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ABSTRACT Maximal Extractable Value (MEV) represents a pivotal challenge within the Ethereum
ecosystem; it impacts the fairness, security, and efficiency of both Layer 1 (L1) and Layer 2 (L2) networks.
MEV arises when miners or validators manipulate transaction ordering (e.g., front-running) to extract
additional value, often at the expense of other network participants. This not only affects user experience
by introducing unpredictability and potential financial losses but also threatens the underlying principles of
decentralization and trust. Given the growing complexity of blockchain applications, particularly with the
increase of Decentralized Finance (DeFi) protocols, it is crucial to address the issue and reduce the impact
of MEV. This paper presents a comprehensive survey of MEV mitigation techniques as applied to both
Ethereum’s L1 and various L2 solutions. We provide a novel categorization of mitigation strategies. We also
describe the challenges, ranging from transaction sequencing and cryptographic methods to reconfiguring
decentralized applications (DApps) to reduce front-running opportunities. We investigate their effectiveness,
implementation challenges, and impact on network performance. By synthesizing current research, real-
world applications, and emerging trends, this paper aims to provide a detailed roadmap for researchers,
developers, and policymakers to understand and combat MEV in an evolving blockchain landscape.

INDEX TERMS Blockchain technology, DeFi protocols, Ethereum, fair ordering, MEV, privacy-preserving
methods.

I. INTRODUCTION

The landscape of blockchain technology, particularly
Ethereum and its Layer 2 (L2) chains, has been significantly
impacted by MEV (Miner Extractable Value) extraction
strategies. These strategies, which include DEX (Decen-
tralized Exchange) arbitrage, sandwiching, and liquidations,
have emerged as profitable opportunities for miners and
other participants in the network. However, these strategies
also pose potential risks to the network’s stability and
security, leading to the development of various mitigation
approaches. Blockchains have historically achieved data
integrity and immutability through a network of nodes
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reaching consensus on the validity of transactions recorded
in the distributed ledger. However, consensus protocols
adopted in many blockchains do not enforce rules on the
ordering of transactions produced by block producers. Miners
or validators can exploit their capability to preview the
network’s upcoming state and manipulate transactions by
reordering, including, or excluding them to generate profits.
This profit-seeking behavior is known as MEV extraction;
it can lead to significant issues for users, applications, and
overall network robustness. This becomes significant with
the rapid expansion of DeFi (Decentralized Finance) projects,
leading to a notable increase in MEV extraction within the
Ethereum network [1].

One prominent approach to extract MEV is through front-
running attacks; this involves submitting a transaction with
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higher transaction fees to surpass a pending transaction
in the execution queue [2]. Front-running attacks form a
dominant method to extract MEV; they enable individuals
to leverage the transaction prioritization mechanism for
their own financial gain. It is important to note that
transaction ordering manipulation also occurs on off-chain or
layer 2 (L2) networks, where single or multiple sequencer
nodes are responsible for determining the final transaction
order. L2 solutions are designed to improve the scalability
and performance of blockchain networks by processing
transactions off-chain [3], [4], [5].

Rollups are a specific type of L2 solutions with a single
sequencer. The sequencer, under the control of the rollup
operator, is a central authority responsible for the ordering
and execution of transactions. Rollup chains employ a
single sequencer to ensure deterministic transaction ordering,
simplify system architecture, and enhance efficiency and
security, although it may have certain drawbacks. Rollups
can also have a network of sequencers, though operating
their own network can be costly for the rollup chain [6].
A recent solution to this problem is the development of shared
sequencer networks, which allow multiple rollups to utilize a
common network of sequencers.

This paper aims to survey the current state of MEV
mitigation approaches on Ethereum and L2 chains, with a
focus on the strategies employed to address the challenges
posed by MEV. By grouping these mitigation approaches into
specific strategies and analyzing them, we aim to provide
a comprehensive understanding of the landscape of MEV
mitigation. To the best of our knowledge, this work is novel
in its systematic categorization and detailed analysis of MEV
mitigation strategies.

The rest of this paper is organized as follows. Section II
provides a brief overview of existing Surveys and reviews on
MEV mitigation methods. Section III presents background
concepts related to MEV extraction issue. Section IV
introduces a novel taxonomy of different MEV mitigation
strategies. Sections V, VI, VII, and VIII review existing con-
tributions for each mitigation strategy. Section IX compares
all MEV mitigation strategies. Finally, Section X concludes
the paper.

Il. RELATED WORK

Previous research on MEV can be divided into two main
categories. The first category involves the detection and
quantification of MEV by analyzing recorded transactions or
monitoring mempool activities, a topic extensively covered
in the existing literature. The second category is concerned
with strategies to prevent or mitigate MEV extraction within a
network (e.g. [7], [8], [9], [10]). In this paper, we focus on the
second category, specifically on MEV extraction mitigation
and prevention methods on Ethereum and L2 chains.

Several studies have examined and evaluated various
methods for mitigating MEV. Xu et al. [11] focus on Auto-
mated Market Maker (AMM)-based Decentralized Exchange
(DEX) platforms. They assess the mechanics of various
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protocols (e.g., Uniswap [12], Curve [13], Balancer [14], and
DODO [15]). They conclude with a comprehensive review
of the AMM-based DEX platforms, focusing specifically on
their design and associated vulnerabilities including front-
running. The authors propose a taxonomy covering the
economic risks and security issues associated with AMMs.
The paper classifies front-running as a significant economic
risk for AMM protocols within its risk taxonomys; it evaluates
the impact of these attacks on the economic dynamics
of DEXs. It also proposes potential mitigation methods
for front-running, such as enforcing sequencing rules and
concealing transaction details.

Alam et al. [16] explore the central role of DeFi in the
financial ecosystem, particularly focusing on security issues.
The authors concentrate on front-running attacks, with less
emphasis on mitigation strategies.

Zhang et al. [17] focus on evaluating methods for detecting
front-running vulnerabilities in smart contracts. The authors
propose an algorithm to detect real-world front-running
attacks in the Ethereum transaction history; the algorithm
outperforms baseline methods. They introduce an approach
to automatically collect vulnerable smart contracts that have
been exploited in historical attacks. In addition, they put
forward a benchmark of real-world front-running attacks,
including the associated vulnerable smart contract code. The
paper conducts an empirical evaluation of seven state-of-
the-art front-running vulnerability detection tools using the
constructed benchmark.

Eskandari et al. [2] propose a classification framework
to understand different types of front-running attacks. They
categorize these attacks into three main types: displacement,
insertion, and suppression. The authors analyze various
mitigation techniques (transaction sequencing, confidential-
ity, and smart contract design practices), evaluating their
effectiveness and limitations. Additionally, the paper presents
real-world examples of front-running attacks and their impact
on blockchain systems and applications.

The authors in [18] classify and examine various schemes
for mitigating transaction reordering manipulations. How-
ever, they do not cover recent advances and their categoriza-
tion is not exhaustive.

After our review of existing surveys [2], [11], [16],
[17], [18], we conclude that while they have looked into
various strategies to mitigate MEV, few have taken the
comprehensive and high-level approach that we aim to
present in this paper. Most previous surveys focus on
specific aspects of MEV mitigation, but they do not provide
the complete picture. We strive to offer a more holistic
perspective, covering a broader range of strategies and their
interconnections.

Ill. BACKGROUND

In this section, we introduce background concepts that are
necessary to understand the rest of the paper. We begin
by discussing MEYV, explaining its significance and impact
on blockchain transactions. Next, we present the details of
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front-running attacks, describing how they exploit transaction
ordering to benefit malicious actors. Finally, we present
L2 solutions highlighting how they enhance scalability in
blockchain systems.

A. MAXIMAL EXTRACTABLE VALUE

MEV [1] refers to the maximum profit that a miner! can
achieve from pending or confirmed transactions within a
blockchain network. MEV represents the potential earnings
validators can gain by strategically ordering transactions to
their advantage. Validators possess the authority to include,
exclude, or reorder transactions within a block. By leveraging
this power, they can prioritize certain transactions that
offer higher fees or manipulate transaction ordering to
benefit from price movements, thereby maximizing their
revenue. Currently, most actual MEV is extracted not only
by validators but also by sophisticated users and automated
bots, collectively known as MEV searchers. These searchers
constantly monitor the blockchain for profitable opportuni-
ties, such as arbitrage, liquidations, and front-running. They
employ advanced algorithms and high-frequency trading
strategies to identify and capitalize on these opportunities
before others can. This practice often occurs at the expense
of other users, leading to concerns about fairness and market
efficiency within the blockchain ecosystem. The implications
for the users include: (1) financial loss: it happens through
front-running on DEX platforms; (2) censorship: transactions
can be censored or delayed by validators; and (3) high
transaction fees: it is caused by network congestion.

