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ar-stress Background: Although stress plays a key role in tinnitus and decreased sound tolerance, conventional hearing

devices used to manage these conditions are not currently capable of monitoring the wearer’s stress level. The
aim of this study was to assess the feasibility of stress monitoring with an in-ear device.

Method: In-ear heartbeat sounds and clinical-grade electrocardiography (ECG) signals were simultaneously
recorded while 30 healthy young adults underwent a stress protocol. Heart rate variability features were
extracted from both signals to train classification algorithms to predict stress vs. rest.
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Tinnitus Results: Models trained and tested using in-ear heartbeat sounds appeared to perform better than the models
Hyperacusis trained and tested using the ECG signals. However, further analyses comparing heart rate variability features
Misophonia extracted from ECG and the in-ear heartbeat sounds suggest that the improvement in stress prediction

performance was driven by the increased presence of artifacts (e.g. movement or speech) during the stress
tasks, rather than physiologically meaningful changes in the heartbeat signals that would be indicative of
stress in real-world settings. To address this difference in error between rest and stress conditions, a data
augmentation method was proposed to balance the error.

Conclusions: The final system demonstrates the viability of robust stress recognition with only in-ear heartbeat
sounds, which could expand the capabilities of hearing devices used to address conditions related to stress and
noise. The proposed data augmentation method effectively identified and addressed artifact-related biases,
which could broadly be applied to improve robustness of biosignal monitoring with machine learning.

1. Introduction wearable devices worn at the level of the ear, could be especially
well-suited for research on tinnitus and decreased sound tolerance as
hearables are already commonly used to manage these conditions [2,5,

10,11,11,12]. Given real-time information on the wearer’s psychophys-

Psychological stress is closely associated with tinnitus, the subjec-
tive perception of sound in the absence of an external source [1], and

decreased sound tolerance, the intolerance to sounds that do not bother
the average listener [2]. However, the causal relationship between
these conditions and stress is not fully understood; stress may be
both a direct consequence of tinnitus and decreased sound tolerance
and an external factor in their development and severity [1,3-7]. The
time-varying and situation-dependent nature of tinnitus and decreased
sound tolerance may restrict the conclusions that can be drawn from
laboratory studies, which are often limited in duration and external
validity [8].

Recent advancements in biosignal-based stress recognition with
wearables have offered the potential for automatically monitoring
stress over longer periods of time in real-life settings [9]. Hearables,

iological state and external environment, hearables may also be able to
deliver improved therapies over time [13,14].

Heartbeat sounds, amplified inside the earcanal when wearing an
occluding device, are among the biosignals that can be captured by
a hearable and detected automatically [15,16]. Heartbeat signals are
widely used in stress research [9], and previously, automatic stress and
emotion recognition has been achieved with only heartbeat signals [17-
25]. However, features derived from different types of heartbeat signals
are not identical [26] and can be sensitive to artifacts common in
wearable sensor data [27]. While stress monitoring with electrocar-
diography (ECG) signals has been well-established [9], it is currently
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unclear whether similar results could be achieved with automatically
processed in-ear heartbeat sounds. Therefore, the aim of this work is
to assess the feasibility of stress monitoring using heartbeat sounds
recorded with an in-ear device, by evaluating a stress recognition
system to predict acute stress induced by experimental tasks in a typical
population.

Contributions. To this end, a dataset was created with clinical-
grade ECG and in-ear audio signals collected from 30 healthy young
adults when they were at rest and performing two stress tasks: mental
arithmetic [28] and the Cold Pressor Test [29]. This dataset was used
to train systems for stress recognition. These systems were first bench-
marked using heart rate variability (HRV) features extracted from the
ECG signals. Then, the same features were extracted from audio signals
captured within the occluded earcanal, and the performance of the
resulting classifiers were compared to those trained on the ECG. Finally,
as the error between features extracted from ECG and in-ear audio
was higher during the stress conditions, a data augmentation method
was designed to control for this error, and its utility was empirically
verified.

2. Background

Psychological stress can affect the way the autonomic nervous
system regulates bodily functions such as heart activity, respiration,
and perspiration [9]. It has been suggested that tinnitus and de-
creased sound tolerance involve activation of the autonomic nervous
system [5], and measurements of autonomic nervous system-dependent
biosignals have been used to study these conditions [30-37]. In the gen-
eral context of ambulatory stress monitoring, automatic stress recogni-
tion systems have been developed using biosensors, with some mul-
timodal systems relying on multiple biosignal inputs [38-40], while
others have been developed using only one type of sensor [17-21,24,
25].

Heartbeat signals have shown promise for measuring stress, as
both the parasympathetic “rest and digest” and sympathetic “fight
or flight” responses of the autonomic nervous system influence heart
activity [41]. Beat-to-beat variability in the heart rate can interact with
different bodily functions such as respiration and blood pressure [42].
These systems can influence the heart rate simultaneously in different
ways, and changes in the heart rate at different time scales can reflect
separate neurophysiological mechanisms [43]. Given the exact number
of milliseconds between consecutive heartbeats, referred to as interbeat
intervals, multiple HRV measures can be extracted. These measures
can be broadly categorized into time-domain, frequency-domain, and
nonlinear features depending on the signal processing methodology
used to extract them from the interbeat interval signal [42]. ECG is
considered to be the gold standard heartbeat signal for HRV analysis,
as ECG recordings are less likely to be distorted by artifacts and
because the interbeat intervals can be precisely computed from the
difference between the sharp, spike-like R-peaks in the ECG signal [44].
Accordingly, much of the research on automatic stress recognition to
date has focused on HRV features extracted from ECG [9,17-21,24,25].
Nevertheless, in recent years, numerous novel data acquisition methods
have been proposed for measuring HRV, such as contactless radar [45],
wristband photoplethysmogram (PPG) [46], and audio signals recorded
from the shoulder [23].

