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A B S T R A C T

Glaciers play a vital role in providing water resources for drinking, agriculture, and hydro-electricity in
many mountainous regions. As global warming progresses, accurately reconstructing long-term glacier mass
changes and comprehending their intricate dynamic relationships with environmental variables are imperative
for sustaining livelihoods in these regions. This paper presents the use of eXplainable Machine Learning
(XML) models with GRACE and GRACE-FO data to reconstruct long-term monthly glacier mass changes in
the Upper Yukon Watershed (UYW), Canada. We utilized the H2O-AutoML regression tools to identify the
best performing Machine Learning (ML) model for filling missing data and predicting glacier mass changes
from hydroclimatic data. The most accurate predictive model in this study, the Gradient Boosting Machine,
coupled with explanatory methods based on SHapley Additive eXplanation (SHAP) and Local Interpretable
Model-Agnostic Explanations (LIME) analyses, led to automated XML models. The XML unveiled and ranked
key predictors of glacier mass changes in the UYW, indicating a decrease since 2014. Analysis showed decreases
in snow water equivalent, soil moisture storage, and albedo, along with increases in rainfall flux and air
temperature were the main drivers of glacier mass loss. A probabilistic analysis hinging on these drivers
suggested that the influence of the key hydrological features is more critical than the key meteorological
features. Examination of climatic oscillations showed that high positive anomalies in sea surface temperature
are correlated with rapid depletion in glacier mass and soil moisture, as identified by XML. Integrating H2O-
AutoML with SHAP and LIME not only achieved high prediction accuracy but also enhanced the explainability
of the underlying hydroclimatic processes of glacier mass change reconstruction from GRACE and GRACE-FO
data in the UYW. This automated XML framework is applicable globally, contingent upon sufficient high-quality
data for model training and validation.
1. Introduction

Glacier mass balance varies due to spatiotemporal changes in me-
teorological, physiographical, and environmental conditions (Kinnard
et al. 2022; Zhang et al. 2022), with their relationships often ex-
hibiting nonlinearity (Li et al. 2020). Estimating glacier mass changes
and elucidating their relationship with driving variables enhance our
understanding of the underlying hydroclimatic processes, which is
pivotal for climate system monitoring, assessing sea level rise (Arendt
et al. 2002; Zemp et al. 2009), enhancing the accuracy of water supply
predictions (Yao et al. 2022), as well as calibrating and validating
hydrological models (Konz and Seibert 2010), and satellite gravimetry
observations (Shean et al. 2020).

∗ Corresponding author.
E-mail address: cheick.doumbia@inrs.ca (C. Doumbia).

Three primary methodological frameworks have been utilized to
estimate glacier mass changes: (i) glaciological field techniques sur-
veying; (ii) remote sensing; and (iii) process-based hydrological mod-
eling. Traditional in situ methods provide point measurements such
as density, ice thickness, melt rates, and changes in ice-margin el-
evation (Samuel et al. 2016). These point measurements are then
interpolated and extrapolated to generate glacier-scale or regional mass
balance estimates (Gardner et al. 2013; Zemp et al. 2019). Remote
sensing methods rely on optical, gravity field, and radar data (Gardner
et al. 2013; Ciracìet al. 2018; Zhou et al. 2019). For instance, multi-
temporal elevation data derived from optical or radar Digital Eleva-
tion Models (DEMs) enable geodetic estimates of glacier mass balance
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(Larsen et al. 2015; Zemp et al. 2019; Hugonnet et al. 2021; Jakob
et al. 2021). Geodetic methods like time-variable gravity measurements
rom the Gravity Recovery And Climate Experiment (GRACE) and
RACE Follow-On (GRACE-FO) missions (Chen et al. 2006; Farinotti

et al. 2015; Castellazzi et al. 2018; Doumbia et al. 2020) and phase
difference analyses from Interferometric Synthetic Aperture Radar (In-
SAR) datasets also contribute to glacier mass balance assessments
(Zhou et al. 2019). Hydrological models have been widely used to
stimate glacier mass changes, often utilizing either energy balance
ethods (which calculate melt from energy fluxes) or temperature-

ndex methods (which rely on the positive correlation between melt
ate and positive cumulative air temperature) (Stahl et al. 2008; Rounce

et al. 2020).
Estimating regional glacier mass changes is challenging due to

the scarcity of in situ data and the inherent limitations of remote
sensing techniques. The interpolation of sparse in situ measurements
can introduce significant uncertainties in mass balance estimates (Singh
et al. 2011). Geodetic methods based on elevation changes can also
suffer from temporal sparsity and depict larger uncertainties at shorter
timescales (less than 5-year period) (Larsen et al. 2015; Hugonnet
et al. 2021). InSAR data, while valuable, can be affected by decor-
elation due to significant changes in phase difference between radar
mages, which can arise from factors such as temporal or spatial base-
ine shifts, atmospheric conditions, or surface properties. The accu-
acy of hydrological models is often limited by the availability and
uality of data required for model calibration and validation (Stahl
t al. 2008; Huss and Hock 2015; Ashokkumar and Harig 2020). On
he other hand, GRACE data offers high temporal resolution (10 days
o monthly) and a long-time span (over 15 years), but its applicability at
egional or watershed scales is constrained by its low spatial resolution
300–400 km) (Baghdadi and Zribi 2016). For hydrological applica-

tions, the spatial resolution of GRACE data is around 63,000 km2 when
considering errors of approximately 2 cm in Equivalent Water Height
(Vishwakarma et al. 2018). Ciracìet al.(2020) demonstrated the relia-
ility of using monthly GRACE mission data, along with its successors,
nd GRACE-FO data with mascon approach to estimate glacier and
ce caps mass changes worldwide, except for peripheral glaciers of
ntarctica and Greenland. Doumbia et al.(2020) demonstrated that ice

mass change dominates GRACE signal over the Gulf of Alaska (GOA)
and highlighted the reliability of using the mascon solution from NASA
GSFC to estimate glacier mass changes over the Saint Elias Mountains.
The results from the latter study highlight the effectiveness of using
GRACE MASCON data to estimate regional glacier mass changes over
the GOA.

GRACE and GRACE-FO missions, led by United States (NASA) and
the German (DLR) space agencies, have been providing changes in
Terrestrial Water Storage (TWS) since 2002. The changes are integrated
ertically and presented in the form of anomalies (TWSA). TWSAs
re derived with respect to variations in the Earth’s long-term mean
ravity field (Scanlon et al. 2019). The GRACE TWSA consists of various
ater storage components such as changes in surface water storage,

omprising rivers, lakes, reservoirs, canopy, and wetlands, as well as
hanges in snow cover storage, soil moisture storage, ice storage, and
n ground water (Castellazzi et al. 2018, 2019; Doumbia et al. 2020).

The GRACE (04/2002–06/2017) and GRACE-FO (06/2018–present)
issions, integrated into glaciers geodetic remote sensing (RS) space-

borne methods, have been used to estimate glacier mass balance
Gardner et al. 2013; Farinotti et al. 2015; Ciracìet al. 2018; Castellazzi

et al. 2019; Ciracìet al. 2020; Tamisiea et al. 2005; Chen et al. 2006; Aren
et al. 2008; Luthcke et al. 2008; Arendt et al. 2009, 2013; Baur
et al. 2013; Beamer et al. 2016; Wahr et al. 2016; Jin et al. 2017; Doumb
et al. 2020). Over the GOA, Doumbia et al. (2020) highlighted the
reliability of using the inversion method to estimate glacier mass loss
over an area of 30,000 km2. However, this previous study primarily
focused on the GRACE timeframe from 04/2002 to 06/2017 because
of the data gap between GRACE and GRACE-FO. Meanwhile, various
2 
methods have been used to reconstruct long-term TWS data from
RACE and GRACE-FO data and fill the 1-year gap (from 06/2017 to
6/2018) between these two datasets. While imputation methods, such
s linear or spline interpolation, have been used to fill missing data over
eriods of one to two months, these methods have shown limitations in
redicting missing data over a year (Sun et al. 2021; Wei et al. 2021).
raditional interpolation methods estimate missing values by filling

gaps between known values in a time series of predictand. Conversely,
Machine Learning (ML) models predict missing data points by learning
the relationships between the predictors and the predictand from a
complete training dataset. Chakraborty et al. (2021b) demonstrated
that traditional interpolation techniques are ill-suited for imputing long
tretches of missing data (e.g., 1-year of data gap, as in our study),
hereas ML-based imputation technique have shown to be robust and

eliable for handling such long-term data gaps.
Sun et al. (2021) provided a comprehensive overview of studies on

reconstructing GRACE-like TWSA data. They noted a growing trend
n the use of ML algorithms to extend datasets, with recent studies
ocusing on filling long-term data gaps in GRACE data. Wei et al.

