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ABSTRACT The open radio access network (O-RAN) is designed to support the diverse wireless services
for beyond Sth-generation (BSG) mobile networks. However, this also expands the potential attack
surface, necessitating improved mechanisms for detecting cyberattacks. Advanced artificial intelligence
(AI) algorithms, in conjunction with RAN intelligent controllers (RICs), can be utilized to identify threats
such as distributed denial-of-service (DDoS) attacks. Nevertheless, Al introduces significant data privacy
concern. To address these issues, secure federated learning (FL) can be leveraged to locally train cyberattack
detection models and securely transmit the model data for aggregation, thus ensuring protection against
eavesdropping. Moreover, peer-to-peer (P2P) FL can be used to avoid the single point of failure inherent
in centralized FL. However, securing P2P FL with encryption/decryption or secure average computation
(SAC) can result in high communication costs that do not scale well with the number of FL clients. In
this paper, we propose a novel P2P FL strategy that ensures secure operation while significantly reducing
communication costs. Specifically, we integrate client selection and transfer learning within the RIC-based
P2P FL system to detect cyberattacks. Our experiments demonstrate the performance of our method across
various scenarios with both balanced and unbalanced dataset distributions. We highlight its superiority in
terms of accuracy, robustness, and cost compared to existing benchmarks. Furthermore, we extend our
evaluation to a 5G O-RAN testbed, assessing the system’s efficiency, accuracy, and adaptability under
real-time independent and non-independent and identically distributed (IID/non-1ID) traffic conditions.
This includes analyzing communication cost, execution time, model loss, and live traffic testing results
for practical and real-time deployment.

INDEX TERMS 5G, cybersecurity, cyberattacks, DDoS, federated learning, O-RAN.

. INTRODUCTION significant increases in data traffic [2]. As a result, wireless
IRELESS communication technology has become communications have evolved considerably over the past
essential for enabling emerging technologies like years. With the shift towards fifth-generation (5G) and

vehicle-to-everything (V2X) networks, smart infrastructure, beyond (B5G) cellular networks, 5G can support a variety

autonomous vehicles, and the Internet of Things (IoT) [1]. of devices, providing them with computational resources

Moreover, new applications such as virtual reality (VR) and seamless connectivity for intelligent and autonomous

and artificial intelligence (AI) are being spread leading to operations [3]. Furthermore, 5G enhances data transmission
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by offering higher data rates and lower latency, facilitating
the growth of data-intensive applications [4].

Nevertheless, the introduction of 5G presents several
challenges. Indeed, the complexity of 5G systems increases
the threat surface and complicates the definition of system
boundaries [5]. Additionally, the rapid deployment of 5G
necessitates significant awareness of potential threats. For
example, while softwarization, virtualization, and cloudi-
fication are essential for network performance, they also
create opportunities for security breaches. Similarly, open
radio access networks (O-RANs) improve 5G multi-vendor
interoperability but pose significant risks due to their open
and modular architecture [6]. Therefore, enhanced security
measures, such as cyberattack detection, are crucial for
O-RAN in 5G. Although there has been substantial research
on cyberattack and anomaly detection using machine learn-
ing (ML) in RAN, few studies have specifically addressed
O-RAN [7].

ML offers robust, innovative, and dynamic solutions for
privacy, security, and threat detection in B5G systems.
However, a significant challenge is ensuring secure and
private knowledge sharing between ML-based detection
agents [4]. Alternatively, FL can be leveraged to address
data privacy concerns in this context. This distributed ML
technique focuses on privacy-preserved collaborative training
by sharing model updates rather than raw training data [8].
Consequently, FL is more suitable for maintaining data
privacy compared to traditional ML. Despite its advantages,
centralized FL faces issues such as the single point of failure
and imbalanced data distributions. Introducing the peer-to-
peer (P2P) FL concept might help mitigate these issues [7].

