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Abstract: The hindering of Global Navigation Satellite Systems (GNSS) signal reception by jamming
and spoofing attacks degrades the signal quality. Careful attention needs to be paid when post-
processing the signal under these circumstances before feeding the signal into the GNSS receiver’s
post-processing stage. The identification of the time domain statistical attributes and the spectral
domain characteristics play a vital role in analyzing the behaviour of the signal characteristics under
various kinds of jamming attacks, spoofing attacks, and multipath scenarios. In this paper, the
signal records of five disruptions (pure, continuous wave interference (CWI), multi-tone continuous
wave interference (MCWI), multipath (MP), spoofing, pulse, and chirp) are examined, and the
most influential features in both the time and frequency domains are identified with the help of
explainable AI (XAI) models. Different Machine learning (ML) techniques were employed to assess
the importance of the features to the model’s prediction. From the statistical analysis, it has been
observed that the usage of the SHapley Additive exPlanations (SHAP) and local interpretable model-
agnostic explanations (LIME) models in GNSS signals to test the types of disruption in unknown
GNSS signals, using only the best-correlated and most important features in the training phase,
provided a better classification accuracy in signal prediction compared to traditional feature selection
methods. This XAI model reveals the black-box ML model’s output prediction and provides a clear
explanation of the specific signal occurrences based on the individual feature contributions. By using
this black-box revealer, we can easily analyze the behaviour of the GNSS ground-station signals and
employ fault detection and resilience diagnosis in GNSS post-processing.

Keywords: GNSS; jamming; explainable AI; interpretability; interference

1. Introduction

The positioning-based applications available today that rely on satellite navigation
systems, including the widely used Global Positioning System (GPS), Russian GLONASS,
European GALILEO, Chinese BEIDOU, Japanese QZSS and Indian IRNSS, have become
integral parts of various aspects of modern life, including transportation, agriculture,
telecommunications, and emergency services. These systems depend on a collection
of satellites orbiting the globe to provide accurate positioning, navigation, and timing
information to users worldwide. However, they are susceptible to interference, which can
disrupt the signals and compromise their reliability. Satellite navigation interference refers
to deliberate or unintentional disruptions of signals between satellites and ground-based
receivers. Interference can take various forms, including jamming, which is the deliberate
transmission of strong radio signals on the same frequencies used by satellite navigation
systems to overpower and disrupt genuine satellite signals. The jamming devices are
sometimes used for illegal purposes, for example, the usage of cheap commercial hardware
jammers, such as cigarette lighters, available on the market. Other illegitimate GNSS
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creations, like signals erupting from high-power transmitters, also degrade the quality
of the signal by completely blocking the signal reception and not allowing the GNSS
satellites to compute the user position. Another kind of attack is spoofing, which is a
more sophisticated form of interference where attackers generate fake satellite signals that
mimic authentic ones. Spoofing can deceive receivers into calculating inaccurate positions.
Signal blockage may be natural or deliberate; for example, obstructions caused by human
intervention and obstacles created by the construction of tall buildings or terrain can block
or reflect satellite signals, causing multipath errors that lead to inaccuracies in positioning.
Multipath interference signals bouncing off nearby surfaces before reaching the receiver
can create timing errors and inaccuracies.

In the event of GNSS catastrophic failures, continuous monitoring and taking precau-
tionary measures to detect unauthorized jamming and spoofing are required to prevent
failures in GNSS data transmission at ground stations [1–3]. Early detection and rapid
responses to counteract the impact of disruptions are required for seamless data reception
and transmission [4,5]. Recently, some solutions have involved implementing security
protocols and GNSS signal encryption techniques in navigation data to resist these kinds
of interruptions, which could make it more difficult to disrupt or manipulate the signals.
In the GNSS-denied situation, alternative navigation techniques, like the use of inertial
measurement units (IMUs), a mixed-mode operation that involves using accelerometers
and gyroscope fusion, may help to measure the acceleration and angular velocity, which
enhances the resilience and redundancy. Subsequently, computed features from the data
serve as input to the ML and deep learning (DL) techniques for classifying and detecting
the types of interruption. However, there is no proper explanation in the model output
that describes how the model is responding to the changes in the signal and what factors
influence the identification of key discriminative factors in distinguishing different classes
of disruptions.

Taking into consideration all the above shortcomings in signal detection using tra-
ditional ML techniques, this study proposes a novel framework for analyzing the GNSS
signal characteristics. The proposed approach not only enables the accurate classification
of GNSS signal disruptions but also provides valuable insights into the underlying factors
driving these disruptions. The main contributions of the work are summarized as follows:

1. In this paper, we recorded a synthetic GNSS dataset under various disruptions at
different Jamming-to-Signal Ratio (JSR) levels using the Skydel simulator. The dataset
was used to evaluate the performances of different ML models on signal predic-
tion/classification tasks.

2. We extracted and compared a set of attributes (time domain and frequency domain)
using the statistical parameters to identify the strongly and weakly correlated features,
as visualized in the correlation plot.

3. We utilized the most influential features from the global (SHAP) and local explanation
(LIME) XAI models in the form of feature rankings, a summary plot, and a forced plot
with detailed explanations, using only the key features for predicting and classifying
the signal disruption resulted in improved metrics.

2. Literature Review

There are some existing approaches based on the artificial intelligence applied in
GNSSs that are discussed in articles that describe the utilization of different ML/DL models
at different stages, such as the RF front-end stage, pre-correlation stage, and post-correlation
stage [6–14]. The different ML algorithms used in the literature, such as the distance-based
representational model, autoregressive integrated moving average (ARIMA), and statistical
measures (mean, standard deviation, variance, median, quantile, kurtosis, skewness, etc.),
have been shown that they have several shortcomings and that they cannot be used to
model multivariate time series data. Some of the traditional statistical approaches used
in [15] provided information about the trends and outliers in the signal, with the help
of the correlation in the data on 30% of the quartile error values. Many categories of
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anomalies and several ML algorithms listed in the literature (supervised, semi-supervised,
and unsupervised) were used to detect the GNSS abnormalities in the signal. A very
detailed description of the type of data, the categories of anomalies, and the evaluation
criteria are provided in [16] in the context of Internet of Things (IOT) data, which paved the
way for analyzing the suitability of the selected deep learning model. Similarly, a survey of
ML models and a variety of ML-based abnormality detection schemes illustrated in [17]
created an interest among readers in choosing the best model for anomaly detection.

Some of the studies listed here used real- and complex-valued long short-term memory
(LSTM) algorithms that predicted the next time steps based on loss values [18,19]. A
hyper approach developed based on LSTM and a one-class support vector machine-based
anomaly detection method has been implemented by Elsayed et al. [20] for detecting
attacks in the network of an unbalanced dataset. The method employed has the advantage
of being able to operate on high-dimensional datasets by reducing the processing time.
Using this hybrid model, a high detection rate was obtained for securing the Software
Defined Network (SDN) from malicious traffic. An LSTM network layer has been used to
denoise and forecast the interruption in the GNSS permanent station for early warning
monitoring on different time series data [21,22]. However, the data used in this work rely
on post-processing observations. A recurrent neural network (RNN)-based autoencoder
network constructed by Wu et al. [23] is a good choice for learning the bonds among
time-correlated data. This autoencoder network could detect interference with F1-scores of
0.93, 0.90, and 0.83, respectively, under three communication scenarios: a 16-quadrature
amplitude modulated (QAM) signal with superimposed quadrature phase shift keying
(QPSK), a frequency modulated (FM) signal, and a clean FM signal contaminated by a
direct sequence spread spectrum (DSSS). This model only considers anomaly detection in
generic modulation schemes.