MEYV extraction also impacts the network layer, potentially
destabilizing it through various attacks including (1) time-
bandit attacks: validators attempt to rewrite blockchain his-
tory by reorganizing past blocks with profitable transactions;
and (2) Priority Gas Auctions (PGA): high transaction fees
are bid to prioritize transactions and capture opportunities [1].

B. FRONT-RUNNING

The most common method of extracting MEV is through
front-running attacks. In these attacks, a transaction is placed
ahead of another in the execution queue by bidding higher
transaction fees. In Ethereum, transactions are temporarily
stored in a public pool known as the mempool, which allows
anyone to monitor and identify potential profit opportunities
before they are included in a block. Malicious actors exploit
this transparency by executing transactions with higher
gas fees, effectively front-running the original transaction
to capture profits before it is processed. When multiple
front-runners compete for the same opportunity, it leads
to a PGA [1], where the transaction with the highest gas
fee wins the race to be included in the next block. This
competitive bidding process can escalate quickly, causing
network congestion as more transactions compete for limited
block space. As a result, the overall transaction fees on
the network increase, impacting regular users who are not

"Miner and validator will be used interchangeably in this paper.
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participating in the auction. In certain situations, a validator
might choose to censor or delay a specific transaction. This
could be to prioritize their own transaction in order to profit,
particularly if the potential profit exceeds the combined block
reward and transaction fees.

Fig. 1 (a) shows an example of a front-running attack.
Users submit transactions with specific fees to a blockchain
node, where they are stored in a pool of pending transactions
known as a mempool. The validator selects transactions from
the mempool to create a block; typically, miners prioritize
processing transactions that offer higher fees.

Fig. 1 (b), the user plans to buy a significant amount of
a certain token on a DEX (e.g. 1000 token A). This large
purchase will cause the token’s price to rise after the order is
executed. Before the transaction is broadcast to the network,
a front-runner bot detects this large buy order in the mempool.
The bot then places a buy order for the same amount of the
token but with a higher transaction fee, allowing it to buy at
a lower price. When the user’s order is executed, it drives
up the token’s price, enabling the front-runner to sell their
tokens at the increased price, thereby profiting from the user’s
transaction.

1) PGA EXAMPLE

In the previous example, there was one front-runner who only
needed to set a higher transaction fee than the user’s specified
fee. Fig. 2 shows a scenario where multiple front-runner bots
detect the user’s transaction. If the user’s fee is $, the first
bot sets a higher fee, say $$. The next bot sees this and
sets an even higher fee, $$$. This competition among bots
drives the transaction fees higher, creating a situation known
as a Priority Gas Auction. During this process, the validator,
seeking to maximize profit, selects the transaction with the
highest fee offer for inclusion in the block. Consequently, the
user who sends the highest transaction fee for 7}, is chosen by
the validator and becomes the winner of the auction.

C. L2 SCALING SOLUTIONS

L2 solutions offer a way to scale the underlying chain or
layer 1 (L1) chain. Each L2 protocol has its own execution
environment, resembling the Ethereum virtual machine. The
key concept involves deploying decentralized applications
(DApps) on L2 protocols, enabling computations and storage
to take place off-chain. Rollups are a type of the L2 solution,
in which computations and the application’s state are kept in
an off-chain protocol, and the proof data of transactions are
stored on L1. In this study, we focus on the rollup protocols as
an efficient and general-purpose off-chain solution. Rollups
aggregate multiple transactions into a single batch and
perform most computation off-chain, using the underlying
network for security. There are two main types of rollups.
Optimistic rollups operate on the principle of assuming
transactions are correct unless proven otherwise. In contrast,
Zero-Knowledge rollups use cryptographic proofs to validate
transactions. A crucial component in the architecture of
rollups is the sequencer. The sequencer plays a vital role in
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FIGURE 1. Front-Running attacks caused by arbitrary transaction selection and ordering.

T, $, Buy Order 1000 A

% User
TS = —
% !

Validator 2 | T4$

Front-runner

%Tam

T, $$$5$$, Buy Order 1000 A
Front-runner .

Renece T, 555555

Front-runner

FIGURE 2. Example of a priority gas auction (PGA) attack.

maintaining the correct order of transactions and ensuring
the consistency of the network state. When users submit
transactions to a rollup chain, these transactions are initially
processed and validated off-chain within the rollup network.
The sequencer then collects these transactions and orders
them based on their received time or other criteria, creating
a batch or block of transactions. Periodically, the sequencer
commits the batch to the underlying network, thereby
ensuring the integrity of the transactions and the rollup’s state.
Transaction ordering and execution can be separated in rollup
protocols, but in practice, they can be gathered in a single
node [19], [20].

IV. TAXONOMY OF MEV MITIGATION STRATEGIES

In this section, we present a novel taxonomy outlining various
methods to mitigate MEV (see Fig. 3). This taxonomy
aims to offer a broad understanding of each mitigation
technique, highlights its respective objectives and underlying
strategies. The MEV mitigation taxonomy consists of two
primary strategies, each addressing the issue from distinct
perspectives: (1) prevention/reduction: it aims to eliminate
MEY opportunities before they can be exploited; and (2) side-
effect reduction: it focuses on mitigating the adverse impacts
of MEV extraction rather than eliminating the opportunities
themselves.
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The prevention/reduction strategy involves removing or
limiting the validator’s ability to reorder transactions, thereby
directly preventing them from extracting MEV. Conversely,
MEYV searchers are unable to leverage higher transaction fees
to exploit the validators’ capabilities. Prevention can also be
achieved through disincentivization; this involves creating
deterrents against engaging in MEV practices.

The side-effect reduction strategy focuses on mitigating the
negative impacts of MEV extraction (PGA and time-bandit
attacks) which can lead to network congestion and threaten
the stability of the consensus protocol. Instead of eliminating
MEYV opportunities entirely, this strategy focuses on democ-
ratizing MEV. By making MEV extraction accessible to a
broader group of participants, the current imbalance where
validators have a disproportionate advantage is reduced.

In the following sections, we describe various proposed
methods from the literature and industry, based on the
strategies shown in Fig. 3. Table 1 presents key projects and
articles discussed in the following sessions, highlighting their
strategies, approaches, and main contributions.

V. FAIR ORDERING POLICY
A fair ordering policy is a method designed to eliminate
a sequencer’s ability to reorder transactions. It enforces a
specific order for transactions to be included in a block
by the sequencer. These policies are embedded into the
protocol during its design by establishing explicit rules that
the sequencer must adhere to when ordering transactions.
These rules are enforced through the protocol’s code and
smart contracts, ensuring compliance. While this approach
can significantly reduce the likelihood of front-running,
the sequencer node can still censor or delay transactions.
Additionally, in the case of rollups, where sequencer nodes
have a private mempool, there is a risk that they could leak
pool information to external front-runners, especially when
there is only a single sequencer, which necessitates a strong
trust assumption.

Ordering policies may be implemented in various settings.
In a single sequencer scenario, a single node undertakes the
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TABLE 1. Notable projects discussed in the survey.

