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Abstract: The rapidly increasing installed capacity of Wind Turbines (WTs) worldwide
emphasizes the need for Operation and Maintenance (O&M) strategies favoring high avail-
ability, reliability, and cost-effective operation. Optimal decision-making and planning are
supported by WT health condition analyses based on data from the Supervisory Control
and Data Acquisition (SCADA) system. However, SCADA data are highly imbalanced,
with a predominance of healthy condition samples. Although this imbalance can negatively
impact analyses such as detection, Condition Monitoring (CM), diagnosis, and prognosis,
it is often overlooked in the literature. This review specifically addresses the problem of
SCADA data imbalance, focusing on strategies to mitigate this condition. Five categories
of such strategies were identified: Normal Behavior Models (NBMs), data-level strate-
gies, algorithm-level strategies, cost-sensitive learning, and data augmentation techniques.
This review evidenced that the choice among these strategies is mainly dictated by the
availability of data and the intended analysis. Moreover, algorithm-level strategies are
predominant in analyzing SCADA data because these strategies do not require the costly
and time-consuming task of data labeling. An extensive public SCADA database could
ease the problem of abnormal data scarcity and help handle the problem of data imbalance.
However, long-dated requests to create such a database are still unaddressed.

Keywords: wind turbine; SCADA data; imbalanced data; normal behavior model; data
augmentation techniques

1. Introduction
The global Wind Turbine (WT) installed capacity is rapidly increasing, driven by

government and private investments to decarbonize the energy sector. The technological
maturity of WT design and manufacturing has been pushing down their Levelized Cost
of Energy (LCOE), thus contributing to consolidating this renewable source in the global
energy mix [1]. Enhanced Operation and Maintenance (O&M) strategies contribute to
achieving high availability and reliability and an overall cost-effective operation. Manufac-
turers, operators, analysts, and maintenance practitioners work to ensure WTs fulfill their
objectives correctly and in the long term [2].

Optimal O&M strategies include decision-making and planning guided by the contin-
uous monitoring of the WT health condition. These strategies aim at limiting abnormal
or faulty conditions and, as a result, minimize production losses and maintenance expen-
ditures. This subject is within the scope of Performance Monitoring (PM) [3], Condition
Monitoring (CM) [4], detection and diagnosis of abnormal conditions [5], Condition Based
Maintenance (CBM) [6], and Prognosis and Health Management (PHM) [7]. These analyses
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of a system’s health condition involve identifying and characterizing abnormal, degraded,
or faulty conditions.

The WT health condition analyses aim to provide actionable information from mea-
sured data, especially from the Supervisory Control and Data Acquisition (SCADA)
system [8,9]. Modern WTs’ SCADA system embeds dozens of sensors measuring geometrical,
kinematic, thermal, and electrical variables [10]. SCADA data-based analyses of the WT
health condition have an intrinsic and sometimes overlooked challenge: the imbalance of
datasets, with significantly more data representing the healthy condition than abnormal
or degraded states. This imbalance toward the healthy condition is related to the high
availability and reliability of modern WTs, with typical availability ranging over 95% [11].

The SCADA data imbalance can hinder data-driven analyses, as highlighted in the
review papers listed in Table 1. These reviews highlight that classical imbalance-unaware
approaches tend to be biased toward the majority class (healthy data), leading to poor
representation of the minority classes (degraded or faulty conditions). According to reviews
from Table 1, the SCADA data imbalance is due to multiple factors. Moreover, addressing
the imbalanced SCADA data is necessary to improve the accuracy of wind turbine data-
based fault detection, diagnosis, and prognosis.

Table 1. Articles and reviews highlighting the imbalanced Wind Turbine (WT) Supervisory Control
and Data Acquisition (SCADA) data *.

Ref. Author, Year Title Mention to the Problem of SCADA Data Imbalance

[8] Pandit and Wang, 2024

A comprehensive review
on enhancing WT
applications with
advanced SCADA data
analytics and
practical insights.

(a) The review recognizes the limitations caused by the imbalance
between normal operation data samples and abnormal data samples,
negatively impacting model accuracy. (b) While data-driven
machine learning algorithms offer closer alignment with actual
wind turbine operation, accuracy is limited due to the lack of public
data and imbalanced datasets.

[12] Maldonado-Correa et al.,
2024

Classification of highly
imbalanced SCADA data
for fault detection of
WT generators.

Imbalanced distributions exist across the board between abnormal
and normal classes, leading to inaccurate failure diagnoses and
predictions because these models tend to be biased toward the most
widespread class.

[7] Cuesta et al., 2024
Challenges on prognostics
and health management
for WT components.

(a) [High imbalance] between healthy and unhealthy data is one of
the problems to be solved urgently in the research of equipment life
prediction. (b) PHM often deals with a large volume of data
gathered under healthy conditions and a limited number of data
points that indicate faulty states.

[13] Ma and Yuan, 2023
Application of SCADA
data in WT fault
detection—A review.

(a) Because of the imbalance of fault categories and the scarcity of
fault data in SCADA data, it is challenging to extract fault features
accurately. (b) The scarcity and imbalance of fault data make it
infeasible to train classification models using SCADA fault data. (c)
The process of labeling SCADA data in engineering practice is a
very time-consuming and error-prone task, which can lead to an
imbalanced number of labeling categories.

[9] Badihi et al., 2022

A comprehensive review
on signal-based and
model-based CM of WTs:
Fault diagnosis and
lifetime prognosis.

(a) The distribution of SCADA data is generally imbalanced,
and anomalous data mining is usually insufficient. (b) [The data
imbalance might imply] poor CM performance since the
data-driven models tend to be biased toward the majority class.
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Table 1. Cont.

Ref. Author, Year Title Mention to the Problem of SCADA Data Imbalance

[14] Nunes et al., 2021

Use of learning
mechanisms to improve
the CM of WT generators:
A review.

(a) It is challenging for the classifier to learn abnormal behavior
when the representative part of the data consists of non-fault
samples. (b) This review discusses the suitability of multiple
approaches to analyze imbalanced SCADA data.

[15] Stetco et al., 2019 Machine learning methods
for WT CM: A review.

(a) [Labeling of the training data] is time-consuming, error-prone
and likely to result in a set of labeled vectors with an imbalanced
number of classes. This is a common issue in practice. (b) There are
several ways that the problem of imbalanced classes has been
addressed, including under-sampling, oversampling, SMOTE,
and Tomek-links.