An overview of the use of LSTM models in GNSS jamming and spoofing and their
limitations is presented next. Spoofing detection is carried out with the help of a general
adversarial network (GAN) by taking the cross-ambiguity function (CAF) as an acquisition
output for both authentic and spoofed signals [24]. The acquisition of satellite signals
needs to be performed as a function of receiver signal processing. A jamming detection
method using an LSTM-based model was introduced by [25] for satellite signal reception
in the presence of alpha-state noise. The pure satellite signal of interest that is not a
jamming instance is used for LSTM training. Here, the myriad filter was employed to
suppress the alpha-state noise. A detection rate of 98% was achieved for a JSR of 7 dB. The
random motion between the transmitted and received GPS signals differs from the live
sky-generated Doppler patterns that are used to find the presence of abnormal behaviour
in the Doppler frequency or malicious attackers to analyze the spoofing threats in GNSSs.
In another study [26], a training dataset obtained from the daily live record data uploaded
by NASA was used to train the LSTM models for spoofing detection. The architecture
implemented consisted of two LSTM layers with 32 neurons, with one dropout layer
and one dense layer, for predicting the spoofing attacks. The Doppler shift detected
from the post-processing of the GPS signal is used for training. The hybrid learning
framework of GNSS observations using anomaly detection via the hierarchical density-
based spatial clustering of applications with noise (HDBSCAN) technique has been used
by Xia et al. [27]. The ComNav K508 GNSS OEM receiver was used to log the Receiver
INdependent EXchange (RINEX) data that are used for training purposes, and the NovAtel
ProPak6 receiver was used to collect the test set for real-time anomaly detection. Anomaly
detection in the transponder frequency spectra of satellite communications systems with
high-dimensional time series data using LSTM networks is implemented by Gunn et al. [28];
this provides a lower reconstruction error, but the time-frequency approach for collecting
the images for each snapshot increases the data handling and the data storage complexity. A
machine learning-based identification of the clean, non-line of sight (NLOS), and multipath
signals in a GNSS is presented in [29]. The variations in the received power level, the
pseudorange residue, and changes in the variance between the pseudorange and delta



Sensors 2024, 24, 8039 4 of 39

pseudorange obtained from the National Electrical Manufacturers Association (NEMA)
and RINEX are used to train the machine learning algorithm.

To handle the time synchronization attacks, a three-layer multi-layer perceptron neural
network was implemented in [30] to nullify jamming in stationary GPS receivers. The
authors prepared the clock offset dataset of 200 samples used as an input to the model for
training, with different threshold conditions that lead to spoofing detection and positioning
error reduction. Spoofing detection in GNSS signals with the aid of the LSTM prediction
model has been implemented by Dasgupta et al. [31] using a publicly available real-world
driving dataset. The data captured from the controlled area network (CAN), GNSS, and
IMU sensors with different parameters such as acceleration, steering wheel angle, speed,
and distance are used to detect spoofing attacks in autonomous vehicles.

To the best of our knowledge, most of the methods listed above used either traditional
statistical methods [32,33] or spectrogram images, post-processed data, correlation outputs,
and data collected at the navigation level to train an ML/DL model to identify possible
trends in the signal quality and abnormalities in GNSS data. However, there is still a
need to determine the reason behind these changes in the signal behaviour, and the cause
of abnormalities detected at the RF signal level has to be identified before the signal is
fed into the receiver signal processing chain. Nevertheless, the aforementioned literature
studies used several ML/DL models and collected the most influential features by suitably
classifying or predicting the anomalous GNSS signals with proper justification. However,
their AI models failed to provide the reasons behind the classification/prediction and how
the classification decisions were made. Also, it is hard to know on what basis the AI model
is functioning and what aspects the model uses to determine the result. Because of the lack
of transparency and trustworthiness of these AI models, they are called black-box models,
and therefore, it is necessary to know the causes and effects of signal disruption or what
would happen if the signal attributes changed.

To solve this problem, XAI methods are used. These methods are very popular in the
AI community and very well-known for making decisions and understanding or detecting
the root cause of a correct/wrong prediction or classification in terms of all aspects [34–38].
XAI algorithms such as LIME and SHAP gained more attention because they can provide
an explanation of the prediction results of a variety of applications [39–43]. The pre-ad hoc
and post-ad hoc AI models mentioned in the literature, such as the saliency map [44], Grad-
CAM [45], DeepLIFT [46], and LRP [47], are applied in ML algorithms to provide more
informativeness and faithfulness in medical diagnostics and decision-making processes in
safety-critical autonomous systems [48]. To avoid potential failures in the GNSS positioning
and timing information, the XAI black-box revealer can be applied to retain the resilience
of Position, Navigation, and Timing (PNT)-dependent seamless services and operations.

3. GNSS Signal Disruption Simulation

The GNSS signal provides the position, velocity, and time (PVT) of the end user
anywhere on the globe using the satellite measurements of at least four satellites. For
this purpose, right-circularly polarized (RHCP) waves are continuously transmitted over
three carrier frequencies, L1, L2, and L5 (1575.42 MHz, 1227.6 MHz, and 1176.45 MHz),
respectively. The L1 and L2 carrier signals are modulated with binary phase shift keying
(BPSK) modulation and pseudorandom noise (PRN) codes known as the C/A code (coarse
and acquisition code) and the encrypted P(Y) code (precision code) [49]. The C/A codes
are applicable for dual-purpose use in terms of civilian and military applications. In
contrast, the P(Y) code is exclusively used by the US military and under the United States
Department of Defense’s authorization [49].

GNSS Signal Quality Monitoring Setup

In this paper, the GNSS signals are recorded using a Skydel simulated satellite signal,
represented in the form of in-phase (I) and quadrature-phase (Q) components. These signals
are combined using a 2:1 combiner with various types of signal disruption generated by the
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simulator’s advanced interference tool environment. The RTL-SDR RF front end is utilized
to digitize the signals at a specified sampling rate. To record the files, we can specify the
sampling frequency, centre frequency, duration of the recording, etc. The default settings
are a centre frequency of 1575.42 MHz, a sampling rate of 2.9 MSPS, 1024 samples per
frame, and a duration of 300 s. The file format is int16 in the baseband frequency, separated
into two .dat files, where each one is int8. The order of the signal recording is as follows:
the first file is the in-phase (I) samples, and the second one is the quadrature (Q) samples.
The total number of samples is 32,676, acquired in one millisecond, with a bandwidth of
2 MHz [50].

The digitized signals are then processed through GNSS receiver modules, including
acquisition, tracking, navigation solution, and position calculation. The experimental setup
for the GNSS signal under different disruptions is depicted in Figure 1a,b.
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The L1 GNSS signal is expressed by

SL1 = Ap·P(t)·D(t)·cos(2π f1t + φ) + Ac·C(t)·D(t)·sin(2π f1t + φ), (1)

where SL1, Ap, and P(t) denote the L1 signal frequency, the amplitude, and the phase of the
P(Y) code, respectively. D(t) corresponds to the navigation message, f1 is the frequency of
the L1 carrier, φ is the initial phase, and Ac and C(t) are the amplitude and phase of the
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C/A code, respectively. The nominal GNSS signal in the time domain, its spectrum, and its
spectrogram recorded through an RTL SDR are depicted in Figure 2a.
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Continuous Wave Interference (CWI)
The CWI-affected GNSS signal is given by

CWI = exp (j2π fcwt), (2)

where fcw and t represent the centre frequency and period of interference, respectively. The
CWI power level is varied from 10 to 60 dB and the centre frequency is set as 1575.42 MHz.
Plots of the signal simulation in the time and frequency domains, its spectrum, and the
spectrogram recorded for 25 dB can be seen in Figure 2b.

