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A B S T R A C T

This study introduces a high-resolution, data-driven approach for optimizing district heating networks using 
source-load mapping, focusing on Stockholm as a case study. The methodology integrates detailed building 
energy performance data (2014–2022) with geographic data from the Swedish Survey Agency, employing 
advanced clustering techniques such as K-means Clustering, Agglomerative Clustering, DBSCAN, Spectral 
Clustering, and Gaussian Mixture Model (GMM) Clustering to identify optimal locations for distributed heat 
sources, including data centers, supermarkets, and water bodies. Quantitative results show that these environ
mentally friendly sources could supply 54 % of Stockholm’s total annual heat demand of 7.7 TWh/year, equating 
to 4.2 TWh from residual heat sources. Data centers contribute 0.48 TWh, water bodies provide 3.4 TWh, and 
supermarkets contribute 0.3 TWh annually. Economic analysis further reveals that 98 % of residual heat sources 
are economically viable, with marginal costs of heat (MCOH) for data centers, supermarkets, and water bodies 
estimated at 12.7 EUR/MWh, 16.0 EUR/MWh, and 20.0 EUR/MWh, respectively—well below the Open District 
Heating (ODH) market price of 22.0 EUR/MWh. The policy implications of these findings are profound. Poli
cymakers can leverage this methodology to identify economically viable heat sources, enabling the creation of 
regulations that incentivize the integration of distributed heat sources into existing district heating networks. 
This can lead to reduced energy costs, enhanced sustainability, and more resilient energy systems. Practically, 
urban planners and energy utilities can use clustering insights to optimize the placement of new infrastructure, 
such as data centers, ensuring they are strategically located in high-demand zones. Furthermore, the study’s 
methodology can be replicated in other urban contexts, offering cities worldwide a scalable tool for improving 
the efficiency and sustainability of their heating networks. These findings support the transition to low-carbon 
energy solutions and provide actionable recommendations for the long-term development of urban energy 
systems.

Introduction

District heating networks offer significant opportunities to rapidly 
transform energy supply in buildings and cities. Changing the fuel 
sources for heating plants makes it possible to increase the proportion of 
renewable energy or decarbonize the heating supply with minimal 
intervention from building owners. Sweden is a global leader in this 
area, with approximately 500 cities or communities utilizing district 
heating networks that supply heat to 55 % of the building area [1]. Most 
heat is generated by combustion fueled by residuals from the forestry 
industry and municipal solid waste, with peaks often covered by fossil 
fuels [2].

Traditionally, heating networks are centered around large, central
ized plants. However, Stockholm’s Open District Heating market illus
trates how distributed heat sources—such as supermarkets, ice rinks, 
and data centers—can recover and contribute heat that would otherwise 
be wasted [3]. This system allows facilities with substantial cooling 
demands to sell their excess heat to the network, creating a unique 
prosumer market for heat similar to the prosumer model in the elec
tricity sector. While heavy industry has long contributed to heating 
networks through specialized agreements, this marketplace opens 
participation to smaller, distributed stakeholders.

High spatial and temporal resolution data are essential to effectively 
integrate distributed heat sources into district heating networks. The 
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growing availability of high-resolution geographic information systems 
(GIS) data has led to numerous district heating planning studies. On the 
demand side, large cities such as London [4], Berlin [5], and Helsinki [6]
have mapped out their building energy demands. Studies in Switzerland 
[7] and China [8] have mapped the potential of ground-source heat 
pumps.

So far, high-resolution mapping has primarily focused on buildings 
and heat demand. However, source-load mapping, which identifies po
tential heat sources, is often conducted at a minimum resolution of 1 km, 
which is insufficient for urban environments. Renewable heat sources, 
which are seasonally variable and typically produce low temperatures, 
require enhancements via heat pumps. The electrification of heat pro
duction demands hourly time resolution to account for fluctuations in 
supply profiles and temperature levels, both of which impact system 
efficiency. Additionally, electricity prices, which have become more 
volatile since the withdrawal of Russian natural gas from the European 
market, vary by the hour. High temporal resolution is also crucial for 
accurately modeling storage systems, especially in such a volatile pric
ing environment.

This study uses high-resolution source-load mapping to develop a 
novel data-driven approach to district heating network planning during 
the pre-feasibility stages. Unlike existing methods, this approach in
tegrates detailed spatial data for both distributed heat demand and 
supply sources, identifying optimal locations for new heat sources and 
potential areas for heat recovery. This leads to more efficient and cost- 
effective district heating infrastructure designs.

Stockholm is used as a case study due to the availability of data, 
particularly the distributed heat-source dataset from Su et al. [9], on 
which this research is based. The study’s objectives include analyzing 
how existing distributed resources can be optimally allocated to meet 
the city’s heat demand, identifying the best locations for new data 
centers that can serve as significant heat sources, assessing the economic 
feasibility of utilizing heat from these distributed sources, and devel
oping a comprehensive spatial database that includes detailed building 
energy performance metrics across multiple years (2014–2022) along 
with extensive geographical data. By addressing these issues, the study 
aims to provide actionable insights that enhance the sustainability and 
cost-effectiveness of urban heating solutions.

This study addresses several significant research gaps in the district 
heating field, particularly in integrating distributed heat sources into 
urban energy systems. First, traditional district heating studies have 
primarily focused on centralized heat production, overlooking the po
tential of distributed sources such as data centers, supermarkets, and 
water bodies. As a result, the significant untapped potential of residual 
heat from these sources has often been underutilized. Another critical 
gap is the reliance on coarse-resolution spatial and temporal data in 
previous studies, which limits the ability to capture urban heat supply 
and demand variability and dynamics. The lack of high-resolution data 
hampers the accuracy of supply–demand matching and the identifica
tion of optimal resource allocation.

Additionally, while the technical potential of distributed heat sour
ces has been well-documented, insufficient research has explored their 
economic viability in the context of current market conditions. This gap 
leaves policymakers without the necessary insights to make informed 
decisions about integrating these sources into existing infrastructure. 
Furthermore, previous studies have not fully leveraged advanced 
analytical approaches like machine learning algorithms. In particular, 
unsupervised learning methods, including K-means, DBSCAN, and 
Gaussian Mixture Models, have been underutilized in analyzing the 
complex spatial and temporal patterns of heat supply and demand. The 
lack of these advanced analytical techniques has constrained the ability 
to handle noise, non-linear distributions, and the scalability needed in 
urban energy analysis.

Another overlooked aspect is the role of data centers, which, despite 
their potential as significant heat sources, have often been underrepre
sented in district heating studies due to outdated or insufficient data. 

The limited use of localized analysis tailored to specific urban contexts 
has further hindered the recognition of their potential. Moreover, many 
studies fail to provide methodologies that can be replicated across 
different urban contexts, limiting the broader applicability of their 
findings. This lack of replicability impedes the widespread adoption of 
sustainable district heating solutions. Finally, a critical gap exists be
tween academic insights and the practical needs of urban planners and 
policymakers. Previous research has often failed to offer actionable 
recommendations, hindering the translation of academic findings into 
real-world applications.

By addressing these gaps, this study provides a high-resolution, 
economically grounded, and methodologically robust framework for 
integrating distributed heat sources into district heating networks, of
fering valuable insights for both researchers and urban planners.