3. Material and methods
3.1. Dataset

3.1.1. Participants

In order to first establish the feasibility of stress monitoring with an
in-ear device in a typical population, 30 healthy and normal hearing
young adults were included in this study (15 men, age 27.3 + 4.7 years
and 15 women, age 27.1 + 3.1 years). Recruitment was conducted
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Fig. 1. Diagram of an Auditory Research Platform earpiece, containing an outer-ear
microphone (OEM), an in-ear microphone (IEM), an internal miniature loudspeaker
(SPK), and a high-attenuation foam eartip.

through advertisements within the Université de Montréal, social net-
works, and word-of-mouth. To be included in the study, participants
had to be aged between 18 and 45 years old and consider themselves
to be physically and psychologically healthy. Exclusion criteria were
having hearing disorders including tinnitus or hyperacusis, cardiovas-
cular and cerebrovascular disorders, respiratory diseases, Raynaud’s
syndrome, diabetes, hyperglycemia, or taking any medication that
could interfere with stress reactivity. Each participant signed a written
informed consent before starting the experiment, and the project was
approved by the Institutional Review Boards of Université de Montréal
and Ecole de technologie supérieure (QC, Canada) on March 9, 2020
(reference: H20200207).

3.1.2. Materials

Hearing thresholds. Audiometry was performed in a soundproof
audiometric booth using a calibrated AC40 clinical audiometer (Intera-
coustics, Middelfart, Denmark) with Telephonics TDH-39 headphones.
Thresholds were measured with pure tones in octave bands between
250 Hz and 8,000 Hz using the Hughson-Westlake auditory threshold
tracking procedure. Participants’ eligibility was determined based on
having a pure tone average (PTA) no greater than 15 dB HL (i.e., within
the normal hearing limits) at frequencies of 0.5, 1, 2 and 4 kHz.

Auditory Research Platform In-ear heartbeat sounds were
recorded with the Auditory Research Platform (ARP), an in-ear wear-
able technology developed within the ETS-EERS Industrial Research
Chair in In-Ear Technologies (CRITIAS). Each earpiece, illustrated in
Fig. 1, contains an outer-ear microphone (OEM), an in-ear microphone
(IEM), an internal miniature loudspeaker (SPK), and a Comply Profes-
sional Noise Isolating eartip (Hearing Components, North Oakdale, MN,
USA). Four channels of audio were recorded from the two OEMs and
IEMs at a sampling rate of 44,100 Hz with MATLAB 2020a (Mathworks,
Natick, MA, USA). The right earpiece was in “transparency mode”,
meaning that external sound picked-up by the OEM was played back
on the SPK inside the wearer’s ear at unity gain. Only the IEM signal
acquired from the left earpiece was used for the experiments described
in this paper.

Electrocardiogram (ECG) A clinical Burdick Altair-disc Holter
(Spacelabs, Deerfield, USA) with five Ag/AgCl self-adhesive electrodes
(3M Healthcare, Canada) positioned in 5-lead configuration was used
for continuous heart rate recording. Raw ECG signal was sampled at a
rate of 500 Hz.

3.1.3. Procedure

Once inclusion criteria were verified, participants were asked to en-
ter a double-wall audiometric booth where the experiment took place,
and general instructions about the experiment were given. Participants
were then equipped with the Holter and ARP, which were respectively
recording cardiac and audio signals simultaneously and continuously
until the end of the experiment. The proper insertion of the ARP
earpieces was checked with a fit-test [47]. Then, participants began the
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stress measurement protocol, which consisted of three stress tasks in a
pre-defined order (1. mental task, 2. noise exposure, and 3. cold pressor
test) and 5-minute rest periods (sitting in silence) before each stress
task. This order was chosen to allow participants to practice the mental
task shortly before the start and to avoid potential lingering pain effects
from the cold pressor test influencing subsequent tasks or rest periods.
Specific instructions about the tasks were given by the experimenter to
participants directly before each task started.

Mental arithmetic task Mental arithmetic tasks have been widely
used to experimentally induce acute stress [21,28,39,48-51]. A stress
task based on the Trier Social Stress Test (TSST) [28] was adapted to
be performed silently, since the participant’s voice, amplified by the
occluded earcanal [52], would have otherwise contaminated the in-ear
heartbeat sounds recorded by the ARP. Moreover, speech is also known
to modify the breathing pattern, and consequently, the heart rate [53].
The task was developed on MATLAB and displayed on a PC screen using
PsychToolBox library functions. Participants were instructed to count
down from 1022 with a decrease of 13 (hence reported values of 1009,
996, etc.) until the five-minute task was over. The socio-evaluative
component usually present in the TSST was replaced in this task by a
visual timer limiting response time to 7.5 s. Additionally, participants
received positive or negative feedback depending on the answer’s
accuracy. When a wrong or no answer was given, the participant had
to restart the equations from the beginning (i.e., subtracting 13 from
1022). Regardless of how frequently the task was restarted, the total
duration was limited to five minutes.

Noise task A broadband noise stimulus based on the study by Waye
et al. [54] was generated with the Audacity audio editing software
(www.audacityteam.org). This noise was chosen as it had previously
been used on a population with noise sensitivity and tinnitus [54,55].
The stimulus magnitude was of rising intensity (ramped from 40 to
90dBA) for 2 min and kept constant at 90 dBA for the remaining 3 min
of the 5 min stimulus. The rising ramp was intended to be unpredictable
for the participant, which is believed to induce stress [56,57]. The noise
was sent through the AC40 audiometer, and played on two free field
speakers inside the audiometric booth, oriented at 45° on either side
of the participant’s head. This task was included in the protocol to
evaluate its ability to induce stress in a separate analysis, since noise is
thought to be implicated in triggering or modulating tinnitus [58,59].
However, as this task has not been well-validated as a stressor, it
was not intended to serve as ground truth stress data. Consequently,
recordings from this noise task were not used as labeled data for
training the stress recognition system, as further described in 3.2.1.