Pulse Interference
The pulse type of interference signal is denoted by

PI =
√

Pj pτ(t)⊗ ∑K
k=1 δ

(
t − k

frk

)
.exp

(
j2π f jkt

)
, (3)

where
√

Pj and pτ(t) are the signal power and the pulse signal of the duty cycle ( τ),
respectively. frjk is the pulse repetition frequency, δ is the Dirac pulse, and ⊗ is the
convolution operator. Here, the pulse repetition frequency is 10,000 Hz, the duty cycle
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is 20%, and the signal power is fixed at 25 dB to record the signals in both the time and
frequency domains, as shown in Figure 2c.

Chirp Interference (CI)
The mathematical expression for CI is given as follows:

CI = exp(2π
k
2

t2 + 2π f0t). (4)

A bandwidth of 10 MHz and a sweeping time of 100 µs are set to record all events
under chirp interference, as can be seen from Figure 2d.

4. Statistical Quality Assessment of GNSS Signal

In this study, we conducted a comprehensive analysis of GNSS signals by computing
both time and frequency domain attributes. The time domain features included the mean,
standard deviation, median, mean absolute deviation, root mean square error, 25th and 75th
percentiles, inter-percentile range, skewness, kurtosis, entropy, and maximum-to-mean
ratio. These time domain features were computed to capture the statistical properties of the
signal. These metrics offer clear information about the patterns, central tendency, variability,
distribution of power and shape of the spectrum in a specific band of interest, and overall
complexity of the signal.

4.1. Time Domain Features

The features in the time domain representation are identified based on the statistical
parameters computed below:

1. Mean:

The mean value of the samples of the GNSS signal is calculated as

Meanj =
1
n

n

∑
i=1

Xij

The mean is calculated as the mean value of the ith sample, where Xij is the jth feature
(or data point) of the ith sample, and n is the number of features (or data points) in each
sample.

2. Median:

Similarly, the median value is computed as

Medianj = Median(Xi1, Xi2, . . . . . . . . . Xin).

3. Standard Deviation:

Stdj =

√
1
n

n

∑
i=1

(
Xij − µj

)2

4. Mean Absolute Deviation:

MADj =
∑n

i=1
∣∣Xij − µj

∣∣
n

where n is the total number of data points in the dataset.

5. Root Mean Square Error:

RMSEj =

√
1
n

n

∑
i=1

(
Xij

)2

6. 25th Percentile:
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P25 = percentile(X, 25)

7. 75th Percentile:

P75 = percentile(X, 75)

8. Inter-percentile Range:

IPR = P75 − P25.

9. Skewness:

Skewnessj =
∑n

i=1 (X ij − X̂
)3

nσ3 .

10. Kurtosis:

Kurtosisj =
∑n

i=1 (X ij − X̂
)4

nσ4 .

11. Entropy:

Hj = −∑i P
(
xij

)
log2P

(
xij

)
.

12. Maximum-to-Mean Ratio (MTMR):

MTMRj =
max

(
xij

)
µ

.

Moreover, frequency domain features were calculated to examine spectral characteris-
tics. These include the normalized spectrum bandwidth, normalized spectrum kurtosis
(NSK), normalized spectrum flatness (NSF), the ratio of the variance to the squared mean
of the normalized spectrum (RVSM), single-frequency energy aggregation, and the ratio
of the maximum peak to the second maximum peak of the normalized spectrum (RMPS).
These features provide valuable information regarding the distribution of the signal power
across different frequency components, a measure of information, the shape of the spectrum
concerning the centre frequency, and a measure of the spectral shape and concentration.
The spectral domain features are listed in Section 4.2.

4.2. Frequency Domain Features

By finding the spectral content of the signal using the fast Fourier transform (FFT), the
following attributes were calculated:

1. Normalized Spectrum Bandwidth (NSBW):

NSBW =
fmax − fmin

fc
,

where fc is the centre frequency.

2. Normalized Spectrum Kurtosis (NSK):

NSK =
∑

f2
k= f1

( fk − Sc)
4
Pk

∑
f2
k= f1

Pks4
,
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where Sc is the spectral centroid. It is given by

Sc =
∑m

i=1 fkmi

∑m
i=1 mi

where f1 and f2 are the bounds of the frequency band, fk is the frequency, and Pk is the
normalized power and m-magnitude of the bin number.

3. Normalized Spectrum Flatness (NSF):

NSF =
exp

(
1
N ∑N

k=1 ln(X(k))
1
N ∑N

k=1(X(k))
,

where X(k) is the magnitude of the k-th frequency bin in the spectrum. N is the total
number of frequency bins.

4. Ratio of the Variance to the Squared Mean of the Normalized Spectrum (RVSM):

RVSM =
σ(X)(

∑N
k=1 X(k)

)2 ,

where X is the normalized spectrum, σ(X) is the variance of the normalized spectrum, and
N is the total number of elements in the normalized spectrum.

5. Single-Frequency Energy Aggregation (SFEA):

The summation of the squares of the Fourier transform coefficients results in an energy
aggregation given by

Etotal =
n

∑
i=1

|Xi|2

6. Ratio of the Maximum Peak to the Second Maximum Peak of the Normalised Spectrum
(RMPS):

First, find the index in the spectrum Xmax of the maximum peak in X: imax = argmax(X)
and remove the maximum peak from X, denoted as X’: X′ = X/{X[imax]}. Then, the sec-
ond peak is calculated as max(X′ ).

When computing the feature correlation using the Pearson correlation coefficient, the
closer the value is to +1, the better we can deduce from the plot that the feature being
considered is the feature most correlated with the target variable (response). The correlation
coefficient is defined as

r(a, b) =
∑n

i=1 (a i −
∼
a
)(

bi −
∼
b
)

√
∑n

i=1 (a i−
∼
a
)2

√
∑n

i=1 (b i−
∼
b
)2

, (5)

where the two attribute samples are denoted by ai and bi, and the mean values of the

samples are given as
∼
a and

∼
b . The correlation coefficient represents the degree of positive

or negative correlation between two variables, with its value ranging from −1.0 to +1.0.
the darker colours signify weaker correlations, while the lighter shades denote stronger
correlations. Figure 3a,b show the correlation maps of the weakly and strongly correlated
features of the deteriorated GNSS signal in both domains.
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Figure 4a illustrates the power levels of different types of interference versus six
frequency domain features. Notably, as the power level increases from 40 to 60 dB, there is
a sudden rise in the normalized spectral kurtosis value. For chirp-type interference, the
normalized spectral flatness, RVSM, and RMPS values are slightly elevated at mid-range
interference power levels.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 40 
 

 

  
(v) Spoofing  (vi) MP 

 
(vii) MCWI 

(b) 

Figure 3. (a) Correlation maps for time domain features (i) Clean GNSS (ii) Chirp (iii) Pulse (iv) 
CWI (v) Spoofing (vi) Multipath (vii) MCWI. (b) Correlation maps for frequency domain features 
(i) Clean GNSS (ii) Chirp (iii) Pulse (iv) CWI (v) Spoofing (vi) Multipath (vii) MCWI. 

Figure 4a illustrates the power levels of different types of interference versus six fre-
quency domain features. Notably, as the power level increases from 40 to 60 dB, there is a 
sudden rise in the normalized spectral kurtosis value. For chirp-type interference, the nor-
malized spectral flatness, RVSM, and RMPS values are slightly elevated at mid-range in-
terference power levels. 

  

Figure 4. Cont.



Sensors 2024, 24, 8039 14 of 39Sensors 2024, 24, x FOR PEER REVIEW 14 of 40 
 

 

  

  
(a) 

  

Figure 4. Cont.



Sensors 2024, 24, 8039 15 of 39Sensors 2024, 24, x FOR PEER REVIEW 15 of 40 
 

 

  

  

  

Figure 4. Cont.