Strategy Work Approach Main Contribution Reference
TimeBoost Fair ordering policy Combines FCFS and auction ordering policies in a single [7]
sequencer setting.
2
% Metis Fair ordering policy Provides a decentralized sequencing rollup. [21]
o0
g
é Themis Fair ordering policy Applies batch-order-fairness definition in a decentralized [22]
) setting.
~
Wendy Fair ordering policy Applies timestamp-based ordering in a decentralized setting. [23]
=
2
g Espresso Fair ordering policy Provides a shared sequencing network for all rollups. [24]
5}
%
S Shutter Privacy-preservation Provides an off-chain key management network for the [25]
§ mempool privacy through threshold encryption algorithm.
(o}
&
F3B Privacy-preservation Provides an on-chain solution for mempool privacy through [26]
threshold encryption.
)
£
N
Z Helix Privacy-preservation Combines the idea of threshold encryption and random [8]
§ selection of encrypted transactions.
=)
8 . . 4 - 4
BlindPerm Privacy-preservation Proposes a mempool privacy solution with transaction [9]
encryption and ordering permutation.
Radius Privacy-preservation Proposes a shared sequencing service with encrypted [27]
transactions through the delay encryption method.
CoW Swap | Smart contract-level protection provides a DEX platform with an off-chain component to [28]
protect pending trade requests.
FairMM Smart contract-level protection provides a DEX platform with an off-chain component to [10]
protect pending trade requests.
=
2
2 g
A
2 g MEV-Boost Proposer-Builder separation Provides an off-chain implementation for the PBS method. [29]
2| E
15} j5)
o | R
3
(%)

sequencing task, with users directing their transactions to this
node. Conversely, a multi-sequencer setup or decentralized
sequencing involves multiple nodes collaborating to establish
consensus on transaction order. The subsequent sections will
delve into the challenges associated with fair ordering across
these different configurations.

A. SINGLE SEQUENCER
The most straightforward ordering approach applicable
to a single sequencer node is the First-Come-First-Serve
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(FCES) algorithm. It orders transactions according to their
arrival time at the sequencer node. It is reasonable to
prioritize transactions based on their arrival time, ensuring
fairness in processing. Furthermore, this approach also
reduces front-running by limiting sequencers’ ability to order
transactions arbitrarily. However, implementing FCFS in
practice presents some challenges and drawbacks. These
include (a) Latency wars: users try to optimize their network
latency with sequencer nodes to guarantee early inclusion of
their transactions to a block; and (2) Spam attacks: malicious
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FIGURE 3. Taxonomy of MEV mitigation strategies.

TABLE 2. Prominent rollup protocols with their sequencing model.

Protocol Rollup Type Sequencing Ordering

Policy

Arbitrum Optimistic Single FCFS

Optimism Optimistic Single FCFS

Starknet Zero- Single FCFS
knowledge

Zksync Zero- Single FCFS
knowledge

Scroll Zero- Single FCFS
knowledge

Metis Hybrid Decentralized FCFS

users flood the sequencer node with a large number of
transactions with the intent to guarantee their priority in the
queue. As a result, legitimate transactions may experience
delays or even fail to be processed altogether.

Most notable rollups utilize a single sequencer with a
FCFS ordering policy (see Table 2). FCFS ordering policy
simplifies management and implementation processes but
has certain implications. Firstly, users need to trust the
sequencer node managed by the company. Secondly, there
is a risk of a single point of failure; if the sequencer
node encounters issues or is compromised, it could disrupt
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FIGURE 4. Granularity interval in TimeBoost algorithm.

the entire rollup system, causing transaction delays or
failures.

Some protocols employ modified versions of the tradi-
tional FCFS algorithm to improve the fairness of transaction
ordering. Although these solutions still contend with trust
and single point of failure concerns, they can address issues
associated with classic FCFS ordering, such as transaction
spamming and latency optimization problems.

Kelkar et al. [7] introduce TimeBoost, a fair ordering
protocol in a single sequencing setting. Fig. 4 shows the
proposed algorithm, which orders transactions within a
granularity interval g on rollup sequencers. It combines
transaction timestamps and user bids to generate a score that
determines the transaction order. Users can bid to effectively
reduce their transaction’s timestamp in the queue, effectively
buying time. During the interval g, transactions are initially
sorted based on their received time f;; however, each user
can bid b; with their transaction to decrease the received
time, thereby increasing the transaction’s score. Ultimately,
transactions are ordered based on their computed scores.

The score for a transaction tx; = (#;, b;) is computed as (1):

S, b)) = (b)) — ;. ()
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The function 7 (b;) represents the priority achieved by
bidding b;. Transactions are ordered by descending scores;
a higher score increases the likelihood of the transaction
being processed sooner. The bidding function 7 is designed
to satisfy the following properties:

1) m#(0) = 0: Paying a bid of O provides no additional

advantage.

2) 7/(b) > 0: For all b € R™, the priority increases with
the bid.

3) limp w(b) = g: No transaction can outbid a
transaction that arrived g time units earlier.

4) 7"(b) < 0O for all b € R™: The priority function is
concave, meaning the cost of gaining priority increases
with the bid.

The simplest bidding function that satisfies these

constraints is expressed as (2):

gbi

bi+c )
where c¢ is constant. Unlike FCFS, TimeBoost avoids the
inefficient latency competition inherent to the FCFS policy.
Incorporating bids into the transaction ordering process
encourages players to focus on bidding rather than invest-
ing heavily in low-latency infrastructure. In pure-latency
approaches like FCFS, only the fastest players benefit, often
leading to unfair advantages.

TimeBoost combines timestamps and bids, enabling bid-
ding among transactions within a short time frame. This
approach is superior to pure-bidding methods, which can
be vulnerable to attacks (e.g., PGAs) that threaten network
stability. Unlike PGAs, where any user across the entire
network can participate in the bidding process, potentially
causing network congestion, TimeBoost restricts bidding to
a limited number of transactions within each granularity
interval.

7(bi) = (@)

B. DECENTRALIZED SEQUENCING

Decentralized sequencing has emerged as a viable alternative
by addressing the limitations associated with relying on a
single sequencer (e.g., trust and single point of failure).
However, it introduces a substantial challenge: accurately
determining the transaction order. In decentralized systems,
this frequently involves the need for synchronized clocks.
Because of network delays, influenced by the geographical
distances between nodes and the available network band-
width for users, transactions might reach different nodes
at different times and in various orders. As a result, the
transaction order in each node’s mempool may vary.

Metis [21] is one of the recent rollup chains pioneering
decentralized sequencing, primarily addressing the single
point of failure issue. It features a straightforward method
for ordering transactions in a decentralized environment. All
sequencer nodes receive transactions, and in each round,
one sequencer is selected to construct a block. Metis uses
a rotation mechanism for Sequencer selection, with all
Sequencer Lists stored in a smart contract address controlled
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by multiparty computation (MPC). The selection is based on
each sequencer node’s voting weight (related to the staked
amount of token) and a randomly generated hash value,
ensuring a fairer process. If a sequencer stops operating,
it is rotated out to maintain continuous network operation.
The selected sequencer orders transactions based on the
FCFS policy using the order of transactions in its local
mempool. Metis has a permissioned pool of sequencers gov-
erned by a DAO (Decentralized Autonomous Organization).
Prospective sequencers must submit proposals, subject to
a voting process requiring majority approval from DAO
members to join the network. Additionally, sequencers are
mandated to stake a certain quantity of tokens as a deterrent
against malicious behavior. Mechanisms for slashing exist to
penalize sequencers, while rewards are offered for transaction
processing and block production, thereby incentivizing hon-
est behavior. The slashing mechanism addresses malicious
actions or poor performance by Sequencer nodes. Offending
Sequencers are immediately removed from the pool and
subjected to a review process. Slashing cases, categorized
by severity, include slow Sequencers (low severity), non-
block production (medium severity), multiple node outages
(high severity), and malicious execution result modification
(critical severity). Programmatic detection and enforcement
handle these issues, with additional penalties determined
by governance proposals. Actions against offenders can
include slashing a percentage of their stake, blacklist-
ing, and removal from consensus. Transaction ordering
manipulation is also considered a malicious activity in
Metis. Currently, there is no automated detection pro-
cess for this. The protocol encourages the community to
identify and report such attacks. If a report is verified
as accurate, the sequencer will be penalized accordingly
[21], [30].

More complex forms of decentralized sequencing have
been proposed in the literature including [22], [31], [32], [33];
however, they have not yet been implemented in a production
blockchain. In these methods, all sequencer nodes receive
transactions, and a leader sequencer is selected each round
to establish the final transaction order. Instead of relying
solely on its local mempool, the leader integrates the local
orders from all sequencers based on a fair ordering definition.
This definition determines the final order of transactions by
deciding, for each transaction pair (Txo, Tx;), which one
should be processed first.