In the realm of cyberattack detection, various FL
mechanisms have been introduced. P2P FL is particularly
preconised for complex O-RAN environments due to the
hierarchical structure of RICs and data-driven inputs via open
interfaces [9]. A notable advancement in this area is P2P
FL with secure average computation (SAC), which employs
averaging and n-out-of-n secret partitioning to mitigate risks
from semi-honest participants [7]. Although this method
shows promising accuracy, it can lead to high communication
costs in large-scale systems. Another approach involved using
K-means clustering based on client locations within SAC-
based P2P FL [7]. This method confined SAC operations to
clusters rather than all peers, reducing communication costs.
However, clustering did not consider intrinsic characteristics of
local datasets or other common criteria like data similarities or
peer performance. Alternatively, performance-based neighbor
selection (PENS) has been proposed in [10], where clients
share their models and training loss to form clusters with
similar data distributions. Despite its benefits, sharing models
and training loss can potentially expose sensitive information
from local datasets.

To circumvent the aforementioned issues, we first
proposed in [11] a novel cyberattack detection frame-
work integrating client selection and transfer learning with
SAC-based P2P FL in the RIC. In this paper, we extend

3068

that foundational work by deploying our system within a 5G
O-RAN testbed, thus enabling a comprehensive evaluation
of its effectiveness in a realistic network setting. Our
results underscore the system’s adaptability and robustness
in dynamic O-RAN environments, validating its suitability
for practical applications in 5G and beyond. Our main
contributions can be summarized as follows:

1) We introduce an innovative approach to cyberattack
detection using RIC and SAC-based P2P FL, where
client peering is subject to a preliminary selection
process. This differs from traditional P2P FL, which
involves all clients in the training phase.

2) To leverage the advantages of P2P FL with client
selection, we suggest implementing transfer learning
between selected and non-selected clients. Selected
clients participate directly in SAC, while the others
utilize the resulting global model through transfer
learning. This method reduces communication costs
and prioritizes high-performing clients.

3) We conduct a comprehensive performance evaluation
of our method, assessing both accuracy and commu-
nication efficiency across various dataset distribution
scenarios.

4) We validate our proposal using an experimental 5G
O-RAN prototype offering a detailed performance
assessment in a real deployment scenario. Our analysis
covers model’s accuracy, communication efficiency,
communication cost, execution time, and model
robustness under real-time, independent and non-
independent and identically distributed (IID/non-1ID)
traffic conditions.

The remaining of the paper is structured as follows.
Section II presents the related works. Section III describes
the system model. Section IV details the proposed cyber-
attack detection mechanism, followed by a presentation of
our experimental results in Section V. Finally, Section VI
concludes the paper.

Il. RELATED WORKS

Besides the attack surface of each 5G subsystem, additional
threats for O-RAN expand the attack surface, compared
to traditional RAN [5]. For instance, several security and
privacy threats arise from the openness of O-RAN and
virtualization-related technologies, such as network slicing
(NS) [12]. Indeed, NS is a crucial 5G technology that supports
heterogeneous services and applications by allocating logical
network slices above the physical network [13]. Moreover,
the use of AI/ML can further increase the attack surface
introducing multiple challenges that threaten the privacy and
security of ML models, including poisoning and adversarial
attacks on ML models [4]. These issues are also relevant to
FL despite its ability to safeguard data privacy [14].

Recent literature has proposed various approaches to tackle
the O-RAN security challenges. For instance, the work in [8]
aims to build reliable deep reinforcement learning (DRL)-
based radio resource management models for mobile virtual
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network operators (MVNOs) while preserving data privacy
and security. Specifically, it proposed a federated DRL
(FDRL) approach for O-RAN slicing, where each MVNO
trains a DRL radio resource allocation model and sends the
trained model to the RIC for aggregation. A similar problem
is solved in [15], aiming to improve NS security. The authors
proposed an FL-enabled security orchestrator (FLeSO) to
centrally perform security operations in a slicing ecosystem.
In contrast, authors in [16] investigated a novel O-RAN
cyberattack, called bearer migration poisoning (BMP), to
mislead the RIC into triggering a malicious bearer migration
procedure.