Cold Pressor Test During the cold pressor test, a standard pain task
commonly used in pain and stress research [4,39,51,60], participants
immersed one hand in cold water for 3 min. The water was contained
in a cooler and the temperature was kept at 6.5 °C thanks to a thermal
controller of 0.1 °C-sensitivity. A recirculating pump was installed
inside the cooler to ensure water-circulation and thus preventing local
warming of water temperature around the immersed hand.

3.2. Preprocessing

3.2.1. Task segmentation

The time points corresponding to each step of the experimental
protocol were labeled by the experimenter using the Audacity software.
In order to have a uniform segment duration across tasks and partici-
pants, for each task and rest period, a single three-minute segment was
chosen. While the recommended segment duration for short-term HRV
analysis is five minutes [9,42,44,61], some HRV features have been es-
timated with shorter durations [42,44]. Furthermore, shorter segment
durations are commonly used for stress prediction, in particular when
real-time analysis is envisioned [17,20,38-40,62-65].

The three-minute segment used for the rest period was chosen to
maximize the time between steps in the protocol (i.e. when the last
task ended and when preparation for the next task began). Though
the participants were at rest for longer than three minutes, discarding

Computers in Biology and Medicine 186 (2025) 109555

the data from the start and end of the rest period accounted for
recovery from the previous task and anticipation of the next task, as
“residual” stress induced by experimental tasks may linger during the
rest period [39,51]. The segment used for the tasks began 30 s before
the start of each task and ended 150 s after the start. The timing was
chosen to include data recorded while participants were anticipating
the task [which can be a stressor on its own, see e.g. 66], as well as
during the task itself.

For each participant, four three-minute segments were used to
train and evaluate a binary stress classification model: two segments
recorded during the mental arithmetic and cold pressor tasks were
labeled as “stress”, and two segments recorded during the rest periods
prior to these two tasks were labeled as “rest”. As the participants did
not provide any subjective ratings of stress, the ground truth stress
labels were solely based on the current experimental task. The segment
recorded during the noise task was not used to train the stress classifi-
cation model, as it has not been well-validated as a stress-induction
task and may have been perceived differently by participants while
they were wearing the earpiece. However, both the segments recorded
prior to and during the noise task were used for synthesizing features
with error, which is further explained in Section 3.3.2. Additionally,
the rest segment recorded prior to the noise task was used for baseline
normalization, further explained in Section 3.3.3.

3.2.2. Synchronization

The ECG and IEM data were synchronized as follows: at each step
of the experimental protocol, an event marker button on the Holter
monitor was pressed, triggering a sound that was recorded by the
outer-ear microphones of the Auditory Research Platform and saving
the corresponding timestamp on the Holter. The event marker sounds
were labeled in Audacity by the experimenter. The Holter and Audi-
tory Research Platform data were then aligned such that the mean
difference between all Audacity labels and Holter event times was
minimized. After synchronization, the maximum absolute difference
between individual Audacity labels and Holter event times across all
participants was 3.59 s. This range of synchronization error was consid-
ered acceptable for the current analysis which used three-minute long
segments.

3.2.3. Heartbeat annotations

The ECG R-Peaks were visually inspected and corrected for artifact
and ectopy using Burdick Vision Premier Holter analysis software (Car-
diac Science-Quinton-Burdick, Bothell, WA, USA) and MATLAB. Only
sinus beats were included in the computation of interbeat intervals. A
small number of interbeat intervals were missing due to poor signal
quality. However, as the total duration of missing intervals was never
longer than 25% of the total segment length, none of the segments were
excluded for having too much missing data [67].

The peaks corresponding to the first heartbeat sound in the IEM
were automatically annotated following the methods described by Mar-
tin and Voix [15]. There was no manual correction of the IEM anno-
tations, as some errors would be expected in a real-world monitoring
context and it was of interest to assess how the stress classification
would be affected by these errors.

3.3. Prediction

3.3.1. Feature extraction

HRV features were extracted using the Python toolbox Neurokit2
[68]. All time-domain, frequency-domain, and non-linear features
available in Neurokit2 were used, excluding features that had invalid
values; for example the standard deviation of the average of normal-
to-normal intervals over two minutes (SDANN2) requires at least three
two-minute windows, which was not possible with the three-minute
segment length used in this analysis. A description of all 75 features
used can be found in the supplemental material.
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Syn. data (ECG - Error)
Error (ECG — IEM) 65 - 2 = 63| Rest
65 =63 = 80 - 2 = 78|Stress
80 - 94 = 65 - -14= 79| Rest
80 - -14 = 94|Stress

Fig. 2. Diagram of synthetic data generated with error for one feature and two samples. Note that for illustrative purposes, heart rate expressed in beats per minute (BPM) is
given as an example feature, though this was not actually a feature used in this study (the mean and median heart period were in milliseconds).

There was no empirical selection of features using the current
dataset, however, the stress classification performance was also eval-
uated using two smaller feature sets selected based on previous work
for improved interpretability. The first feature set consisted of only
the median heart period (MedianNN), providing information on the
central tendency of the interbeat interval distribution. As lower values
of MedianNN indicate a higher heart rate, decreased MedianNN is
considered an indicator of “fight or flight” sympathetic activity [69].
MedianNN was chosen as a feature because it was expected to be
relatively robust to errors in the automatic heartbeat annotation and
it has previously been used for stress recognition [24,25,39,51]. The
second feature set consisted of the MedianNN and the root-mean-square
of successive differences (RMSSD). RMSSD provides information on
the dispersion of the interbeat interval distribution. As it is based
on the differences between successive beats, RMSSD indicates short-
term changes in the interbeat intervals, which primarily reflect “rest
and digest” parasympathetic activity [42]. RMSSD is one of the most
commonly used HRV features and is well-suited for shorter segment
durations [43].

3.3.2. Error-balanced data synthesis

A variety of sounds beyond the heartbeat can be amplified in an
occluded earcanal [70]. Some of these sounds, such as noise artifacts
caused by the wearer moving or swallowing, may induce errors in the
automatic extraction of heartbeats from in-ear audio [15]. Heartbeat
signal artifacts can distort heartbeat variability features, affecting the
predictions of classifiers trained on these features [27].