Kelkar et al. [22] introduced Themis which provides
a fair ordering of transactions. Fig. 5 shows the Themis
protocol ordering process. It is a leader-based protocol where
all nodes transmit their transaction orders to the chosen
leader, determined by their receive times (see Fig. 5 (1)).
Subsequently, the leader compiles a fair-ordering proposal
from the transaction orders received from other nodes (see
Fig. 5 (2)). Finally, the leader sends the final ordering,
accompanied by a SNARK proof of computation, to all other
sequencer nodes involved in the sequencing process (see
Fig. 5 (3)). The fair ordering definition used by Themis is
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known as Batch-Order-Fairness. According to this definition,
if two transactions Txg and Tx; are received by all sequencer
nodes, and if a fraction (more than %) of these nodes received
Txq before Tx;, then all honest nodes should order Txy no
later than Tx;. A dependency graph is created where the
vertices represent transactions and directed edges indicate
the order between pairs of transactions. Additionally, a proof
mechanism allows nodes to verify the accuracy of the final
ordering proposed by the leader, based on the specified fair
ordering algorithm [22]. This ordering policy can encounter
the phenomenon known as the Condorcet paradox or
cycle.

textbfFor example, let us consider three transactions
received by three sequencer nodes, with each node receiving
the transactions in a different order due to network latency
and the nodes’ geographical locations. The orders are
presented as follows:

o Node A: Tx>Tx>Tx3
e Node B: Tx,>Tx3>Tx;
e Node C: Tx3>Tx>Txp

Fig. 6 shows the resulting dependency graph. When cycles
are present in the graph, it becomes impossible to determine
the final order of transactions within the cycle. Moreover,
the consensus process can be stalled. In protocols like
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Aequitas [32], this leads to a loss of liveness, where
transactions are not processed in a timely manner or at all;
the protocol gets stuck trying to resolve the cycle. High
latency in a network can cause nodes to receive transactions
in different orders, increasing the likelihood of conflicting
preferences and thus cycles. Themis addresses this issue by
using a method called deferred ordering, which helps manage
the impact of cycles by ensuring that transactions do not have
to wait indefinitely for ordering. In the following, we present
the steps executed by Themis in the context of the example
shown in Fig. 6. Let us consider that node A is selected as a
leader.

1) Partial Ordering: Node A proposes a block that
includes transactions Tx| and Tx; as fully ordered, but
Tx3 is only partially ordered. This means that the final
position of Tx3 in the block is not yet determined.

2) Deferred Ordering Process: The proposed block is
broadcast to the other nodes. Nodes B and C receive
the block from Node A. They agree on the order of
Tx; and Tx; but still have their own views on Tx3. The
nodes defer the final ordering of Tx3 to the next block
proposed by the next leader.

3) Final Ordering by the Next Leader: Node B, the next
leader, creates a new block. This block finalizes the
position of Tx3, considering the partially ordered state
from node A’s block and any new transactions. Node B
includes a complete ordering for Tx3 along with new
transactions (e.g., Tx4, Txs).

4) Consensus and Block Commitment: The new block
proposed by node B is broadcast and agreed upon by
all nodes. The blockchain now has a consistent order:
Block 1 (Tx;, Txp, partially ordered Tx3), Block 2
(Tx3, Tx4, TXs).

Kursawe [23] introduces Wendy which applies timestamp-
based ordering in a decentralized setting; they leverage
synchronized clocks to ensure that transactions are processed
in the order they are received based on their timestamps.
In Wendy, all nodes in the network maintain synchronized
clocks. This synchronization can be achieved using protocols
such as Network Time Protocol (NTP). When a node receives
a transaction, it assigns a timestamp based on its local clock.
The node then broadcasts the transaction along with its
timestamp to the rest of the network. Each node has a mem-
pool where it stores incoming transactions along with their
timestamps. Nodes follow a predefined ordering policy based
on the timestamps. Transactions with earlier timestamps are
given higher priority for inclusion in the next block. During
the consensus process, nodes propose and validate blocks
of transactions. The validator must order the transactions
in the block according to their timestamps, ensuring that
transactions with earlier timestamps are included before those
with later timestamps. When a node receives a proposed
block, it verifies that the transactions are ordered correctly
according to their timestamps. If the ordering is not correct,
the block is rejected.
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C. SHARED SEQUENCERS

Shared sequencing is a technique that has been discussed in
recent years within the rollup ecosystem. It offers transaction
sequencing for multiple rollups through a third-party service,
enabling the sequencing process to be shared among various
rollup chains. A shared sequencer operates independently
of rollup chains by separating the executor role from the
sequencer role. In this setup, the sequencer functions solely
as a sequencer.

A shared sequencer can be either a single sequencer
or a decentralized network of sequencers. In practice,
because the shared sequencer handles requests from multiple
rollups and prevents a single point of failure, it typically
comprises a decentralized network of sequencers. Similar to a
network of validators in a blockchain, this shared sequencing
network forms a peer-to-peer network among sequencer
nodes, which can use their own consensus mechanism to
agree on the order of transactions. It can significantly
reduce the cost of running rollups and accelerate the move
towards decentralization. However, rollups will need to
share transaction fees and MEV opportunities with other
entities.

Espresso [24] is an example of a decentralized shared
sequencing protocol. The architecture of the Espresso system
is illustrated in Fig. 7. When a user sends a transaction to a
rollup chain, following steps are executed:

1) The rollup receives the transaction and forwards it,
along with a rollup ID, to the shared sequencer.

2) The sequencer network creates blocks containing an
ordered list of transactions.

3) The rollup receives the block and executes transactions
on its network.

4) The sequencer posts the log of executed transactions to
L1 as a commitment (on its sequencer smart contract).

5) After executing the block of transactions, the rollup
posts the updated state of the chain to L1 (on the rollup
smart contract).

6) The rollup contract then reads the block commitment
from the sequencer contract. The verification of state
transition depends on the rollup type: a ZK-rollup
verifies the proof, while an optimistic rollup waits for
fraud proofs.

This process occurs simultaneously for multiple rollups.
There is an incentive for rollups to forward transactions to
the Espresso network, known as the sequencer marketplace.
When a rollup receives a transaction from a user, it can
choose to process it through its own sequencer node or sell
its sequencing rights through an open marketplace. [34].

In a shared sequencing block that contains transactions
from different rollups, one significant opportunity that
arises is cross-domain MEYV. In this context, transactions
that span across multiple rollups can be strategically
ordered or timed to exploit price differences, arbitrage
opportunities, or other financial discrepancies between these
domains.
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FIGURE 7. Espresso network architecture as a decentralized shared
sequencer.

D. DISCUSSION

Table 3 presents a comparison of notable protocols discussed
in the previous sections on fair ordering methods. Most
protocols feature a set of permissioned sequencers, except
for Espresso, [34] which allows anyone to join the network
and run their own sequencer node. All the protocols
are leader-based, with a single sequencer acting as the
leader or, in the context of decentralized sequencing, one
sequencer being selected as the leader for each block. All
the protocols mentioned in the table, except Wendy [23],
do not require a synchronized clock for their algorithms.
Wendy’s use of timestamps for each transaction increases
communication overhead. Over time, clocks on different
nodes can drift apart due to slight differences in their
frequencies, leading to inconsistencies in timestamps and
potential issues in the fair ordering process. Synchronizing
clocks also adds network traffic, as nodes must periodically
exchange time information, consuming additional computa-
tional and bandwidth resources that could be used for other
operations.

Table 2 indicates that most rollups use the classic FCFS
ordering policy. TimeBoost [7] is a proposed transaction
ordering method for single sequencer rollups, combining
bidding and time-based ordering methods. Metis is another
rollup network that has proposed a decentralized sequencing
method. While it addresses the single point of failure issue
and reduces the trust required in a single sequencer, it still
relies on the classic FCFS sequencing method. Themis [22]
and Wendy [23] both propose decentralized sequencing
methods but with different ordering policies. Themis operates
without requiring a synchronized clock and maintains an O(n)
communication cost between sequencer nodes, utilizing the
SNARK protocol. In contrast, Wendy requires synchronized
clocks and has an O(n?) communication complexity. Shared
sequencing protocols like Espresso [34] reduce the cost of
running a network of sequencers for rollup chains. Rollups
can either use their own sequencing policy or delegate the
task to a third-party sequencing network through an auction
mechanism.
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FIGURE 8. General approach in mempool encryption methods.
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As Wendy uses a timestamp-based ordering mechanism;
making it difficult for any single node to censor transactions
because the order is determined by the timestamps, not
by any single node’s decision. Themis enforces batch-
order fairness, meaning that transactions are ordered based
on the order in which they were seen by a significant
fraction of honest nodes. This reduces the ability of
any single node to manipulate the order for censorship
purposes. It employs SNARKs to achieve efficient and
secure validation of the ordering process. This ensures
that even if a node tries to censor transactions, it can-
not tamper with the verification process without being
detected.