[16] Chen et al., 2019

Learning deep
representation of
imbalanced SCADA data
for fault detection of WTs.

(a) The phenomenon of data imbalance is ignored and the
information of abnormal SCADA data is discarded in the process of
feature extraction. This problem makes diagnosis results biased
toward the majority class, while the ability of novelty detection is
fairly weak. (b) There are few studies about learning deep feature
representation based on imbalanced SCADA data. (c) Data
imbalance brings many obstacles to fault diagnosis of WTs when it
comes to massive SCADA data. However, this problem is usually
ignored for simplifying analysis.

[17] Helbing and Ritter, 2018 Deep Learning for fault
detection in WTs.

(a) Imbalanced datasets arise from the fact that major faults that
cause more than one day of downtime represent only 25% of all
failures, but account for 95% of the downtime. (b) It is of
predominant interest to predict the major faults that usually occur
rarely in any one WT.

* This is a non-exhaustive list of review articles. Direct citations are italicized.

Supervised and unsupervised models require different strategies when dealing with
imbalanced data. Indeed, supervised learning requires a deeper characterization of the data
before the model training, while unsupervised models integrate some level of representa-
tion learning [18]. Pandit et al. [19] highlight that most of the data-driven techniques for
WTs are regression and classification, which are supervised learning models. Nevertheless,
labeling complex data is costly, time-consuming, and influenced by experts’ sensitivity.
Labeling the SCAD data is particularly challenging due to its high dimensionality and the
large number of WT operational states [20]. Emerging research on unsupervised learning
models aims at overcoming the need for SCADA data labeling [21].

The research addressing the impact of SCADA data imbalance in data-based ap-
proaches is still limited and often overlooked. To our knowledge, no previous literature
review has specifically addressed the problem of SCADA data imbalance in the context
of WT health condition analysis. Filling this gap is the primary motivation for the present
review. It also includes the following contributions:

• Characterization of WT SCADA data imbalance and its impact on various WT health
condition analyses such as detection, CM, diagnosis, and prognosis;

• Review of the strategies used to deal with data imbalance in a general context;
• Presentation of previous WT health condition analyses. The reviewed papers are

organized according to the strategies to address the SCADA data imbalance.

The present review is organized as follows: Section 2 presents the data imbalance
problem in a general framework. Then, Section 3 characterizes specifically the SCADA data
imbalance. Section 4 reviews the methods dealing with SCADA data imbalance. Section 6
summarizes the findings and outlines future directions in WT health condition analyses.
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2. The Class Imbalance Problem Across Multiple Application Domains
The imbalance of datasets impacts diverse application domains. Strategies to deal with

data imbalance constitute a very active research topic, mainly because of the recurrence of
this condition in real-world problems and its impacts. Data imbalance has implications in
tasks such as anomaly detection, classification, diagnosis, and prognosis [22–30].

2.1. Characterization of Imbalanced Datasets

Characterizing the severity of the imbalance is important for choosing suitable meth-
ods and correctly evaluating its performance. The poor performance of imbalance-unaware
classification approaches is due to three main factors: (i) Lack of minority class data when
the corresponding datasets are too small, (ii) overlapping between majority and minority
classes, and (iii) minority classes with complex behavior [24].

The class imbalance can be in a two-class problem or a multi-class problem, as depicted
in Figure 1b and Figure 1c, respectively. The latter eventually includes different levels of
data imbalance, as depicted in Figure 1d. The imbalance ratio measures the level of class
imbalance. It can be defined as the ratio of the number of data points in the majority class
to those in the minority class (majority class number of points:minority class number of
points) or the ratio between the datasets’ duration (duration covered by the majority class
dataset:duration covered by the minority class dataset) [24,26].

(a) (b) (c) (d)

Figure 1. Configurations of datasets: (a) Balanced two-class datasets; (b) imbalanced two-class
datasets, with imbalance ratio of 5:1; (c) imbalanced multi-class datasets, with imbalance ratio of 10:1
for each minority class; (d) imbalanced multi-class datasets, including imbalance within the minority
classes, with an imbalance ratio of 25:5:5:1:1.

The literature distinguishes two levels of information in multiple class systems: within-
class information and between-class information [16]. Within-class information refers to
the distribution of data points belonging to each particular class, be it the healthy condition
dataset or a degraded condition dataset. Such characterization involves understanding
the system behavior within a given class. On the other hand, between-class information
is about the relationships and differences between classes. The clustering of different
datasets can give indications of relative dispersion and eventual intersections between the
corresponding classes. The scarcity of the minority class can hinder the characterization of
within-minority-class information. Assuming enough points are available for each dataset
of interest, the issue of data imbalance impacts mainly the between-class information [16].

2.2. Categories of Strategies for Addressing Data Imbalance

Multiple strategies aim to address data imbalance, notably Normal Behavior Mod-
els (NBMs), data-level strategies, algorithm-level strategies, cost-sensitive learning, data
augmentation techniques, and transfer learning. Table 2 describes the different classes of
balancing strategies and their advantages and disadvantages. The difference between these
strategies mostly relates to how they tackle between-class and within-class information [24].
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Table 2. Comparison of strategies to address data imbalance across multiple application domains.

Category and
References Description Advantages (A) and Disadvantages (D)

Normal Behavior
Model (NBM) [31,32]

NBMs circumvent the problem of data imbalance
by focusing on the characterization of the healthy
condition. NBMs are based on one-class (binary)
classifiers or regressive models.

(A) Requires healthy condition data only and
admits unsupervised learning. (D) Limited
outcome (healthy/unhealthy), with no further
characterization of the unhealthy condition.

Data-level
(External) [33,34]

Adapts sampling strategies to balance datasets,
most often by oversampling the minority class,
undersampling the majority class, or a
combination of these.

(A) Versatile, conventional classifiers can be used
after balancing the datasets. (D) May introduce
bias into the representation.

Algorithm-level
(Internal) [16]

Learns directly from the imbalanced data by
prioritizing or forcing the learning of information
from the minority class. This training requires
appropriate definitions of the model architecture,
loss function, and learning hyperparameters.

(A) Does not change the original data distribution
since it works directly with imbalanced data.
(D) More complex to build, tends to be
problem-specific, and may require domain
expertise and insight into why classical classifiers
underperform.