Literature review and background

Blanco et al. [10] introduced a novel data-driven methodology for 
urban energy analysis by classifying urban areas into sixteen distinct 
morphological units called Urban Energy Units (UEUs). This approach 
utilizes open-source data and machine learning techniques, including a 
random forest model to address missing building data and a decision 
tree model for UEU classification. This data-driven method facilitates 
the creation of modular energy districts within cities, leading to more 
targeted and effective energy planning. Applied in Oldenburg, Germany, 
the methodology demonstrates the practical benefits of their classifica
tion system and underscores the importance of data-driven approaches 
in urban energy analysis for informed decision-making. Their study not 
only tackles the issue of missing data but also lays the groundwork for 
future research to validate and expand the classification framework to 
other urban areas. This work aligns with our studies, particularly in its 
application to district heating systems, highlighting the importance of 
data-driven approaches for informed energy planning.

Zhang et al. [11] tackle the critical issue of rising energy consump
tion in data centers, which has surged dramatically in recent years. The 
paper comprehensively reviews the latest thermal management tech
niques and evaluation metrics for data centers, discussing energy con
servation strategies and safe operation practices. It covers critical 
advancements in cooling technologies, innovative energy-saving 
methods such as free cooling and heat recovery, and optimization 
techniques to enhance system efficiency. The paper emphasizes the 
significance of thermal evaluation metrics in maintaining equipment 
safety and energy efficiency. It concludes by calling for further research 
and strategic development in the thermal management of data centers.

Wahlroos et al. [12] explore the potential of reusing waste heat from 
data centers in Nordic countries, highlighting both the challenges and 
opportunities. The paper addresses issues such as the lack of trans
parency in business models between district heating and data center 
operators and waste heat reuse’s economic and environmental impli
cations. Their proposed 8-step change process provides a structured 
approach to overcoming barriers, aligning closely with our project’s 
focus on waste heat management in data centers and district heating 
systems. The review emphasizes the importance of understanding en
ergy efficiency metrics and economic considerations directly relevant to 
our project’s objectives.

Davies et al. [13] investigate the potential for reusing waste heat 
from data centers in London, focusing on using heat pumps to upgrade 
waste heat for district heating networks. The study reveals significant 
energy, carbon, and cost savings potential, especially when data center 
waste heat is integrated into district heating systems with eligibility for 
Renewable Heat Incentive (RHI) payments. It aligns potential waste heat 
sources with the heat demands of various London districts, demon
strating substantial energy and carbon savings benefits.

Cichowicz et al. [14] compared Energy Performance Certificate 
(EPC) data calculation methods with actual energy consumption to 
evaluate energy efficiency in multi-family residential buildings. Their 
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findings revealed a 14.5 % difference in Practical Energy Consumption 
(PEC) indices and a 14.7 % difference in Final Energy (FE) indices be
tween the two methods. While both methods showed comparable per
formance, the reliance on user behavior in the consumption method 
raised concerns about its reliability across different building types. This 
study highlights the need for standardized procedures considering 
building-specific characteristics in EPC-based energy assessments.

Zhang et al. [15] explore the evolution of district heating and cooling 
(DHC) systems in Sweden, focusing on adapting these systems to future 
changes in demand profiles and renewable energy supplies. Using a 
generalized methodology framework that integrates future changes, 
various operational scenarios, and system design optimizations, the 
study concludes that a fifth-generation district heating and cooling 
(5GDHC) system is the most economically viable option in a future 
scenario with low-energy building stock and increased cooling demand 
[16]. The study also highlights the significant impact of electricity prices 
on the cost-efficiency of 5GDHC and ultra-low temperature district 
heating and cooling (ULTDHC) systems, particularly with a 50 % share 
of wind power in the national grid. The methodology presented can be 
applied to similar systems to enhance understanding of system 
transitions.

Huang et al. [17] investigate the dual role of data centers in district 
energy systems, where they act as both consumers and producers of 
energy. The study reviews the integration of renewable energy and the 
recovery and reuse of waste heat in data centers, emphasizing the 
importance of optimizing both upstream and downstream processes. It 
discusses how upstream integration involves procuring and managing 
renewable energy sources, such as solar and wind, for data center op
erations. At the same time, downstream waste heat utilization refers to 
managing and repurposing waste heat for district heating systems. The 
findings indicate that while integrated global controls for managing 
energy production, operation, and waste heat generation are still 
developing, regional climate studies are crucial for optimizing these 
integrations. The study also highlights the development of global energy 
metrics as essential for quantifying data center performance and 
providing a comprehensive approach to sustainable energy use within 
data centers.

Su et al. [9] focus on decarbonizing Stockholm’s district heating 
sector to achieve net-zero emissions by 2040. They use an integrative 
GIS-based analysis to map clean, non-fossil fuel heat sources within 
Stockholm, achieving high-resolution mapping and addressing data 
availability challenges. Their results show that the city has abundant 
clean heat sources, including water bodies and data centers, capable of 
covering 100 % of the district’s heating net annual energy needs. The 
study identifies clusters of heat sources for prioritized exploitation. It 
provides a method pipeline applicable to other cities transitioning to 
clean district heating, emphasizing the importance of strategic planning 
based on local heat source availability.

Ogliari et al. [18] proposed a methodology integrating clustering and 
neural networks to enhance day-ahead thermal load forecasting for a 
District Heating (DH) system in Northern Italy. The study comprehen
sively addressed data preprocessing, variable correlation analysis, 
clustering, and forecasting. Three clustering techniques—k-means, Hi
erarchical Agglomerative Clustering (HAC), and DBSCAN—were eval
uated using the Caliński-Harabasz and Silhouette indexes, identifying 
three optimal clusters while excluding outliers, but no single superior 
method emerged. Forecasting was explored using three strategies: 
training a single neural network for all utilities, per cluster (based on 
HAC), and per substation. Results indicated that training a neural 
network for each substation yielded the highest accuracy. However, a 
cluster-based approach was recommended for larger systems to balance 
accuracy and computational efficiency. The authors emphasized the 
need for further research with expanded datasets and additional sub
stations to validate and generalize their findings.

Lumbreras et al. [19] highlight the critical role of the building sector, 
consuming approximately 40 % of primary energy in the European 

Union, and the increasing focus on energy efficiency driven by EU di
rectives. District Heating (DH) networks, covering 13 % of EU building 
heat loads, are evolving towards 4th Generation District Heating 
(4GDH), characterized by low-temperature heat distribution and 
renewable energy integration. The study identifies a gap in the literature 
regarding the application of unsupervised clustering techniques to 
heating demand data, unlike the extensive application in electricity 
demand analysis. The authors propose a multistep clustering framework 
using density-based clustering for outlier detection and k-means for 
identifying heating consumption patterns. The methodology reveals the 
interpretative challenges of clustering, as optimal classifications vary 
based on cluster validation indices (e.g., K = 3). While the framework 
offers valuable insights into demand patterns, its replicability remains 
limited. Future work aims to explore correlations between demand 
patterns and climatic or calendar variables and extend the framework’s 
application to additional buildings within the DH network to enhance 
generalizability and applicability.

Methodology

The proposed method involves aggregating spatially labelled heat 
energy demand data with distributed heat sources, clustering these de
mands to map supply, and identifying optimal locations for new heat 
sources. Additionally, it includes calculating levelized heating costs by 
cluster.

Energy demand data is sourced from the Swedish Housing Author
ity’s (Boverket) Energy Performance Certificates (EPC) database and 
geographically located using data from the Swedish Survey Agency 
(Lantmäteriet) [20,21]. This database is merged with the locations of 
existing data centers, supermarkets, and water bodies, providing a 
comprehensive, multi-dimensional perspective for practical spatial 
analysis [9].

The integration process synchronizes building-specific energy per
formance metrics with their geographical coordinates, ensuring that 
each data point accurately reflects both location and energy profile. 
Advanced clustering techniques, including k-means and agglomerative 
methods, are then employed to segment the region based on heat de
mand characteristics [22,23]. These clusters are analyzed to identify 
central nodes representing optimal locations for new data centers, 
considering their potential contributions to district heating systems.