VI. PRIVACY-PRESERVING MITIGATION METHODS

The main objective for the privacy-preserving methods is to
hide the contents of transactions until their order is confirmed.
These approaches can effectively eliminate MEV extraction
opportunities and reduce the risk of transaction censorship
by malicious sequencers. Since the transaction is not visible
in the public mempool, it is less vulnerable to front-running
and other types of attacks that exploit transaction
visibility.

The primary focus of research in this domain is on
mempool privacy or encrypted mempool (see Fig. 8),
involving the encryption of pending transactions in the
mempool and their decryption after their order is finalized,
just before inclusion in a block [35]. Another privacy-
preserving approach that helps prevent front-running involves
private transactions. This is achieved by bypassing the
mempool and directly sending your transaction to a validator,
who then places the transaction in the newly created block
ahead of other transaction [36].

A. ENCRYPTED MEMPOOL

The main techniques for encrypting the mempool include (1)
Threshold encryption, which entails multiple trusted parties
(referred to as key holders or keypers) decrypting transactions
collaboratively without revealing the decryption key; (2)
Delay encryption, where transactions remain encrypted for
a designated duration before decryption; and (3) Trusted
Execution Environments (TEEs) which guarantee security
and privacy prior to transaction confirmation [37]. We will
explore these three methods in detail.
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1) THRESHOLD ENCRYPTION

In threshold encryption, the symmetric key is divided into
several pieces (shares) and distributed to a key-holding
committee during the encryption stage. To decrypt, a certain
threshold of the total shares is required to reconstruct the
symmetric key, making it impossible for a single attacker to
attempt decryption before the transaction order is decided.
This requires a degree of trust in the key-holding committee
as a third party. The trust assumption here is that a certain
threshold of committee members will share their portions
of the key in a timely manner. The general process of the
threshold encryption method is outlined in the following steps
(see Fig. 9).

1) Key generation: Each member of the committee
generates a share of the decryption key based on the
Distributed Key Generation (DKG) algorithm [38].
This process ensures that no single member has the
complete decryption capability, thereby distributing
control over the decryption process among multiple
parties.

2) Encryption phase: Transactions are encrypted using a
public key from the trusted key management committee
with an honest majority.

3) Submission of encrypted transactions: Encrypted
transactions are submitted to the mempool. Since the
transactions are encrypted, they cannot be tampered
with or manipulated by validators.

4) Transaction commitment: The encrypted transactions
are then posted on the blockchain as a commitment,
but they can not be executed. At this point, the
transactions are visible to all participants, but they are
encrypted, and their contents are not accessible without
the decryption key.

5) Decryption phase: Once a transaction is recorded
on the blockchain, the key holders can initiate the
decryption process. The contents of the transactions
remain private until a threshold number of holders
start the decryption process. This safeguard ensures
that, even in the event of some participants being
compromised, the integrity of the transactions is
maintained as long as the majority of participants
remain honest.

6) Execution of Transactions: Once the threshold
decryption process concludes, the transactions are pro-
cessed in a sequence based on the commitment already
posted on the blockchain. This predetermined order is
unrelated to the content of the transactions, effectively
blocking any potential for MEV exploitation through
strategies that rely on content-based ordering.

The key management committee can be chosen from
validators on the main chain, who are responsible for
consensus and block creation [39]. However, this approach
may introduce overhead during the decryption phase and
necessitate modifications to the protocol layer. Alternatively,
an off-chain mechanism managed by trusted parties can
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TABLE 3. Notable sequencing protocols.
Protocol Sequencing Permissioned Leader Synchronized Ordering Verification Censorship Comm.
Model based Clock Policy Resistance Complexity
TimeBoost Single Yes Yes No Modified Trust No —
(71 FCFS
Metis [21] Decentralized Yes Yes No FCFS DAO, Slash No —
Themis [22] Decentralized Yes Yes No Batch-order SNARK Yes O(n)
fairness
Wendy [31] Decentralized Yes Yes Yes Timestamp- Timestamps Yes on?)
based
Espresso [34] Shared No Yes No Auction- PoS Yes O(n)
based consensus,
Slashing
Rules
# consensus group, and secret-management committee (set
of trusted nodes which are responsible for keeping the
encryption key). Although consensus nodes and management
I nodes are two separate entities in some situations (e.g.,
#2 . . N . .
— : when a permissioned blockchain is used as the underlying
Users ——Send encrypted transactions—> empoo 5 Cipher (Txa) . .
Cipher(Txg) blockchain) they can be the same or can be run on a single
Cipher (Txc) .
¢ server. The process of the F3B threshold encryption method
#3 is outlined in the following steps:
Blockchain 1) Key Generation Phase: The secret-management com-
mittee generates a secret key for each member and a
” single public key using a DKG algorithm [38]. This
process is repeated at specific intervals during the
reconfiguration phase, which allows for the addition
and removal of committee members.
s 2) Key Selection and Encryption Phase:
Key management Decrypt Txa R R
committee g o Symmetric key generation: The user or the
Txc

FIGURE 9. Users send encrypted transactions using the threshold
encryption method.

handle key generation and decryption processes. An example
of such a protocol is Shutter [25], which offloads the key
management process to an off-chain environment. Another
key advantage of Shutter, in terms of efficiency, is that it uses
a single decryption key for each epoch in POS consensus
(approximately for 32 blocks), whereas Ferveo [39] generates
a decryption key for each transaction [40].

Yakira et al. [26] propose Flash Freezing Flash Boys
(F3B), a novel blockchain architecture that employs a
commit-and-reveal scheme. In this scheme, the contents of
transactions are encrypted and only revealed by a decen-
tralized secret-management committee after the underlying
consensus layer has committed the transaction. The key
components of F3B include: encrypted transaction senders,
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sender of the transaction generates a random
number on their side; it is considered as the
symmetric key k.
Encryption of the Symmetric Key: The sender
then encrypts the symmetric key k using the public
key pkgnc of the secret-management committee to
produce the encrypted symmetric key cy.
Transaction Encryption: The sender encrypts the
transaction tx using the symmetric key k&, resulting
in the encrypted transaction cyy.
Sending Encrypted Data: The sender sends the
pair (cu, cx) to the consensus group, which vali-
dates the integrity of the data. Once validated, the
pair is included in a new block of the blockchain.
3) Waiting for Commitment: At least m block
confirmations are needed for the commitment phase.

4) Key Release and Execution:

« Retrieving the Encrypted Symmetric Key: Each

member in the secret-management committee

VOLUME 12, 2024



Z. Alipanahloo et al.: MEV Mitigation Approaches in Ethereum and Layer-2 Chains: A Comprehensive Survey

IEEE Access

retrieves the encrypted symmetric key c; from
the blockchain. The key c; was previously
encrypted with the committee’s public key pKgne
and recorded on the blockchain during the second
phase. Each member individually decrypts their
share of the symmetric key k. The decryption is
done using the member’s private key share, which
corresponds to their share in the DKG algorithm
used to generate pkg,. This results in partial
decrypted key shares.

« Verification by Consensus Nodes: To ensure that
the decryption was done correctly, each mem-
ber generates a non-interactive zero-knowledge
(NIZK) proof. This proof verifies that their
decrypted key share is correct without revealing
the key share itself. The consensus nodes in
the blockchain network verify the NIZK proofs
provided by the trustees. If the proofs are valid,
it confirms that the decrypted key shares are correct
and trustworthy.

o Reconstructing the Symmetric Key: Once a
sufficient number of correct key shares and
corresponding proofs are collected, the consensus
nodes use Lagrange interpolation to reconstruct the
original symmetric key k. This is possible because
the DKG algorithm ensures that the key can be
reconstructed with a threshold number of shares.

o Decrypting the Transaction: With the symmetric
key k reconstructed, the consensus nodes decrypt
the encrypted transaction ¢y, to obtain the original
transaction tx.

o Transaction Verification and Execution: The
decrypted transaction tx is then verified to ensure
it meets all necessary conditions and is valid. Once
verified, the transaction is executed according to
the rules and logic defined in the blockchain
protocol.