(2021) demonstrated the effectiveness of Neural Networks (NN) based
on Long Short-Term Memory (LSTM) in reconstructing GRACE and
GRACE-FO TWSA over the Qaidam basin in Northwest China. Yu et al.
(2021) applied three deep-learning algorithms to reconstruct GRACE-
like TWSAs over the Canadian landmass, achieving strong predictive
performance with mean correlation coefficients of 0.99 and mean root

ean squared error (RMSE) of 53 mm for the testing dataset. Li
et al. (2020) and Sun et al. (2020) explored various algorithms for
GRACE TWSA reconstruction, underscoring the need for using mul-
tiple algorithms to achieve good performance across different basins.

dditionally, Sun et al. (2021) demonstrated the effectiveness of H2O
Automated Machine Learning (H2O-AutoML) in constructing GRACE
TWSA datasets over the conterminous U.S. (CONUS), using five dif-
ferent families of algorithms (LeDell and Poirier 2020). Their results
evealed that no single algorithm consistently performed well across all

grid points within the study area. However, they highlighted that the
main advantage of the AutoML workflow, which allows to run various
ML models on the same grid or basin, and select the best (i.e., the
leader) model, including the stacked ensemble, while accounting for
the spatial and temporal variability of hydrological components. The
ML-based studies typically adopt either a gridwise or basin-based ap-
proach, using meteorological data (e.g., precipitation, air temperature)
and hydrological components of a Land Surface Model (LSM) such
as Global Land Data Assimilation System (GLDAS) as predictors (Sun
et al. 2021; Wei et al. 2021; Sun et al. 2020). Atmospheric circulation
factors, including the North Atlantic Oscillation (NAO) and the Mul-
tivariate ENSO Index (MEI) (Sun et al. 2021), and the MEI and the
acific Decadal Oscillation (PDO) (Wei et al. 2021) have also been
ncorporated as predictors in the formulation of ML-based models.

However, none of these studies aimed to reconstruct GRACE/GRACE-
FO TWSA components, such as glacier mass changes, nor did they
explore the underlying physics in the reconstruction.

In the ML-based framework, traditional feature importance scores
dentify the most influential features impacting the global model per-
ormance in predicting the target variables (e.g., glacier mass changes)
ut without explicitly accounting for interrelations and interdepen-
encies among the predictors (e.g., hydrological and meteorological
ariables). In contrast, SHapley Additive exPlanation (SHAP) (Lundberg

et al. 2020) and Local Interpretable Model-agnostic Explanations (LIME)
(Ribeiro et al. 2016) analyses, which perform better with tree-based en-
semble models, rank the features in the order of importance in predict-
ing target variables while explicitly addressing interrelations and inter-
dependencies among the predictors. In addition, they reveal the inflec-
tion point of each predictor, above or below which the target variable
either increases or decreases (Chakraborty et al. 2021a; 2021b; 2021c).

hese explanatory methods are designed to offer global and local expla-
nations, thereby providing a framework to improve the explainability



C. Doumbia et al.

o

E

E
a

t
i
e

i
r

i

g
2
h
i
h

e
t

m

(

e
f

m
K
t
S

n

r

a

r
a
p

h

Journal of Hydrology 651 (2025) 132519 
of ML-based decisions by unraveling nonlinear relationships between
predictors and target variables (Wei et al. 2024).

Oceanic–atmospheric circulations influence the temporal evolution
f hydrological processes in Yukon, Canada. Fleming and Whitfield

(2010) analyzed the impacts of Pacific Decadal Oscillation (PDO) and
l Niño Southern Oscillation (ENSO) on the surface meteorological

signals of British Columbia, Yukon, and Southeast Alaska. They found
that higher and lower air temperatures occurred during PDO and
NSO warm and cool phases, respectively. Rousseau et al. (2020)
nalyzed the seasonal (spring, summer, winter) correlation between

oscillation indices and meteorological data over three watersheds of
Yukon, encompassing Upper Yukon, Aishihik and Mayo. They used
three indices, including Artic Oscillation (AO), PDO, and the Multivari-
ate ENSO Index (MEI), and found that correlations for air temperature
are stronger than for precipitation. Wang et al. (2006) indicated that
he effect of PDO is more significant than that of ENSO on low flows
n southern Yukon. However, they noted that ENSO modulated the
ffect of PDO. Fleming et al. (2006) investigated the effects of AO on

rivers fed by glacier and snowmelt within eight watersheds located in
southern Yukon and British Columbia. They found a positive correlation
between the average annual streamflow of rivers fed by glaciers and
the AO index. In their study in Garibaldi Provincial Park, situated in
the southern Coast Mountains of British Columbia, Koch et al. (2009)
ndicated that positive and negative phases of PDO coincide with
apid recession and advances of glaciers, respectively. Different studies

showed that PDO influences Wolverine and Gulkana Glaciers located
in southeast Alaska (Hodge et al. 1998; Hartmann and Wendler 2005).
However, since 1989, these oscillations alone are not sufficient to
explain the negative net balance trends observed in both glaciers, and
the correlation between the winter balance fluctuations and the PDO
s weakening (Josberger et al. 2007). Akansha et al. (2021) analyzed

the influence of multiple hydroclimatic variables and energy fluxes on
lacier mass changes over the Karakoram and Himalayas region from
002 to 2019. They found that total precipitation and snowfall are
ighly correlated to glacier mass changes. Studies over glaciers located
n Yukon, GOA, and other Canadian glaciers also depicted the effect of
ydroclimatic variables and energy fluxes on glacier mass changes (Foy

et al. 2011; Samuel et al. 2016; Marshall and Miller 2020; Chesnokova
t al. 2020; Kochtitzky et al. 2020; Kinnard et al. 2022). This motivates
he inclusion of hydroclimatic variables as predictors in our analyses.

The primary objective of our study is to reconstruct monthly glacier
ass changes using the GRACE and GRACE-FO CSR RL06 MASCON

TWSA datasets and highlight the relationships between glacier mass
changes and various meteorological and hydrological variables within
the Upper Yukon Watershed (UYW). Our reconstruction aims to cap-
ture long-term glacier mass changes for the period of 2002–2020
and provide insights into the physical processes driving them, using
H2O-AutoML algorithms and two explanatory methods (i.e., SHAP
and LIME). Additionally, our study investigates the potential impact
of climatic oscillations on glacier mass changes, leveraging enhanced
explainability of outcomes through XML. To the best of our knowl-
edge, this study represents the first attempt to implement XML-based
reconstructed glacier mass changes from GRACE and GRACE-FO data.

2. Study area

The southern and northern parts of the Upper Yukon Watershed
UYW) (∼20,000 km2) are in the Canadian province of British Columbia

and in Yukon Territory, respectively. Glaciers are predominantly found
in high elevations of British Columbia in the southwest and northwest
parts of the watershed. According to the Randolph Glacier Inventory
(RGI 6.0) dataset (RGI Consortium 2017), the UYW hosts 466 glaciers
representing ∼ 5% of the watershed area (Fig. 1). Molnia (2008) focused
on the glaciers of Alaska and indicated that their areas are divided
into two parts separated by the Equilibrium Line Altitudes (ELA). The
area covered by snow and firn, located over the highest elevations,
3 
is called accumulation zone, while the ablation area, located over the
lowest elevations, is covered by ice (Braithwaite and Raper 2009; Radić
t al. 2014; Huss and Hock 2015; Rounce et al. 2020). Based on their
ieldwork within the glaciers of UYW, Samuel et al. (2016) observed

that snow accumulation starts in late September or early October and
snow melt ends completely by the end of May or the middle of June.
Over the largest glaciers of UYW, they also found that ice begins to
melt in the lowest and highest elevations of the ablation area in the

iddle of April and at the end of June, respectively. According to the
öppen-Geiger classification, over the period 1991–2020, the UYW had

hree distinct climate types: BSk (Arid, Steppe, Cold), Dsc (Cold, Dry
ummer, Cold Summer), and ET (Polar, Tundra) (Beck et al. 2020).