The methodology ensures the optimal placement of new data centers 
within these identified clusters using quantitative metrics derived from 
k-means and agglomerative clustering analyses. These analyses leverage 
heat demand data from all buildings in Stockholm City. This approach 
allows for evaluating data center locations’ proximity to high-heat de
mand areas and their potential for integration into heat recovery sys
tems. It aligns with existing urban elements, such as supermarkets and 
water bodies, to enhance sustainable energy management. Ultimately, 
this method provides a data-driven framework for strategic urban 
planning and resource management, facilitating the development of 
district heating solutions that are both economically viable and envi
ronmentally sustainable.

The methodology for this analysis involves using Python for data 
processing and machine learning, with key libraries such as Pandas, 
NumPy, Scikit-learn, and Matplotlib. The simulation applies various 
clustering models, including K-means Clustering, Agglomerative Clus
tering, DBSCAN, Gaussian Mixture Models (GMM), and Spectral Clus
tering, to group the data based on features like heat demand, energy 
usage, and geographical locations. Visualizations are enhanced by 
overlaying geographical scatter plots with a background image, 
providing context for the clustering results. The dataset for Stockholm 
spans multiple years, with EPC (Energy Performance Certificate) data 
sizes for each year as follows: 10,368 data points for 2014, 39,320 for 
2018, 42,566 for 2019, 28,830 for 2020, 14,304 for 2021, and 7,896 for 
2022. The total dataset size across these years amounts to 143,284 data 
points. This dataset includes detailed information on energy 
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performance, property designation, and geographical coordinates, 
which are essential for clustering and analysis in the simulation. K- 
means Clustering serves as the primary solver in this environment, along 
with other unsupervised learning algorithms such as Agglomerative 
Clustering, DBSCAN, Gaussian Mixture Model (GMM), and Spectral 
Clustering. These clustering methods are employed to categorize the 
data based on key attributes, including heat demand, energy usage, and 
geographical locations.

The dataset is comprised of both categorical and numerical attri
butes. To handle missing values, imputation and interpolation methods 
are applied. Additionally, the data is normalized to ensure it is properly 
scaled for effective clustering analysis.

Processing of EPC data with Swedish survey agency data

The EPC data was integrated with geographic information from the 
Swedish Survey Agency (Lantmäteriet) to identify optimal locations for 
future data centers based on heat demand characteristics [20,21].

The data collection encompassed a wide array of energy metrics, 
categorized by energy types used for heating and domestic hot water (e. 
g., district heating, heating oil, natural gas, firewood, and various forms 
of electricity, including several types of heat pumps). These metrics were 
complemented by primary and normalized energy use figures for 
buildings, yielding a year-corrected value known as the Energy Index. 
Additional details included each building’s address, complexity, cate
gory, type, construction year, and structural specifics, such as the 
number of heated basement floors, above-ground floors, stairwells, and 
residential apartments.

During integration, the energy performance data for each building 
was geocoded using primary and postal addresses, ensuring precise 
mapping. This accuracy is critical for practical spatial analysis, which 
underpins energy demand mapping and site selection for data centers.

In the data processing phase, efforts were made to standardize and 
normalize the data across different energy types and measurement units, 
facilitating uniform analysis. Rigorous data cleansing was conducted to 
correct inconsistencies, impute or exclude missing values based on their 
significance, and eliminate duplicate records. This involved removing 
whitespace from string fields for consistency, extracting non-numeric 
prefixes from property designations and address identifiers to stan
dardize these fields, and handling missing values by removing rows with 
null entries. Additionally, coordinates were added based on property 
designations, and categorical variables were encoded using one-hot 
encoding. These steps ensured the dataset’s integrity and reliability 
for subsequent analysis.

Through these processes, a robust and detailed spatial database was 
constructed to identify high-heat demand areas and determine the most 
strategic locations for future data center installations. This database not 
only supports detailed spatial analysis but also forms the foundation for 
the advanced clustering techniques used in the later stages of the study.

Heat demand clustering using k-means and agglomerative clustering

In this study phase, the geographical area was segmented into clus
ters based on buildings’ heat demand characteristics using k-means and 
agglomerative clustering techniques.

The Elbow Method was utilized to determine the optimal number of 
clusters for k-means clustering. This method plots the sum of squared 
distances (inertia) from each point to its assigned cluster center against 
the number of clusters. As the number of clusters increases, inertia de
creases. However, there is a point where the rate of decrease sharply 
slows, forming an “elbow” shape on the plot. This “elbow” indicates the 
optimal number of clusters, balancing the trade-off between underfitting 
and overfitting. Employing the Elbow Method ensured that the seg
mentation was meaningful and efficient for further analysis [24].

Subsequently, four centroids were selected within the dataset for the 
k-means clustering process. Each data point, representing the heat data 

of a building, was assigned to the nearest centroid based on the 
Euclidean distance between the data point’s features and the centroid’s 
features [25]. This assignment and recalculation of centroids were 
iteratively performed until the centroids stabilized, marking the algo
rithm’s convergence. As a result, the dataset was divided into four 
distinct clusters, each representing an area with homogeneous heat 
demand characteristics.

Concurrently, agglomerative clustering was employed as a hierar
chical method, starting with each data point as its own cluster. Clusters 
were merged based on their similarity and assessed using Ward’s 
method, which aims to minimize the variance within a cluster. This 
merging process continued until all data points were consolidated into 
four major clusters [26].

Allocation of heat sources to clusters

In the next step, k-means and agglomerative clustering were 
employed again, given their effectiveness in grouping data based on 
similarities, to identify clusters of Stockholm’s heat demands. To allo
cate existing renewable energy sources, Stockholm’s heat demands were 
segmented into ten districts using the k-means clustering algorithm, 
accessed via the sci-kit-learn library [25].

The methodology begins by verifying and preparing the dataset, 
which includes critical analysis parameters. Data anomalies, such as 
infinite values or missing data points within the heat demand metric, are 
replaced with a statistically representative figure—typically the mean or 
median—to maintain data integrity. The heat demand data undergo a 
normalization process, ensuring a uniform scale for comparative visu
alization. The size of the visual markers is proportionally scaled to 
reflect the heat demand, enabling an accurate spatial representation of 
heat intensities.

For the clustering analysis, geographic coordinates are extracted to 
delineate the urban landscape into ten distinct zones. This segmentation 
is achieved through an iterative clustering technique that organizes the 
space based on proximity and similarity in heat demand, ensuring that 
the identified clusters are stable and replicable in subsequent analyses.

Furthermore, the algorithm calculates the central points of these 
clusters, pinpointing critical areas of heat concentration. The final 
visualization includes a legend correlating to the clusters, with the 
geographic scope of the map meticulously adjusted to encompass the 
Stockholm region of interest. This comprehensive display of the city’s 
heat demand landscape is an indispensable tool for urban planning and 
the efficient allocation of energy resources.

Marginal cost of heat

The economic impact of waste heat recovery is evaluated using the 
marginal cost of heat (MCOH), primarily driven by electricity prices and 
limited to operational costs. This focus on operational costs is due to the 
relatively minor contribution of capital costs to the overall life cycle 
cost. The capital costs for heat recovery equipment are conservatively 
estimated at €1.5 million per MW of cooling capacity [27–29], repre
senting about 3 % of the operational cost for a single year. Over a 20- 
year lifespan with a 10 % discount rate, capital costs account for only 
0.3 % of the total life cycle cost, which falls well within the range of 
economic uncertainty.