Previous research using another type of wearable sensor to monitor
stress (a wristband photoplethysmogram) has found that performing
experimental tasks, regardless of whether they are intended to induce
stress, can affect signal quality and reduce the number of accurately
detected heartbeats compared to rest recordings [46]. In this work,
the only “non-stress” class corresponded to the rest recordings, during
which the participants were asked to sit in silence and do nothing
rather than to perform an experimental task. Therefore, there is a
risk that a classification system could learn task-related artifacts as a
way to discriminate between rest and stress conditions, rather than
physiologically meaningful differences between these conditions (for an
empirical justification of this claim see Section 4.2).

To address this risk, a synthetic dataset containing equal errors
across classes was generated, such that the learned classifier could be
robust to the errors caused by artifacts in the IEM data without using
these errors as a way to discriminate between classes. The method used
for the synthetic data generation is presented in Algorithm 1, and a
diagram is shown in Fig. 2.

Data synthesis was applied to the current dataset as follows: First,
the error was computed by subtracting each HRV feature extracted
from IEM from each feature extracted from simultaneously recorded
ECG. This process resulted in one vector of feature errors per sam-
ple. Synthetic data was separately generated for each participant, and
therefore, the errors from the test set were not used in generating
the training data (the classifiers were trained and tested on different
groups of participants, as further explained in Section 3.3.5). For the
purposes of obtaining the error, the stress condition was considered to
be irrelevant, and therefore, all six segments recorded during the three
rest periods and the three experimental tasks (mental, noise and cold)
were used to compute the feature errors. These six feature error vectors

Table 1
Total number of samples per class for each type of signal.
IEM ECG SYN
Stress 60 60 360
Rest 60 60 360

were then individually subtracted from the four ECG feature vectors
to be used for stress prediction (corresponding to the two rest periods
and the mental and cold tasks), resulting in 24 synthetic vectors per
participant. Given that there were 30 participants and two stress tasks,
there were 60 samples per class for the IEM and ECG. The synthetic
data therefore consists of 360 samples per class (60 samples multiplied
by the six feature error vectors per participant). The total number of
samples per class for each signal is summarized in Table 1.

3.3.3. Feature normalization

Normalization of heart rate variability features can be achieved at
different steps in the prediction pipeline: the interbeat intervals can
be normalized prior to HRV feature extraction [39,63], or the HRV
features themselves can be normalized [17,46,65,71,72,72]. As certain
features are invariant to scaling of the interbeat intervals, such as the
ratio of low frequency to high frequency power (LFHF), normalization
was always implemented at the HRV feature level such that all fea-
tures would be transformed by each normalization step. Furthermore,
normalization can be applied within participants [17,46,65,71,72], as
well as using the statistics from participants in the training set [72]. In
this work, two types of normalization were applied to the HRV features:

Baselining. Normalizing physiological signals according to each in-
dividual is a common feature transformation prior to stress prediction;
however, it is unclear how baseline normalization would be imple-
mented in real-world scenarios in which an individual’s physiology
would likely vary over longer periods of time [39]. Therefore, one
aim of this work was to evaluate the feasibility of stress prediction
without normalizing using an individual’s baseline. When baselining
was applied, each feature value for a participant was divided by the
mean of that feature’s values from all baseline periods for that par-
ticipant [71]. Since rest periods were used as the non-stress class in
stress classification and no separate baseline recordings were available,
baseline feature values were extracted from the rest periods before the
two tasks other than the current task. For example, features from both
the rest period prior to the cold task and the cold task itself were
normalized with the features from the rest periods prior to the mental
and noise tasks. The two other rest periods were used instead of the
three rest periods or the entire dataset in order to simulate baselining
with features from separate baseline recordings.

Z-scoring. As a separate normalization step, each feature was z-
scored with StandardScaler in the Scikit-learn pipeline [73]. Z-scoring
was applied to both baseline-normalized features and features that were
not baseline-normalized. The mean and standard deviation were com-
puted based on the training data, that is, the samples corresponding to
two rest and two stress tasks for all participants selected as the training
set for the current iteration of the cross-validation (further explained
in Section 3.3.5). All samples in both the training and test sets were z-
scored using the mean and standard deviation derived from the training
set. The z-scoring operation was the final feature transformation before
classification, and it was applied in all experiments.
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Algorithm 1 NumPy-style pseudocode for error-balanced data synthesis

def get_error(X_ecg, X_iem):
error X_ecg - X_iem
return error

def synthesize_with_error(X_ecg, error, y):

# N: number of samples used to compute error
# D: dimensionality of the feature vector
N, D = error.shape

# subtract all error vectors
# from every ECG sample
X_syn = (X_ecgl:,None,:]
X_syn = X_syn.reshape(-1, D)
# generate synthetic labels

- error[None,:,

# by repeating labels corresponding to ECG

y_syn y.repeat (N)
return X_syn, y_syn

:1)

MedianNN
Manual
annotation for ECG J& MedianNN &
RMSSD

Synthesizing data
/7| _with feature error

i

A
A
A
;o
At
AR
ARL
/ \

Logistic
Baselining within regression

participants

Automatic
detection for IEM |~

“\{ All HRV features ]’ ‘[

Z-scoring with
training set

Preprocessing &
heartbeat annotation

Heart rate variability
feature extraction

Feature

. Classification
transformation

Fig. 3. Diagram depicting possible components of the prediction pipeline. Arrows indicate the components included in the pipeline developed in the final set of experiments.

3.3.4. Classification algorithms

Prior work has proposed automatic stress recognition systems based
on a wide variety of classification methods ranging in complexity and
interpretability, including linear models, ensemble learning, and deep
learning [9]. In this work, two classification algorithms were tested:
logistic regression, implemented in Scikit-learn [73], and extreme gra-
dient boosting (XGBoost), implemented in the XGBoost Python pack-
age [74]. Logistic regression is a simple linear model that has been
previously used to classify heartbeat data [20,25,38,71,75-77], with
the advantage of being intrinsically interpretable [78]. On the other
hand, XGBoost is a more complex ensemble model, with previously
demonstrated performance classifying various types of data including
heartbeat data [62,75,77,79,80]. The default hyperparameters for both
of these algorithms were used except that the maximum number of
iterations was set to 1000 rather than 100 for logistic regression.