3. Data and methods

3.1. GRACE and GRACE-FO TWS data

In this study, GRACE and GRACE-FO data were obtained from the
on-decomposed regularized CSR RL06 MASCON TWS solution (Save

et al. 2016, 2020). Based on the distribution of glacier mass losses
eported by Larsen et al. (2015), resampled at the same resolution as

CSR RL06 MASCON TWS solution (0.25◦), there are six (6) CSR RL06
MASCON pixels corresponding to the glaciers over the UYW (Fig. 2a).
The GRACE TWSA consists of various water storage components, in-
cluding ▵SWS (changes in surface water storage, comprising rivers,
lakes, reservoirs, canopy, and wetlands), ▵SS (changes in snow cover
storage), ▵SMS (changes in soil moisture storage), ▵IS (changes in ice
storage), and ▵GWS (changes in ground water storage). The GRACE
signal is affected by the glacial isostatic adjustment (GIA) and ▵GIA
represents changes in GIA (Castellazzi et al. 2018, 2019; Doumbia
et al. 2020). However, considering the dominance of ice mass changes
in the GRACE signal over the GOA, as defined by Doumbia et al.
(2020), we used the non-decomposed CSR RL06 MASCON TWS. Our
reconstruction process is based on the spatial mean glaciers mass loss
from these six CSR RL06 MASCON pixels over GRACE and GRACE-FO
periods (2002–2020) (Fig. 2b).

3.2. Reconstruction of GRACE and GRACE-FO glacier mass changes

3.2.1. Data and pre-processing
Numerous studies showed the reliability of using hydroclimatic vari-

bles to explore changes in glacier mass. Li et al. (2019) used the annual
values and trends in total precipitation and average air temperature
to investigate their relationship with glacier mass loss across different
egions from 1980 to 2015. They found good correlations between
nnual meteorological variables (average air temperature and total
recipitation) and glacier retreat rates. Hock (2005) emphasized the

crucial role of energy fluxes in glacier melt processes. In their study, lin-
ear interpolation was applied to fill one- to two-month gaps in the CSR
RL06 MASCON GRACE and GRACE-FO TWSA monthly time series data.
Based on previous studies and the theoretical relationship between
changes in glacier mass and environmental variables (as elaborated
in the next paragraph), two types of hydroclimatic predictors were
selected, including meteorological (e.g., precipitation) and hydrological
(e.g., soil moisture storage) variables. Additional variables representing
time (year and month) and the chronological sequence of the monthly
data series were included in the predictor list to better capture temporal
variations in glacier mass (Table 1).

Hydroclimatic variables from LSM NOAH GLDAS and ERA5-Land
ave been used in studies focusing on the reconstruction of GRACE

and GRACE-FO TWS. Sun et al. (2020) showed that meteorological
data from ERA-interim and TWS components (snow water equivalent
(SWE) and soil moisture storage (SMS) from 0 to 200 cm) from LSM
NOAH GLDAS, chosen as predictors for Deep Neural Network (DNN)
algorithms, can provide accurate estimates. Akansha et al. (2021) esti-
mated GLDAS-derived TWS by using Soil Moisture Storage, Snow Water
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Fig. 1. The Upper Yukon Watershed spans about 20,000 km2 and comprises about 5% glacier cover.
Fig. 2. Glacier mass changes from CSR RL06 MASCON over the UYW for the period 2002–2020. (a) Six (6) CSR RL06 MASCON pixels over the glaciers of UYW, located in the
southwestern part;and (b) Spatial mean of the CSR RL06 MASCON monthly TWS changes in Gt from the six pixels over the UYW. The 1-year gap between GRACE and GRACE-FO
is shown in gray in (b).
Equivalent, and Canopy Water Storage from monthly GLDAS NOAH
land surface model (Version 2.1) with spatial resolution 0.25◦ × 0.25◦
from October 2002 to September 2019. They also used total precipi-
tation, snowfall, air temperature, evaporation, total runoff, and energy
flux components (i.e., net shortwave and net longwave radiation) from
ERA5-Land to analyze the relationship between these variables and
glacier mass changes from GRACE and GRACE-FO over the Karakoram
and Himalayas region from 2002 to 2019. However, some studies
identified biases associated with ERA5-Land data (e.g., precipitation)
(Huang et al. 2022; Akinsanola et al. 2024). Sun et al. (2020) showed
the reliability of using precipitation and air temperature data from
4 
ERA5-Land, provided in the form of anomalies, along with TWS compo-
nents from the LSM NOAH GLDAS v2.1 as inputs to drive H2O-AutoML
algorithms in GRACE-like TWSA simulations. The hydroclimatic vari-
ables used in this study are derived from the sources detailed in
these previous studies. To mitigate uncertainties related to ERA5-Land
data in mountainous areas, only two monthly meteorological forcing
data (i.e., precipitation and air temperature) were obtained from this
dataset, which is an improvement of ERA-interim in terms of model,
data assimilation system, and both spatial and temporal resolutions
(Muñoz 2019) (Table 1). The spatial resolution of this reanalysis is
0.1◦. The remaining meteorological forcing and the two hydrological
datasets were monthly data from LSM NOAH GLDAS v2.1 with a
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Table 1
The predictors used in the Machine Learning model. Note that they are expressed as
emporal changes (▵).

Predictor Name Unit Source

Temporal
components

Series Monthly
sequence

– –

Year Years Year –
Month Months Month –

Meteorological
variables

Precip Total
precipitation

m a

Temp Temperature
2 m

◦C a

above ground
surface

Evap Water
evaporation
flux

kg m−2 s−1 b

Long_wav Surface net
downward

W m−2 b

longwave
flux

Shor_wav Surface net
downward

W m−2 b

shortwave
flux

Gr_fl Downward
heat flux

W m−2 b

in soil
H_fl Surface

upward
sensible

W m−2 b

heat flux
lat_fl Surface

upward
latent

W m−2 b

heat flux
R_fl Rainfall flux kg m−2 s−1 b

Sn_fl Snowfall flux kg m−2 s−1 b

Alb Surface
albedo

% b

Hydrological
variables

SMS Soil moisture
storage

cm b

SWE Snow water
equivalent

cm b

a ERA5-Land.
b LSM NOAH GLDAS v2.1

spatial resolution of 0.25◦ (Table 1). To ensure compatibility with CSR
RL06 MASCON data and adhere to physical interaction principles, the
predictors (i.e., meteorological and hydrological variables) underwent
several pre-processing steps: meteorological data were collected with
a one month-gap preceding glacier mass changes, illustrating the lap
time necessary to observe the effects of these variables on glaciers (Sun
et al. 2020; Sun et al. 2021); For each of the six(6) CSR RL06 MASCON
pixels (0.25◦) over the UYW (Fig. 2), data were resampled as monthly
patial means and then long-term means (January 2004 to December
009) were subtracted from monthly values to obtain anomalies (tem-
oral changes) aligning with CSR MASCON RL06 solution (Eq. (1)).

𝐴𝑛𝑜𝑚𝑎𝑙 𝑦 = Monthly value − Monthly mean over (01/2004 - 12/2009)
(1)

3.2.2. H2O-AutoML algorithms
In this study, H2O-AutoML v3.38.0.3 algorithms were used to re-

onstruct monthly glacier mass changes from CSR RL06 MASCON.
2O-AutoML randomly selects the training and testing data sets (Sun

et al. 2021). H2O-AutoML is an open source, fully automated, and
istributed engine comprised of six distinct ML algorithm families
Text S1) belonging to supervised learning methods with an emphasis
n regression modeling and classification, along with two stacked
 c

5 
ensembles models (Ciabuschi and Venkateswaran 2017; LeDell and
Poirier 2020; Sun et al. 2021). The ML algorithm families include Gen-
ralized Linear Model (GLM), Deep Neural Network (DNN), Gradient
oosting Machine (GBM), Extreme Gradient Boosting GBM (XGBoost),

eXtremely Randomized Trees (XRT), and Distributed Random Forests
(DRF). The hyperparameters of each model are provided in Tables S1,
2, and S3. H2O-AutoML automatically performs, pre-processing tasks
uch as normalization/standardization, and imputation.