Although capital costs are not insignificant, they are less critical in 
this context. Previous studies have indicated that economic returns for 
data center [27] and supermarket [30] owners are uncertain, partly due 
to the variable value of heat throughout the year and the network 
owner’s willingness to pay for it [25]. This study adopts the perspective 
of the district and city, viewing waste and environmental heat as part of 
a resource portfolio where the lowest marginal costs determine the merit 
order.

For cooling devices and heat pumps, the MCOH is entirely influenced 
by the coefficient of performance (COP) and the price of electricity (pel), 
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as represented by Eq. (1). Maintenance costs, like capital costs, are also 
considered negligible and are therefore excluded from the analysis. 

MCOH =
pel

COP
[€/MWh] (1) 

Electricity prices and COPs fluctuate throughout the year, as does 
heat value, making detailed hourly simulations the most effective 
method for assessing cost-effectiveness at any given time [30,31]. 
However, high-resolution time simulations are beyond the scope of this 
study. Instead, an economic performance map is created to capture a 
range of COPs and electricity prices. This map includes cost ranges for 
data centers, supermarkets, and water bodies, comparing them to 
Stockholm’s district heating prices at retail and wholesale levels. 
Wholesale prices are derived from Stockholm Exergi’s 2024 base retail 
prices [32] and their Open District Heating (ODH) market [33].

Equation (2) provides the formula for calculating the weighted 
MCOH for each district or cluster. Each cluster is denoted as i, and the 
MCOH of each heat source (with each technology denoted as j) is 
multiplied by the heat supply for each source in the cluster portfolio (Qj, 

i), then divided by the total heat demand of the cluster (Qi). This analysis 
reveals spatial differences in heating costs across the city, which can 
significantly influence urban development, particularly in cities lacking 
district heating networks. 

MCOHi =

∑(
pel,j/SCOPj

)
Qj,i

Qi
[€/MWh] (2) 

Hyperparameter selection and justification

The hyperparameters listed in Table 1 are critical for selecting the 
optimal values for various clustering algorithms used in the study. In the 
case of KMeans (n_clusters = 4), this value was chosen based on the 
assumption that the data can be divided into distinct groups, such as 
high-demand versus low-demand heat zones. Selecting four clusters 
enables the identification of several types of demand and supply loca
tions, representing different heating demand profiles across the city. The 
Elbow Method was employed to determine the ideal number of clusters 
by evaluating the sum of squared distances within clusters. A smaller 
number of clusters, such as two or three, would oversimplify the data, 
while more clusters could overfit the model and introduce noise, making 
four clusters an ideal balance for spatial clustering in district heating. 
Similarly, Agglomerative Clustering (n_clusters = 4) was selected to 
partition the dataset into distinct heat supply and demand regions, with 
the number of clusters adjusted based on the dendrogram, which visu
ally represents hierarchical relationships. Choosing fewer clusters could 
obscure subtle spatial patterns, while more clusters might increase 
complexity and risk overfitting, making four clusters a reasonable 
choice.

For DBSCAN (eps = [0.1, 0.3, 0.5, 0.7, 1.0], min_samples =
[3,5,10,15]), the parameter eps controls the maximum distance between 
two points to be considered part of the same neighborhood. A range of 
values from 0.1 to 1.0 was selected to explore different neighborhood 
sizes, which is crucial for identifying tightly packed clusters (small eps 
values) or more spread-out ones (larger eps values). The min_samples 
parameter determines the minimum number of points required to form a 
“core” point in a neighborhood. Smaller values (e.g., 3) lead to the 
identification of more clusters, while larger values (e.g., 10 or 15) focus 
on denser, more meaningful clusters. This approach ensures the algo
rithm can handle spatial data with varying densities, such as urban heat 
sources, and avoid noise. SpectralClustering (n_clusters = 4, affinity =
’nearest_neighbors’, random_state = 42) was chosen to focus on local 
spatial structures by using the ’nearest_neighbors’ affinity, which is 
critical for clustering heat demand or supply based on geographical 
proximity. Fixing the random state ensures reproducibility of the results, 
which is essential for research purposes. The number of clusters affects 
the granularity of the identified patterns, influencing the resolution of 

heat demand–supply matching.
For GaussianMixture (n_components = 4, covariance_type = ’full’, 

reg_covar = 1e-4, max_iter = 500), the number of components was set to 
4 to model the heat sources in Stockholm as a combination of four 
distinct distributions, each representing different heating profiles. The 
’full’ covariance type was selected to allow each component to have its 
own covariance matrix, offering maximum data modeling flexibility. 
Regularization (reg_covar = 1e− 4) ensures the covariance matrices are 
positive semi-definite, which enhances model stability, especially with 
sparse data. The max_iter parameter was set to 500 to allow the algo
rithm sufficient time to converge to an optimal model. Fewer compo
nents may simplify the model, losing important detail, while more 
components could overfit the data.

Data preprocessing choices included imputing missing values using 
the mean strategy (imputer_strategy = ’mean’) and standardizing the 
data with StandardScaler. The mean imputation was chosen because it is 
a simple and effective strategy for handling missing data, particularly 
when the data is missing at random. Standardizing the data ensures that 
all features contribute equally to the clustering process by eliminating 
bias from features with more extensive ranges, such as geographical 
coordinates or temperature values. Other imputation strategies or 
scaling methods could be considered, but standard scaling is typically 
ideal for clustering tasks, as it normalizes the influence of each feature.

Table 1 
Hyperparameter Selection for Clustering Algorithms.

Algorithm Hyperparameter Value/Range Description

KMeans n_clusters 4 Number of clusters 
to form.

Agglomerative 
Clustering

n_clusters 4 Number of clusters 
to form.

DBSCAN 
Clustering

eps [0.1, 0.3, 0.5, 0.7, 
1.0]

The maximum 
distance between 
two samples for 
them to be 
considered as in the 
same neighborhood.

min_samples [3,5,10,15] The number of 
samples in a 
neighborhood for a 
point to be 
considered as a core 
point.

Spectral 
Clustering

n_clusters 4 Number of clusters 
to form.

random_state 42 Seed used by the 
random number 
generator for 
reproducibility.

affinity ’nearest_neighbors’ Metric used to 
compute the 
similarity matrix.

Gaussian 
Mixture 
Clustering

n_components 4 The number of 
mixture components 
(clusters).

covariance_type ’full’ Type of covariance 
matrix. Options: 
’full’, ’tied’, ’diag’, 
’spherical’.

reg_covar 1.00E-04 Regularization to 
ensure covariance 
matrices are positive 
semi-definite.

max_iter 500 Maximum number 
of iterations.

Data 
Preprocessing

imputer_strategy ’mean’ Strategy to use for 
imputing missing 
values.

scaler StandardScaler Standardizes the 
data by removing 
the mean and 
scaling to unit 
variance.
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Overall, the choice of hyperparameters is crucial for accurately 
mapping and clustering Stockholm’s heat supply and demand sources. 
Variations in cluster numbers, neighborhood sizes, and covariance 
models impact the clustering techniques’ flexibility, sensitivity, and 
scalability. By selecting appropriate values, the study ensures that the 
results reflect meaningful patterns while avoiding overfitting or under
fitting. The use of multiple clustering techniques, KMeans, Agglomer
ativeClustering, DBSCAN, and GaussianMixture, enables the adaptation 
to different data characteristics, such as noise, density, and distribution 
shapes, providing a robust framework for integrating distributed heat 
sources into district heating networks.