Cost-sensitive
Learning (Hybrid) [24]

Assigns different weights to classes to prioritize
the minority class during learning. These include
cost-sensitive neural networks and
ensemble classifiers.

(A) Hybrid solution that can outperform data-level
and algorithm-level models. (D) Requires defining
a custom misclassification loss function.

Data augmentation
techniques [35,36]

Uses available information to generate new data
points. These include generative models based on
the Variational Autoencoder and synthetic data
created from simulation.

(A) Overcomes data scarcity; suitable for newly
commissioned systems with limited data.
(D) More complex and costly; requires modeling
and validation before classification.

Transfer learning [5]
Adapts available knowledge from general or
previous cases to new instances with small
data sets.

(A) Overcomes data scarcity; can be progressively
enhanced with new data. (D) More complex and
costly to implement.

The choice of an adequate strategy to deal with the data imbalance requires assess-
ing the properties of the interest datasets and delimiting the goal of the analysis. The
possibility of labeling an imbalanced dataset is an important criterion. NBMs, data-level
approaches, and cost-sensitive learning might require labeled datasets. An unsupervised
approach should be prioritized if data labeling costs are impeditive for a given system or
application. Section 4 of the present review analyzes the strategies addressing the SCADA
data imbalance.

2.3. Performance Metrics for Imbalanced Data

The problem of data imbalance requires special attention when selecting classification
performance metrics. Model training based on classical evaluation criteria such as accuracy
can lead the model to ignore the minority class entirely. For instance, classification accuracy
may be high even when the minority class is completely misclassified. For example, given
a two-class dataset with a 1:100 imbalance ratio, a classifier would obtain a 99% accuracy
by simply categorizing all instances as the majority class.

Modeling imbalanced datasets requires performance metrics focusing on the minority
class, typically precision, recall, F1-score, and negative predictive value [37]. The classifica-
tion task is usually performed on an extensive set of reference case studies to evaluate its
performance. In the confusion matrix, each classification is compared against the actual
class and counts as true positive TP, true negative TN, false positive FP, or false negative
FN. The main performance metrics are presented below for context [37].

• Accuracy (acc):

acc =
TP + TN

TP + TN + FP + FN
(1)
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• Precision, also known as the positive predictive value (ppv):

ppv =
TP

TP + FP
(2)

• Recall, also referred to as sensitivity or true positive rate (tpr):

tpr =
TP

TP + FN
(3)

• The F1-score balances precision and recall, and is generalized by the Fβ score given by
Equation (4), where β ∈ [0, 1] weights the importance between precision and recall.
The choice of β = 1 (F1-score) gives equal importance to the two metrics.

Fβ =
(1 + β2) · ppv · tpr

β2 · ppv + tpr
(4)

• Negative Predictive Value (npv), as given in Equation (5)

npv =
TN

TN + FN
(5)

Other metrics can be found in the literature addressing imbalanced datasets. The Re-
ceiver Operating Characteristic curve (ROC) plots the True Positive Rate (y-axis) against the
False Positive Rate (x-axis). The Area Under Curve (AUC) derives a scalar metric for the
ROC plot [38]. The Geometric mean (G-mean) evaluates the balance between classification
sensitivity and specificity [12]. The Matthews Correlation Coefficient (MCC) is a robust
metric that takes all elements of the confusion matrix into account [12].

3. SCADA Data Imbalance and Its Impact on Wind Turbine Health
Condition Analyses

Obtaining actionable insights from the raw SCADA data involves multiple steps,
including data acquisition, preprocessing, and handling of its imbalanced nature.

3.1. SCADA Data Acquisition and Preprocessing

The SCADA system consists of multiple sensors measuring geometrical, kinematic,
thermal, and electrical variables. The set of sensors includes anemometers, wind vanes,
pressure sensors, RPM sensors, voltage sensors, current sensors, power sensors, and po-
sition sensors, as well as temperature sensors positioned in various locations: ambient
temperature, nacelle, main bearing, gearbox, generator, generator bearings, cabinets, cool-
ing systems, pitch systems, blades, and the tower. The SCADA data can be used to analyze
the WT health condition because degradation modes on WT components have signatures
in the SCADA measures. Table 3 indicates potentially informative measures for some kinds
of WT degradation.
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Table 3. Degraded conditions and interest SCADA variables.

Degraded Condition Measures of Interest * Refs.

Main bearing overtemperature Main bearing temperature [◦C] and rotor rotational speed [rpm] [39,40]
Gearbox overtemperature Gearbox bearings and gearbox cooling system temperature [◦C] [41]
Generator overtemperature Generator bearings and generator cooling system temperature [◦C] [42]
Ice accretion on blades Wind speed [m/s], active power [kW], ambient temperature [◦C] [43,44]
Yaw system misalignment Yaw angle [◦], nacelle position [◦], wind direction [◦] [45]
Pitch system failure Blade pitch angle [◦], pitch motor current [A], actuator status [46,47]
Rotor imbalance Rotor speed [rpm], active power [kW], tower acceleration [m/s2] [48]
Hydraulic system failure Hydraulic pressure [bar], hydraulic circuit temperature [◦C] [49]
Anemometer failure Wind speed [m/s], active power [kW], wind farm wind speed [m/s] [50]
Brake system degradation Hydraulic pressure [bar], rotor rotational speed [rpm], brake status [51]

* Wind speed [m/s] and active power [kW] are measures of interest for all degraded conditions; all conditions
may use textual information from the SCADA log files.

The SCADA system aggregates measures acquired by its sensors as float-values time
series with a 10 min time step. Each value is the mean of the measured signal over
10 min intervals. The 10 min aggregation industrial standard suits performance monitor-
ing of WTs and spare storage and computational resources [3]. Eventually, the SCADA
system also stores other 10 min statistics such as maximum value, minimum value,
and standard deviation [52].

Moreover, the SCADA system produces log files listing messages about the WT status,
including error messages, exceptions to nominal functioning, control protocol messages,
fault codes, warnings, and alarms. These SCADA status messages are produced mostly by
built-in threshold-based CM and safety protocols. For example, persistent overtemperature
at critical components (e.g., main bearing, gearbox, generator, critical cooling systems) could
trigger a shutdown protocol, and the SCADA system would record this succession of events
in the SCADA log files [53]. In addition, O&M reports manually filled by maintenance
practitioners are available for some wind farms. The existing entries can complement status
information from the SCADA log files.