To obtain the most reliable model, a random grid-hyperparameter
search was performed for each model, and a k-fold (4-fold in our anal-
yses) cross-validation was implemented during the training process of
each model. The hyperparameters and their ranges for each model were
established on the training data through grid search. The grid search,
however, was not performed for RF and XRT. Instead of performing
a standard grid search, only the model with the best alpha-lambda
combination was selected using a lambda search based on the list of
alpha values (Table S1). The training data were used during the k-
fold cross-validation. For each algorithm, k-fold cross-validation was
applied by training and validating on 80% and 20% of the training data,
respectively. Subsequently, the resulting model, chosen by combining
the k models, was trained on 100% of the training data, and the
evaluation metrics of this combined holdout model were computed.
This approach ensures robustness, especially when working with small
datasets, like those used in this study. The best model, also referred
to as the leader, was automatically selected from the five families
of algorithms and the two stacked ensembles, based on evaluation
metrics and two methods, including random grid search and k-fold
cross-validation. LeDell and Poirier (2020) reported that the grid search
and stacking method used by H2O-AutoML yielded excellent results
within the same computation time, comparable to more complex tuning
methods, such as Bayesian optimization and genetic algorithms.

There are two H2O-AutoML stacked ensembles models: one that
ncludes all models and another composed of the best models from each
f the six families (LeDell and Poirier 2020; Sun et al. 2021). According
o LeDell and Poirier (2020), the latter stacked ensembles, referred to

as ‘best of family’, is more efficient in production as it includes fewer
odels (i.e., five or less). While it provides faster simulation results

han the full ensemble, its performance may be slightly lower. These
tacked ensembles are also referred to as Super Learner algorithms
ue to the use of k-cross validation. An optimal asymptotic system

was demonstrated by the two H2O-AutoML stacked ensembles models.
Fig. 3 provides a summary of the approach used to reconstruct the

onthly glacier mass changes using H2O-AutoML algorithms.

3.2.3. Training process, evaluation metrics, and validation
The random 4-fold cross-validation was used during the training

rocess to fine-tune the hyperparameters. The process involved four
main steps: (i) splitting the data into training and testing sets; (ii)
fine-tuning hyperparameters on the training data; (iii) identifying per-
formance metrics for both cross-validation data and training data; and
(iv) selecting performance metrics for the leader model. Sun et al.
(2021) obtained relevant results from H2O-AutoML using an 85% train-
ing and 15% testing data split. In this study, considering all available
ata (i.e., GRACE and GRACE-FO), the splitting was adjusted to 75%
raining and 25% for testing. To prevent overfitting, several parameters
ere defined for the training process: the maximum time was set to
 h; the maximum number of models to 25; the default stopping metric
ased on deviance or mean squared error and stopping tolerance based
n the number of rows (i.e., instance or months).

The leader model was automatically chosen based on the evalua-
ion metrics. For H2O-AutoML, the performance metrics included the
oefficient of determination (R2), mean squared error (MSE, Eq. S1),
oot mean squared error (RMSE, Eq. S2), root mean squared logarithmic
rror (RMSLE, Eq. S3), and mean absolute error (MAE, Eq. S4) for the
ross-validation and training datasets.



C. Doumbia et al. Journal of Hydrology 651 (2025) 132519 
Fig. 3. A building block of the H2O-AutoML model. The first panel on the left lists all predictors, including hydroclimatic variables associated with meteorological features,
hydrological features, and temporal features such as years, months, and chronological series. The names and units of these predictors are provided in Table 1. The second panel in
the middle lists the H2O-AutoML algorithm families used in the analysis. The last panel on the right shows the monthly GRACE CSR RL06 MASCON glacier mass changes, which
serve as the target variable in the analysis.
The predictive performance of the leader model, representing the
ability of the algorithms to predict glacier mass changes, was evalu-
ated on the test data using normalized RMSE (NRMSE), Nash–Sutcliffe
efficiency (NSE), correlation coefficient (CC), and percent bias (Pbias).
The NRMSE is the RMSE (Eq. (2)) normalized by the mean of observed
data, providing a measure of the global performance of the model.
It ranges from 0 to ∞ with the best performance corresponding to 0
(Eq. (3)). The NSE is a normalized statistic parameter, measuring the
predictive efficiency of a model by estimating the relative amplitude
of the residual variance in comparison to the variance in the observed
data. It ranges from −∞ to 1, with 1 corresponding to the best fit (Nash
and Sutcliffe 1970) (Eq. (4)). The CC quantifies the linear correlation
between observed and simulated values. It ranges from −1 to 1, with
the best correlation corresponding to 1 (Eq. (5)). The Pbias (in %)
estimates the goodness of a model by measuring the average tendency
of the simulated data to be larger or smaller than the corresponding
observed data (Eq. (6)). The optimal value is 0, with positive and
negative values corresponding to overestimation and underestimation
biases of the model, respectively (Gupta et al. 1999).

𝑅𝑀 𝑆 𝐸 =

√

∑𝑛
𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2

𝑛
, (2)

𝑁 𝑅𝑀 𝑆 𝐸 = 𝑅𝑀 𝑆 𝐸
𝑦̄

, (3)

𝑁 𝑆 𝐸 = 1 −
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̂𝑖)2
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)2
, (4)

𝐶 𝐶 =
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)(𝑦𝑖 − ̄̂𝑦)

(
∑𝑛

𝑖=1(𝑦𝑖 − 𝑦̄)1∕2)(
∑𝑛

𝑖=1(𝑦𝑖 − ̄̂𝑦)1∕2)
, (5)

𝑃 𝑏𝑖𝑎𝑠 = 100 ×
∑𝑛

𝑖=1(𝑦̄ − 𝑦𝑖)
∑𝑛

𝑖=1 𝑦𝑖
, (6)

where 𝑦 is the variable, 𝑦𝑖 is the 𝑖t h observation of 𝑦, 𝑦𝑖 is the 𝑖t h
predicted value of 𝑦, 𝑦̄ is the mean of observation of 𝑦, and ̄̂𝑦 is the
mean of predicted value of 𝑦.

3.2.4. Comparison of reconstructed glacier mass changes with data from
Hugonnet et al. (2021)

To assess the reliability of the reconstructed glacier mass changes
from this study, we compared the decadal values with those reported
by Hugonnet et al. (2021). Our reconstruction is based on the average
mass variations of glaciers within 0.25◦ × 0.25◦ grid cells, at the scale
6 
of the UYW. This reconstruction covers the period from 04/01/2002 to
10/01/2020, aligning with the start date of GRACE data, which begins
on 04/01/2002. The data from Hugonnet et al. (2021) consists of a
trend map at a resolution of 0.5◦ × 0.5◦, covering a longer period from
01/01/2000 to 01/01/2020. To facilitate a comparison, we downscaled
the data from Hugonnet et al. (2021) to a resolution of 0.25◦ × 0.25◦ at
the scale of the UYW, by considering the proportions of glacier areas
within the smaller and larger grid cells. The average glacier mass losses
were then calculated for the UYW based on these downscaled grid cells.
We compared our estimates, which cover the period from 01/01/2003
to 01/01/2020, with the data from Hugonnet et al. (2021) for the
extended period from 01/01/2000 to 01/01/2020.

The trend in glacier mass changes from our reconstruction was de-
rived using a method applied in earlier studies (Castellazzi et al. 2018,
2019; Ciracìet al. 2018, 2020; Doumbia et al. 2020). This involved
implementation of a 13-month moving average filter to reduce the
influence of seasonal fluctuations, followed by a linear regression fitting
on the smoothed monthly data time series to obtain the trend slope,
representing glacier mass changes from 01/01/2002 to 01/01/2020.

3.2.5. Interpretation of the ML algorithms and explanation of the results
ML models are often viewed as black boxes, lacking transparency

in revealing the underlying relationships between predictors and tar-
get variables. To overcome this limitation, SHAP analysis, built on
the game theory approach, and LIME analysis are commonly used to
elucidate the non-linear relationships between predictors and predic-
tands (Zhi et al. 2024). The integration of SHAP and LIME into ML
modeling framework is commonly referred to as eXplainable Machine
Learning (XML) (Chakraborty et al. 2021b). XML facilitates the ex-
planation of predicted values for each instance by establishing causal
connections between predictands and real-world physical processes.
This capability enhances the explainability and transparency of re-
sults from ML models, allowing users to understand the underlying
reasoning (Ribeiro et al. 2016; Chakraborty et al. 2021b; Dikshit and
Pradhan 2021; Ryo 2022). The primary advantage of SHAP and LIME
analyses, in comparison to the traditional statistical or sensitivity analy-
sis, is their ability to explicitly consider the interdependency and inter-
action among the predictors in predicting target variables (Başağaoğlu
et al. 2021). Lundberg et al. (2020) demonstrated that SHAP analysis
provides enhanced explanatory when used with tree-based ensemble
models. Global SHAP explanations, shown by beeswarm plots, unveils
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Table 2
The reconstruction performance of the models from H2O-AutoML.