Sensors 2024, 24, 8039 16 of 39Sensors 2024, 24, x FOR PEER REVIEW 16 of 40 
 

 

  

  
(b) 

Figure 4. (a) Frequency domain features at different jamming power levels, (b) Time domain fea-
tures under various jamming power levels. 

In contrast, the frequency domain feature, depicted in Figure 4b, shows a spurious 
peak in the mean value for pulse-type interference around a 30 dB interference power 
level. Additionally, features such as the Root Mean Square (RMS), 75th percentile, inter-
percentile range, entropy, and skewness exhibit a reduction in values compared to other 
types of interference. The kurtosis value for pulse-type interference varies significantly, 
whereas it remains constant for other types of interference. 

The next step was to decide on the best choice among two signal domain attributes, 
primarily depending on how well each set of features could distinguish between the dif-
ferent signal types. The statistical analysis has been made for both time and frequency 
domain attributes of various GNSS signal categories. We conducted a p-test to evaluate 
the normality of the signals. The null hypothesis of the p-test of the residuals follows a 
normal distribution. Usually, the hypothesis is rejected if a p-value is less than 0.05. To 
visualize the results, a box-and-whisker plot of the p-values is plotted in Figure 5 for 25.6 
s of data for each signal. 

The black line of the box-and-whisker plot represents the median p-value that indi-
cates the degree of normality. Based on the level of significance, the p-value is set to 0.05, 
denoted by a red dashed line. This confirms a high likelihood chance that the distribution 
is not normal below this value. The p-value is greater than 0.05, revealing that the residuals 
tend to follow a normal distribution. It is observed, based on the analysis, that the time 
domain attributes generally behave as normal distributions, and it is very difficult to find 

Figure 4. (a) Frequency domain features at different jamming power levels, (b) Time domain features
under various jamming power levels.

In contrast, the frequency domain feature, depicted in Figure 4b, shows a spurious
peak in the mean value for pulse-type interference around a 30 dB interference power level.
Additionally, features such as the Root Mean Square (RMS), 75th percentile, inter-percentile
range, entropy, and skewness exhibit a reduction in values compared to other types of
interference. The kurtosis value for pulse-type interference varies significantly, whereas it
remains constant for other types of interference.

The next step was to decide on the best choice among two signal domain attributes,
primarily depending on how well each set of features could distinguish between the
different signal types. The statistical analysis has been made for both time and frequency
domain attributes of various GNSS signal categories. We conducted a p-test to evaluate the
normality of the signals. The null hypothesis of the p-test of the residuals follows a normal
distribution. Usually, the hypothesis is rejected if a p-value is less than 0.05. To visualize
the results, a box-and-whisker plot of the p-values is plotted in Figure 5 for 25.6 s of data
for each signal.
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Figure 5. Boxplot comparison of different disruptions in GNSS signals based on p-values.

The black line of the box-and-whisker plot represents the median p-value that indicates
the degree of normality. Based on the level of significance, the p-value is set to 0.05, denoted
by a red dashed line. This confirms a high likelihood chance that the distribution is not
normal below this value. The p-value is greater than 0.05, revealing that the residuals
tend to follow a normal distribution. It is observed, based on the analysis, that the time
domain attributes generally behave as normal distributions, and it is very difficult to find
significant deviations. Therefore, the time domain attribute may not be an ideal choice
for analyzing GNSS signal disruption using ML techniques. On the other hand, the p-
values in the frequency domain for most GNSS signal categories were below 0.05 except
for pulse, indicating deviations from normality and providing more promising information
for analysis.

5. XAI Analysis for GNSS Signal Disruption Classification
5.1. Data Preparation

The dataset recorded from the Skydel simulator containing I and Q raw data was
processed based on user-defined specifications from the RF front end. The samples were
then prepared in both domains: the time domain and the frequency domain (by computing
the FFT). As described in the previous section, the statistical features were generated and
pre-processed (removing the missing values and duplicate records). The resulting dataset
was subsequently partitioned into training and testing datasets.

5.2. ML Algorithm Training and Testing

The proposed model architecture for GNSS signal abnormality classification is depicted
in Figure 6. In this work, five types of ML black-box models were employed to classify
different types of signal disruptions in GNSS signals. Alongside these, a model explanation
framework using LIME and SHAP was developed in parallel, with the sophisticated
capabilities of this model explanation being feature contributions, an importance plot, a
SHAP force plot, LIME model explanations, the best-suited features only being selected
for training, and the redundant features and least important features being eliminated.
The evaluation metrics are compared with traditional feature selection and elimination
methods Principle Component Analysis (PCA, backward and forward selection methods).
The redundant and unimportant features are neglected, and only the most important
features are chosen for training. Then, based on the evaluation metrics (accuracy, precision,
recall, F1-score, and Receiver Operating Characteristic ROC), the best-performing ML
model was selected. Finally, knowing the cause of not predicting a particular class and the
significance of the most trustworthy features for predicting the undesirable event would be
helpful in analyzing the catastrophic failures in the GNSS ground-station data collection
system so that the end user can take precautionary measures based on where exactly the
signal quality is degraded and what factors contribute to its abnormal behaviour in the
earlier stage before it is subjected to the post-processing stage. The ML models alone failed
to capture the relationship between the features when it came to predicting abnormal
behaviours in adverse conditions under jamming and spoofing signal attacks. However,
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this XAI framework helped to identify the irregularities, making it possible to investigate
and respond quickly based on the explanations associated with the features in safety-critical
operations.
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Figure 6. The proposed XAI framework-based GNSS signal disruption classification model.

The collected GNSS data have a duration of 40 s. A training-validation-testing split of
64-16-20% is chosen in this work. Each millisecond of data consists of 32,676 samples. We
have used 25.6 s of data for training, which is 80% of 32 s of data, and 6.4 s of data are used
for the validation phase. The remaining 20% of the total data, with a duration of 8 s, are
used for the testing phase.

5.3. Local Explanations Results—LIME Technique

The prediction outputs of various ML algorithms are analyzed using the LIME model,
which generates the local explanations by approximating the ML model’s output with
an interpretable result based on the class prediction probabilities. The explanations for
the predictions of the DT, KNN, AdaBoost, RF, and SVM models using the frequency
domain features are shown in Figure 7a. For a specific sample in the test dataset, the
model correctly predicted the class as spoofing, as the most important features for this
sample are ‘normalized spectrum kurtosis’ and ‘single-frequency energy aggregation’ have
more positive values that are the reason why the model correctly predicted the sample
as spoofing. From the results, it is evident that the total value of features confirming
that it is a spoofing category is greater than that of non-spoofing features. Therefore, the
model correctly predicted this sample as spoofing. On the other hand, using the AdaBoost
algorithm, the prediction probability of the testing instance appears to be 33% for MP
and MCWI; this ambiguity led to inaccurate results despite the sample belonging to the
spoofing category. The performance metrics of ML models using the LIME framework
are given in Table 1a. Among all models, the SVM has the highest prediction results, and
AdaBoost showed poor performance.
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Figure 7. (a) Frequency domain LIME model decision for correct/incorrect predictions of GNSS sig-
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different ML models: (i) Decision tree, (ii) AdaBoost, (iii) KNN, (iv) Random forest, and (v) SVM. 

Figure 7. (a) Frequency domain LIME model decision for correct/incorrect predictions of GNSS
signal for different ML models (i) Decision tree, (ii) AdaBoost, (iii) KNN, (iv) Random forest, and
(v) SVM. (b) Time domain LIME model decision of correct/incorrect predictions of GNSS signal for
different ML models: (i) Decision tree, (ii) AdaBoost, (iii) KNN, (iv) Random forest, and (v) SVM.



Sensors 2024, 24, 8039 20 of 39

Table 1. (a) Overall performance of the LIME model in the frequency domain using top six features.
(b) Overall performance of LIME model on time domain using top 12 features.