For a given WT, the availability of SCADA data depends on the sensors embedded
within the SCADA system and is subjected to contractual constraints between the WT
manufacturer and operators. The SCADA time series may be accessed by analysts directly
from the SCADA system but are more likely provided once the data have flowed through
different steps of the data pipeline. The SCADA system time series can present data quality
issues due to sensor defaults and data transmission issues. In practice, a combination of
preprocessing steps is implemented to eliminate these data quality issues and prepare the
data for the targeted approaches. Different kinds of analysis require different preprocessing
steps [9]. Selecting appropriate preprocessing steps is paramount, given it can influence
the health analysis outcome [54].

SCADA data preprocessing steps include filtering out inconsistent values, filtering
specific operational conditions, normalization, correlation analysis, feature engineering,
data imputation, sliding overlapping time segmentation, and labeling [8]. Filtering out in-
consistent physical measures, non-numerical values (NaN reading), and nonexistent entries
(None) is among the first of the SCADA data preprocessing steps. Typically, the percentage
of SCADA data concerned by this step remains below 3% [54]. Normalization techniques
should be chosen according to the modeling approach. For example, Min-Max normal-
ization is suitable for Deep Neural Networks (DNN) models. Statistics can be performed
over large SCADA databases to estimate lower and upper bounds for the normalization.
Table 4 illustrates such a definition for a large North American wind farm comprising over
a hundred 1.84 MW-rated power WTs [55].
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Table 4. SCADA features with Lower Bound (LB) and Upper Bound (UB) for a large wind farm.

Measure Symbol LB UB

Wind speed WS [m/s] 0 31
Rotor speed nROTOR [rpm] 0 18
Power output P [kW] 0 2000
Ambient temperature TAMB [°C] −25 45
Nacelle temperature TNAC [°C] −20 70
Bearing temperature TBEA [°C] −20 70
Gearbox bearing temperature TGBX−BEAR [°C] 0 100
Gearbox oil temperature TGBX-OIL [°C] 0 100
Generator temperature TGENi [°C] −10 140
Generator cooling temperature TGEN-COOL [°C] −10 120
Axial box temperature TAX-BOX [°C] 0 60
Battery box temperature TBAT-BOX [°C] 0 45

Correlation analysis and feature engineering allow for defining features with high
informative power for a given analysis [56]. Works from diverse domains report that
selecting highly informative features enhances the overall performance of DNN models [57].

Analyses based on time series often consider run-to-failure scenarios. In such cases,
depending on the hypothesis for the degradation mode, data imputation can be used
to complete missing data; sliding overlapping time segmentation allows for producing
samples [58]. On the other hand, in analyses based on models trained with datasets re-
gardless of the timeline, it is common practice to filter out data points corresponding to the
WT at conditions that bring very little or no information, such as standby and shutdown
modes [55]. The WT standby mode may be due to wind speed outside the operational in-
terval or because of grid control requirements. The WT shutdown protocol can be triggered
for reasons such as extreme weather conditions and inside-nacelle interventions [59].

Approaches comprising supervised or semi-supervised learning require labeling
the datasets. Information from the SCADA log files and O&M reports can guide the
labeling of datasets. Indeed, these textual data identify abnormal operating conditions
with the respective time intervals. Data points and time series can be selected within the
reported intervals.

3.2. Imbalanced SCADA Data

The SCADA data imbalance can be analyzed at three levels: imbalance between
healthy and degraded datasets, imbalance between different degradation classes, and im-
balance due to the scarcity of degraded data points in newly commissioned wind farms.

The predominance of the healthy condition data over degraded condition data is a
positive outcome, as it indicates that wind turbines operate mainly in healthy conditions.
The high cost of wind turbines makes preventive or systematic maintenance strategies
better suited than curative repairs. In practice, this choice of more conservative maintenance
strategies implies that any confident evidence of abnormal conditions would motivate the
operators to take prompt action, e.g., curtail or shut down the WT, making run-to-failure
instances rare.

SCADA data are also imbalanced within the minority classes, as most data points
for cost-critical issues relate to only a few abnormal conditions [17,60]. Based on an
extensive database with a total of 35,000 WT component failure events from over 13 years
of operation of 1400 large onshore pitch-controlled WTs, Santelo et al. [61] estimated that
80% of maintenance costs are associated with just 20% of the components.

The database’s acquisition period influences the class imbalance, with shorter acqui-
sition periods potentially lacking data points for most of the degraded conditions. This
shortcoming might limit some analyses on newly commissioned wind farms. The acqui-
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sition of data within the wind farm lifetime allows for the characterization of diverse
operation conditions, including much less frequent degradation modes. In practice, to ana-
lyze a newly commissioned wind farm, operators and analysts can overcome the scarcity
or absence of data by analyzing the historical degradation of the specific WT model or
a similar configuration [17]. For instance, the health condition analyses might target re-
current degradation conditions within the historical data, which indicates flaws in the
WT model [62].

The combination of the factors mentioned in this section implies the imbalance ratio
of SCADA datasets depends on each wind farm’s characteristics and operational history.
To illustrate the order of imbalance ratio, we considered SCADA data covering two years
of operation of the abovementioned North American wind farm [55]. Table 5 gives the
statistics of SCADA alarms concerning three critical components, the gearbox, the generator,
and the main bearing. For this order estimation, the wind farm availability rate of 97% leads
to the approximate average period in the healthy condition of 0.97 × 365 × 24 h ≈ 8500 h.
The imbalance ratio is estimated with respect to the periods, i.e., period of availability:
period with active degradation SCADA alarm.

Table 5. Estimation of the order of SCADA data imbalance for an operating wind farm.

Attribute Gearbox Degradation Generator Degradation Main Bearing
Degradation

Frequency of SCADA Alarms (1/year/WT) 4.5 6.8 2.5
Period with Active SCADA Alarms (hours/year/WT) 23.6 17.3 2.9
Order of Imbalance Ratio 360:1 490:1 2930:1

In Table 5, the gearbox degradation includes the SCADA alarms of Gearbox bearing
overtemperature, Gearbox oil overtemperature, Gearbox oil overtemperature from thermal switch,
and Gearbox oil pressure too low. Generator degradation includes Generator bearings overtem-
perature, Generator stator windings overtemperature, Generator over-speed, Generator brush wear
shutdown, and Generator cooling air overtemperature. Bearing degradation corresponds to the
SCADA alarm Shaft bearing overtemperature.