F3B requires writing data onto the blockchain only once,
significantly reducing overhead. However, F3B requires
modifications to the blockchain protocol to enable consensus
nodes to verify and process encrypted transactions and key
shares; Additional logic must be added to handle the decryp-
tion phase and the subsequent transaction validation [26].

Helix [8] is a hybrid protocol that combined the idea
of fair ordering with threshold encryption. The protocol
operates on a fully connected and synchronous network of
nodes, ensuring that each transaction propagates to all nodes,
resulting in all nodes having the same set of transactions.
Helix is a leader-based protocol where the leader is selected
among a committee of nodes, and the committee itself
is established through an election process. Each node has
a reputation score that increases with honest participation
in block validation and proposals. The higher a node’s
reputation score, the greater its chances of being selected as
a committee member or leader.
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As the consensus and transaction ordering processes are
confined to a limited number of committee nodes, the
protocol scales with the number of nodes. The protocol
selects a random set of pending encrypted transactions to
include in a block using a Verifiable Random Function
(VRF) [41]; the objective is to guarantee that the selection
of pending transactions is done in a transparent, verifiable,
and unbiased manner, enhancing the fairness and security
of the blockchain network. It ensures transaction censorship
resistance by employing a threshold encryption mechanism,
preventing committee and leader nodes from knowing the
content and the issuer address of a transaction until their order
is finalized.

For example, if Node P is selected to propose a block in one
round among the committee members, the process of block
creation is as follows.

1) A random seed is generated for the round; it is used as
the input for the VRF.

2) Node P computes a VRF output using the random seed
and its private key share. It also generates a proof of
VRF computation that can be verified by other nodes
without knowing the private key.

3) Each transaction in the pool is hashed to generate
a unique identifier. For each transaction Tx;, node
P concatenates the transaction’s hash with the VRF
output to form a combined string. The combined string
is then hashed to produce a ranking score for the
transaction.

4) The transactions are ordered based on their ranking
scores in an ascending order. This ensures that each
node, using the same VRF output and the same set
of transactions, will compute the same order for the
transactions.

5) Node P creates a block with the top k transactions;
along with VRF proof, the block is proposed to other
committee members.

6) The committee members verify the VRF proof to
ensure that the transaction selection process was
random and fair. They run a Byzantine Fault Tolerance
(BFT) protocol to reach consensus on the proposed
block.

7) Once consensus is reached, nodes begin the threshold
decryption process for the transactions in the block.
The decrypted transactions are then validated for
correctness.

8) The validated transactions are included in the new
block, which is then appended to the blockchain.

mempool Encryption can be improved with other tech-
niques. For example, Kavousi et al. [9] introduce a framework
called BlindPerm, which enhances encrypted mempool, with
permutation techniques, providing multi-layer protection
against MEV. It uses randomized permutations to shuffle
the order of transactions within a committed block before
they are executed. This framework is designed to work
with BFT-style consensus mechanisms and is shown to be
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efficient; it introduces essentially no overheads and requires
no additional services. The process of the BlindPerm is
outlined in the following steps.

1) The validator who is selected as the leader, proposes
a block, containing encrypted transactions with an
arbitrary order from the mempool.

2) Once a block is committed, validators decrypt the
transactions, based on the used mempool encryption,
and derive a seed for permutation.

3) Each validator uses the derived seed to permute the
order of transactions by applying the permutation
function Permute(seed;, B;) to shuffle the transactions
in the block.

4) The permuted block B is executed by all validators.

2) DELAY ENCRYPTION

Delay encryption, also known as time-lock encryption,
is a cryptographic mechanism which provides a secure way
to ensure that data remains confidential until a specified
time has passed. It leverages cryptographic primitives like
Verifiable Delay Functions (VDFs) and Time-lock Puzzles.
This concept is particularly useful in scenarios where data
should remain confidential until a specific future date or a
condition is met. The core idea behind delay encryption is to
tie the decryption key to a time-dependent condition (time-
lock puzzle), making it inaccessible until that condition is
satisfied.

VDF is a cryptographic primitive that allows a prover to
convince a verifier that they have waited for a certain amount
of time without revealing any information about the time they
waited. This property is crucial for delay encryption; it allows
the decryption key to be derived from a time-dependent
condition without revealing the actual time waited. Time-
lock puzzles are designed in such a way that solving them
requires a certain amount of computational work or time.
The solution to the puzzle, which is the decryption key, can
only be obtained after the required time has passed [42],
[43]. For better understanding, let us consider the following
example.

o Creating a Time-lock Puzzle:

1) Generate prime numbers: p = 61, g = 53

2) Compute N = pg: N = 61 x 53 = 3233

3) Choose a generator number and an exponent: g =
2,t = 1000

4) Compute puzzle gzt mod N: 22'™ mod 3233

5) Drive a symmetric key K by hashing the result of
the computation which is the puzzle solution S,:
K=H(S,))

6) Encrypt a transaction with K: Cr, =Enc(K, Ty)

o Solving a Time-lock Puzzle:

1) Solve the time-lock puzzle using public parameters
N,g,t by raising g to the power of 2’. This
process takes a specific amount of time, thereby
introducing a delay before the decryption phase.
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2) Drive the symmetric key K by hashing the com-
puted solution from the previous step: K=H(S,))

3) Decrypt the transaction with key K: Ty =
Dec(K, Cr,)

The process of Radius is outlined in the following steps.
Radius [27] is a shared sequencing protocol designed to
enhance interoperability among rollup chains. It employs
delay encryption to create an encrypted mempool within
its sequencing layer. This approach helps prevent MEV
extraction through front-running and other reordering attacks,
while also ensuring censorship resistance. The process starts
with generating a transaction by a user, the following steps
are as follows.

1) The user generates a symmetric key using a time-lock
puzzle set to a specific time 7. While the user already
knows the solution, it will take the sequencer layer time
T to solve the puzzle and reconstruct the symmetric
key.

2) The user encrypts the transaction using the generated
symmetric key.

3) The user also generates a ZK-SNARK proof for the
sequencing layer to verify the integrity of the time-lock
puzzle and the encrypted transaction.

4) The user sends the encrypted transaction and the proof
to the sequencing layer.

5) Upon receiving the encrypted transaction, the sequenc-
ing layer provides users with an order commit-
ment, ensuring the transaction’s sequence remains
unchanged. The ordered list is based on the encrypted
transactions because, before the time T has elapsed, the
sequencing layer cannot solve the puzzle and decrypt
the transactions.

6) After time 7 has passed, the sequencer solves the
puzzle and decrypts the transaction using the derived
symmetric key.

Using ZK proof in Radius is to check the validity of the
time-lock puzzle before trying to solve the puzzle; this allows
to prevent waste of resources and DOS attacks which is called
Practical Verifiable Delay Encryption (PVDE) [27], [44].

3) TRUSTED EXECUTION ENVIRONMENT

In this approach, validators must operate Trusted Execution
Environments (TEEs). These TEEs can be integrated with the
threshold encryption technique. The concept involves each
network node possessing a TEE, such as Intel’s Software
Guard Extensions (SGX) [45], and collectively maintaining
an encryption key. Transactions are encrypted and sent
to these TEEs, where they remain encrypted until they
are included in a finalized block on the blockchain. The
security of this method relies on the cost associated with
compromising a specific hardware device [37], [39].

Node operators can run a TEE on their server if it supports
SGX, or they can use a remote server with SGX support.
SGX is an extension found in some Intel CPUs, providing
a set of operations that enable the creation of a TEE, known
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as an enclave. An enclave is a protected region in memory
and the CPU where data and code are isolated and accessible
only within this secure area. The encryption key is generated
and stored within the CPU. During execution, data and code
are automatically decrypted by the CPU, processed, and then
re-encrypted to maintain security [45].

Using the TEE method with a public-key cryptography
scheme, users have access to the public key of the enclave.
They encrypt their messages using this public key and send
them to the enclave. The enclave functions like a private
mempool, keeping pending transactions hidden from view.
Inside the enclave, transactions are decrypted, executed, and
then published on the blockchain. One promising project that
uses TEE is Suave [46], which has not yet been officially
deployed.