(a)

AI Model Accuracy Precision Recall F1-Score

DT 74 74 75 74
RF 75 75 75 75
KNN 79 79 79 79
SVM 81 82 81 81
AdaBoost 29 29 43 33

(b)

AI Model Accuracy Precision Recall F1-Score

DT 66 65 64 65
RF 71 73 72 73
KNN 41 41 41 43
SVM 16 12 16 6
AdaBoost 57 48 57 50

The prediction results of choosing all 12 features in the time domain using LIME are
shown in Figure 7b. The RF model has the highest prediction accuracy of 71%, followed
by DT and SVM. These models correctly predicted the class as MCWI, whereas other ML
models could not be able to give the correct prediction. However, compared to frequency
domain attributes, the performance of the ML model is significantly lower because most
of the time, domain characteristics of the signal make it very difficult to distinguish the
temporal relationships across the categories such as the multipath, spoofing, and clean
signals, as these signal characteristics are highly similar in the time domain.

Table 2a shows the ML models’ performances based on the predicted label on the nth

instance for the corresponding test sample using all six features in the dataset using the
LIME algorithm. Here, there is difficulty in predicting the clean signal, as can be seen from
the outputs of all the ML models. The AdaBoost model could not predict the MP, MCWI,
clean, and spoofing signals correctly and failed in predicting all instances. RF has superior
performance in predicting all kinds of interference, except chirp. Compared to all models,
the SVM provided better metrics.

Table 2. (a): Results of ML models’ prediction performances using frequency domain feature selection
method on GNSS dataset under k = 6. (b): Results of ML models’ prediction performances using time
domain feature selection method on GNSS dataset under k = 12.

(a)

AI Model Class Precision Recall F1-Score

DT

MCWI 100 100 100
MP 100 97 99
Chirp 19 23 20
Clean 3 3 3
CWI 100 100 100
Pulse 100 100 100
Spoofing 98 100 99

RF

MCWI 100 100 100
MP 100 97 99
Chirp 80 70 80
Clean 16 17 17
CWI 100 100 100
Pulse 100 100 100
Spoofing 98 100 99
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Table 2. Cont.

(a)

AI Model Class Precision Recall F1-Score

KNN

MCWI 100 100 100
MP 100 97 99
Chirp 31 35 33
Clean 26 23 24
CWI 100 100 100
Pulse 100 100 100
Spoofing 98 100 99

SVM

MCWI 91 100 95
MP 100 97 99
Chirp 50 68 57
Clean 38 33 35
CWI 100 72 84
Pulse 100 97 99
Spoofing 98 100 99

AdaBoost

MCWI 0 0 0
MP 0 0 0
Chirp 50 100 67
Clean 0 0 0
CWI 100 100 100
Pulse 50 100 67
Spoofing 0 0 0

(b)

AI Model Class Precision Recall F1-score

DT

MCWI 100 99 100
MP 99 100 99
Chirp 100 100 100
Clean 100 100 100
CWI 100 100 100
Pulse 100 100 100
Spoofing 100 100 100

RF

MCWI 100 100 100
MP 100 97 99
Chirp 80 70 80
Clean 16 17 17
CWI 100 100 100
Pulse 100 100 100
Spoofing 98 100 99

KNN

MCWI 34 39 36
MP 27 43 33
Chirp 40 42 41
Clean 26 25 26
CWI 99 91 95
Pulse 42 31 36
Spoofing 30 17 22

SVM

MCWI 0 0 0
MP 32 4 8
Chirp 0 0 0
Clean 28 6 9
CWI 100 72 84
Pulse 6 1 1
Spoofing 98 100 99

AdaBoost

MCWI 33 99 50
MP 0 0 0
Chirp 4 12 14
Clean 0 0 0
CWI 100 100 100
Pulse 100 100 100
Spoofing 0 0 0

Table 2b gives a quantitative assessment of the ML model performance on LIME,
which is essential for comparing the effectiveness across various scenarios. When it comes
to the time domain features, the DT and RF models performed exceptionally well; in fact,
the robustness and reliability of the model results can be seen in several cases with a
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perfect score of 100%. However, looking into the KNN and SVM models showed significant
variability in some conditions; they also achieved very low accuracy, recall, and F1-score
values. AdaBoost completely failed to provide the correct signal prediction for the MP and
spoofing signals but performed well in other categories.

5.4. Local Explanations Results—SHAP Technique

SHAP is a black-box mathematical model revealer that can uncover the hidden opera-
tions in the outcome of any ML model. The explanation of the output of the ML model is
governed by the game theory concept; it involves finding each feature’s contribution to
the prediction. This method provides interpretability and explainability in both formats:
global and local contexts. The Shapley value, which is fundamental to this approach,
reflects the average expected marginal contribution of a feature across all possible feature
combinations.

The impact of the most significant feature and its contribution to the prediction is
governed by the following equation [34]:

φj(val) = ∑S⊆{x1,.....xp}\{xj}
|S|! (p − |S| − 1)!

p!
(
val

(
S ∪

{
xj
})

− val(S)
)

(6)

The term φj ∈ R represents the Shapley value for feature j. S ∈ {0, 1} denotes the subset
of features included in the model, x is the vector of feature values for the instance being
explained, p is the total number of features, val(S) is the prediction for the feature values in
set S, marginalized over the features not included in S.

The XAI method is applied to all ML models, and based on the SHAP algorithm,
the prediction of each class is computed; the influences of these individual features are
plotted in ascending order in Figure 8a. For the frequency domain features, the normalized
spectral kurtosis has provided the dominant value, followed by single-frequency energy
aggregation, and the least important features are identified as the ratio of the minimum peak
to the maximum normalized peak and the normalized spectral bandwidth. Similarly, for the
time domain attributes, entropy and the root mean square error have played a significant
role in predicting the output classes. The less important features are the skewness, median,
maximum-to-mean ratio, and mean absolute deviation, which contributed very little to the
prediction. A feature ranking based on the relative importance is given in Table 3a.
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Figure 8. (a) Feature contributions based on frequency domain attributes: (i) decision tree, (ii) Ada-
Boost, (iii) KNN, (iv) random forest, and (v) SVM. (b) Plots of contributions of combinations of time 
domain features for different types of GNSS signal disruptions: (i) decision tree, (ii) AdaBoost, (iii) 
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Table 3. (a) Relative frequency domain feature importance (feature ranking). (b) Relative time do-
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The SHAP value of the RF model’s output explains how the time and frequency do-
main features impact the output of the model. In Figure 8b, the impacts of the features on 

Figure 8. (a) Feature contributions based on frequency domain attributes: (i) decision tree, (ii) Ad-
aBoost, (iii) KNN, (iv) random forest, and (v) SVM. (b) Plots of contributions of combinations of
time domain features for different types of GNSS signal disruptions: (i) decision tree, (ii) AdaBoost,
(iii) KNN, (iv) random forest, and (v) SVM.

Table 3. (a) Relative frequency domain feature importance (feature ranking). (b) Relative time domain
feature importance (feature ranking).