4. Review of Strategies for Handling SCADA Data Imbalance
The present review investigates WT health condition analyses, focusing on papers

addressing the imbalance of SCADA data. An exploratory approach with structured scop-
ing principles was adopted to identify and compare strategies to address the SCADA data
imbalance. The methodological workflow presented below aimed at balancing systematic
search strategies with the flexibility to uncover citation connections in the recent literature.
The selection of interest papers follows the criteria C1–C3:

C1. Query Structure:

(“wind turbine” OR “wind energy”) AND (“SCADA”)
AND [data](“imbalance” OR “disbalance” OR “unbalance”).

In this query, the specifier “[data]” ensures the selection of instances of the words
“imbalance,” “disbalance,” or “unbalance” related to data, thereby excluding terms
like “rotor imbalance” and “blade imbalance.”

C2. Time Frame: This review considers papers published within the period (2019–2024),
therefore, focusing on recent advancements.

C3. Exclusion Criteria: Review and conference papers were excluded to avoid redun-
dancy and prioritize citation relation between papers.
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The methodological workflow comprises two steps. First, a targeted bibliographic
search step within Web of Science (WoS) and Google Scholar aims to select the initial corpus
of papers. The second step uses the citation-oriented exploratory tool ResearchRabbit [63] to
broaden and consolidate the corpus of papers. This tool exploits the citation links between
papers (paper A cites paper B) to highlight the relation between works. Papers were
screened within the ResearchRabbit categories of “Similar Work” and “Earlier Work” [63],
and the ones with multiple citation links in the citation graph verifying the criteria C1–C3
were retained

The first step of the bibliographic research led to a primary corpus of 30 papers, 9 from
WoS and 21 pertinent papers retained from Google Scholar. This corpus was then broadened
and consolidated using ResearchRabbit, resulting in the selection of 56 papers reviewed in
the present section. Figure 2 depicts the graph representation provided by ResearchRabbit.

Figure 2. ResearchRabbit graph representation indicating the sets of selected papers (green) and
similar papers (blue). Edges represent citation relationships [63].

This hybrid methodology is oriented by relevance and connectivity. It allowed for
uncovering and comparing different strategies used in SCADA-based WT health condi-
tion analyses. However, this review does not comply with the PRISMA framework for
systematic reviews and does not aim for exhaustive coverage [64,65].

The present review presents the papers within five categories: NBMs (Section 4.1),
data-level methods (Section 4.2), algorithm-level methods (Section 4.3), hybrid meth-
ods (Section 4.4), and data augmentation techniques (Section 4.5). Section 5 discusses
the strategies for managing the SCADA data imbalance.
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4.1. Normal Behavior Models

Table 6 lists papers using NBMs on SCADA data-based WT health condition analyses.

Table 6. NBMs are based solely on healthy data, thus avoiding the problem of data imbalance.

Ref. Author(s), Year Focus Description and Contributions

[66] Murgia et al., 2023 Detection of temperature-
related WT faults

Regression-based NBMs predicting temperature measures
at multiple components are proposed. Healthy data are col-
lected from WTs based on the O&M reports.

[67] Bilendo et al., 2023 WT CM considering multiple
abnormal conditions

An NBM targeting multiple SCADA measures is proposed. It
is based on the heterogeneous stacked regression algorithm.
Historical normal data are gathered using kernel density esti-
mation (KDE) on the power curve representation.

[40] Tutivén et al., 2022 WT main bearing
fault diagnosis

An NBM for the main shaft temperature using a one-class Sup-
port Vector Machine (SVM) classifier is introduced. Healthy
data come from 2 years of operation of a WT with no reported
abnormal main bearing condition.

[68] Yi and Jiang, 2020 Feature learning for blade
ice accretion

Stacked auto-encoders (SAE) and sparse linear discriminant
analysis (SLDA) are used to extract and project discriminative
features from the SCADA data.

[69] Wei et al., 2019 WT electric pitch
system failure

The NMB is built using optimized relevance vector machine
(RVM) regression. SCADA log files are used to filter SCADA
data and remove interferential information.

[70] Lebranchu et al., 2019 WT fault indexes at individ-
ual and wind farm levels

NBMs are proposed at the level of individual WTs and
of the wind farm, and the fault indexes are based on the
NBMs residues.

[71] Saari et al., 2019 WT bearing faults detection
and identification

The NBM uses the one-class support vector machine model.
Healthy data correspond to 120 days of the vibratory data
from the accelerometer mounted on the gearbox housing.

NBMs listed in Table 6 use various algorithms to analyze the SCADA data. It is worth
mentioning that WT’s normal or healthy condition comprises significantly heterogeneous
operating conditions. For example, the active power can be a cubic or a constant function
of the wind speed, and the nacelle temperature varies greatly under the influence of daily
and seasonal variations. Consequently, creating NBMs for the overall healthy WTs can be
challenging. Instead, most of the reviewed NBMs focus on the health condition analysis of
a particular subsystem or component, thus limiting the healthy/unhealthy classification to
the level of the component or subsystem. Regression-based NBMs model specific SCADA
measures such as main bearing temperature [40] or gearbox bearing temperature [67].
The residue between NBM prediction and actual measures allows for detecting changes in
the system’s behavior. Alternatively, NBMs can target health indexes, with detection based
on thresholds [70].

NBMs at the wind farm level assume that WTs from the same model behave similarly.
In particular, their degradation follows similar patterns. This assumption might be coherent
for most WTs from a large wind farm but may not hold for WTs after major repairs and
component replacements [72].

A priori, NBMs would be trained solely on healthy data [73]. Nevertheless, in cases
with severe imbalance toward the majority healthy class, such as the SCADA imbalance
for some less frequent abnormal conditions, the NBM could eventually be trained with all
data regardless of the condition provided that the modeling approach has low sensitivity
to outliers [74].
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4.2. Data-Level Methods

Table 7 presents an overview of data-level methods for dealing with SCADA
data imbalance.

Table 7. Data-level methods for handling SCADA data imbalance.