Methods limitation

While the proposed methodology offers a comprehensive framework 
for optimizing heat resource allocation in urban environments, it has 
certain limitations. Any inaccuracies, missing entries, or outdated in
formation can directly impact the clustering results and the overall ac
curacy of heat demand mapping. Additionally, the methodology 
assumes standardization across various energy types and units, which 
may not fully capture regional variations or temporal fluctuations in 
heat demand and supply. The clustering techniques used, such as k- 
means and agglomerative clustering, depend on the selection of hyper
parameters, like the number of clusters, which can be somewhat sub
jective and may not fully reflect the complex spatial dynamics of urban 
heat demand.

Another significant limitation is the simplified economic model used 
for evaluating the marginal cost of heat (MCOH). By focusing primarily 
on operational costs and assuming that capital and maintenance costs 
are negligible, the methodology may overlook important economic 
factors influencing the feasibility of integrating new heat sources. 
Moreover, the method does not account for practical challenges such as 
policy constraints, stakeholder engagement, and the adaptability to real- 
time changes in heat demand or supply. These factors can significantly 
impact the implementation of the proposed solutions in real-world 
urban settings. Addressing these limitations is essential for enhancing 
the robustness and applicability of the methodology in diverse urban 
contexts.

Results

In this research, the marginal cost of environmental heat was 
assessed locally to determine its impact on the merit order of heat 
deployment and the resulting cost to the city. The heat demand across 
Stockholm was mapped using data from the Energy Performance Cer
tificate (EPC) database, which was integrated with property locations 
provided by the Swedish Land Survey (Lantmäteriet). After removing 
duplicate property description entries (known as ’fastighetsbeteckning’ 
in Swedish), the number of unique properties in the EPC and 
Lantmäteriet datasets are 31,389 and 61,952, respectively. When the 
EPCs are filtered for those connected to district heating (approximately 
52 % of all buildings and 92 % of the floor area in Stockholm) and cross- 
referenced for matching property descriptions, there are 14,103 entries. 
This is 86 % of all DH connected properties. However, the total demand 
is found to be 7.7 TWh/year and is in agreement with prior studies [34]. 
The breakdown by year of record for EPCs and matching properties with 
coordinates are given in Table 2 and shown spatially in Fig. 1. Table 2
shows Unique total property counts for EPCs and those with coordinates 
by year.

A heat map was created to further illustrate the spatial distribution 
and intensity of heat demand, as shown in Fig. 2. This heat map visu
alizes the density of heat demand data points across Stockholm, using 
the x and y coordinates to represent longitude and latitude. Lighter, 
more saturated areas on the map indicate regions with greater heat 
demand, clearly highlighting areas where heat resources are most 
needed. This visualization is crucial for identifying optimal locations for 

future data centers, enabling a more strategic and data-driven approach 
to district heating planning.

Allocation of future data centers using k-means and agglomerative 
clustering

Fig. 3 offers a comprehensive visualization of the spatial distribution 
of heat demands across Stockholm, with intensity levels represented by 
the size and colour of the circles. Larger and darker circles indicate areas 
of higher heat demand, helping to identify critical zones with concen
trated energy requirements. Five advanced clustering techniques—K- 
Means, Agglomerative Clustering, DBSCAN, Spectral Clustering, and 
Gaussian Mixture Model (GMM)—were applied to determine the 
optimal locations for future data centers. Each clustering method is 
represented on the map, with K-Means cluster centers marked by red 
triangles, Agglomerative cluster centers by blue stars, DBSCAN cluster 
centers by blue cross, Spectral Clustering centers by purple circles, and 
Gaussian Mixture Model centers by green squares. This multi-method 
approach ensures a robust and reliable analysis, enhancing confidence 
in the recommended locations for data centers.

The clustering analysis reveals that Stockholm’s highest heat de
mand concentrations are located primarily in its central and northern 
regions, as evident from the denser and darker circles in these areas. 
Each clustering method provided unique insights into the spatial dis
tribution of heat demand. K-means and Agglomerative Clustering 
consistently overlapped, demonstrating their reliability in identifying 
high-demand zones. DBSCAN excelled in identifying smaller, denser 
clusters, highlighting micro-level variations in heat demand. Spectral 
Clustering and GMM offered additional perspectives by identifying 
flexible cluster shapes and providing probabilistic clusters, respectively. 
These nuances help refine the decision-making process and broaden the 
scope of infrastructure planning.

Each of the five clustering methods brings unique strengths and 
perspectives to the analysis, offering a comprehensive understanding of 
heat demand patterns in Stockholm. K-Means Clustering provides a 
simple and efficient solution for partitioning data into well-defined 
clusters, though its assumption of spherical and similarly sized clusters 
may not always reflect the actual spatial distribution. Agglomerative 
Clustering effectively captures hierarchical relationships and yields 
flexible, interpretable cluster shapes, but it can become computationally 
intensive and less scalable than K-Means. DBSCAN excels at identifying 
dense regions of heat demand and uncovering smaller clusters that other 
methods may overlook, yet it struggles with sparse data and is highly 
sensitive to parameter choices. Spectral Clustering accommodates 
complex, non-linear cluster shapes, making it ideal for intricate spatial 
patterns, although it is computationally expensive and sensitive to the 
prescribed number of clusters. Finally, the Gaussian Mixture Model 
(GMM) offers probabilistic clusters with nuanced boundaries that 
facilitate uncertainty quantification, but its performance may hinge on 
initial conditions and extensive parameter tuning. Together, these 
methods provide a robust toolkit for exploring, analyzing, and inter
preting the spatial variability of heat demand in Stockholm.

No single method is universally superior. Instead, using multiple 

Table 2 
Unique total property counts for EPCs and those with coordinates by year.

Year Total EPCs EPC and Coordinates Match Rate

2014–2017 5583 1999 36 %
2018 4258 3324 78 %
2019 4931 2651 54 %
2020 4867 2715 56 %
2021 5696 1886 33 %
2022 6054 1528 25 %

Totals 31,389 14,103 45 %
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methods enriches the analysis by capturing different aspects of the data. 
For instance, DBSCAN effectively detects localized high-demand clus
ters, while GMM offers a probabilistic perspective that accounts for 
variations within the data. The overlaps between K-Means and 
Agglomerative Clustering provide consistent insights, reinforcing the 
reliability of their suggested locations. With its ability to handle non- 
linear patterns, Spectral Clustering complements the other methods by 
uncovering additional potential sites.

Table 3 provides a numerical comparison of the cluster center loca
tions identified by each method.

The clustering results indicate that while K-Means and Agglomera
tive Clustering tend to converge on similar cluster centers, DBSCAN, 
Spectral Clustering, and GMM identify additional or alternative loca
tions. This divergence underscores the value of employing multiple 
clustering techniques to capture global and local data patterns. DBSCAN 
highlighted micro-level heat demand variations that could be critical for 
localized planning. Spectral Clustering uncovered complex patterns, 
suggesting potential sites near existing infrastructures. GMM, with its 
probabilistic approach, provided insights into areas of uncertainty, 
enabling more informed decision-making.

The strategic placement of data centers based on these clustering 
methods offers significant potential for optimizing Stockholm’s district 
heating network. Data centers located near high-demand areas can 
efficiently supply heat, leveraging their excess heat for sustainable 
urban energy solutions. Moreover, integrating supermarkets and other 
existing infrastructures into the analysis further highlights opportunities 
for collaborative heat recovery initiatives, enhancing the overall effi
ciency and sustainability of the heat distribution network.

However, clustering-based approaches are inherently limited by 
their reliance on historical data and static assumptions. They do not 
account for future urban development, demographic shifts, or evolving 

heat demand patterns. Smaller but strategically important pockets of 
demand might not significantly influence the cluster centroids and could 
be overlooked. To address these limitations, clustering results should be 
complemented with predictive models, urban planning considerations, 
stakeholder engagement, and adaptive strategies to accommodate future 
changes.

