transcoding, MV
refinement with mode selection (MS) [9], the statistical method
with and without refinement [8], and the proposed method.
The performance of each method was compared against the
cascade method. The results for various video sequences are
presented in Figs. 5 and 6. The results are quite impressive.
The proposed algorithm is, on average, 2 to 3 times faster
than the cascade method with only ~ 0.5dB loss in quality.
We observe that, as the bitrate increases, the difference in
quality decreases with respect to the cascade method and the
gains in speed increase. Only the statistical approach without
refinement is faster than the proposed method. However, its
PSNR is significantly lower (2.0dB less, on average, for QCIF
and 2.5dB for CIF) than the proposed method. Such a loss
in quality is often unacceptable in many applications. In
addition, we could probably obtain similar gains in speed by
changing the threshold values (to be validated in future work).
Compared to the MV refinement with the MS algorithm, the
proposed algorithm is 30% faster, on average, and provides
better quality (1dB better, on average, for QCIF and 1.5dB for
CIF). The differences in quality between the proposed method
and state-of-the-art methods is particularly noticeable at low
bitrates.

The results presented in [8] and [9], were obtained with the
reference codecs MoMuSys and JM. Under a more optimized
codec, such as that of Intel, their speed-ups are much less im-
pressive. For instance, [9] (MV refinement and MS) obtained
an average speed-up of 10.36, while we obtained an average
of 2 using Intel codecs.

V. CONCLUSION

In this paper, we proposed an efficient algorithm for MPEG-
4 to H.264 transcoding. By exploiting the residual information

gathered in the MPEG-4 decoder in addition to the MVs
and block modes, we were able to significantly improve the
speed (by a factor of 2 to 3) while maintaining good quality
compared to the cascade method. The method also provides
superior results compared to state-of-the-art methods. The im-
pressive speed-ups make our algorithm very suitable for real-
time applications. The approach is expected to be applicable to
other transcoding use cases as well, such as H.263 to H.264.
In future research, we will investigate automatic threshold
determination more deeply and extend the approach to smaller
8x8 blocks to improve performance even further.

VI. ACKNOWLEDGMENTS

This work was funded by the Vantrix Corporation and by the
Natural Sciences and Engineering Research Council of Canada
under the Collaborative Research and Development Program
(NSERC-CRD 326637-05).

REFERENCES

] ISO/IEC 14496-2, “Information technology - Coding of audio-visual
objects - Part 2: Visual,” second edition, December 2001.

[2] ISO/IEC 14496-10 AVC and ITU-T rec. H.264, “Advanced video coding
for generic audiovisual services,” March 2005.

[3] 3GPP TS 26.234 v7.7.0, "Packet-switched Streaming Services (PSS);
Protocols and codecs (Release 7),” March 2009.

[4] 3GPP TS 26.140 v7.1.0, “Multimedia Messaging Service (MMS); Media
formats and codecs (Release 7),” June 2007.

[S] 3GPP2 C.S0045-A, “Multimedia Messaging Service (MMS) Media
Format and Codecs for cdma200 Spread Spectrum Systems,” version
1.0, March 2006.

[6] 3GPP2 C.S0046-0, “3G Multimedia Streaming Services,” version 1.0,
February 2006.

[7]1 B. Shen, “From 8-tap DCT to 4-tap integer-transform for MPEG-4
to H.264/AVC transcoding,” IEEE international conference on image
processing, Vol. 1, pp. 115-118, October 2004.

[8] Y.K.Lee,S.S.Leeand Y. L. Lee, “MPEG-4 to H.264 transcoding using
macroblock statistics,” IEEE international conference on multimedia and
expo, pp. 57-60, July 2006.

[9] Y. Liang, X. Wei, I. Ahmad and V. Swaminahan, “MPEG-4 to

H.264/AVC transcoding,” The International Wireless Communications

and Mobile Computing Conference, pp. 689-693, August 2007.

T. N. Dinh, J. Yoo, S. Park, G. Lee, T. Y. Chang and H. J. Cho,

“Reducing spatial resolution for MPEG-4 / H.264 transcoding with

efficient motion reusing,” IEEE international conference on computer

and information technology, pp. 577-580, October 2007.

S. E. Kim, J. K. Han and J. G. Kim, “Efficient motion estimation algo-

rithm for MPEG-4 to H.264 transcoder,” IEEE international conference

on image processing, Vol. 3, pp. 659-702, September 2005.

T. D. Nguyen, G. S. Lee, J. Y. Chang and H. J. Cho, “Efficient MPEG-4

to H.264/AVC transcoding with spatial downscaling,” ETRI, Vol. 29, pp.

826-828, December 2007.

A. Vetro, C. Christopoulos, and H. Sun, “Video transcoding architec-

tures and techniques: an overview,” IEEE Signal Processing Magazine,

20(2):18-29, 2003.

B. G. Kim and S. K. Song, “Enhanced inter mode decision based on

contextual prediction for P-slices in H.264/AVC video coding,” ETRI

journal, Vol.28, Number4. pp 425-434, August 2006.