3.3.5. Evaluation

Different combinations of heartbeat signals, HRV features, feature
transformations, and classifiers (depicted in Fig. 3) were tested in
a series of experiments. In all experiments, each stress recognition
system was evaluated with a repeated five-fold participant-wise cross-
validation scheme, in order to test how the system would generalize
to unseen individuals. Participants were randomly divided into five
groups, and the samples from participants in four of the five groups
were used to train the classifier, rotating which group was used to
test the classifier. This procedure was repeated with 10 random seeds,
resulting in 50 evaluations of each system tested (with the same 10
random seeds used for each system). Performance was assessed with the
mean and standard deviation of the accuracy over these 50 evaluations.

The performance of the stress recognition systems was evaluated in
several analyses guided by the following questions:

1. How does normalizing to each individual’s baseline affect stress
recognition performance?
. How does the performance of stress recognition systems trained

on in-ear audio compare to those trained on clinical-grade ECG?

3. How does performance change when using a synthetic dataset
in which the feature error is balanced across rest and stress
conditions?

4. Results
4.1. Baseline normalization

To assess the upper bound of stress classification performance with
a heartbeat signal with baselining and without, classifiers trained and
tested on the ECG were compared when the features were baselined vs.
when their original values were used. Additionally, the two classifiers,
as well as the three feature sets, were compared. The accuracy of
classifiers trained on the ECG and tested on the ECG with baselining
is presented in Table 2. With baselining, the highest mean accuracy
achieved was 78.9% using all HRV features; however, reducing the
feature set had a relatively small impact on performance: the highest
mean accuracy using MedianNN & RMSSD was 76.7% and the highest
mean accuracy using only MedianNN was 76.0%. In contrast, without
baselining, using the two smaller feature sets led to a larger drop in
performance: compared to 76.5% with all HRV features, the highest
accuracy using MedianNN & RMSSD was 59.9%, and the highest accu-
racy using only MedianNN was 63.7%. The accuracy of all classifiers
trained on the ECG and tested on the ECG without baselining is listed
in Table 3.

4.2. Comparison of ECG and in-ear audio

After the feasibility of stress classification without baselining was
successfully established with the ECG, it was of interest to evaluate
whether a satisfactory performance could be achieved even when using
a less reliable heartbeat signal, extracted from the IEM audio. To this
end, the same combinations of feature sets and classifiers were trained
and tested with HRV features extracted from the IEM data. The perfor-
mance of these models is presented in Table 4. Surprisingly, the models
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Table 2

Accuracy of stress classifiers trained on the ECG and tested on the ECG with baselining.
Features Classifier Acc. (%)
MedianNN Log. Reg. 76.0 + 7.3
MedianNN XGBoost 67.5 + 8.4
MedianNN & RMSSD Log. Reg. 76.7 + 8.5
MedianNN & RMSSD XGBoost 72.0 + 9.4
All HRV features Log. Reg. 78.9 + 8.1
All HRV features XGBoost 76.3 + 7.8

Table 3
Accuracy of stress classifiers trained on the ECG and tested on the ECG without
baselining.

Features Classifier Acc. (%)

MedianNN Log. Reg. 57.2 + 5.8
MedianNN XGBoost 63.7 £ 7.1
MedianNN & RMSSD Log. Reg. 59.5 + 6.1
MedianNN & RMSSD XGBoost 59.9 + 7.9
All HRV features Log. Reg. 76.5 + 8.4
All HRV features XGBoost 73.0 + 8.5

Table 4
Accuracy of stress classifiers trained on the IEM and tested on the IEM without
baselining.

Features Classifier Acc. (%)
MedianNN Log. Reg. 62.2 + 6.1
MedianNN XGBoost 58.7 + 10.3
MedianNN & RMSSD Log. Reg. 75.9 + 6.5
MedianNN & RMSSD XGBoost 79.1 + 7.1
All HRV features Log. Reg. 81.1 + 8.0
All HRV features XGBoost 76.1 + 6.7

trained and tested on the IEM had higher accuracy than the models
trained and tested on the ECG for the feature sets containing MedianNN
& RMSSD and all HRV features. When training and testing on the
IEM, the model with the highest mean accuracy without baselining was
Logistic Regression using all HRV features: 81.1% (Table 4), compared
to 76.5% (Table 3) when training and testing with ECG.

A substantial difference in accuracy between the classifiers trained
and tested on the IEM vs. ECG was observed for the MedianNN &
RMSSD feature set. For this feature set, the best-performing model
trained and tested on the IEM had a mean accuracy of 79.1% (Table 4),
while the best-performing model trained and tested on the ECG had a
mean accuracy of 59.9% (Table 3). With MedianNN as the only feature,
the performance was more similar between the classifiers trained and
tested on the IEM (62.2%; Table 4) vs. ECG (63.7%; Table 3).

To assess whether the models trained on HRV features extracted
from the IEM could generalize to conventional HRV features, all models
trained on the IEM were tested on the ECG. The classification perfor-
mance is presented in Table 5. With the feature set consisting of only
MedianNN, there was a relatively small reduction in mean accuracy
when comparing the best-performing model trained on the IEM and
tested on the ECG (62.7%, Table 5) to the best-performing model both
trained and tested on the ECG (63.7%, Table 3). However, with the
feature sets containing MedianNN & RMSSD and all HRV features, mean
accuracy training on the IEM and testing on the ECG ranged from
50.0% to 50.8%.