By leveraging five advanced clustering methods—K-Means, 
Agglomerative Clustering, DBSCAN, Spectral Clustering, and 
GMM—this analysis provides a comprehensive understanding of heat 
demand patterns in Stockholm. The multi-method approach not only 
identifies optimal locations for future data centers but also highlights the 
strengths and limitations of each technique. Integrating these insights 
with urban planning strategies ensures a balanced, data-driven, and 
adaptive approach to sustainable energy solutions. This methodology 
demonstrates the potential for clustering techniques to guide the 
development of efficient district heating systems, supporting Stock
holm’s broader sustainability goals.

Allocation of heat sources to clusters

Fig. 4 presents a map segmented into 10 districts using a k-means 
clustering algorithm accessed via the sci-kit-learn library. Each ten 
district is assigned the heat sources within its cluster and water body 
sources, which are connected based on the minimum connection dis
tance. The heat supply from each source is calculated, and the total cost 
is determined using the marginal cost of heat (MCOH). In Fig. 4, each 
bubble represents a heat load, with the bubble size corresponding to the 
annual energy demand. Table 4 provides each cluster’s total heat energy 
demand and the allocated residual heat supply by type. The total heating 
demand of 7.7 TWh/year matches the reported district heating supply of 
the city [34], indicating that the EPC dataset offers comprehensive 

Fig. 1. Unique buildings/properties in Stockholm (blue dots) compared with properties that have energy data (Red dots). (For interpretation of the references to 
color in this figure legend, the reader is referred to the web version of this article.)
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coverage.
The heating supply from environmental sources is 4.2 TWh/year, 

accounting for approximately 54 % of the city’s total annual demand. 
This figure contrasts with previous mapping by Su et al. [9], where data 
centers contributed 3.2 TWh/year; in this study, their contribution is 
reduced to 0.48 TWh/year. This discrepancy arises from updated GIS 
data, which shows fewer data centers within Stockholm’s administrative 
boundaries (the focus of this study) and indicates that the heat output 
from the average existing data center is lower than previously reported 
by Su et al., who based their findings on relatively large data centers by 
Nordic standards [12,35]. Non-viable heat generation during warmer 
periods (12 ◦C and greater) are also removed here, consistent with how 
the Open DH market in Stockholm functions.

A distinct color scheme is employed to differentiate the clusters on 
the visual map, resulting in an illustrative scatter plot that overlays 
normalized heat demand data onto the city’s geographic layout. Each 
cluster is marked with unique hues, with geographic points scaled to 
represent their respective heat demands.

The clustering results presented in Fig. 4 provide valuable insights 
into the spatial distribution of heat demand across Stockholm. By seg
menting the city into distinct clusters, urban planners and policymakers 
can better understand the regions with the highest and most consistent 
heat demand, enabling targeted investments in district heating infra
structure. For example, areas with large clusters of high heat demand, 
such as those shown in red, yellow, and pink clusters, could be priori
tized to install additional heat recovery systems, including integrating 
data centers, supermarkets, and water bodies as heat sources. This 
strategic allocation of heat sources helps to optimize energy use and 
minimize the need for conventional, fossil-fuel-based heating solutions. 

Furthermore, the bubble size on the map representing heat load can help 
policymakers allocate resources more efficiently, ensuring that areas 
with higher demand are adequately supplied.

In addition to these infrastructural recommendations, the heat 
source allocation strategy has significant economic implications. By 
linking data centers and supermarkets to the district heating system, 
cities can reduce operational costs through heat recovery and reliance 
on external energy sources. For instance, data centers in Cluster 2 (blue) 
can be incentivized to supply heat to the surrounding areas, especially in 
regions like Cluster 1 (red), where heating demand is high. This strategy 
could reduce the marginal cost of heat (MCOH), ensuring that heat 
produced from environmental sources remains cost-competitive 
compared to traditional heating methods. Additionally, understanding 
how environmental heat sources contribute to the total demand helps 
shape policies that promote renewable heat generation while balancing 
the economic feasibility of these systems. By incorporating such policies, 
local governments can align their heating strategies with broader sus
tainability goals, reducing carbon emissions and fostering the growth of 
green technologies in urban environments.

Fig. 5 is a heatmap that shows the distances between various cluster 
centers, calculated based on their geographic coordinates and displayed 
in kilometers. The colours range from dark red (indicating smaller dis
tances) to light red (indicating larger distances), helping to identify 
clusters that are close to each other and those that are farther apart. This 
visualization highlights the spatial distribution of clusters, with closer 
centers suggesting areas of high heat demand and more distant centers 
indicating regions with dispersed or unpredictable demand. These in
sights are useful for optimizing district heating systems.

The study’s clustering results and data center allocation provide an 

Fig. 2. Heat demand intensity map in Stockholm.
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in-depth analysis of the distance variation between different cluster 
centers, offering valuable insights for optimizing district heating sys
tems. These clusters represent areas with varying heat demand across 
Stockholm, and clustering techniques help identify strategic locations 
for placing distributed heat sources, such as data centers, supermarkets, 
and water bodies. The variation in distances across clusters and the 

different clustering methods applied significantly affect the overall 
system.

The centers of the clusters identified using different methods 
(DBSCAN, Spectral Clustering, GMM, KMeans, and Agglomerative 
Clustering) exhibit considerable variability. This is to be expected, as 
each algorithm has distinct characteristics that influence the placement 

Fig. 3. Total heat demand mapping and the locations of future data centers based on five clustering methods.
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of centers. DBSCAN, for example, detects denser and more localized 
clusters, making it ideal for pinpointing smaller hotspots of heat demand 
that other methods might miss. On the other hand, Spectral Clustering 
identifies flexible and complex shapes, which is particularly useful for 
regions with irregular or non-linear heat demand patterns. The Gaussian 
Mixture Model (GMM) provides a probabilistic view of clusters, offering 
a nuanced understanding of uncertainty in heat demand, which can 
benefit urban planners considering variability in demand patterns.

The distances between the cluster centers identified by each method 
provide important insights into the spatial distribution of heat demand. 
As seen with K-means and Agglomerative Clustering, smaller distances 
between centers suggest areas with well-defined high heat demand, 
which can be reliably targeted for infrastructure development, such as 
placing new data centers or optimizing existing ones for heat recovery. 
Larger distances, identified by methods like DBSCAN and GMM, point to 
regions where heat demand is more unpredictable, indicating that 
localized solutions, such as smaller-scale heat sources, might be needed. 
These methods also reveal potential gaps or underutilized areas that 
could benefit from heat recovery solutions. The variation in distances 
highlights the differing granularity of each algorithm’s approach, with 
GMM’s probabilistic nature identifying uncertain or boundary areas that 
could play a key role in future district heating expansions.

The variation in cluster distances directly impacts the optimization 
of district heating infrastructure. Clusters with tightly packed centers, as 
identified by methods like K-means and Agglomerative Clustering, 
suggest high, concentrated heat demand areas. These regions can be 
prioritized for expanding or upgrading existing district heating infra
structure, facilitating the integration of heat recovery systems. 
Conversely, as revealed by DBSCAN, larger distances imply more 
dispersed heat demand, which may benefit from decentralized heat so
lutions, such as localized heat pumps or smaller heat recovery units. 
Spectral Clustering, with its ability to capture complex clusters, may also 
identify areas that require tailored heat supply solutions. The economic 
feasibility of heat recovery is influenced by the alignment of these 
clusters with existing infrastructure. Areas with a higher concentration 
of heat demand and residual heat sources, such as data centers or water 
bodies, tend to have a lower marginal cost of heat (MCOH), making 
them more economically viable for district heating investments.