Intel Integrated Performance Primitives 5.3 - Code Samples. [Online].

http://software.intel.com/en-us/articles/intel-integrated-performance-

primitives-code-samples/.

ISO/IEC 14496-5:2001, “Information technology - Coding of audio-

visual objects - Part 5: Reference Software,” second edition, February

2005.

H.264/AVC reference software M

http://iphome.hhi.de/suehring/tml/.

A.M. Tourapis, “Enhanced predictive zonal search for single and mul-

tiple frame motion estimation,” in Visual Communications and Image

Processing, Jan.2002, pp. 1069-1079.

—
—

[10]

(1]

[12]

[13]

[14]

[15

[16

[17 15.1.

[Online].

[18]

32 Kbit/s 64 Kbit/s 96 Kbit/s 128 Kbit/s

. Cas- Statis { Statis-|Propo-| Cas- Statis 4 Statis- |Propo{ Cas- Statis 1 Statis- |Propo-| Cas- Statis-| Statis- |Propo-
QCIF Videos| cade |"V*MS| fics |tics+ref sed |cade |MV*MS| tics |tics+ref sed | cade |MV*MS| tics |tics+ref| sed | cade |MV*MS| tics fics+ref se%

2 | PSNR(dB)[39.18|-0.49 |-2.34| -0.2 |-0.46 |42.27/-0.14 | -1.7 | -0.08 |-0.33|43.98| -0.12|-1.16| -0.08 |-0.48 [45.28|-0.09 |-0.89|-0.09 | -0.35
S |Speedup | 1 [1.54]228] 14119 | 1 |159|244] 1.4 [2.03] 1 |166] 255 142 [235| 1 [1.73| 26 | 144 | 2.34
!g PSNR(dB)| 40.19|-1.23 |-2.38| -0.48 |-0.54 |43.08/-0.61 |-1.91| -0.33 |-0.56 | 44.42| -0.39|-1.59| -0.24 |-0.8 [45.34|-0.33 |-1.37|-0.21 | -0.79
a9 Speed up 1 172 | 2.7 1.56 | 2.25 1 1.82 |1 3.21| 1.68 |2.73 1 1.84 | 3.38] 1.69 [3.13 1 1.85 (348 | 1.7 3.23
55 |PSNR(dB)|2354|-3.54 |-4.98| -0.68 |-0.44 | 26.09|-1.01 | -4.6 | -0.27 |-0.16[27.41|-0.59|-3.79| -0.13 |-0.14 | 28.3 |-0.36 |-3.12| -0.06 | -0.17
T Ispeedup | 1 [1.82]284] 162 212 | 1 [1.78[3.47] 1.73 [2.47] 1 18 | 386] 1.76 266 | 1 [1.81]402][177 [2.8
?;rg PSNR(dB)| 30.23|-7.34 |-3.61| -1.38 |-0.77 |33.37-2.68 |-2.74| -0.65 |-0.42| 35.2 | -1.5 |-2.31| -0.39 |-0.46 [36.49|-098 | -2 [-0.29 |-0.44
2 |Speedup | 1 [202[276] 145185 | 1 [1.97[3.37] 159 [2.22| 1 [197]372] 165|253 | 1 [197] 39 | 167 | 2.65
Z | PSNR(dB)[31.89(-2.11|-2.61| -0.63 |-0.46 |35.93/-0.94 | -2.2 | -0.43 |-0.43|38.24| -0.71|-1.93| -0.46 |-0.64 [39.78|-0.49 |-1.49|-0.36 | -0.54
5 Speedup | 1 1.74 245 145187 | 1 1.8 [2.81] 1.54 [2.08| 1 186|295 15 [231]| 1 |182]289| 15 | 227
3 3 | PSNR(dB)[20.22| -7.7 |-3.83) -1.25| -0.6 |32.65-2.97 |-3.01) -0.56 |-0.29|3431|-1.41|-2.39] -0.3 |-0.34 |35.48/-0.91 |-2.09|-0.23 | -0.36
5S¢ [Speedup | 1 | 21 | 286 156 [1.94 | 1 | 204 |357| 165|229 1 | 1.99| 3.87| 1.67 |262 | 1 |1.96 | 3.94| 1.7 | 2.69

Average PSNR(dB) | 32.38 |-3.74 |~3.29| -0.77 |-0.55 | 35.57|-1.39 [-2.69| -0.39 |-0.36 | 37.26|-0.79| 2.2 | -0.27 |-0.48 |38.45|-0.53 |-1.83|-0.21 | -0.44
Average speedup | 1 1.82|265| 1.51 | 1.99 1 183 |3.14] 16 | 2.3 1 1.85| 3.39| 1.62 | 2.6 1 1.86 | 3.47 | 163 | 2.66