The coefficients of the logistic regression models separately trained
on the ECG and IEM, each using the MedianNN & RMSSD feature set,
are shown in Fig. 4. For both the models trained on ECG and IEM,
the coefficients for MedianNN were negative, indicating an increased
probability of predicting stress when MedianNN was lower, and the
coefficients for RMSSD are positive, indicating an increased probability
of predicting stress when RMSSD was higher. As the feature values were
z-scored with the mean and standard deviation of all the samples in
the training set, the magnitude of the coefficient for each feature was
considered to be a measure of importance [76]. In terms of which of
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Table 5
Accuracy of stress classifiers trained on the IEM and tested on the ECG without
baselining.

Features Classifier Acc. (%)

MedianNN Log. Reg. 57.8 + 7.5
MedianNN XGBoost 62.7 + 8.5
MedianNN & RMSSD Log. Reg. 50.8 + 1.7
MedianNN & RMSSD XGBoost 50.1 + 0.6
All HRV features Log. Reg. 50.0 + 0.0
All HRV features XGBoost 50.2 + 0.8

24 Signal
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Fig. 4. Box plot of feature coefficients in logistic regression models trained on the ECG
and IEM. The coefficients were derived from models using the MedianNN & RMSSD
feature set without baselining, trained over all cross-validation iterations. MedianNN
had a higher absolute coefficient value than RMSSD in the model trained on the ECG,
while RMSSD had a higher absolute coefficient value than MedianNN in the model
trained on the IEM. Note that a negative coefficient indicates increasing probability of
predicting stress when the standardized feature values are negative, while a positive
coefficient indicates increasing probability of predicting stress when the standardized
feature values are positive.

the two features was more important, the models trained on the two
signals had opposite trends. In the case of the model trained on the
ECG, MedianNN (mean coefficient of —0.8) had higher importance than
RMSSD (mean coefficient of 0.3). In contrast, when training on the
IEM, MedianNN (mean coefficient of —1.0) had lower importance than
RMSSD (mean coefficient of 1.7). As demonstrated in Fig. 4, this pattern
was consistent across cross-validation iterations.

Aiming to understand the source of the difference in feature im-
portance, the error between HRV features extracted from ECG and
from IEM was assessed. Unlike the manually-corrected ECG annota-
tions, the heartbeats in the IEM data were annotated automatically
(without manual correction of missed or extra beats) such that the
IEM annotations would be representative of a real-world monitoring
context. After manual review of segments of the in-ear audio where
the HRV feature error was high, it became apparent that the IEM signal
contained many artifacts such as movement and speech, despite the fact
that participants were instructed to remain still and silent during the
experimental tasks. An example of an IEM signal with artifacts and the
corresponding heartbeat annotation is shown in Fig. 5. As some of these
artifacts may have been related to the task (e.g. keyboard sounds during
the computer-based mental task), the error was assessed separately for
the rest and stress conditions.

The agreement between ECG and [EM for MedianNN and RMSSD
was visually assessed with Bland-Altman plots, shown in Fig. 6. Visual
inspection of the plots suggests that MedianNN extracted from IEM
data in some cases overestimated and in other cases underestimated
MedianNN extracted from ECG data (though the mean difference was
negative). In contrast, the plots demonstrate that RMSSD extracted from
IEM data tended to consistently overestimate RMSSD extracted from
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Fig. 5. Example IEM recording and automatically detected heartbeats during a rest and stress condition. It can be seen that when there were artifacts in the IEM signal, the
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Fig. 6. Bland-Altman plots assessing agreement between the electrocardiogram (ECG) and in-ear microphone (IEM) on the HRV features (a) MedianNN and (b) RMSSD, for data
recorded during rest and stress conditions. Each point represents the difference between a HRV feature extracted from ECG and the same feature extracted from simultaneously
recorded IEM data. The solid line in the middle represents the mean difference, while the upper and lower dashed lines represent the upper and lower limits of agreement at 95%

confidence.

ECG data, particularly in the stress conditions: the mean difference is
—486.53 in stress conditions but is —237.99 in rest conditions. In both
rest and stress conditions, it can be seen that as RMSSD extracted from
IEM increasingly overestimated RMSSD extracted from ECG (shown on
the y-axis), the mean of the RMSSD values extracted from ECG and
IEM (shown on the x-axis) tended to increase, suggesting that the error
greatly influenced the value of RMSSD for the IEM. The supplemental
material includes further analyses comparing ECG and IEM for addi-
tional HRV features that were important for the best-performing model
trained and tested on IEM.

4.3. Error-balanced data synthesis

After it was determined that the HRV feature error differed in
the rest and stress conditions, synthetic data (SYN) was generated to
balance the errors across classes, following the methods described in
Section 3.3.2. The agreement between ECG and SYN for MedianNN and
RMSSD was assessed with Bland-Altman plots, shown in Fig. 7. When
comparing to the Bland-Altman plots assessing agreement between ECG
and IEM (Fig. 6), it can be seen that the distribution of the synthetic
errors between ECG and SYN in each of the rest and stress conditions
is similar to the distribution of the original errors between ECG and
IEM: SYN MedianNN sometimes overestimated and sometimes underes-
timated ECG MedianNN, while SYN RMSSD largely overestimated ECG
RMSSD. However, unlike the original errors between ECG and IEM, the
mean difference between ECG and SYN is identical across classes, for
MediannNN (mean difference of —6.29) and RMSSD (mean difference
of —325.92).

All models trained on the IEM were tested on the SYN, in order to
evaluate whether the models trained on HRV features extracted from
the IEM would perform as well when tested on data where the overall
distribution of the errors was similar to IEM but where these errors

Table 6
Accuracy of stress classifiers trained on the IEM and tested on the SYN without
baselining.