(a)

Feature DT RF KNN SVM AdaBoost Average Rank

Normalized spectrum kurtosis 1 1 1 1 2 1 1
Ratio of the variance to the squared
mean of the normalized spectrum 6 2 4 3 1 2.6 3

Normalized spectrum flatness 2 4 3 4 4 2.83 3
Ratio of the maximum peak to the
second maximum peak of the
normalized spectrum

5 6 5 5 5 4.3 4

Normalized spectrum bandwidth 3 5 6 6 6 4.3 4
Single-frequency energy aggregation 4 3 2 2 3 2.3 2

(b)

Feature DT RF KNN SVM AdaBoost Average Rank

Mean 10 10 3 2 12 7.4 7
Median 9 9 2 3 11 6.8 7
Standard deviation 5 5 8 12 4 6.8 7
Mean absolute deviation 8 12 1 1 10 6.4 6
Root mean square error 1 2 7 4 6 4 4
25th percentile 9 6 6 6 1 5.6 6
75th percentile 6 7 4 5 9 6.2 6
Inter-percentile range 3 4 5 7 8 5.4 5
Skewness 8 8 9 8 3 7.2 7
Kurtosis 2 3 11 9 2 5.4 5
Entropy 4 1 10 10 5 6 6
Maximum-to-mean ratio 7 11 12 11 7 9.6 10

The SHAP value of the RF model’s output explains how the time and frequency
domain features impact the output of the model. In Figure 8b, the impacts of the features
on the GNSS signal disruption classes are stacked to create a feature importance plot. The
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summary plot for multiclass classification illustrates what the XAI model has learned from
these features.

While analyzing the frequency domain features, except for KNN, RF, and other ML
algorithms, the prediction of the model is determined by more than three features. For
a clean signal, spectral flatness contributes the most. In a multipath signal, all features
contribute equally except the normalized spectrum bandwidth and the ratio of the maxi-
mum peak to the second maximum peak of the normalized spectrum. For a pulse signal,
spectral kurtosis is the most significant contributor. The least important feature is identified
as the normalized spectrum bandwidth for the spoofing category. The plot shows that the
normalized spectrum bandwidth has a greater contribution compared to other features.
In both the CWI and MCWI cases, all features contribute equally, except the normalized
spectrum bandwidth.

Table 3b shows the feature ranking based on the SHAP algorithm. The majority of
features are ranked between fourth and tenth; therefore, there is no combined effect of
picking the best-matched features after fine-tuning the ML models’ hyperparameters (DT:
maximum depth from 4–50, minimum leaf samples from 5–20; RF: maximum depth from
5–50, number of estimators from 50–150; KNN: no. of neighbours from 4–10, leaf size from
5–50; SVM: regularization parameters 1–10, radial basis function, linear kernel; AdaBoost:
depth from 5–50). Selecting the dominating attributes collectively is unreliable for the time
domain features since every machine learning model generates a distinct rating.

Based on the order of attributes, the time domain feature importance plot is shown;
we can see that the class CWI hardly uses the median, skewness, mean, max.-to-mean
ratio, and mean absolute deviation. Additionally, the pulse and chirp classes use the same
features. Kurtosis contributed significantly to the MCWI signal, which is why confusion
arises between these classes relatively often. In order to separate the MP and clean signal
types in a better way, new features need to be generated that are uniquely dedicated to dis-
tinguishing these classes. The normalized spectrum kurtosis has contributed significantly
more, followed by single-frequency energy aggregation. For testing on all ML models, the
ratio of the maximum peak to the second maximum peak of the normalized spectrum did
not show much importance at all. For the time domain features, the mean, median, and
maximum-to-mean ratio also do not contribute to the model’s prediction. A comparison of
all models in both the time and frequency domains is depicted in Figure 9a,b.

The mean, median, 75th percentile and maximum-to-mean ratio are the least important
features, and most of the attributes for ML models in the time domain are not utilized to
predict the output. The mean absolute deviation is the only feature used in KNN. In the
frequency domain, the normalized spectrum kurtosis is used by most of the ML models,
as shown earlier in the feature importance plot; also, the ratio of the maximum peak to
the second maximum peak of the normalized spectrum has not been considered much in
forecasting the results of the model.

In this work, initially, the global SHAP values for all ML models are calculated;
then, the feature importance is computed by multiplying the SHAP value with the model
accuracy for each feature. Finally, we determine the overall average ranking across models.
The frequency domain feature values are chosen from the initial value for the top k features.
The metrics of all ML models show that a suitable performance can be obtained by selecting
only the top four features and removing two unimportant features, resulting in the same
performance, as can be seen in Table 4a. There is not much improvement in choosing more
than four attributes; therefore, the last two features did not considerably improve the model
performance.
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Similarly, the time domain features are also used to evaluate the model’s performance,
and there is no change in the accuracy value after increasing the feature values beyond K = 6;
the RF model gives a good performance compared to the other models. Table 4b shows the
effectiveness of top features in classifying the types of disruption. For the most important
features, using traditional feature engineering, the model behaviour is not interpreted with
respect to the types of disruption.

The features are ordered by their importance for each category of jamming instances
using the summary plot in order to jointly analyze the feature importance and feature
effects. Each point represents a Shapley value for a feature and an instance. The position on
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the y-axis corresponds to the attributes, and the x-axis specifies the Shapley value, with the
colours indicating the feature values from low (blue) to high (red). A positive value pushes
the prediction value higher, and negative values lower the prediction. The summary plots
in Figure 10a show that the mean absolute deviation, being the least important feature, has
low Shapley values for CWI and chirp interference. For MP and spoofing, the following
features have no impact: the mean, mean absolute deviation, maximum-to-mean ratio,
median, and skewness.

Table 4. (a) ML models’ performance results using different top ‘k’ frequency domain feature selection
methods on GNSS dataset. (b) ML models’ performance results using different top ‘k’ time domain
feature selection methods on GNSS dataset.

(a)

No. of Features Metric DT RF KNN SVM AdaBoost

K = 1

Accuracy 0.4500 0.2857 0.4750 0.4607 0.4223
Precision 0.4524 0.1667 0.5125 0.3794 0.3901
Recall 0.4500 0.2857 0.4750 0.4607 0.4356
F1-score 0.4504 0.1837 0.4852 0.3719 0.3421

K = 2

Accuracy 0.9750 0.7143 0.9786, 0.8250 0.5682
Precision 0.9763 0.5656 0.9798 0.8558 0.5321
Recall 0.9750 0.7143 0.9786 0.8250 0.5789
F1-score 0.9749 0.6172 0.9785 0.8158 0.5971

K = 3

Accuracy 0.9867 0.8571 0.9788 0.9250 0.6210
Precision 0.9244 0.7667 0.9425 0.9384 0.6535
Recall 0.9462 0.8571 0.9532 0.9250 0.7152
F1-score 0.9764 0.8023 0.9642 0.9234 0.7543

K = 4

Accuracy 0.9899 0.9672 0.9635 0.9964 0.6458
Precision 1 0.9989 0.9785 0.9965 0.7342
Recall 1 1 0.9826 0.9964 0.6735
F1-score 1 1 1 0.9964 0.7211

K = 5

Accuracy 1 0.9929 1 0.9964 0.6712
Precision 1 0.9932 1 0.9965 0.7443
Recall 1 0.9929 1 0.9964 0.6990
F1-score 1 0.9929 1 0.9964 0.7124

K = 6

Accuracy 1 0.8571 1 0.9250 0.6876
Precision 1 0.7667 1 0.9384 0.7342
Recall 1 0.8571 1 0.9250 0.6735
F1-score 1 0.8023 1 0.9234 0.7211

(b)

No. of Features Metric DT RF KNN SVM AdaBoost

K = 1

Accuracy 0.6250 0.5714 0.7036 0.4286 0.3246
Precision 0.6252 0.4048 0.7038 0.1917 0.0869
Recall 0.6250 0.5714 0.7036 0.4286 0.3458
F1-score 0.6243 0.4524 0.7026 0.2633 0.3675

K = 2

Accuracy 0.4524 0.5714 0.7036 0.4571 0.4412
Precision 0.6252 0.4048 0.7038 0.2489 0.2357
Recall 0.6250, 0.5714 0.7036 0.4571 0.4043
F1-score 0.6243 0.4524 0.7026 0.3205 0.3215

K = 3

Accuracy 0.7500, 0.8536 0.7786 0.7786 0.6548
Precision 0.7489 0.7822 0.7786 0.7313 0.5436
Recall 0.7500 0.8536 0.7786 0.7786 0.4265
F1-score 0.7494 0.8060 0.7785 0.7262 43,445

K = 4

Accuracy 0.7480, 0.8536 0.7786 0.8250 0.6550
Precision 0.7421 0.7822 0.7782 0.7576 0.5436
Recall 0.7464 0.8536 0.7786 0.8250 0.4336
F1-score 0.7439 0.8060 0.7783 0.7772 0.4987
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Table 4. Cont.