In the context of FL, authors in [17] proposed an
adaptive privacy-preserving FL. (Ada-PPFL) scheme based
on differential privacy (DP), along with a DP-tolerant
cyberattack detection algorithm, to protect the FL server and
participants from malicious clients and honest-but-curious
servers. Nevertheless, the single point of failure and the
imbalance of data distributions in local FL trainers are the
main drawbacks of centralized FL. Moreover, split learning
(SL) is another technique that splits the model between a
server and nodes for training. This method faces several
challenges, including slow training, poor scalability, and
difficult parallelization [18]. Alternatively, decentralized P2P
FL, such as BrainTorrent [19] where each participant may
update its local model weights at any given training round,
can bypass some of the above challenges. Nevertheless, it
might be prone to malicious and semi-honest participants.

To mitigate the effect of semi-honest participants, authors
in [20] proposed SAC-based P2P FL that uses an average
calculation technique and n-out-of-n secret partitioning
method. Also, in [7], the authors proposed SAC-based P2P
FL to detect cyberattacks in O-RAN, but it incurred a
high communication cost proportional to the number of
FL trainers. Consequently, they proposed a variation where
K-means clustered trainers based on their locations and SAC
operated in each cluster. Thus, the communication cost of
SAC is minimized. Some aspects of this approach warrant
further consideration. First, clustering was not determined
based on characteristics intrinsic to the peer’s local dataset
or other common criteria, such as peer similarities or
performances. Indeed, in real-life applications, it would
be more intuitive for clusters to be shaped by shared
characteristics or performance among peers. Second, the
proposed clustering method poses a potential limitation since
clusters remain static even when updates to the peer’s local
dataset characteristics or performance occur. Overall, the
flexibility of clusters and ongoing evaluation are expected
as the main drivers in dynamic environments.

To overcome these limitations, we first proposed in [11],
a novel cyberattack detection framework integrating client
selection and transfer learning with SAC- based P2P FL in
the RIC. In this paper, we extend our prior approach by
advancing its applicability and robustness in a real-world
environment. Specifically, we deploy the proposed approach,
namely SAC-based P2P FL-ASTL for Agent Selection and
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Transfer Learning, within a 5G O-RAN testbed, enabling
comprehensive evaluation in a realistic network setting.
In addition, unlike our previous work, we assess in this
paper the adaptability and robustness of our approach under
dynamic, IID, and non-IID traffic conditions as well as live
traffic scenarios.

More specifically, we developed two specialized xApps for
our experiments: (1) a “Detection xApp” to support the FL-
based attack detection process and (2) a “Monitoring XApp”
for collecting and preprocessing data within the testbed
environment. The Monitoring X App continuously gathers live
traffic data and applies preprocessing techniques that adapt
to non-IID conditions, optimizing the dataset for FL training
and inference. This dual-xApp structure enhances real-time
data handling, making the system more agile in identifying
and responding to new threats. Furthermore, we incorporated
several performance metrics, such as training time, model
loss, and real-time traffic testing, to validate our approach
across different scenarios. These metrics provide a detailed
understanding of the system’s effectiveness and resilience
in real-world conditions, underscoring its suitability for
dynamic, high-stakes environments like 5G and beyond
networks.

lll. SYSTEM MODEL

We examine a 5G O-RAN setup where RAN intelligent
controllers (RICs) handle resource management. These con-
trollers, compliant with 3GPP and software-defined RAN
(SD-RAN) standards, include both near-real-time (Near-
RT) and non-real-time (Non-RT) RICs, which are based
on software-defined networks (SDN). They manage radio
resources and can utilize AI/ML techniques for these
tasks [7], [8], [16].