Ref. Author(s), Year Focus Description and Contributions

[12] Maldonado-Correa
et al., 2024

Multiple WT generator
faults detection

Multiple oversampling techniques were analyzed to per-
form binary classification using high-frequency SCADA mea-
sures. Among SMOTE, SMOTE + Tomek, SMOTE + ENN,
and ADASYN.

[75] Fazli and Poshtan, 2024 WT fault detection
and isolation

The operational dataset is labeled using the status and warn-
ing datasets. The labeled data are used for the supervised
training of the K-Nearest Neighbors (KNN) classifier.

[76] Li et al., 2023 Blade icing detection The proposed CJBM method combines an improved
clustering-based oversampling technique (γ MiniDPC-
SMOTE) with LightGBM to balance data and improve icing
prediction accuracy.

[77] Jin et al., 2023 Blade icing detection An approach combining downsampling of the normal data
and upsampling of the icing data was introduced. The upsam-
pling of the icing data combines the synthetic minority over-
sampling technique (SMOTE) with Wilson’s edited nearest
neighbor rule (ENN) technique. The ENN allows removing
the misclassified nearest neighbor examples from the
training set.

[78] Chen et al., 2022 Blade icing detection A method for oversampling of minority samples was pro-
posed by combining the Adaptive Synthetic Sampling
(ADASYN) method with the Sliding Window Upsampling
(SWU) technique.

[79] Jiang et al., 2022 Fault detection Use of the downsampling method to reduce the effect of
data imbalances.

[80] Wang et al., 2022 Blade icing detection A sliding window oversampling technique was used to create
segments of data for normal and blade icing conditions. This
technique might use overlapping segments.

[81] Tian et al., 2021 Blade icing detection Two approaches are explored: class-rebalanced loss function
and data resampling procedure.

[82] Jiang and Li, 2021 Multiple WT faults detection
and localization

A Frequent principal fault detection and localization (FPFDL)
approach is proposed using improved synthetic oversam-
pling techniques combined with dependent wild bootstrap
oversampling and 1D convolutional neural networks.

[83] Ding et al., 2021 Blade icing detection Proposes a PCC-based algorithm for measuring the degree of
blade icing and an ensemble learning model to deal with the
label missing problem and the class-imbalance problem.

[84] Yi et al., 2020 Blade icing detection Proposes a minority clustering SMOTE (MC-SMOTE) method
that involves the clustering of minority class samples to im-
prove the imbalance classification performance.

[85] Liu et al., 2018 Blade icing detection Use of the over-sampling technique SMOTE to tackle the
SCADA imbalance issue.

[86] Li et al., 2019 Multiple WT faults Random undersampling of the majority class transformed
the dataset, initially with an imbalance ratio of 47:1, into a
balanced dataset with a 1:1 ratio between the majority and
minority classes.

Data-level strategies derive from approaches that use undersampling of the majority
class and oversampling of the minority class. They require explicit identification of the
majority and minority classes, hence labeling.
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4.3. Algorithm-Level Methods

Table 8 lists papers introducing algorithm-level approaches suitable for analyzing
highly imbalanced SCADA data.

The algorithm-level methods listed in Table 8 are mostly DNNs designed to ensure
or enhance learning from the minority class from the SCADA data through techniques
involving appropriate loss functions (e.g., FL), attention mechanisms (e.g., TACNN and
MT-STAN), ensemble learning (e.g., MK-FCNN), and hybrid architectures (e.g., CNN-RNN,
1D-CNN-SBiGRU, and MWGCN).

Table 8. Algorithm-level methods for handling SCADA data imbalance.

Ref. Author(s), Year Focus Description and Contributions

[87] Sun et al., 2023 Fault diagnosis A matching contrastive learning method is proposed to ex-
tract spatial and temporal information from SCADA data.

[88] Liu et al., 2023 Anomaly detection, blade
icing detection

A triplet-Convolutional Deep Autoencoder (Conv DAE) is
proposed to model normal data and acquire discriminative
deep feature representation.

[89] Sun et al., 2023 Fault diagnosis A combination of Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) is used to enhance
recognition accuracy of feature classes.

[90] Jiang et al., 2023 Blade icing detection A novel multi-task temporal-spatial attention network (MT-
STAN) is proposed. It integrates a spatiotemporal attention
block for feature extraction and a multi-task learning mod-
ule to enhance the discriminative ability and improve fault
detection performance.

[91] Man et al., 2023 Blade icing detection The proposed method utilizes Focal loss to counter SCADA
imbalance and XGBoost as a classifier for improved detec-
tion performances.

[92] Lai et al., 2022 Blade icing detection Classifier with Focal Loss (FL) is used to balance SCADA
data. The Multiscale Wavelet-Driven Graph Convolutional
Network (MWGCN) is proposed to extract features and de-
termine implicit information of intervariable correlations in
the SCADA data.

[93] Tong et al., 2022 Blade icing detection A semi-supervised extreme learning machine (ESS-ELM) is
built based on the ELM algorithm to address the unlabeled
and imbalanced SCADA data issue.

[94] Cheng et al., 2022 Blade icing detection Blockchain-empowered imbalanced federated learning model
integrating cluster-based learning to address class imbalance.

[95] Xiao et al., 2022 Blade icing detection GMDH selective deep ensemble (GSDE) integrates cost-
sensitive with focal loss deep neural networks to address data
imbalance as well as improve fault detection performances.

[96] Li et al., 2022 Blade icing diagnosis
and prediction

A model combining the ReliefF algorithm for feature selection
with the one-dimensional convolution and stacked bidirec-
tional Gated Recurrent Unit (1D-CNN-SBiGRU) structure was
proposed. It enhances the performance measured by a new
weighted accuracy index.

[97] Cheng et al., 2021 Blade icing detection A deep class-imbalanced semisupervised (DCISS) model is
introduced for estimating blade icing conditions. DCISS com-
bines a prototypical network with semi-supervised
learning (SSL).

[81] Tian et al., 2021 Blade icing detection Use of the sliding window (without overlapping) resampling
algorithm as well as a class-balancing loss function.

[98] Cheng et al., 2021 Blade icing detection A temporal attention-based CNN (TACNN) is explored to
identify important features from imbalanced sensor data.
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Table 8. Cont.