Features Classifier Acc. (%)

MedianNN Log. Reg. 61.1 + 5.4
MedianNN XGBoost 59.7 + 4.7
MedianNN & RMSSD Log. Reg. 59.1 + 4.5
MedianNN & RMSSD XGBoost 54.0 + 2.3
All HRV features Log. Reg. 64.9 + 5.3
All HRV features XGBoost 60.9 + 5.0

were balanced across classes (and therefore could not be used as a way
to discriminate between rest and stress). The classification performance
of the models trained on the IEM and tested on the SYN is presented
in Table 6. With the feature set consisting of only MedianNN, the
mean accuracy was similar when comparing the best-performing model
trained on the IEM and tested on the SYN (61.1%, in Table 6) to the
best-performing model both trained and tested on the IEM (62.2%, in
Table 4). With the feature sets containing MedianNN & RMSSD and all
HRV features, there was a larger drop in performance: mean accuracy
training on the IEM and testing on the SYN ranged from 54.0% to
64.9% (see Table 6), compared to a mean accuracy ranging from 75.9%
to 81.1% when both training and testing on the IEM (see Table 4).

As the performance of models trained on the IEM decreased when
the error was balanced across classes compared to testing on the IEM,
it was of interest to assess whether augmenting the training data
with the SYN would allow for sufficient performance when testing on
IEM without the possibility of learning class-dependent differences in
errors. To determine the added benefit of augmenting the training data
with errors, models were first trained on just the clean (manually-
corrected) ECG and tested on the noisy (automatically-annotated) IEM.
The classification performance of these models is presented in Table 7.
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Fig. 7. Bland-Altman plots assessing agreement between the electrocardiogram (ECG) and synthetic data (SYN) on the HRV features (a) MedianNN and (b) RMSSD, for data
recorded during rest and stress conditions. Each point represents the difference between a HRV feature extracted from ECG and the same feature synthesized with one error value

and the original ECG feature.

Table 7
Accuracy of stress classifiers trained on the ECG and tested on the IEM without
baselining.

Features Classifier Acc. (%)

MedianNN Log. Reg. 61.3 + 6.3
MedianNN XGBoost 60.8 + 9.5
MedianNN & RMSSD Log. Reg. 54.2 + 4.9
MedianNN & RMSSD XGBoost 56.0 + 9.2
All HRV features Log. Reg. 65.4 + 9.3
All HRV features XGBoost 60.7 + 7.3

Table 8
Accuracy of stress classifiers trained on the ECG & SYN using all HRV features without
baselining.

Test signal Classifier Acc. (%)

ECG Log. Reg. 743 £ 8.1
ECG XGBoost 76.7 +7.9
IEM Log. Reg. 69.9 + 9.0
IEM XGBoost 76.6 + 7.0
SYN Log. Reg. 70.6 + 5.8
SYN XGBoost 77.3 + 4.7

The best-performing model, logistic regression trained on all HRV fea-
tures had a mean accuracy of 65.4%, still well above chance accuracy
but a substantial drop from the same model trained and tested on
the ECG (76.5%, Table 3). The same models were then trained on
a dataset consisting of both ECG and SYN, and tested separately on
ECG, IEM, and SYN to evaluate how augmenting the dataset would
affect generalization to features extracted from clean data without
error, real data with class-imbalanced errors, and synthetic data with
class-balanced errors. The performance of the models trained using the
best-performing feature set, all HRV features, is shown in Table 8.
XGBoost had the highest mean accuracy for all test signals, ranging
from 76.6% to 77.3%.

5. Discussion
5.1. Baseline normalization

The aim of this work was to determine the feasibility of stress
monitoring with an in-ear wearable device. Since the features extracted
from heartbeat sounds from an in-ear wearable device were expected
to be noisier than the gold-standard ECG signals generally used for
measuring HRV, the first set of analyses aimed to establish the upper
bound of stress classification performance possible, using a conven-
tional sensor. Performance ranged from 67.5% to 78.9%, within the
range of performance previously achieved for stress classification with
biosignals [9].

As normalization for each individual’s baseline may be difficult
to implement in a real-world monitoring context [39], the effect of
baselining on classification performance using ECG was assessed. It was
found that normalizing to each individual’s baseline improved classifi-
cation results, in line with previous research using HRV [72]. However,
using all HRV features allowed for nearly as high performance as
without baselining, suggesting that concerns about the ecological va-
lidity of the baselining procedure could be avoided by including these
additional features.

Nonetheless, fewer features may be preferred for certain applica-
tions, as the number of features plays a major role in the interpretability
of a model [81], which may be especially important in clinical con-
texts [82] such as treatment or diagnosis of tinnitus and decreased
sound tolerance. Moreover, fewer features may be preferred to reduce
computational cost [62,64], as hearables, like other wearables, gener-
ally have limited computational power. However, it may be possible
that a smaller subset of the 75 HRV features used in this work could
achieve similar performance without baselining, as many HRV features
are correlated with each other and influenced by the same physiological
phenomena [42,83]. Future efforts could aim to identify this smaller
subset of features, ideally with a separate dataset for testing [39], as
empirically selecting this subset from all the subsets possible given
75 features would require many comparisons, and therefore, there is
an increased risk that improvements in mean cross-validation accu-
racy would not translate to better performance on completely unseen
data [84].