128 Kbit/s 256 Kbit/s 384 Kbit/s 512 Kbit/s
CIF Videos | gi5; (mvems Py e iret. e | cade |"V*MStice icavrol sea | cade "V tioe | teavrel sea | sase | MV +MS e o o eat| b
§§ PSNR(dB)|38.63|-2.11 |-2.15|-0.62 |-0.38 [41.67(-0.87 | -1.9 |-0.33 |-0.37 |43.12| -0.54 [-1.71| -0.19 |-0.86|44.14|-0.39|-1.53|-0.15 | -0.83
;"3 Speed up 1 1.85 | 2.92| 1.59 | 2.2 1 1.86 | 3.45| 1.67 | 2.6 1 1.87 1 39| 169]| 31 1 1.9 [3.77] 172 | 3.29
%' PSNR(dB)| 25.85|-6.29 |-4.97|-1.09 |-0.45 [29.54| -2.3 |-4.08(-0.63 |-0.2831.17|-1.17|-3.2| -0.37 |-0.27|32.27|-0.79|-2.61|-0.26 |-0.24
§' Speed up 1 2 2.82| 15 [1.83 1 201 (361|167 |226| 1 1.96 |3.96| 1.7 | 249 1 1.96 | 424| 1.75 | 2.65
;;E PSNR(dB)|32.19|-2.36 |-4.23|-0.89 |-0.26 |34.83|-1.06 |-3.73|-0.39 |-0.1636.08| -0.6 |-3.07| -0.21|-0.78|36.88|-0.39 |-2.38|-0.13 |-0.68
=g Speedup | 1 1.95 | 3.36] 1.73 | 2.29 1 1.89 | 41 | 181 | 2.7 1 1.9 [4.39] 1.85[3.29| 1 1.92 | 4.39| 1.85 | 3.44
g; PSNR(dB)| 31.15|-8.62 |-4.33(-1.83 |-1.13 | 34.5|-2.92 |-3.05| -1 |[-0.67|36.2 |-1.67|-2.5| -0.67|-0.79|37.36/-1.17 |-2.13|-0.48 |-0.75
S? |Speedup | 1 2.11 | 2.88| 1.55 | 1.99 1 |2.03| 35166236 1 20238 171|271 1 2.01]396| 1.7 | 2.84
E PSNR(dB)|23.65|-3.05 |-3.36|-0.43 |-0.27 |26.23|-0.98 |-2.79| -0.2 | -0.2 |27.74|-0.67 |-2.32| -0.17|-0.22|28.87|-0.49 [-1.99|-0.14 |-0.24
H Speedup | 1 1.94 | 2.91| 1.53 [1.94 1 182 34| 16 [225] 1 1.81[3.56| 1.63 238 1 1.8 [3.68| 1.65 | 2.44
3 3| PSNR(dB) 26.41|-6.24 |-4.54|-0.95 |-0.48 |29.17|-1.95 |-3.76|-0.41 |-0.25|30.68| -1.12 | -3.1 | -0.25|-0.26|31.73|-0.77 |-2.58|-0.14 |-0.23
®3 Speed up 1 2.08 | 2.78| 1.58 | 1.98 1 1.95|3.55| 1.72 | 2.35 1 1.9313.94| 1.76 | 2.61 1 1.96 | 4.15| 1.81 | 2.71
Average PSNR(dB) | 29.65|-4.78 |-3.93|-0.97 | -0.5 |32.66|-1.68 |-3.22|-0.49 |-0.32|34.17| -0.96 |-2.65| -0.31 [-0.5335.21|-0.67 | -2.2 |-0.22 | -0.5
Averagespeed up | 1 1.99 | 2.94| 1.58 | 2.04 1 193 | 36 | 169 | 242 | 1 1.9113.93| 1.72 | 276 | 1 1.93 | 4.03| 1.75 | 2.89

Fig. 5. PSNR and speed-up results for various QCIF and CIF videos and bitrates. Numerous methods are compared against the cascade
method: MV+MS [9], statistics with and without refinement [8], and proposed. The PSNR rows show differences from the PSNR values of
the cascade method. The speed-up rows are defined as Tiascade/Tmethod, With 1" representing the transcoding time.

Miss-America (QCIF) Foreman (CIF)

47 6 39 8

36 7
44 5
" / 8
Cascade Cascade

a‘ 41 4 Q E o
T S MV +MS T 53 MV + MS
v ® 3 -8 —4— Statistics [4 g -+ Statistics
z] z Q
@ 35 2 g n Q.
o (77) o (7]

@
8

-o— Statistics ” 3 -o— Statistics
+Ref +Ref
=% Proposed 21 2 =% Proposed
18 1
0 15 0
128 256 384

32 64 96 128 160 512 640

Bitrate (Kbit/s) Bitrate (Kbit/s)

29

Fig. 6. PSNR and speed-up results for the Miss America (QCIF) and Foreman (CIF) videos at different bitrates. Speed-ups defined as
Teascade | Tmethod, With T' representing the transcoding time. The methods are presented in the following order for speed-up results: cascade,
MV+MS [9], statistics with and without refinement [8], and proposed.