AI-Model NSE NMRES CC Pbias

GBM Training 0.99 0.01 0.99 0
Testing 0.97 0.04 0.98 −7.9

Stack ensemble
best of family

Training 0.99 0.01 0.99 0.63
Testing 0.96 0.04 0.98 −8.07

Stack ensemble
all models

Training 0.99 0.01 0.99 0.12
Testing 0.97 0.04 0.99 −8.29

DNN Training 0.98 0.03 0.99 5.08
Testing 0.93 0.06 0.97 −7.14

XRT Training 0.99 0.02 0.99 −0.24
Testing 0.95 0.05 0.98 −8.36

DRF Training 0.99 0.02 0.99 0.02
Testing 0.95 0.05 0.98 −9.07

GLM Training 0.88 0 0.94 0.08
Testing 0.80 0.1 0.9 −13.20

the order of importance of predictors in predicting the target variables.
n addition, local explanations for each predictor, displayed as depen-
ence plots, identify inflection point of each predictor above/below
hich the target variables vary positively or negatively in response to

he changes in the value of a predictor (Başağaoğlu et al. 2021). In
addition, LIME analysis supplies local interpretation, providing expla-
nations for individual predictions, and can be interfaced with various

L algorithms (Ribeiro et al. 2016; Lundberg et al. 2019; Chakraborty
t al. 2021ba). In this study, beeswarm plots, dependence plots, and

local explanation based-individual predictions are used to explain the
reconstructed glacier mass changes by the best H2O-AutoML model.

3.2.6. Conditional probabilistic analysis
Using the inflection point identified through the local SHAP analy-

sis, we established specific meteorological and hydrological conditions
associated with global mass changes. These conditions describe how
lacier mass loss in the UYW may increase if a predictive value falls
elow or exceeds its inflection point. The combined effects of these
onditions on glacier mass loss can be analyzed using the conditional
robabilistic analysis

𝑃 (𝐶𝑖 ∪ 𝐶𝑗 ∣ 𝐶0) = 100 × 𝑃 (𝐶𝑖 ∩ 𝐶0) ∪ 𝑃 (𝐶𝑗 ∩ 𝐶0)
𝑃 (𝐶𝑂)

%, (7)

where 𝐶𝑖 and 𝐶𝑗 represent the specific conditions based on the in-
flection points, and 𝐶0 represent the target condition. This analysis
quantifies the percent contributions of meteorological and hydrological
factors to glacier mass loss.

3.3. Oceanic-climatic oscillations

PDO and ENSO strongly influence air temperature (Fleming and
hitfield 2010; Rousseau et al. 2020), and warm phases of PDO

nduce glacial melt (Neal et al. 2002; Koch et al. 2009). Regarding
the theoretically strong relation between air temperature and glacier

ass changes and the impact of PDO on glaciers, indices from both
scillations can be used to investigate their role in the temporal changes
f the reconstructed glacier mass and to unveil nuanced interpretation
rom XML. In this study, we used the PDO index from the National
enters for Environmental Information (PDO NCEI), and two ENSO

ndices, namely Niño 3.4 index and Oceanic Niño Index (ONI). These
hree indices are monthly data based on the extended reconstruction
f sea surface temperature (ERSST Version 5; Huang et al. (2017))

from the National Oceanic and Atmospheric Administration (NOAA).
Available online,1 they represent the average changes (i.e, anomalies)

1 https://www.ncei.noaa.gov/access/monitoring/products/.
7 
of SSTs across specific regions. PDO is the leading pattern of SSTs
hanges from the empirical orthogonal function (EOF) in the North
acific region. Niño 3.4 index and ONI are the average of SSTs changes
ithin 5N-5S, 170W-120 W and are defined according to 5-month and
-month running mean, respectively. For Niño 3.4 index, El Niño or La

Niña events are defined when temporal changes of SSTs exceed +0.4 ◦C
and −0.4 ◦C for a period of six months or more. For ONI, El Niño or
La Niña events are defined when changes of SSTs exceed +0.5 ◦C and
−0.5 ◦C for at least five consecutive months.

4. Results and discussion

4.1. Reconstruction of monthly glacier mass change

One of the primary advantages of using an AutoML tool is its ability
to select the best ML model from a range of available options. In
this study, the Gradient Boosting Machine (GBM) emerged as the best
predictive model within the H2O-AutoML family. (Table S4). Fig. 4 and
Table 2 illustrate the predictive reconstruction performance of the GBM
model, in comparison to other models. The model adeptly reconstructs
monthly glacier mass changes from CSR RL06 MASCON over the UYW
from 2002 to 2020 (Fig. 4).

Fig. 5 shows that the long-term glacier mass change estimated in
this study, −37.20 Mt/yr/0.25◦ x0.25◦, is in close agreement with
−33.05 Mt/yr/0.25◦ x0.25◦ reported by Hugonnet et al. (2021). Wang
et al. (2021) noted that similarity in long term glacier mass changes
from different sources indicates consistency in the estimates. Thus,
the results indicate that the glacier mass changes estimates from
this study are reliable. As explained in Section 1 and Section 3.2.4,
our comparison spans a longer period (01/01/2002–01/01/2020 and
01/01/2000–01/01/2020) to avoid larger uncertainties identified over
shorter timescales (less than 5-year period) by Hugonnet et al. (2021).
 statistical test is applied in Section 3.3 to the reconstructed glacier

mass changes to identify trend breakpoints.

4.2. Global SHAP explanation

Because GBM is a tree-based model, it is well-suited for coupling
with SHAP. The Shapley value represents the average marginal con-
tribution of each predictor value across all possible combinations of
predictors. Predictors with large absolute Shapley values are deemed
important in accurately predicting the target variables. The global ex-
planation from SHAP, as depicted by beeswarm plot in Fig. 6, identifies
the most influential features, ranked by importance, for accurately
predicting glacier mass changes. In this figure, the importance of the
redictors is presented in descending order, with the most influential

predictors listed at the top. Hot-colored and cold-colored dots corre-
spond to the high and low predictor values, respectively. Positive and
negative of SHAP values on the x-axis correspond to glacier mass gain
and loss, respectively. For example, larger increases, as defined by
Eq. (1), in snow water equivalent (▵SWE), depicted by red dots, are
associated with glacier mass gain, as indicted by positive SHAP values
on the x-axis. Conversely, more recent years, denoted by red dots, are
associated with glacier loss, as indicated by negative SHAP values on
the x-axis.

Global SHAP analysis in Fig. 6 unveils that years, temporal changes
in snow water equivalent, soil moisture storage, and surface albedo,
long with months and changes in rainfall flux and air temperature

are the most critical features in the order of importance in predicting
glacier mass changes in the study region. Among them, later years
and months, in addition to larger increases in rainfall flux and air
temperature are associated with higher glacier mass loss (i.e., positive
feedback); larger increases in snow water equivalent, soil moisture
storage, and surface albedo are associated with higher glacier mass gain
(i.e., negative feedback).

https://www.ncei.noaa.gov/access/monitoring/products/
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Fig. 4. The reconstruction of the spatial mean glacier mass changes over the UYW using H2O-AutoML algorithms for the period of 04/2002-10/2020. ‘obs’ represents monthly
glacier mass changes from CSR RL06 MASCON and ‘sim’ represents monthly glacier mass changes reconstructed. The gray band represents the one-year gap between GRACE and
GRACE-FO.
Fig. 5. Comparison of average glacier mass changes on 0.25◦× 0.25◦ grid cells, within the UYW. (a) Reconstructed glacier mass changes from GBM over the UYW, from 01/01/2003
to 01/01/2020; (b) Glacier mass changes from Hugonnet et al. (2021) within the UYW, from 01/01/2000 to 01/01/2020.
Oerlemans (2005) related changes in air temperature to changes
in glacier length from 169 glacier records. Yao et al. (2012) discov-
ered regional difference in glacier evolution in Tibetan Plateau due to
different patterns in air temperature, precipitation, and atmospheric
circulation. Mölg et al. (2014) showed that precipitation conditions
from May to June, influenced by both mid-latitude dynamics and the
onset of intensity of Indian summer monsoon, largely determine the an-
nual mass balance of Zhadang Glacier on the southern Tibetan Plateau
from 2001 to 2011. Global SHAP analysis in Fig. 6 revealed that while
changes in air temperature are critical for glacier mass changes in the
UYW, changes in precipitation is relatively less influential. Although
the effects of oceanic-climatic oscillation indices on the hydroclimatic
processes have been studied for the UYW, there is a lack of field and
associated analyses on the impacts of the most critical hydroclimatic
features in Fig. 6, including ▵SWE, ▵SMS, ▵Alb, and ▵R_fl. This gap will
be addressed in the subsequent sections using XML modeling analysis;
8 
however, these results need to be validated with field data in future
studies.