Ref. Author(s), Year Focus Description and Contributions

[5] Chen et al., 2021 Fault diagnosis, blade ice ac-
cretion, gear cog belt fracture

The transfer learning algorithm TrAdaBoost is introduced to
tackle the challenge of SCADA data imbalance. It assigns
higher weights to misclassified samples, which enhances the
model’s sensitivity to underrepresented faulty data.

[99] Pang et al., 2020 Multi-class fault diagnosis in
WTs

A Multi-Kernel Fusion Convolutional Neural Network (MK-
FCNN) is proposed to extract multiscale spatial correlations
among different variables. It is succeeded by a Long Short-
Term Memory (LSTM) model that learns the temporal depen-
dence of the learned spatial features.

[100] Tang et al., 2020 Pitch system fault detection Method based on multi-class optimal margin distribution
machine (MCODM) for accurately detect faults and to address
imbalanced samples.

[101] Sá et al., 2020 Fault detection Proposed workflow combining the multi-objective optimiza-
tion framework Non-dominated Sorting Genetic Algorithm
II (NSGA-II) for feature and hyperparameter selection with
Soft-Label and a Binary support vector machine (SVM) for
fault detection.

[102] Chen et al., 2019 Fault detection for variable
speed WTs

A Long Short-Term Memory (LSTM) neural network is pro-
posed to extract features of the fault signal

[16] Chen et al., 2019 Blade icing detection A fault diagnosis deep learning model is introduced. The ap-
proach uses the triplet loss function to preserve within-class
information and between-class information.

[103] Karim et al., 2019 Time series classification Use of a squeeze and excitation block (multivariate time series
classification model) to improve the accuracy of pre-existing
LSTM methods.

4.4. Cost-Sensitive Learning and Hybrid Strategies

Cost-sensitive strategies attribute weights according to the data classification and often
require labeling the datasets. These learning strategies can be seen as a combination of the
data-level and the algorithm-level approaches, where the loss function is set differently
for majority and minority classes [24]. Table 9 lists papers using cost-sensitive learning
strategies to analyze imbalanced SCADA data.

Table 9. Cost-sensitive learning and hybrid strategies.

Ref. Author(s), Year Focus Description and Contributions

[104] Jiang et al., 2023 Blade icing detection

A spatiotemporal attention model is combined with a
self-adaptive weight loss function. Classification is enhanced
by adaptively assigning weights to data categories according
to their numbers in divided batches.

[105] Chatterjee, 2023 Multiple WT fault
classification

Over and under-sampling are combined using adaptive
SMOTE and Edited Nearest Neighbors (ASMOTE-ENN).
The resulting multi-step approach reduces noise in the
imbalanced datasets and obtains samples that precisely fall
into the minority class.

[106] Meng et al., 2023 Wind power prediction

The proposed method proactively addresses the imbalanced
nature of samples by enhancing adaptive learning ability and
significantly reducing prediction errors. This adaptive
learning combines segment imbalance regression (SIR) with
crisscross optimization.
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Table 9. Cont.

Ref. Author(s), Year Focus Description and Contributions

[107] Tong et al., 2021 Blade icing detection

An adaptive weighted kernel extreme learning machine
(AWKELM) algorithm is introduced, effectively improving
fault detection performance under imbalanced data
conditions. The adaptive weighting strategy considers sample
distribution information in combination with a fixed
weighting strategy.

[108] He et al., 2020 Multi-class fault diagnosis

A SpatioTemporal Multiscale Neural Network (STMNN)
model is introduced. It combines a deep echo state network
for temporal feature extraction with a multiscale residual
network for spatial feature extraction. Training with
dynamically adjusted focal loss (FL) solves the data
imbalance problem.

Among hybrid strategies, ensemble classification models combine multiple classifiers
to obtain better accuracy compared to individual classifiers [24]. Examples of such strategies
include AdaBoot [109,110] and Bagging [111]. Implementing hybrid strategies tends to be
more complex than data-level or algorithm-level strategies taken alone.

4.5. Data Augmentation

Table 10 presents papers from a broad class of works, including generative models,
synthetic data generated from simulation, and transfer learning.

Table 10. Generative models, synthetic data from simulation, and transfer learning.

Ref. Author(s), Year Focus Description and Contributions

[112] Wang et al., 2024 Fault diagnosis A stacked capsule autoencoders is proposed to address the
issues of inadequately labeled data and class imbalance, uti-
lizing a prior knowledge-based convolution layer to optimize
the initialization of capsules and improve spectral informa-
tion learning.

[88] Liu et al., 2023 Anomaly detection, blade
icing detection

A data augmentation method is introduced. It is based on
the Dynamic Time Warping-SMOTE Generative Adversarial
Network (DTW-SMOTE GAN) model, which generates high-
quality synthetic fault instances.

[113] Oliveira-Filho et al.,
2023

Multi-class detection
and diagnosis

Two-steps approach: First, faulty data from multiple WTs are
gathered to build fault-condition datasets. Second, a Vari-
ational Autoencoder-based data augmentation technique is
used to generate new samples for each dataset.

[114] Pujana et al., 2023 WT drivetrain digital
twin modeling

A method to generate synthetic data combining a hybrid
model with the statistical characterization of normal and
faulty conditions. The generation of new failure scenarios is
based on a random sampling of the respective
probability distributions.

[115] Su et al., 2022 Improved fault diagnosis
method for WT gearboxes

Use of generative adversarial networks (GAN) to generate
expanded samples that conform to the original distribution,
amplifying imbalanced fault features, and providing more
data space for diagnosis and classification.

[73] Wang et al., 2022 A de-ambiguous CM scheme The proposed De-Ambiguous CM Scheme with Transfer
Layer (DCMT) integrates the least squares generative adver-
sarial network (LSGAN) to augment health data and elimi-
nate the effect of ambiguous data, improving the reliability of
training datasets and enhancing early fault
detection accuracy.
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Table 10. Cont.

Ref. Author(s), Year Focus Description and Contributions

[73] Wang et al., 2022 De-ambiguous CM scheme Least squares generative adversarial networks (LSGAN) to
address data ambiguity in WT CM.

[116] Jin et al., 2022 WT generator CM An instance-based transfer learning approach is proposed
for the CM of WT generator with insufficient data. It uses a
weighting TrAdaBoost algorithm.

[117] Chen et al., 2021 WT generator bearings CM Use of deep convolutional generative adversarial networks
(DCGAN) to generate synthetic data from healthy samples.