5.2. Comparison of ECG and in-ear audio

A subsequent set of experiments compared stress classification sys-
tems trained on features extracted from the clean ECG signal to those
trained on the features extracted from the IEM audio signal, to de-
termine whether automatically-detected heartbeats in the IEM could
estimate HRV well enough to predict stress. Unexpectedly, the best-
performing classifier trained on the IEM performed better than the
best-performing classifier trained on the manually-annotated, clinical-
grade ECG. For models trained on just two features, MedianNN and
RMSSD, training and testing with the IEM instead of the ECG improved
the mean accuracy by 16 to 19% depending on the classifier used
(compare Tables 3 and 4). However, analyses of the feature importance
and error suggest that the improved performance of the models trained
on the IEM was not due to learning physiologically meaningful features:
RMSSD, the most important feature for one model trained on the
IEM, was highly distorted by misdetected heartbeats and had a higher
error during the stress conditions than during the rest conditions. This
difference in error between conditions may have been due to artifacts
more commonly found during the stress tasks such as the presence
of movement, speech signals or keyboard typing noise, as these can
increase the number of misdetected heartbeats.
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Spurious correlations have been known to be an issue in deploying
machine learning algorithms across different domains. Biases in the
data used to train and evaluate a model can lead to large drops in
performance once deployed [82]. For example, a pneumonia detection
algorithm that appeared to perform well when tested on data from the
same hospital did not generalize well to new hospitals, likely because
the algorithm exploited confounding information specific to the hos-
pital such as the type of scanner used in departments with different
rates of pneumonia [85]. In the context of stress classification with
heartbeat signals, it is also possible that spurious information in the
training data can lead to large drops in classification performance when
applied in unseen contexts, particularly when the input to a data-driven
system is not limited to physiologically meaningful features based on
domain knowledge: in one study, deep learning models directly trained
on ECG signals appeared to perform better than models trained on
HRYV features when tested on held-out data from the same dataset used
for training, but the HRV feature-based models outperformed the ECG
signal-based models when tested on a different dataset [24]. The results
of the current study suggest that even HRV features can be affected
by spurious information if errors are not accounted for, and therefore,
the cross-validation performance obtained by training and testing on
HRV features extracted from the IEM likely does not reflect how well
the model would perform when deployed. If the increased performance
for the stress prediction is driven by the increased presence of artifacts
during the stress tasks, the learned classifier would not generalize to
real-world applications where artifacts such as movement, speech, and
keyboard typing may occur when the wearer is not stressed. More
broadly, these findings highlight the risk of artifacts unknowingly being
exploited by predictive models and could have implications for any
applications in which raw or automatically processed biosignals are
used as input to a classifier without controlling for the presence of
artifacts.

5.3. Error-balanced data synthesis

When the models trained on the IEM were evaluated with synthetic
data in which the HRV feature errors were equal across classes, per-
formance dropped substantially, further supporting the claim that the
models trained on the IEM had relied on this difference in HRV feature
error to discriminate between rest and stress. The influence of spurious
patterns on predictions has been previously identified and reduced
with synthetic data in other domains [86-88]. In the context of the
natural language processing task of coreference resolution, imbalanced
co-occurrence of gendered pronouns with certain occupations has been
corrected for by generating new sentences with different pronouns
(e.g. swapping “he” for “she” in “The physician hired the secretary
because he was overwhelmed with clients”.). These modified sentences
have revealed gender biases in data-driven coreference systems and
shown to be an effective way to prevent biases when used as train-
ing data [88]. The current study extended the existing research on
robustness to spurious patterns by proposing a data synthesis method
to counter this issue for systems that learn from biosignals that may
be corrupted by artifacts. While the analyses presented in this paper
focused on the synthesis of HRV features, the proposed method could
be applied to any dataset containing both physiologically meaning-
ful “clean” features and “noisy” features from which errors can be
computed (e.g. breathing rate derived from a conventional respiration
sensor and breathing rate automatically extracted from in-ear audio
signals [15]).

In addition to its utility to evaluate existing models for their reliance
on spurious patterns, the synthesized data also proved useful for train-
ing: compared to training on only the clean ECG features, augmenting
the dataset with the error substantially improved test performance on
the IEM. Data augmentation methods that synthesize additional sam-
ples with noise are often employed to increase the number of samples,
to improve performance of machine learning methods that tend to rely
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on a large amount of training data, as well as to make the system more
robust to noise [89]. It may be possible to further improve the system’s
robustness to noise at other steps in the prediction pipeline. When
interpretability is crucial, it may be preferable to identify unreliable
segments of the heartbeat signal before HRV feature extraction rather
than have a classifier robust to errors in the HRV features. That said,
if there are many of these unreliable segments, it may not be possible
to have a long enough recording for HRV feature extraction without
treating unreliable segments as missing data, and methods to treat
missing data such as interpolation could still introduce errors in the
HRV features [46,90].

One possible limitation in the theoretical assumptions made in this
work should be noted: by using all of the errors to generate new
data for both rest and stress conditions regardless of which condition
the original errors came from, the proposed data synthesis method
assumed that the difference between the ECG and the IEM should
be completely independent of the stress condition. In reality, it is
possible that the difference between the ECG and the IEM could also
be influenced by factors related to the stress condition to some extent;
for example, even without errors in the heartbeat annotations, there
are small physiological differences in the interbeat intervals computed
from different heartbeat signals, and these differences may constitute
novel biomarkers [26]. Determining the extent to which physiological
differences influence the error would be an interesting avenue for
future research. However, the fact that the test performance was high
for both IEM and SYN suggests that simply assuming that the error
is completely independent of the stress condition is sufficient for the
purposes of the data augmentation, that is, to achieve high performance
on IEM data containing artifacts without unintentionally learning the
artifacts as a way to discriminate between rest and stress.

Finally, future work could investigate the utility of data synthesis
with separate datasets. In the current study, the same dataset was used
to estimate the error and obtain the clean features that were augmented
with the error. However, it is possible that the errors and the clean
features could be derived from separate sources: the distribution of
the feature errors could be modeled based on any dataset containing
simultaneous clean and noisy features, and this distribution could be
sampled from to augment a separate dataset containing only clean
features recorded under the conditions of interest (e.g. stress tasks). The
ability to augment separate datasets could save substantial resources
associated with data collection, as it would open the possibility of de-
veloping algorithms for hearables with datasets that were not collected
with a hearable in mind, only requiring in-ear audio signals to validate
that the developed algorithms are robust to real errors.

6. Conclusions

This work demonstrated the feasibility of a novel modality of stress
monitoring based on heartbeat sounds recorded from inside the hu-
man earcanal, which could lead to improved research methods and
therapies by extending the capabilities of existing hearing technology
for tinnitus and decreased sound tolerance. Moreover, the findings of
this work highlighted the possibility that artifacts in biosignal data can
be exploited by a classifier to achieve high performance that likely
would not generalize to a real-world monitoring context. The data
augmentation methodology presented in this work was shown to both
effectively identify biases in models caused by artifacts and improve
model robustness to artifacts, with implications for the broader field of
automatic biosignal monitoring.
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