Temporal variations in heat demand, such as seasonal changes, could 
significantly alter the ideal cluster center locations. In colder months, 
heat demand is likely to be higher, necessitating the placement of heat 
recovery systems to meet these increased needs. During warmer months, 
when data centers and supermarkets generate more residual heat, 
clustering methods that account for dynamic heat generation, such as 
GMM, can provide better insights into when and where to optimize heat 
recovery systems. Integrating time-based data would enhance the ac
curacy of clustering and the strategic placement of heat recovery units, 
ensuring efficiency year-round.

From a strategic urban planning perspective, the clustering analysis 
provides crucial data for optimizing energy use and reducing reliance on 
fossil fuels. By identifying clusters with high heat demand and their 
proximity to residual heat sources, urban planners can strategically 

place heat-generating facilities, such as data centers, in areas with high 
demand, minimizing infrastructure costs and ensuring that heating 
systems are aligned with local needs. Collaborative heat recovery ini
tiatives, integrating sources like data centers and supermarkets into 
district heating networks, can reduce operational costs and carbon 
emissions.

The variation in cluster distances across different methods offers a 
comprehensive view of Stockholm’s heat demand landscape. By 
combining these insights with considerations of economic feasibility and 
temporal variations, urban planners can make informed decisions that 
optimize both system performance and cost-effectiveness. The use of 
multiple clustering methods adds robustness to the analysis, ensuring 
that no significant heat demand areas are overlooked and that infra
structure investments align with sustainable, low-carbon goals.

Calculation of levelized cost of heat per cluster and city

Fig. 6 presents a map of the marginal cost of heat (MCOH) for a range 
of seasonal coefficient of performances (SCOP) and electricity prices, 
with several key values. The zones of MCOH values (in different shades 
of blue) are formed by Eq. (1) and the three solid price lines represent 
three different values of heat; in yellow is the weighted average sale 
price over the year for the Open District Heating (ODH) market (i.e. a 
wholesale price) at 22.0 EUR/MWh1, in orange is the ODH price when 
warm weather sales over 12 ◦C are removed at 27.4 EUR/MWh, and the 
final price in red is the 2024 seasonally weighted retail price of heat at 
39.4 EUR/MWh [32].

Seasonal COP values for water bodies, data centers, and supermar
kets are shown in Fig. 6, with dashed boxes noting the ranges found in 
the literature. Water bodies are assumed to have an average SCOP of 2.8, 
which is relatively conservative compared to existing heat pumps in 
Stockholm, reaching above 3.0 [34]. Data centers can have many de
signs, including advanced water cooling, without needing a heat pump. 
However, the example here relies on typical air-cooled servers with an 
average SCOP of 4.4 [31]. Supermarkets can use their waste heat 
directly to help offset retail purchases, which offers greater value than 
selling to ODH and means the realized SCOP for supermarket sales can 
vary dramatically depending on the sales strategy [33,36]. It is assumed 
here that self-consumption is the preferred strategy; therefore, the SCOP 
for the district heating supply will be in the lower range, with an average 
of 3.5.

Using the electricity price and SCOPs described above, the resulting 
MCOH values for data centers, supermarkets, and water bodies are 12.7, 
16.0, and 20.0 EUR/MWh, respectively. All prices are below the 22.0 
EUR/MWh price for ODH, corroborating the results from the recent 
Nordic Energy Outlook [35], which concluded that 98 % of all residual 
heat sources in Stockholm are economically viable.

The total cost and weighted price for heating by cluster are given in 
Table 5, which shows a reduction in heating price in all clusters and is 
most significant in those with the least heat coming from the existing 
district heating supply. In an advanced and well-developed district 
heating system like Stockholm, cluster analysis may not be relevant, but 
the method highlights how cities without district heating may prioritize 
development around environmental heat sources to minimize costs.

LCOH is a convenient metric for comparison but does not capture the 
complexities of investment planning or operational strategies. Swedish 
DH networks have become primarily based on boilers and/or co-heat 
and power (CHP) plants fueled by biomass or municipal solid waste, 
electric boilers, and heat pumps [1]. CHP plants and heat pumps have 
complex optimization challenges because they interact with two inde
pendent markets: heat and electricity. Higher electricity prices favor 
CHP plants, which earn higher revenues, whereas heat pump supply 

Table 3 
Future Datacenter’s location in Stockholm based on 5 clustering methods.

Data 
Centers

K-means 
(Lat, 
Long)

Agglomerative 
(Lat, Long)

DBSCAN 
(Lat, 
Long)

Spectral 
(Lat, 
Long)

GMM 
(Lat, 
Long)

1 59.3123, 
18.0070

59.3326, 
18.0128

59.3422, 
17.9483

59.3148, 
18.0050

59.3238, 
18.0191

2 59.2986, 
18.0153

59.3050, 
18.0162

59.3600, 
17.8858

59.3042, 
18.0171

59.3120, 
18.0104

3 59.3305, 
18.0123

59.3131, 
18.0061

59.3606, 
17.8853

59.3154, 
17.9908

59.3076, 
18.0239

4 59.3680, 
17.9292

59.2986, 
18.0153

59.3543, 
17.9065

59.3113, 
18.0321

59.3146, 
17.9968

1 All prices are converted from SEK to EUR using the 2023 average conver
sion rate of 11.5 SEK/EUR.
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becomes more expensive [37], as shown in Fig. 6. Electricity price 
volatility has also increased in Sweden, increasing the opportunity for 
arbitrage and/or ancillary services, which can moderately increase CHP 
revenues but are limited by the need to supply heat [37]. Likewise, heat 
pumps can react to price volatility to minimize operational costs [34].

From an investment perspective, the spatial differences in electricity 
and heating markets is a point of conflict for district heating supply 
technologies. Heating demand is local (i.e., within a city), and the 
electricity market is at a minimum regional (i.e., prices set by regional 

zones) but influenced by neighboring price zones, often in other coun
tries. National electricity portfolios and transmission capacity will 
impact the viability of heat pump and CHP investments [38] and require 
deeper scenario and risk analysis than provided in these results. If 
electricity price trends continue towards moderate average increases 
and higher volatility, then investments in thermal storage will be a key 
enabler of greater heat pump adoption in district heating [39] and help 
maintain the cost competitiveness found in this study.

Temporal changes in heat demand, supply, and electricity prices can 

Fig. 4. Heat demand mapping of Stockholm with 10k-means clustered districts.
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significantly impact clustering results and the economic outcomes of 
district heating systems. Heat demand fluctuates seasonally and daily, 
affecting the allocation of resources if not considered during clustering. 
Residual heat sources, such as data centers, supermarkets, and water 
bodies, also experience temporal variability in heat availability, with 
data centers’ cooling demands and supermarket refrigeration systems 
varying across seasons. Additionally, electricity prices fluctuate, influ
encing these sources’ marginal cost of heat (MCOH), making their eco
nomic viability sensitive to market conditions. Failure to incorporate 
temporal data in clustering could lead to suboptimal resource allocation, 
inefficiencies in heat supply–demand matching, and inaccurate eco
nomic evaluations. Integrating time-based data and adjusting for sea
sonal and hourly variations would improve the precision of clustering 
results and provide more sustainable, cost-effective planning for district 
heating networks, benefiting both urban energy planners and 
policymakers.