(b)

No. of Features Metric DT RF KNN SVM AdaBoost

K = 5

Accuracy 0.7480 0.8393 0.7786 0.7750 0.6548
Precision 0.7394 0.7692 0.7588 0.7740 0.5436
Recall 0.7464 0.8393 0.8286 0.7750 0.4265
F1-score 0.7425 0.7916 0.7809 0.7741 43,445

K = 6

Accuracy 0.7464 0.8429 0.7750, 0.8286 0.6753
Precision 0.7394 0.7727 0.7740 0.7588, 0.5964
Recall 0.7464, 0.8429 0.7750 0.8286 0.4413
F1-score 0.7425 0.7952 0.7741 0.7809 0.4842

K = 7

Accuracy 0.7464 0.8429 0.7750 0.8286 0.6759
Precision 0.7394 0.7727 0.7740 0.7588 0.61225
Recall 0.7464 0.8429 0.7750 0.8286 0.6709
F1-score 0.7425 0.7952 0.7741 0.7809 0.4007

K = 8

Accuracy 0.7464 0.8429 0.7750 0.8286 0.6986
Precision 0.7394 0.7727 0.7740 0.7588 0.6543
Recall 0.7464 0.8429 0.7750 0.8286, 0.6709
F1-score 0.7425 0.7952 0.7741 0.7809 0.4346

K = 9

Accuracy 0.7464 0.8429 0.7750 0.8286 0.6986
Precision 0.7394 0.7727 0.7740 0.7588 0.6543
Recall 0.7464 0.8429 0.7750 0.8286 0.6709
F1-score 0.7425 0.7952 0.7741 0.7809 0.4346

K = 10

Accuracy 0.7464 0.8429 0.7750 0.8286 0.6986
Precision 0.7394 0.7727 0.7740 0.7588 0.6543
Recall 0.7464 0.8429 0.7750 0.8286 0.6709
F1-score 0.7425 0.7952 0.7741 0.7809 0.4346

K = 11

Accuracy 0.7464 0.8429 0.7750 0.8286 0.6986
Precision 0.7394 0.7727 0.7740 0.7588 0.6543
Recall 0.7464 0.8429 0.7750 0.8286 0.6709
F1-score 0.7425 0.7952 0.7741 0.7809 0.4346

K = 12

Accuracy 0.7464 0.8429 0.7750 0.8286 0.6986
Precision 0.7394 0.7727 0.7740 0.7588 0.6543
Recall 0.7464 0.8429 0.7750 0.8286 0.6709
F1-score 0.7425 0.7741 0.7809 0.7862 0.4346

In Figure 10b, the summary plot illustrates that the least significant feature is the
RMPS, with low Shapley values, for the CWI and spoofing categories. The chirp interfer-
ence summary plot indicates that single-frequency energy aggregation and normalized
spectrum kurtosis have a more neutral effect on the model’s predictions, and features like
the normalized spectrum bandwidth and the ratio of the variance to the squared mean of
the normalized spectrum have a significant impact. The dispersion of points also shows
how different features have an impact on various cases.

The outcome of a SHAP model with a clear explanation for a specific GNSS signal
type is visualized in Figure 11a,b in the form of a force plot. An illustration of a signal
model prediction is displayed here, identifying the individual features’ contributions and
providing an error analysis of signal disruption. The base value is fixed as 0.142, and the
predicted value comes closer by 0.12 for a pulse signal, where the standard deviation had
higher values, and the rest of the features had much lower values. For chirp and MCWI,
kurtosis is a common feature that pushed the model to a lower score. In the case of MP, all
features pushed in the positive direction, but kurtosis played a dominant role in correct
prediction. Conversely, for the spoofing signals, most of the features are located below the
base value of 0.148, pushing the model toward a lower prediction value of 0.05. The force
plot for chirp interference reveals that it significantly pushes the prediction higher with a
contribution of +0.15, while kurtosis reduces it by −0.0235, resulting in a final prediction
of 0.1735. Similarly, in the MCWI case, kurtosis also contributed very little. In contrast,
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most of the features help to predict the multipath instance, and none of the features are
important for predicting the spoofing instance.
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Figure 10. (a) Waterfall summary plots (time domain), (i) Pulsed; (ii) CWI; (iii) MCWI; (iv) MP; (v)
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The pulse signal prediction is based on all strongly correlated features that are above
the base value of 0.142, whereas for the CWI signal, only two features (single-frequency
energy aggregation and normalized spectral kurtosis) lie above the base value of 0.1425.
The clean and chirp signals are similar to each other, with the normalized spectral kurtosis
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pushing the model to a higher score. Most of the features contributed to MP prediction
since all predicted values are above the base value to yield the correct occurrence.

The One-vs-the-Rest (OvR) multiclass technique, commonly referred to as one-vs-all,
is used to compute the area under the curve (AUC) for all machine learning models. To do
this, an ROC curve must be computed for every GNSS signal class. In each iteration, one
class is considered the positive class, and the other is regarded as the negative class. In the
combined way, the classes are framed, and to consider every class equally, the metrics for
each class are determined separately, and finally, we average them. By using these steps,
the false positive and true positive rates of each class are aggregated based on the following
equations:

TPR = ∑i
TPi

TPi + FNi
, (7)

FPR = ∑i
FPi

FPi + TNi
. (8)
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Figure 11. (a) SHAP force plots for GNSS time domain features, From top: (i) pulse, (ii) CWI,
(iii) clean, (iv) chirp, (v) MCWI, (vi) multipath, and (vii) spoofing signals. (b) SHAP force plots for
GNSS frequency domain features. From top: (i) pulse, (ii) CWI, (iii) clean, (iv) chirp, (v) MCWI,
(vi) multipath, and (vii) spoofing signals.

The KNN performs best in detecting clean signals by plotting the ROC curve with a
score of 96, whereas other ML models such as RF, SVM, and AdaBoost performs closely
around 90 while the DT lags with 42. For CWI detection, RF shows superior performance
with 83, the SVM provides marginal performance around 55, and AdaBoost is the lowest
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at 33. The model’s ability is determined based on the area under the curve and how the
model distinguishes between different classification categories, as shown by the ROC curve
in Figure 12. The clean signal has occupied the highest area for most of the ML algorithms.
For the AdaBoost, RF, and SVM algorithms, the model assigned a lower probability to the
positive values, flipping the labels of the negative class and resulting in a lower area for the
categories of MP and spoofing. The ROC plots for all categories are shown in Figure 12.

Sensors 2024, 24, x FOR PEER REVIEW 35 of 40 
 

 

 

  
(a) Decision Tree (b) Random Forest 

  
(c) KNN (d) SVM 

 
(e) AdaBoost 

Figure 12. ROC one-vs-rest multiclass plot of machine learning models tested under different GNSS 
signal disruptions. 

As per the frequency domain features, the classification of signal disruptions is eval-
uated in the form of a confusion matrix, as shown in Figure 13. The AdaBoost algorithm 
completely misclassifies the clean and multipath signals. The occurrence of this false clas-
sification between the MP and clean signals is due to similar kinds of signal characteristics 
in the frequency domain features, as the model should be able to capture any dissimilari-
ties in the spectra of both disruptions. This instance is handled using the DT, Random 
Forest, KNN and SVM algorithms with more than 40% error. 