4) DISCUSSION

Table 4 shows an overview of the three primary methods for
mempool encryption. In this context, users are anyone who
wants to send their transactions through these methods. With
Threshold encryption, trust is placed in a committee of key
holders. Delay encryption, on the other hand, is trustless as
each user possesses their own encryption key independent
of any specific committee. However, when employing TEEs,
trust is required in the hardware to safeguard secret keys.

Regarding security, in Threshold encryption, the system
remains secure and functional as long as at least % of key
holders are honest. In Delay encryption, security hinges on
the safeguarding of users’ symmetric keys. When utilizing
hardware, security is contingent upon factors such as access
controls, secure memory, and tamper resistance of the
hardware.

Each method faces distinct challenges. With Threshold
encryption, the risk lies in committee members colluding to
disclose private keys to front-runners or ceasing decryption
of transactions. In delay encryption, users are responsible
for generating puzzles for each transaction and safeguarding
their symmetric keys. Consequently, users may face problems
such as losing their keys or having them stolen. Challenges
in hardware usage include compatibility with other software
and modules, as well as reliance on specific hardware
devices.

The complexity of the threshold encryption method can
be high compared to other methods because it requires
managing multiple keys and coordinating among partici-
pants, necessitating robust key distribution and management
protocols. In delay encryption, the user must generate a
time-lock puzzle and manage their symmetric key for each
transaction. With TEE, all key management is handled by the
hardware.

The threshold encryption method lacks scalability because
its complexity grows with the number of committee members.
In contrast, delay encryption offers high scalability, as it can
be uniformly applied across transactions. The scalability of
the TEE method, however, is constrained by the availability
and performance of TEE hardware.
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B. PRIVATE TRANSACTIONS

Private transactions are sent directly to validators, bypassing
the public mempool. This approach enhances privacy by
avoiding exposure to front-running attacks. The process of
sending a private transaction is as follows [36].

1) Create the Transaction: The user generates a trans-
action without any encryption, just like a standard
Ethereum transaction.

2) Direct Submission to Validators: Instead of broad-
casting the transaction to the public mempool, the user
sends the transaction directly to one or more specific
validators. This can be done through Private Remote
Procedure Call (RPC) endpoints for Ethereum or using
specialized services that facilitate private transactions
(e.g., Flashbots API [47]).

3) Validator Inclusion: The targeted validator receives
the private transaction and includes it in the next
block they produce (with high priority). Since the
transaction is not visible in the public mempool, it is
less susceptible to front-running and other types of
attacks that exploit transaction visibility.

4) Broadcasting: The block containing the private trans-
action is broadcast to the entire network. At this stage,
other validators can see the transactions, but it is too
late to be front-run.

Private transactions are not widely used to avoid MEV
due to limited availability and trust issues. Not all validators
support private transaction pools, which reduces the chances
of transactions being quickly included in blocks. Addition-
ally, users need to trust that validators won’t leak or exploit
the transaction for front-running, which makes users hesitant
to adopt the method. Validators also have little incentive to
support private transactions, as MEV represents a source of
profit for them. Furthermore, using private transactions can
reduce exposure to the broader market. The added technical
complexity, along with the risk that private transactions
may revert to the public mempool where they remain
vulnerable to front-running further limits their widespread
adoption.

VIIi. SMART CONTRACT-LEVEL PROTECTION

The goal of Smart Contract-level MEV extraction protection
is to mitigate the potential for MEV extraction within the
application layer while preserving the protocol of the under-
lying blockchain network. The challenge lies in designing
smart contracts that can protect against MEV extraction
without altering the fundamental protocol of the blockchain.
Certain types of applications are particularly susceptible to
front-running. These applications include: DEX, Gambling,
Auction, Buying a Domain name, and rare NFTs.

Solutions fall into two primary categories: the first operates
entirely within smart contracts, utilizing methods such as
commit-and-reveal [2] and batch processing, while the
second category involves off-chain components.
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TABLE 4. Prominent mempool encryption methods to prevent MEV-extraction.

Privacy-preserving Trust Level Security Challenge Key Management Scalability
methods
Threshold Encryption Committee of key 2/3 of key holders Collusion of Committee members Committee members
holders Committee members
Delay Encryption Trustless Users’ symmetric key Generating puzzles & Users Highly scalable
keeping symmetric
keys safe
TEE Hardware device Hardware device Compatibility, Hardware device Performance of
stores secret keys Hardware hardware device
dependency,

Centralization issue

SOLVER A

SOLVER B 2!\‘

@ Intent

P2pP @ AMM

)

SOLVER D SOLVER C

FIGURE 10. CoW Swap protocol architecture (Adapted from docs.cow.fi).

CoW Swap [28] is a solution in the second categorys; it
is the first DEX aggregator, designed to facilitate asset swaps
and limit orders with a hybrid MEV protection solution. CoW
Swap (see Fig. 10) sets up a private order flow marketplace
where users can swap one asset for another at a specified
price. Traders sign their trading intentions (intents), which are
then aggregated off-chain and executed in batch settlements
on-chain. CoW Swap introduces an uniform price clearing
mechanism that assures traders receive the same price for
an asset within the same block. It employs a decentralized
network of solvers, or computer programs, that process the
order-book to determine optimal prices and traded amounts.
These solvers compete in batch auctions to find the best
execution route across different liquidity sources, earning the
right to execute the transactions and capturing any surplus
from the trades [28], [48].

Ciampi et al. [10] propose an AMM cryptocurrency
exchange named FairMM, which resists front-running
attacks by incorporating off-chain components (second
category). FairMM can prevent reordering trade transactions,
censoring trades, and including specific trade requests.
The authors use game theory along with some incentive
mechanisms in the smart-contract-level to remove reordering
attacks. FairMM has higher throughput and lower trade cost
compared to Uniswap which is an AMM crypto-market
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exchange. In FairMM, traders and the market maker (MM)
communicate off-chain via secure channels like TLS. Traders
form a queue, and the MM issues a ticket (identified by a
cryptographic hash and signed by MM) to the trader at the
front of the queue. This ticketing system ensures the integrity
of the trading history and prevents reordering attacks. The
process of FairMM is outlined in the following steps (see
Fig. 11).

1) A trader initiates a trade by sending a trade request,
through an off-chain secure communication channel
(e.g., TLS), to MM module which is responsible for
managing and executing trades.

2) MM issues a ticket to the trader. This ticket includes a
cryptographic hash; it is signed by MM to ensure the
integrity and authenticity of the request. MM manages
a queue of trade requests. The ticketing system helps
in maintaining the order of requests and prevents
reordering attacks.

3) The trader decides to proceed with or abort the trade
and submit the response to MM

4) MM processes trade MMrequests by executing trades.
This processing includes determining the appropriate
price and executing the trade on behalf of the
trader.

5) MM posts the details of these trades to a public ledger
which is called bulletin board. This action is on-chain
and ensures transparency and accountability by making
the trading activities publicly accessible.

6) The trader can submit any complaint if they find
any missing or invalid ticket to a specific smart
contract. The contract handles complaints and enforces
accountability by locking collateral and rewarding
traders on valid complaints.

Vill. PROPOSER-BUILDER SEPARATION

The primary objective of Proposer-Builder Separation (PBS)
is to foster greater diversity among participants in blockchain
networks by separating the roles of block proposers from
those who actually create the blocks. This separation is
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FIGURE 11. Fairmm exchange protocol sequential diagram.

intended to decentralize power and enhance network security
by distributing responsibilities more widely among different
parties.

PBS can be implemented entirely on-chain, requiring
changes to Ethereum’s consensus layer, which have not
yet been implemented. Currently, MEV-Boost [49], an off-
chain implementation of PBS, is widely used, creating about
90% of Ethereum’s blocks under the Proof of Stake (PoS)
consensus mechanism. This implementation specifically
aims to mitigate issues related to MEV, promoting a more
equitable and efficient transaction validation process by
allowing separate entities to propose and construct blocks.
The main idea is that instead of the block proposer
trying to produce a revenue-maximizing block by them-
selves, they rely on an off-chain market where outside
actors, called block-builders, produce bundles consisting
of complete block contents and a fee for the proposer.
The proposer chooses the bundle with the highest fee.
MEV-Boost allows validators to benefit from MEV without
directly involving themselves in the MEV extraction process;
this ensures a fairer distribution of rewards [47], [50].
The process of MEVBoost is outlined in the following
steps.

o MEV searchers create a bundle of their profitable
transactions from the Ethereum mempool.
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« MEV searchers send the bundles to a network of block
builders in conjunction with a price bid to express their
preferred position in a block.

o Block builders try to create the most profitable block
with these bundles. The profitability of a block comes
from both the MEV extracted from the transactions and
the transaction fees. Builders are incentivized to include
transactions that offer the highest MEV and fees.