Conclusion

This research introduces a novel data-driven approach to district 
heating network planning by leveraging high-resolution source-load 
mapping to address the spatial and temporal variability of distributed 
heat sources. Unlike traditional methods focusing on centralized heat 
production, this study integrates detailed spatial data for distributed 
heat supply sources, such as data centers, supermarkets, and water 
bodies, alongside demand points within Stockholm. Employing 
advanced clustering techniques, including K-means, agglomerative 
clustering, DBSCAN (Density-Based Spatial Clustering of Applications 
with Noise), and Gaussian Mixture Model clustering, Spectral Clus
tering, the study robustly analyzes and identifies optimal locations for 
resource allocation. This multi-method approach ensures adaptability to 
varying data characteristics, such as noise and non-linear distributions.

Additionally, the study pioneers an in-depth techno-economic 
assessment of distributed heat sources, revealing that 98 % of 

Table 4 
Heat demand and allocation per cluster (in GWh/year).

Cluster Heating Demand Data Centers Super-markets Water Bodies Total Allocation

1 (red) 1,672 0 24 100 124
2 (blue) 1,006 60 26 100 186
3 (green) 464 80 18 0 98
4 (purple) 557 20 23 0 43
5 (yellow) 558 60 50 800 910
6 (pink) 959 160 104 300 564
7 (mauve) 170 40 12 500 552
8 (grey) 155 0 9 700 709
9 (mauve) 635 20 16 500 536
10 (magenta) 1548 40 17 400 457

Totals 7,754 480 299 3,400 4,179

Fig. 5. Distances between clusters Centers.
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Stockholm’s residual heat sources are economically viable under current 
market conditions. High spatial resolution (sub-kilometer scale) and 
temporal granularity are utilized, surpassing previous studies that rely 
on coarser datasets. These advancements enable precise identification of 
heat source locations and improved modeling of supply–demand dy
namics. By focusing on Stockholm, a global leader in district heating, the 
research provides actionable insights and establishes a replicable 
methodology for other urban centers aiming to adopt sustainable heat
ing systems.

The study’s contributions include the development of a compre
hensive spatial database encapsulating detailed building energy per
formance metrics for Stockholm (2014–2022), enriched with extensive 
geographic data to support informed urban energy planning. Quantita
tive analysis demonstrates that environmentally friendly sources can 
supply 54 % of Stockholm’s annual heat demand of 7.7 TWh/year, with 
significant contributions from data centers (0.48 TWh), supermarkets 
(0.3 TWh), and water bodies (3.4 TWh). Strategic clustering methods 
identify optimal sites for future data centers, maximizing their role as 
heat sources while aligning with Stockholm’s urban energy goals. Eco
nomic analysis further confirms that distributed heat sources are cost- 
effective, with marginal heat costs below the current Open District 
Heating market price of 22.0 EUR/MWh. Specifically, the marginal heat 
(MCOH) costs for data centers, supermarkets, and water bodies are 
estimated at 12.7 EUR/MWh, 16.0 EUR/MWh, and 20.0 EUR/MWh, 
respectively.

This study underscores the importance of localized, high-resolution 
data by bridging gaps in existing literature, particularly in source-load 
mapping resolution and the role of residual heat sources. The method
ology, combining GIS data, unsupervised machine learning techniques, 
and economic analysis, offers a replicable framework for optimizing 
district heating networks in other cities. This research highlights the 
dynamic potential of distributed heat sources and provides strategic 
insights for policymakers and urban planners, setting a benchmark for 
sustainable and cost-effective district heating solutions.

Future studies in district heating network planning should focus on 
several key areas to improve and expand upon the findings of this study. 
First, data collection and accuracy should be enhanced by integrating 
high-resolution, real-time data on heat demand and supply. This would 
allow for dynamic modelling that accounts for fluctuations in weather, 
energy prices, and demand, improving system efficiency and respon
siveness. Second, exploring new heat sources is essential. While this 
study focused on data centers, supermarkets, and water bodies, future 
research should investigate other renewable sources, such as geothermal 
energy, waste heat from industrial processes, or heat recovery from 
electric vehicles. This would diversify the heat supply and improve the 
sustainability of district heating systems. Scalability should also be a 
major focus. The methodology used in this study was applied to Stock
holm, but future research should test the approach in other cities with 
varying climate conditions and energy systems. Comparative studies 
would help refine the models and assess their generalizability in 

Fig. 6. Marginal cost of heat (in EUR/MWh) by source and electricity price.

Table 5 
Total annual costs and weighted prices for heat supplied by residual source and cluster.

Cluster Existing DH 
MEUR/yr

Data Centers 
MEUR/yr

Super-markets 
MEUR/yr

Water Bodies 
MEUR/yr

Total Cost 
MEUR/yr

Weighted Price 
EUR/MWh

1 (red) 34.1 0.0 0.4 2.0 36.4 21.8
2 (blue) 18.0 0.8 0.4 2.0 21.2 21.1
3 (green) 8.0 1.0 0.3 0.0 9.4 20.2
4 (purple) 11.3 0.3 0.4 0.0 11.9 21.4
5 (yellow) 0.0 0.8 0.8 16.0 17.6 29.9
6 (pink) 8.7 2.0 1.7 6.0 18.4 19.2
7 (mauve) 0.0 0.5 0.2 2.4 3.1 18.0
8 (grey) 0.0 0.0 0.1 2.9 3.1 19.8
9 (mauve) 2.2 0.3 0.3 10.0 12.7 20.0
10 (magenta) 24.0 0.5 0.3 8.0 32.8 21.2

Totals 106.3 6.1 4.8 49.4 166.6 21.5
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different urban contexts.
Further, advancing clustering and machine learning techniques 

could provide deeper insights into heat demand patterns. Techniques 
like deep learning or hybrid models that combine clustering with pre
dictive analytics could improve the accuracy of heat distribution plan
ning. Additionally, economic and policy analysis will be crucial to 
evaluate the long-term viability of distributed heat sources and assess 
the impact of different regulatory frameworks on their deployment. 
Future research should also explore stakeholder engagement and 
understand the challenges building owners, utility providers, and pol
icymakers face. Social and political factors play a key role in adopting 
new technologies and should be studied to facilitate smoother integra
tion of district heating networks. Finally, integrating district heating 
with other urban infrastructure, such as smart grids and waste man
agement systems, could enhance energy efficiency. Studies focusing on 
long-term sustainability and climate adaptation are also needed to 
ensure that district heating networks remain resilient in the face of 
climate change and energy market fluctuations.
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Nomenclature

Nomenclatures and abbreviations
EPC: Energy Performance Certificates
GIS: Geographic Information Systems
ODH: Open District Heating
TWh: Terawatt-hour
COP: Coefficient of Performance
MCOH: Marginal Cost of Heat
SCOP: Seasonal Coefficient of Performance
DH: District Heating
DBSCAN: Density-Based Spatial Clustering of Applications with Noise
GMM: Gaussian Mixture Model
KMeans: K-means clustering algorithm
HAC: Hierarchical Agglomerative Clustering
UEUs: Urban Energy Units
RHI: Renewable Heat Incentive

Parameters and Variables
n_clusters: Number of clusters for clustering algorithms
eps: Maximum distance between two samples for DBSCAN
min_samples: Minimum number of points required to form a “core” point in DBSCAN
affinity: Metric used to compute similarity in Spectral Clustering
reg_covar: Regularization for ensuring covariance matrices are positive semi-definite in 

GMM
max_iter: Maximum number of iterations for GMM
imputer_strategy: Strategy for imputing missing values (mean strategy)
scaler: Standardization method (StandardScaler)
Qj,i: Heat supply for each source in the cluster
Qi: Total heat demand of the cluster
KMeans Centroids: Centroids of clusters identified by KMeans
Ward’s Method: Method used in Agglomerative Clustering to minimize the variance within 

a cluster
Cluster Center Locations: Locations of cluster centers as identified by different clustering 

methods
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