  

Figure 12. ROC one-vs-rest multiclass plot of machine learning models tested under different GNSS
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As per the frequency domain features, the classification of signal disruptions is eval-
uated in the form of a confusion matrix, as shown in Figure 13. The AdaBoost algorithm
completely misclassifies the clean and multipath signals. The occurrence of this false classi-
fication between the MP and clean signals is due to similar kinds of signal characteristics in
the frequency domain features, as the model should be able to capture any dissimilarities
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in the spectra of both disruptions. This instance is handled using the DT, Random Forest,
KNN and SVM algorithms with more than 40% error.
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Table 5 shows the results of feature selection using SHAP compared with other tradi-
tional feature selection methods; here, the optimal ‘k’ feature value is chosen as 4, based on
the top features that are more trustworthy in classifying the instances correctly. Using the
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SVM method, SHAP has shown the leading performance when classifying the different
GNSS signal disruptions. Other than the chirp signal, most of the signals are correctly
classified, but when other feature selection/elimination methods are applied, the clean
and spoofing signals are not properly classified. The superiority of the SHAP-based novel
feature selection method can be seen in Table 5. The DT and KNN ML models, for most of
the labels, classify the signal correctly, but when traditional methods are applied, the per-
formance metrics are lower. For RF and KNN, our feature selection methods show the best
performance, along with other feature reduction methods. Finally, for AdaBoost, the overall
accuracy decreases under our methods; however, other performance metrics (precision,
recall, and F1-score) increase for detecting the abnormalities in the signal classification.

Table 5. Results per class for every feature selection method under k = 4.

Model Class SHAP PCA Backward Elimination Forward Selection

DT

Metric Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1
MCWI 100 100 100 100 97 95 97 92 97 95 97 92 97 95 97 92
MP 95 100 97 99 98 89 91 90 98 89 91 90 98 89 91 90
Chirp 24 19 23 20 21 19 21 20 23 17 32 23 25 22 26 23
Clean 72 76 78 83 82 18 12 12 12 18 15 12 16 22 23 09
CWI 100 100 100 100 98 88 90 93 98 88 90 93 98 88 90 83
Pulse 100 100 100 100 97 76 81 90 97 76 81 90 97 72 80 79
Spoofing 98 98 100 99 97 95 97 92 97 95 97 92 97 95 97 92

RF

MCWI 94 97 93 97 98 89 91 90 98 89 91 90 98 89 91 90
MP 98 100 97 99 95 94 92 91 88 93 92 89 90 91 88 86
Chirp 98 80 70 80 72 76 71 76 67 66 63 61 60 65 66 67
Clean 19 16 17 17 18 13 17 15 12 13 15 12 12 13 13 11
CWI 100 100 100 100 97 76 81 90 97 76 81 90 97 76 81 90
Pulse 100 100 100 100 97 95 97 92 97 95 97 92 97 95 97 92
Spoofing 98 98 100 99 98 89 91 90 98 89 91 90 98 89 91 90

KNN

MCWI 100 100 100 100 93 85 87 80 81 64 72 72 77 75 75 72
MP 99 100 97 99 95 88 87 80 75 65 64 60 61 64 66 63
Chirp 37 31 35 33 34 32 24 24 29 31 33 29 30 28 29 33
Clean 27 26 23 24 32 37 31 24 19 19 24 21 20 27 32 35
CWI 100 100 100 100 95 94 93 90 94 78 73 71 68 72 73 78
Pulse 100 100 100 100 97 94 93 90 89 91 89 88 79 81 80 81
Spoofing 100 98 100 99 87 97 95 93 71 75 73 74 70 71 72 71

SVM

MCWI 95 91 100 95 75 65 75 79 70 68 69 78 64 61 56 64
MP 96 100 97 99 98 88 90 82 80 88 81 79 79 88 79 79
Chirp 65 50 68 57 97 76 81 90 97 76 81 90 97 76 81 90
Clean 34 38 33 35 97 95 97 92 97 95 97 92 97 95 97 92
CWI 87 100 72 84 98 89 91 90 98 89 91 90 98 89 91 90
Pulse 98 100 97 99 78 76 72 70 67 69 73 72 77 74 77 71
Spoofing 97 98 100 99 84 74 75 77 86 81 71 69 73 76 77 72

AdaBoost

MCWI 25 23 26 23 24 25 24 19 22 21 24 23 27 22 24 26
MP 45 46 45 15 44 32 37 39 42 41 32 33 39 41 40 34
Chirp 53 50 100 67 53 54 51 43 44 35 45 32 48 42 43 35
Clean 54 56 45 55 54 52 41 44 50 43 47 42 43 41 39 38
CWI 56 54 56 45 45 51 42 41 44 48 50 46 52 43 39 44
Pulse 49 50 65 67 53 54 56 47 45 56 54 50 54 52 46 46
Spoofing 51 56 54 45 59 46 46 43 34 43 34 44 41 43 42 39

6. Discussion
Major Findings and Future Scope

The study discussed in this paper primarily focused on the effectiveness and in-
terpretability of employing ML algorithms and using XAI techniques for GNSS signal
classification and detection tasks. The results demonstrated that ML models performed
at the average level for signal classification; however, the decision-making process of
the model was entirely dependent on interpretability and finding the inner relationship
between the features. By incorporating the LIME and SHAP algorithms into feature impor-
tance and model predictions, improved transparency and easier model understanding can
be achieved. Furthermore, the research findings demonstrated that the model’s prediction
effectively leveraged domain knowledge and created causal relationships, leading to an
enhanced comprehension of the attributes influencing abnormal behaviour in the data.
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Overall, the results showed that anomaly detection can be performed in a better way, and
the system has the ability to grasp different behaviours in the data when the ML algorithms
are combined with explainability techniques.

The major challenges in classifying the GNSS signals captured in a real-time scenario
were that it was completely different from the simulation environment, and the signal
reception could be completely deteriorated by narrow-band and wide-band interference [5].
Furthermore, in an urban short-delay MP environment, from analyzing the time domain
characteristics, it is very difficult to understand the inner relationship between the signal
attributes in the MP scenario. Similarly, the frequency domain characteristics also failed to
capture the variations in the spectrum of the pure GNSS and MP categories. Analyzing
characteristics from both domains may not be sufficient to identify the abnormalities in the
signal. Based on the spectrogram/scalogram image features, it may be possible to find the
differences concerning time and frequency observations by using advanced XAI techniques
such as saliency maps or the GradCAM and EigenCAM models, which would be helpful in
analyzing the variations in the signal behaviour effectively.

7. Conclusions

Our research enabled an accurate classification of GNSS signal disruptions using XAI
techniques on top of ML models. The significance of time and frequency domain features
was considered to enhance the understanding of GNSS signal behaviour under different
conditions. Moreover, accurate positioning can be achieved effectively by utilizing XAI
autonomous signal quality monitoring in GNSS data processing. At an earlier stage, the
root causes of an abnormality can be easily found without post-processing the signal, that is,
before feeding it to the receiver. The techniques used emphasized the most discriminating
part of the disruption, and the application of the XAI technique ensured transparency and
interpretability in our classification, thereby taking care of trustworthiness in model devel-
opment and providing confidence in the results of signal quality analysis and prediction.
Overall, this study provided a robust framework for interpreting and analyzing GNSS
signals. The prediction results using the LIME model show that the SVM has performed
well overall, but the prediction of clean signals remains a major concern, as most of the
time, these signals are incorrectly classified. Similarly, the classification results using the
SHAP algorithm indicate that chirp and clean signals have the problem of misclassification,
particularly between these categories. To address these challenges, careful attention needs
to be paid to designing a GNSS monitoring setup equipped with sophisticated ML models
that can provide more robust signal prediction/classification capabilities.
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