« After constructing the blocks, builders submit them to a
relay, which checks their validity and calculates the total
profit. This ensures that only valid and profitable blocks
are added to the Ethereum blockchain. However, there
is a risk of malicious behaviors from the relay, including
potential block censoring or front-running.

« Block proposers or validators on the Ethereum network
use MEV-Boost to request blocks from the relay; it
selects and sends the most profitable block header
(without payload) back to the validator.

« Once the proposer signs the block header, the payload is
released to the proposer.

Since the block proposer signs the block header without
knowing the payload or transaction content, they are unable
to engage in malicious activities such as front-running or
censoring transactions. Additionally, if a block proposer
attempts to propose another block other than the one they

185227



IEEE Access

Z. Alipanahloo et al.: MEV Mitigation Approaches in Ethereum and Layer-2 Chains: A Comprehensive Survey

Off-chain : On-chain
Proposer
(bundle, bid) .
! Ethereum Client
|
' | %  MEV-Boost
Relays most profitable block

FIGURE 12. MEV-Boost architecture.

signed previously, they risk being penalized by the network
due to the possibility of double signing.

Relays pose a centralization risk, as they have the potential
for malicious actions such as censoring blocks or engaging
in front-running activities. Currently there are a few relay
providers that handles 90% of the block production on
Ethereum PoS [51]. Providing incentives for running relay
nodes can help prevent centralization. This could involve
creating a token economy or other forms of compensation that
encourage participation and discourage monopolization of
relay services. Establishing regular monitoring and auditing
procedures for relay nodes can help detect and respond to
attempts at centralization or abuse of power. This could
involve both automated systems and manual reviews to
ensure that relay nodes are operating in accordance with the
principles of PBS [52].

IX. SUMMARY

Table 5 provides an overview of various approaches aimed
at mitigating the MEV extraction issue. The majority of
these solutions fall under the prevention category, focusing
on either reducing or eliminating the opportunities for MEV
exploitation. Among the solutions, PBS stands out as the only
method designed to minimize the negative impacts by making
MEY extraction more democratic.

Implementing PBS through MEV-Boost does not add
any latency to the network, as it operates off-chain pri-
marily through relays. This ensures seamless operation
without imposing additional load on the network. The
communication overhead between sequencer nodes can
lead to increased latency, especially in decentralized envi-
ronments where all nodes must agree on a transaction
order as defined by the network’s ordering policy. This
requires greater coordination between nodes. Additionally,
the computational load grows as more sequencers participate
in the ordering process. Privacy-preserving approaches
generally involve encrypting the mempool, which can
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increase latency due to the encryption and decryption
processes.

The proposed mitigation strategies are generally applicable
across various transaction types and are not limited to specific
applications. However, the smart contract-level protection
approach requires modifications to the application’s design,
making it impractical for already deployed smart contracts.

Both the privacy-preserving and PBS methods offer an
additional advantage in terms of censorship resistance. Since
validators do not have access to transaction details prior
to their inclusion in a block, they lack any incentive to
censor specific transactions. This enhances the fairness and
integrity of transaction processing. The other two strategies,
smart contract-level protection and fair ordering, cannot
prevent censorship by validators on their own. They need
to incorporate additional methods, such as zero-knowledge
proofs or slashing mechanisms, to effectively deter
censorship.

Each method carries its own centralization risks. Fair
ordering approaches might involve either a single sequencer
or a permissioned group of sequencers. Privacy-preserving
methods could encounter issues with a key management
committee or dependencies on hardware devices. For PBS,
the reliance on relay nodes introduces a potential point of
centralization.

The fair ordering approach can be used on L2 chains
without changing the Ethereum protocol. Privacy-preserving
methods and PBS may need changes to the core protocol. This
is particularly true if validators are involved in a key holder
committee or if PBS is integrated directly into the network’s
infrastructure.

While fair ordering policies can significantly mitigate
MEYV, they add complexity to the network protocol and
require trust in the sequencers. These policies cannot entirely
eliminate censorship, as sequencers might not prioritize trans-
actions with high gas fees. Therefore, substantial incentives
are needed to ensure that sequencers act honestly.

Rollup chains are moving towards decentralization, with
some proposing transitioning to a decentralized network
of sequencers. However, this transition is costly for each
rollup chain, and with the emergence of new rollup
chains, incentivizing node operators to join each network
becomes challenging. This leads to resource fragmentation.
A promising solution to these issues is the concept of
shared sequencing. This approach envisions a decentral-
ized network of sequencers that can be used collectively
by various rollup chains. Shared sequencing not only
reduces the individual costs for each rollup chain but also
streamlines resource allocation, thereby preventing resource
fragmentation and improving overall efficiency. By pooling
resources and creating a unified network of sequencers,
shared sequencing enhances the viability and scalability
of decentralized rollup chains. A potential area for future
research on shared sequencing is to develop mechanisms
that prevent cross-MEV attacks. Preventing these attacks
would require designing advanced protocols and robust
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TABLE 5. A High-level comparison between different MEV mitigation strategies.

MEY Mitigation Strategy Latency Application Censorship Centralization L1 Protocol
Strategies Dependent Resistance Risk Change
Fair ordering Prevention Communication No No Sequencer nodes No
cost
Smart Prevention Additional Yes No — No
contract-level computation
protection
Privacy Prevention Encryption/ No Yes Key management No/Yes
preserving Decryption Committee/
Hardware
PBS Democratizing — No Yes Relay nodes No/Yes

security measures that ensure sequencers cannot manipulate
or reorder transactions across chains for profit. This could
involve implementing cross-chain communication standards,
enforcing stricter ordering policies, or integrating with
privacy-preserving mechanisms.

Privacy-preserving methods, particularly those that
enhance mempool privacy, show great promise in preventing
front-running and ensuring censorship resistance. These
methods can also be integrated with other strategies to
mitigate MEV. Among these, delay encryption stands out
as especially promising due to its trustless nature, which
eliminates the need for a key management committee. Future
work on delay encryption involves making time-lock puzzles
more secure, reducing the computational load on users, and
exploring the use of asymmetric or public key cryptography.
This will help improve the efficiency and usability of delay
encryption, making it a more viable solution for enhancing
privacy and security in blockchain networks.

Witness encryption [53] is a cryptographic technique
designed to enhance mempool privacy by encrypting trans-
actions such that they can only be decrypted when a specific
computational proof (the witness) is provided. This ensures
that transaction details remain hidden from validators until
certain conditions, such as block confirmation or inclusion
in a block, are satisfied. Unlike delay encryption, which
is time-bound, witness encryption supports a wider variety
of decryption conditions, making it applicable to a broader
range of scenarios. Although witness encryption offers
promising potential, it is still a relatively new concept in
cryptography, and practical implementations are in the early
stages. While the theory behind it is promising, creating
efficient, scalable implementations of witness encryption
has proven to be challenging due to the complexity of
constructing the necessary cryptographic proofs and the
associated computational costs.

There appears to be a strong incentive for validators to gain
profit from MEV blocks, as only 10% of blocks are built by
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validators not using MEV-Boost. Therefore, it is important
to focus on addressing the challenges associated with
the MEV-Boost solution, particularly by working towards
the decentralization of relay networks and implementing
incentives or slashing mechanisms to encourage honest
behavior among relays.

X. CONCLUSION

In conclusion, our research has yielded valuable insights into
various MEV mitigation strategies applicable to Ethereum
and L2 chains. As highlighted throughout the article, each
approach presents its own set of challenges and advantages.
Some methods offer security and efficiency but entail trust-
related issues, while others aim to offload certain processes
off-chain to reduce protocol overhead or mitigate MEV
extraction side effects.

Notably, mempool privacy utilizing Delay Encryption and
PBS emerges as promising approaches. Ongoing research in
areas like shared sequencing and witness encryption shows
considerable potential. Further exploration into these topics
is warranted, as new challenges may arise, necessitating
continued investigation into the advancements made in these
domains.
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