Considering that RICs may operate within large-scale
systems, it is beneficial to implement cooperative mecha-
nisms to leverage shared experiences. FL can be utilized
among RICs to achieve this. FL's main goal is to preserve
data privacy by allowing collaborative training of ML models
on local datasets while sharing only model parameters.
Decentralized FL is particularly appealing as it removes
the need for an aggregation server, thus reducing the risks
associated with a single point of failure, global model
corruption, slow convergence, and data misclassification.
Also, decentralized FL, such as SAC-based P2P FL, secures
the communication of model updates, thus protecting against
semi-honest participants [7], [17], [20].

Secure Average Computation (SAC), as shown in Fig. 1,
serves a similar purpose in distributed FL as the aggregation
server does in centralized FL, i.e., both average participants’
model updates to create a global model [20]. However, the
way they transmit these updates within the FL framework
differs. Indeed, SAC employs two mechanisms, namely
lightweight n-out-of-n secret partitioning and secure multi-
party average calculation. In the secret partitioning method,
each Agent; (j € {1,...,N}) generates N positive random
numbers {rn;1, ..., rnjy}, which are then used to compute the
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Shared w for Agent 1
Shared w for Agent 2
Shared w for Agent 3

Partial Weight (w)

Secure Average Computation (SAC)
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1 rnz;= 26, rna= 48, rnaa= 41

W31= 9

Ps1=22 1 5in.i=0.23, pris,= 0.42, prnas= 0.36

w31=9, w3=17, wiz=14 :
| psa= (Wia=13)+ (w3=10)+ (w33=14) =37 !

| S= (ps1=22)+(ps2= 35)+(ps3=37)= 94
! Avg= (94/3) =31

(Eq.(4)) | ps=37

FIGURE 1. Example of SAC with three agents.

percentage distributions, denoted as prnji, ..
that:

., prujy, such

rnjj
i = >
k=1"Tjk
where N indicates the number of Agents in the P2P FL
environment. Then, the percentage distributions are used to
generate N partial weights {wj, ..., wjy} expressed by

(i,j) €{l,...,N}, )

where wj; is the model update of Agent;. For instance, Agent;
has w1 = 30 as the model update. This update is partitioned
securely into wi; = 4, wip = 13, and wy3 = 13 as presented
in Fig. 1. The resulting {wj1, ..., wjy} is used in the multi-
party average calculation. In particular, each Agent; keeps
its partial weights wj; and shares the other parts wj; with the
respective Agent;, Vi € {1,...,N} and i # j. To illustrate
this mechanism in Fig. 1, Agent; keeps wi; = 4 and shares
wip = 13 with Agent, and wy3 = 13 with Agentz. Then,
each Agent; computes its subtotal ps; as

(i,))e{l,...,N})%, (1)

Wji = Wj X prn;,

N
ps]:ZW]“ je{l,...,N}. (3)
i=1

Finally, it computes the aggregated SAC weights S and the
averaged weight Avg as follows:

N
S= psjand Avg = S/N. (4)
j=1

IV. PROPOSED APPROACH FOR ATTACK DETECTION:
SAC-BASED P2P FL-ASTL

A. DESCRIPTION

We introduce a communication-efficient SAC-based P2P
FL framework, named SAC-based P2P FL-ASTL, which
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: S= (ps1=22) + (ps= 35) + (pss=37)= 94
! Avg=(94/3) = 31

incorporates agent selection and transfer learning. Initially,
clients (or agents) are selected for peering based on their
performance in each round. The selected clients then
participate in SAC to create a global model. For efficient
SAC peering, only agents with high accuracy, determined
by their local validation datasets, are chosen in each round.
This process ensures the global model is generated while
safeguarding both model updates and performance through
SAC. To further protect datasets within the FL framework,
each agent uses a unique local validation dataset to produce
performance metrics, thus differing from conventional FL
methods.

In existing research, a balance between communication
costs, computation costs, and privacy is often discussed.
For example, while encryption enhances privacy, it also
raises computation costs due to the encryption/decryption
overhead. Our approach seeks to strike a balance between
communication costs and privacy. To do so, we introduce
a novel method that minimizes communications in large-
scale SAC-based P2P FL without compromising the privacy
of model updates and local datasets. Our method operates
through two main steps: “Initialization” and “Learning
Process”, which are iteratively executed across all FL rounds.