4.3. Local SHAP explanation

The local SHAP explanation provides a broader overview of the
influence from the most important features and unfolds nonlinear
relationship between predictors and target variables (Fig. 7). The lo-
cal analysis hinges on the inflection point, through which it reveals
how the value of the target variable changes with changes in the
predictor value above or below its inflection point. The inflection point
of the predictor is determined from the x-axis for the SHAP curve,
where it takes a zero value on the y-axis, corresponding to the tran-
sition from glacier mass gain (associated with positive SHAP values) to
glacier mass loss (associated with negative SHAP values) (Chakraborty
et al. 2021a, 2021b). In local SHAP plots, hot-colored and cold-colored
dots represent the magnitude of a predictor, with hot-colored dots
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Fig. 6. The global explanation from GBM-SHAP for glacier mass changes from 2002 to 2020 over the UYW (please refer to Table 1 for explanations of the acronyms). (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
indicating larger values and blue dots indicating smaller values. Hot-
colored dots with positive SHAP values show that glacier mass increases
as the predictor value exceeds its inflection point. Conversely, cold-
colored dots with negative SHAP values indicate that glacier mass
decreases as the predictor value falls below its inflection point.

The local SHAP analysis associated with the GBM model in Fig. 7a-
b reveals that glacier mass in the UYW region has been decreasing
since June 2014. We analyzed the reconstructed glacier mass changes
depicted in Fig. 4 using the statistical Chow test (Pancotto et al. 2024).
This analysis identified five trend breakpoints: July 2004, July 2009,
August 2013, July 2016 and January 2018 (Fig. 8a). The breakpoint of
August 2013 is aligned with the inflection point displayed on Fig. 7a,
indicating that glacier mass loss has accelerated since 2014. The year
2014 marks the shift in the magnitude of larger negative glacier mass
in Fig. 4. Moreover, mass loss predominantly occurs in August through
December, while glacier mass accumulation is observed from January
through May. On the other hand, LIME analysis revealed that glacier
mass loss largely occurred from June through October (Figure S2). In
their global study on the impact of future glacier mass loss on hydrol-
ogy, Huss and Hock (2018) considered that the glacier melt season over
the Northern Hemisphere spanned from June to October. Additionally,
using the hydrological model CHRM over the Peyto Glacier Research
Basin (i.e, a glacierized headwater basin in the Canadian Rockies) over
the period 2000–2015, Aubry-Wake and Pomeroy (2023) showed that
glacier melt occurred from June to October. These observations are
consistent with the explanation provided by LIME, highlighting the
importance of using different explanatory methods and comparing their
outcomes to ensure the reliability of analyses.

In Fig. 7c, an increase in glacier mass is evident when changes in
SWE ≥ −0.76 cm, whereas mass decreases when the snow cover exists
in low quantities. This phenomenon, well-observed and documented
in earlier studies (e.g., Samuel et al. 2016), is analogous to the def-
inition of the ELA. Indeed, theoretically, the zone of glaciers gaining
mass (accumulation zone) is covered by snow, firn and/or ice, while
the ablation area is covered by ice during the ablation season. Foy
9 
et al. (2011) analyzed changes in volume and surface area of the
Kaskawulsh Glacier, Yukon. They observed prominent thinning of this
glacier throughout the ablation zone, while the accumulation zone
exhibited relative stability and even slight thickening since 1995.

Fig. S1 further illustrates that increases in glacier mass predomi-
nantly occurred during the years prior to 2014 when changes in SMS
< 2.17 cm. Additionally, in Fig. 7d, soil moisture drying conditions,
represented by changes in SMS < −2.17 cm, are associated with glacier
mass loss, while soil moistening conditions, represented by changes in
SMS ≥ −2.17 cm, are linked with glacial mass accumulation. According
to Aubry-Wake and Pomeroy (2023), soil moisture storage increases
from mid-May to July before decreasing until October. Armstrong and
Brun (2008) noted the regional cooling effect from moist spring soils.
The increase and the associated cooling effect from spring soil moisture
could explain the glacier mass loss associated with the increase in SMS
depicted by the local SHAP analysis. Indeed, this cooling effect can
create a micro-climate, extending the snow cover season and delaying
the onset of the ice melt season. However, due to the difficulty in
establishing the casual-effect relationship between soil moisture and
glacier mass changes, further studies are needed to establish their
interaction (Section 4.6).

Fig. 7e unveils that when changes in Alb ≥ 2.39%, it fosters glacier
mass accumulation, whereas changes in Alb < 2.39% may lead to
ablation. This feedback from albedo on glacier mass changes aligns
with the basic land surface thermal energy balance principles. Kinnard
et al. (2022) showed that the reduction in albedo serves as an important
driver of warming, influencing the mass balance of the Saskatchewan
Glacier. In their study on the seasonal evolution and interannual vari-
ability of snow and ice albedo at Haig Glacier located in Canadian
Rocky Mountains, Marshall and Miller (2020) found a strong negative
correlation between monthly mean albedo and monthly melt, with a
Pearson correlation coefficient of −0.88 from 2002 to 2015. Figs. S3–
S5 show that albedo is influenced by air temperature, and precipitation
phases (Rainfall and Snowfall); Fig. S3 depicts the decrease of albedo
with an increase in air temperature; Fig. S4 shows an increase in
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Fig. 7. Local explanation of most critical predictors from GBM-SHAP in predicting glaciers mass changes over the UYW. (a) years (Year); (b) months (Month); (c) changes in snow
water equivalent (▵SWE) in cm; (d) changes in soil moisture storage (▵SMS) in cm; (e) changes in surface albedo (▵Alb) in %; (f) changes in rain flux in (▵R_fl) kg m−2 s−1; (g)
air temperature (▵Temp) in ◦C. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
albedo with a decrease in rainfall flux; and Fig. S5 depicts decrease in
albedo with a decrease in snowfall flux. These relationships were well
illustrated by Kinnard et al. (2022).

Moreover, in Fig. 7f, changes in R_fl ≥ −1.2 × 10−5 kg m−2 s−1

results in glacier mass loss. The positive feedback from rainfall flux was
demonstrated by Roy et al. (2024) on the Chorabari glacier located in
the Upper Ganga Basin, Central Himalaya, India. Kinnard et al. (2022)
10 
showed that warming, which leads to glacier loss, alters precipitation
phase by increasing rainfall. Chesnokova et al. (2020) analyzed the
glacier retreat and the associated hydrological changes in eight water-
sheds in the Southwestern Yukon. Their analysis of data from two mete-
orological stations near our study area, Atlin (673.6 m a.s.l.,1967–2017,
1967–2018) and Teslin (705.0 m a.s.l.,1944–1994, 1944–2018), re-
vealed no change in mean annual precipitation at Atlin and an increase
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in precipitation at Teslin. The air temperature effects in Fig. 7g indicate
that changes in Temp< 0.6 ◦C create favorable conditions for glacier

ass accumulation. The near 0 ◦C inflection point is well-established
n glaciological studies and commonly used hydrological modeling
Hock 2005). Thus, negative and positive changes in air temperature
orrespond to glacier mass accumulation and ablation, respectively.
n their study on surging of Donjek Glacier, Yukon, Kochtitzky et al.

(2020) showed that increase in air temperature corresponds to negative
glacier mass balance. Chesnokova et al. (2020) found an increase in air
temperature at the Atlin and Teslin stations, which are located near the
UYW.