[118] Velandia-Cardenas
et al., 2021

Fault detection SCADA data were preprocessed using principal component
analysis (PCA). An ensemble method using a combination of
random undersampling and the standard boosting procedure
AdaBoost was compared against supervised ML methods fed
with processed data using time-split and
oversampling techniques.

[119] Xu et al., 2020 Blade icing detection A method combining fixed length undersampling and
SMOTE oversampling techniques are introduced. The SVM
model performance is enhanced using particle
swarm optimization.

Generative models used to generate synthetic data for WT operation include Varia-
tional Autoencoders [120], Generative Adversarial Networks (GAN) [121], Wasserstein
Generative Adversarial Networks (WGAN) [122], Least Squares Generative Adversarial
Networks (LSGAN) [123], among others. The implementation of a transfer learning model
for WTs may use data from other units of the same WT model, i.e., the same manufacturer
and specifications [14]. The general deep learning model can be built for a WT model and
then be trained or updated considering data from one specific WT unit [124–126].

5. Discussion
Most papers reviewed in Section 4 use specific strategies to deal with the SCADA data

imbalance without further evaluation or comparison with alternative methods. The choice
of one particular strategy can be linked to the characteristics of the SCADA data and the
interest analyses.

The extent of SCADA data available is a determinant factor influencing the choice of
the balancing strategy. NBMs only require healthy data and, in cases of severe imbalance,
can use all available data regardless of the class, provided that the chosen model is not
sensitive to outliers. Data-level, algorithm-level, and cost-sensitive strategies are suitable
for imbalanced datasets, provided that enough minority-class data are available. Such data
allow modeling within minority-class information. Generative models, simulation-based
data generation, and transfer learning allow using information from other WTs of the
same model, eventually from other wind farms. These data augmentation techniques are
particularly suitable to overcome data scarcity, such as in newly commissioned wind farms.

The second factor is the possibility and cost of labeling the available data. Unsuper-
vised learning strategies have the advantage of not requiring SCADA data labeling, which
is time-consuming, costly, and prone to errors. NBMs can use unsupervised training and are
easier to implement than the other modeling approaches. Data-level and hybrid strategies
require labeling the SCADA database. When multiple degraded conditions are analyzed,
it might be necessary to label multiple conditions, which is challenging. Algorithm-level
strategies involve unsupervised learning, which makes them appropriate for analyzing
imbalanced SCADA data without labels.
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A third factor concerns the purpose of the analysis, as different data balancing strate-
gies suit different kinds of WT health condition analysis. NBMs are suitable for anomaly
detection and CM, but their binary characterization (normal behavior or not) limits their use
for diagnosis and prognosis. Data-level, algorithm-level, and hybrid strategies are used in
approaches aiming at the early detection of abnormal conditions, CM, diagnosis, and prog-
nosis. Finally, data augmentation techniques are often combined with other models, which
allows for WT health condition analyses even when data are scarce. Detection and CM
are less sensitive to data imbalance than diagnosis since the latter involves distinguishing
among various degradation states. The specificity of prognosis is the need for run-to-failure
time series from the imbalanced SCADA database.

Forecasts for the wind energy sector suggest the WT global fleet is shifting toward
larger WTs in the coming decades and anticipate significant growth in offshore installed
capacity [127]. Advancements in wind turbine technologies, maturity of the wind energy
sector, and scale factor may benefit strategies tackling the problem of SCADA data im-
balance. Indeed, future-generation WTs are expected to include captors from enhanced
SCADA systems and diverse Condition Monitoring System (CMS) captors. The CMS
can provide various types of data, including vibratory measurements, lubricant or grease
condition analysis, and strain gauge stress measurements. These characterizations favor
physical-based CM approaches, potentially complementing or overcoming data-based
approaches. At the system level, the availability of finer-scale measurements paves the way
for digital twin modeling [114,128].

In closing this discussion, building and maintaining an extensive public SCADA
database remains among the perspectives for the future of the wind energy sector. Such
a database could ease the problem of abnormal data scarcity, thereby contributing to
handling the SCADA data imbalance. However, only a few datasets have been made public
to date, and these are limited to relatively short periods and a few classes of degradation or
failure conditions [17].

6. Conclusions and Perspectives
Reviews highlighted in the Introduction (Table 1) state the importance of assessing

and addressing the imbalance of SCADA data while implementing WT health condition
analyses such as detection, CM, diagnosis, and prognosis. Nevertheless, the literature is
limited in its appreciation of the impact of the SCADA data imbalance, and little attention
is given to the specifics of balancing strategies.

This paper presented strategies to mitigate the imbalance of SCADA data within five
categories: NBMs, data-level strategies, algorithm-level strategies, cost-sensitive learning,
and data augmentation techniques. This review identified three key factors influencing the
choice among the balancing strategies: (i) the extent of SCADA data availability, (ii) the
possibility and cost of data labeling, and (iii) the purpose and level of the desired WT health
condition analysis.

The present review suggests that unsupervised learning models were predominant
among the targeted works—papers published from 2019 to 2024 explicitly mentioning
the SCADA data imbalance. Unsupervised learning strategies motivate intense research
activity and industrial interest because these models overcome the need to label the SCADA
database, which is time-consuming, costly, and error-prone.

Some aspects of SCADA data analysis remain to be comprehensively addressed
to fully assess the impact of SCADA data imbalance. The present review considered
papers that explicitly mentioned the problem of SCADA data imbalance. A comprehensive
review could be defined by relaxing this criterion to include other pertinent strategies for
SCADA data balancing. The balancing strategies serve different kinds of health condition
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analysis, which makes direct comparisons challenging. This review’s authors believe the
two following open questions are worth further investigation. The first question concerns
the impact of feature selection. Analyzing the impact of the number and kind of SCADA
measures selected as features could enhance the understanding of feature importance and
optimize model performance. More complex models, such as graph neural networks, allow
for integrating multiple subsystems or component variables under the assumption that
a graph model is appropriate. The second recommended research question is whether
analyzing multiple abnormal conditions (instead of a single degraded condition) can
improve diagnostic accuracy. The multi-class modeling approach gathers information from
different datasets in the same model. Addressing these aspects of SCADA-based analyses
will potentially benefit the implementation of WT health condition analyses in operating
wind farms.
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