4.4. Probabilistic analysis

We formulated a probabilistic model (Stef et al. 2023) to analyze
ow potential changes in the topmost critical predictors, identified by
he global SHAP analysis in Fig. 6, could drive glacier mass loss in the

UYW. Based on the inflection points, determined by the local SHAP
nalysis in Fig. 7 and the reconstructed glacier mass changes (Fig. 4),

we first set the following conditions:

𝐶0 ∶ Glacier mass depletion ≥ Median Glacier mass depletion,
𝐶1 ∶ ▵Temp ≥ 0.6 ◦C,

𝐶2 ∶ ▵SWE < −0.76 cm,

3 ∶ ▵SMS < −2.17 cm,

4 ∶ ▵Alb < 2.39%,

5 ∶ ▵R_fl ≥ −1.2 × 10−5 k gm−2s−1,

where 𝐶0 − 𝐶5 represent the labels for different conditions used in the
probabilistic analysis. Specifically, 𝐶0 represents the target condition,
which is the glacier mass depletion, to be explored probabilistically

ith median glacier mass change equal to 0 Gt. 𝐶1, 𝐶4, and 𝐶5 account
for the impact of the critical meteorological forcings, and 𝐶2 and 𝐶3
represent the impacts of the critical hydrological forcings on the glacier
mass depletion. A conditional probability for the occurrence of specific
conditions 𝐶1 − 𝐶5 in relation to 𝐶0 can be expressed as:

𝑃 (𝐶2 ∪ 𝐶3 ∣ 𝐶0) = 100 × 𝑃 (𝐶2 ∩ 𝐶0) ∪ 𝑃 (𝐶3 ∩ 𝐶0)
𝑃 (𝐶𝑂)

%, (8)

𝑃 (𝐶1 ∪ 𝐶4 ∪ 𝐶5 ∣ 𝐶0) = 100 × 𝑃 (𝐶1 ∩ 𝐶0) ∪ (𝐶4 ∩ 𝐶0) ∪ 𝑃 (𝐶5 ∩ 𝐶0)
𝑃 (𝐶𝑂)

%, (9)

where 𝑃 (𝐶𝑖 ∩ 𝐶0) is the probability that 𝐶𝑖 and 𝐶0 concurrently occur.
𝑃 (𝐶0) represents the probability of glacier mass depletion being higher
than the median glacier mass depletion for the period of 2002 to
2022. 𝑃 (𝐶0) =50% serves as the baseline for the probabilistic analysis.
𝑃 (𝐶𝑖 ∣ 𝐶0) represents the probability of further depletion in glacier mass
beyond the baseline case when 𝐶𝑖 occurs. Thus, Eq. (8) quantifies the
reduction in glacier mass beyond the baseline case under unfavorable
ydrological conditions. Similarly, Eq. (9) quantifies the additional
epletion in glacier mass beyond the baseline case due to unfavorable
eteorological conditions. Using, Eqs (8)–(9), we obtained:
𝑃 (𝐶2 ∪ 𝐶3 ∣ 𝐶0) = 100%; 𝑃 (𝐶1 ∪ 𝐶4 ∪ 𝐶5 ∣ 𝐶0) = 73%.
Given the baseline values of 50%, these results indicate that the

ydrological and meteorological forcings could lead to 100.0% and
3% (62.6% from Temp, ERA5-Land data and 73.3% from Alb and
_fl LSM NOAH GLDAS data according to the baseline values of 50%)
eduction in glacier mass, respectively. These findings suggest that the
ydrological forcings are more critical than the meteorological forcings
n glacier mass balance assessments and predictions at the UYW.

Given the significance of consistency across different explanatory
ethods, as indicated in the feedback analysis from the predictor

Month, we compare local explanation outcomes from SHAP and LIME
for the months of August through October to ensure the reliability of the
results. Both methods consistently identified glacier mass loss during

these months.
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Table 3
Retro-actions or feedbacks from key predictors, in terms of changes, on August,
eptember, and October from SHAP and LIME for each year over the period 2002–
020. (−) feedback denotes glacier mass accumulation, while (+) feedback denotes
lacier mass depletion. Specific conditions based on individual years for the variables

‘Year’ and ‘▵SMS’ are provided.
August September October

SHAP LIME SHAP LIME SHAP LIME

Year

(−) (−) (−) (−) (−) (−)
<2015 <2016 <2015 <2016 <2015 <2016
(+) (+) (+) (+) (+) (+)
≥2015 ≥2016 ≥2015 ≥2016 ≥2015 ≥2016

▵SWE (+) (+) (+) (+) (+) (+)

▵SMS
(−) (−) (−) (−) (−) (−)
≠2016, ≠2016, ≠2013, ≠2010,2013 ≠2013 ≠[2013–20]
2019 2019 [2015–20] [2015–19] [2015–20]

▵Alb (+) (+) (+) (+) (+) (+)
Month (+) (+) (+) (+) (+) (+)
▵R_fl (+) (+) (+) (+) (+) (+)
▵Temp (+) (+) (+) (+) (+) (+)

4.5. Interpretation based on key physical features during the months with
igh glacier mass losses

LIME and SHAP facilitate the analyses of the positive or negative
effects of predictors on glacier mass changes for each month. Both
methods presented predictor values and their effect on glacier mass
changes. LIME provided enhanced precision by identifying the neces-
sary threshold or range values required for specific positive or negative
mpacts. Additionally, LIME was capable of categorizing predictors
ccording to their importance in influencing glacier mass changes,
rioritizing those with the most substantial impact.

In this section, local explanations from both methods were com-
pared to assess the agreement of important physical features during
months with high glacier mass losses, specifically August, September,
and October (Table 3; Figs. S6–S8). For each of these three months
in each year, the SHAP analysis unveiled that glacier mass losses
increased in 2015, while LIME depicted this increase started from 2016.
This observation aligns with the findings discussed in Section 4.3,
specifically referencing to August 2013. The SHAP and LIME analy-
ses showed positive feedbacks from ▵SWE, ▵Alb, Month, ▵R_fl, and
▵Temp. The feedbacks from SMS were generally negative during the
nitial years (2002 to 2013, as reported in Table 3). However, differ-

ences emerged in the years of ▵SMS’s positive feedbacks for the two
months, September and October (Table 3). Specifically, in September,
SHAP revealed positive feedbacks in 2013 and throughout the period
of 2015–2020, while LIME indicated positive feedbacks in 2010, 2013
and from 2015 to2019. Similarly, in October, SHAP showed positive
feedbacks in 2013 and from 2015 to 2020, while LIME showed positive
feedbacks from 2013 to 2020. In summary, SHAP and LIME exhibited
good agreement in depicting the feedbacks from the key predictors on
glacier mass changes, with some difference in the predictor Year and
▵SMS (Table 3). Such differences from SHAP and LIME analyses are
xpected due to their differences in methodology and consistency. From
 methodological standpoint, LIME perturbs the input data and trains
ocal interpretable models to approximate the behavior of the original

model near a specific prediction. The method can be sensitive to the
hoice of perturbation and the local model’s complexity, which might
ead to variations in results. On the other hand, SHAP uses game theory

to calculate the exact contribution of each feature to a prediction,
providing a globally consistent explanation based on Shapley values
(see Table 3).

The similarity between explanations from SHAP and LIME anal-
yses indicates that both methods are capable of extracting reliable
relationships between physical predictors and glacier mass changes.
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Fig. 8. Indirect evidence for the relationships between changes in normalized glacier mass balance and ▵SMS. (a) changes in glacier mass; (b) changes in SMS; (c) SST changes
associated with the El Niño-Southern Oscillation ENSO Niño 3.4 where El Niño (red band) and La Niña (blue band) events are defined based on the threshold of +0.4 ◦C (horizontal
red line) and −0.4 ◦C (horizontal blue line); (d) El Niño-Southern Oscillation Oceanic Niño Index, ENSO ONI where El Niño (red band) or La Niña (blue band) events are defined
based on the threshold of +0.5 ◦C (horizontal red line) and −0.5 ◦C (horizontal blue line); and (e) Pacific Decadal Oscillation National Centers for Environmental Information,
PDO NCEI. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
4.6. Indirect evidence of the relationship between changes in soil moisture
storage and glacier mass

Figs. 6 and 7d unveiled that changes in glacier mass are positively
and nonlinearly related to ▵SMS. However, there is a lack of compelling
field data to corroborate this finding. To further scrutinize the validity
of such a relationship, we examined the impacts of SST changes, a
surrogate measure reflecting changes in climatic conditions, on changes
in glacier mass depletion and SMS. Niño 3.4 index reveals that El Niño
events were observed in 2002–2003, 2004–2005, 2009–2010, 2014–
2016, 2018–2019 (Fig. 8c). ONI also depicts similar pattern with Niño
3.4 index but its longest El Niño event, covering the period 2015–2016,
was shorter (Fig. 8d). The longest positive phase of PDO NCEI was
observed from 2014 to 2016 (Fig. 7e). There was rapid depletion in
glacier mass in July 2004, July 2009, August 2013, July 2016, and
January 2018 (Fig. 8a). The rapid depletion in soil moisture changes
was observed in September 2004, September 2010, December 2014,
and June 2020 (Fig. 8b). According to these results, both glacier mass
change and ▵SMS exhibit similar responses to increases in SST (positive
phase for PDO NCEI, and El Niño events for Niño 3.4 index and ONI),
resulting in significant depletion in both glacier mass and SMS starting
from 2014 (Fig. 8). This significant depletion is well identified by the
XML in SHAP and LIME local explanations (Sections 4.3 and 4.5). This
result is corroborated by previous studies showing that positive phases
or conditions of oscillations indices coincide with rapid recession of
glaciers (Fleming et al. 2006; Koch et al. 2009).
12 
These results indicate a strong correlation between changes in SSTs
and glacier mass as well as changes in SSTs and SMS. They also unveil
an indirect evidence for the correlative relationship between changes
in glacier mass and SMS. Furthermore, the power spectral density
analysis in Fig. 9a illustrates that changes in glacier mass and SMS share
common underlying dynamics and patterns, but at different scales, with
changes in SMS exhibiting higher amplitudes (Fig. 9). Additionally,
the cross-correlation in Fig. 9b indicates robust correlations within a
6-month time window between changes in SMS and glacier mass in
response to SST fluctuations, with 𝑅2 > 0.9. This 6-month time window
aligns closely with the El Niño events, which correspond to the periods
of six months or more and the periods of at least five consecutive
months with changes of SSTs exceeding +0.4 ◦C and +0.5 ◦C for Niño
3.4 index and ONI, respectively.

4.7. Limitations and uncertainties

The observed difference of approximately 10% between the mul-
tidecadal glacier mass changes from this study and those reported
by Hugonnet et al. (2021) can be attributed primarily to variations
in data sources, inherent uncertainties, and post-processing meth-
ods. Hugonnet et al. (2021) estimated glacier mass changes using
Digital Elevation Models and identified density conversion as a major
source of uncertainty due to its poor estimation. While initially CSR
RL06 mascon solutions are represented at a 0.25◦ × 0.25◦ resolution,
their current native resolution is 1◦×1◦ (Save et al. 2016, 2020). In
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Fig. 9. Comparison of normalized changes in glacier mass and ▵SMS in the frequency domain. The original, non-normalized, plots are given in Figure S8. (a) Power spectrum
densities of glacier mass and ▵SMS; and (b) cross-correlation between changes in glacier mass and ▵SMS.
this study, the CSR RL06 MASCON TWS solution was resampled to
match 0.25◦ × 0.25◦ grid used for the distribution of glacier mass losses
reported by Larsen et al. (2015). Our analyses are based on the fact
that GRACE signal, consisting of various water storage components, is
largely dominated by ice mass change over the GOA (Doumbia et al.
2020). Thus, the use of CSR RL06 MASCON solution at high resolution
without subtracting other water storage components may introduce
uncertainties, which could explain the observed differences. However,
the similarity in glacier mass changes from CSR RL06 MASCON and
data from Hugonnet et al. (2021) suggest that resampling to a 0.25◦-
pixel of CSR RL06 MASCON reduce resolution-related uncertainties
and effectively capture the temporal relationship between glacier mass
changes and hydroclimatic variables. Additional uncertainties may
arise from the use of LSM NOAH GLDAS and ERA5-Land data used as
predictors.

One of the main limitations of this study is the lack of com-
prehensive research studies and field data on the factors influencing
the evolution of glacier mass in the study area. This is particularly
evident in understanding the interaction between soil moisture and
glaciers, which we explored based on indirect evidence in Section 4.6.
Additionally, the variables used in this study were chosen based on
previous studies and our theoretical understanding of glacier mass
evolution. Fortunately, this latter limitation is alleviated by identifying
the most critical variables through the SHAP analysis. Under various
circumstances, the recognition that the variables used are not inde-
pendent of each other could influence the selection of topmost critical
variables. However, the SHAP analysis takes into account interactions
and interdependencies among predictors, notably through local SHAP
explanations. Furthermore, comparing the results from the SHAP and
LIME analyses helps reduce estimation uncertainties.
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5. Conclusions

This study aimed to reconstruct glacier mass changes over the UYW
by filling the 1-year data gap between GRACE and GRACE-FO CSR
RL06 MASCON data, spanning from 2002 to 2022. The objective was to
unveil the importance, and interdependencies and interrelations among
physics-based processes behind this reconstruction.

To achieve this, GRACE-like glacier mass changes were recon-
structed using six families of algorithms and two stacked ensembles
from H2O-AutoML. The predictive performance of the H2O-AutoML
algorithms was evaluated using standard performance metrics, such
as NSE, Pbias, NRMSE, and CC. The best ML algorithm identified
from H2O-AutoML platform was the GBM, illustrating the importance
of using different algorithms to analyze glacier mass changes over
a watershed. On the testing set, encompassing 25% of the dataset,
the GBM exhibited decent predictive performance with NSE of 0.97,
Pbias of 8%, NRMSE of 0.04 and CC of 0.98. The explanatory methods
SHAP and LIME were used to reveal the key variables through global
explanatory analysis and their inflection points using local explanatory
analysis in the reconstruction process using the GBM model. In addi-
tion, probabilistic analysis was used to determine percent contributions
of key predictors to glacier mass losses. Finally, oceanic-climatic oscil-
lation indices were used to analyze the changes in glacier mass and to
investigate the relationship between changes in glacier mass and soil
moisture.

Global explanation from SHAP highlighted the importance and
global influence of predictors in the reconstruction process using the
GBM model. Key predictors were identified, including temporal se-
quence indicators and energy and water balances components, such
as years, months, changes in snow water equivalent, soil moisture
storage, surface albedo, changes in rainfall flux, in addition to air
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temperature. Local explanations identified the inflection (critical) point
of each key predictor. These points are instrumental in illustrating how
glacier mass change with the changes in the values of key predictors
above or below their inflection point. The inflection points also pro-
ided the foundation for establishing probabilistic analyses to quantify
he contribution of key predictors to variations in glacier mass. The
heoretical physics-based relationships between glacier mass changes
nd the key predictors were well-captured. The probabilistic analysis
urther revealed that the hydrological conditions are more critical than
he meteorological conditions in glacier mass balance assessments and
rojections. The LIME explanation provided more precise estimates for
he predictor Month on glacier mass changes compared to SHAP. Both
HAP and LIME local explanations provided further insights into the
hysical processes behind glacier mass reductions. While both methods
evealed similar effect from the most important features, discrepancies
ere observed in Year and SMS. These local explanations underscored

he reliability of using different explanatory methods to comprehend
he glacier mass depletion process over the UYW. The analysis of
ceanic-climatic oscillation indices revealed their direct influence on
lacier mass changes and provided evidence for correlations with both
lacier mass changes and ▵SMS.

Abbreviations

Commonly used symbols and abbreviations in the paper:

▵ Anomalies (Temporal Changes)
CC Correlation Coefficient
CSR Center for Space Research
EOF Empirical Orthogonal Function
ERSST Extended Reconstruction of SSTs
GBM Gradient Boosting Machine
GIA Glacial Isostatic Adjustment
GOA Gulf Of Alaska
GRACE Gravity Recovery And Climate Experiment
GRACE-FO Gravity Recovery And Climate Experiment

Follow-On
GRGS Space Geodesy Research Group
GWS Ground Water Storage
H2O-Auto ML H2O Automated Machine Learning
IS Ice Storage
LIME Local Interpretable Model-agnostic Explanations
LSTM Long Short-Term Memory
NOAA National Oceanic and Atmospheric Administration
NRMSE Normalized Root Mean Squared Error
NSE Nash–Sutcliffe Efficiency
ONI Oceanic Niño Index
Pbias Percentage of Bias
PDO Pacific Decadal Oscillation
NCEI National Center for Environmental Information
RMSE Root Mean Squared Error
𝑅2 Coefficient of determination
SHAP SHapley Additive Explanation
SS Snow Cover Storage
SST Sea Surface Temperature
SMS Soil Moisture Storage
SWE Snow Water Equivalent
SWS Surface Water Storage
TWS Terrestrial Water Storage
TWSA Terrestrial Water Storage Anomalies
UYW Upper Yukon Watershed
XML eXplainable Machine Learning
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