B. OPERATION
Our system consists of N clients (or agents) denoted by
An = {Ay,..., AN}, where each agent A; has a local
training dataset D; and a local validation dataset V; from
D ={Dy,...,Dy}and V = {Vy, ..., Vy}, respectively. Our
approach follows these steps:
1) Initialization: It involves multiple steps as summarized
in lines 1 to 6 of Algo. 1. First, in each round, agent
A; begins training from D; to update its model weights
w;. Then, it uses the validation dataset V; to generate
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Algorithm 1 Proposed SAC-Based P2P FL-ASTL

Input: Number of agents N, training datasets D,
validation datasets ), number of FL rounds T.

Initialization:

for i=1to N do
Get w; after local training of D;.
Test the updated model w; on validation dataset V;.
Get F1; and Acc;

end for

Update W = {wyq, ..

SAC-based P2P FL for subsequent FL rounds:

AN A e

., wy} using Algorithm 2

7. while < T do

8: fori=1to N do

9: Train local dataset D; using Wy, for & episodes.
10: Get the updated model w;.

11: Test the updated model on validation dataset V;.
12: Get F1; and Acc;.

13: end for

14: Update W = {wy, ..
15: end while

., wn} using Algorithm 2

Algorithm 2 Learning Process

Input: Number of
N, performancemetrics:[F1;, Accili=1,..N

agents

Agent selection:
: function SELECT(N, [F1;, Accili=1,...N)
Get Avgpl <~ SAC(, [F]i]izl,...,N)
Get Avguce < SACWV, [Accili=1...N)
Initialize an empty set S for selected agents
for i=1to N do

Assign A; to set S based on eq. (5)

end for
return S
: end function
. Get A}C ={Ay,..
: Get A = {Ai ..

disregarded agents

R A A S ol S

—_
=]

., Ak} < S % Set of selected agents
LARY = Av\Ax % Set of

—_
—_

Global model design:
12: Get Wy, < SAC(Ax, K)

Transfer learning:
13: Update w;, Vi € A using eq. (6)

its local performance metrics, such as the Fl-score,
denoted F'1;, and accuracy Acc;.

2) Learning process: It corresponds to the operations of
lines 6 and 14 of Algo. 1. Specifically, it comprises
three steps: Agent selection, global model design, and
transfer learning, as summarized in Algo. 2. In the first
phase (Algo. 2, lines [1-11]), each node engages in
SAC to securely exchange validation dataset metrics.
Then, the average Fl-score and accuracy are shared
among all agents. To be selected for peering, each
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agent A; verifies that it satisfies the conditions F1; >
Avgrp1 and Acci > Avg,e.. Subsequently, we have

S ={A; | F1; > Avgr1 and Acc; > Avgucc}.  (5)

Let A = {A1,...,Ax} and Ar = {A;, ..., AR} be
the sets of selected and disregarded agents, respec-
tively. Then, in the second phase (Algo. 2, line 12),
selected agents participate in SAC to generate the
global model Wy, , following (1)—(4)] In the final phase,
transfer learning of the global model W, occurs,
where the model is transferred to the disregarded
agents in Ax such that

wi = Wy, VA; € Ag, (6)

where w; refers to the learning model of agent
A;. While “transfer learning” often suggests adapting
knowledge from one task or domain to another,
here we employ a broader perspective [21]. In our
framework, the global model, enriched by insights
from selected high-performing agents, is transferred
to non-selected agents. This knowledge sharing, even
under the same overarching task, effectively transfers
learned representations and model parameters, thus
enabling all agents to improve their local training
performance over subsequent rounds [21].

3) SAC-based P2P FL-ASTL for subsequent rounds: In
the following FL rounds, the same initialization and
learning processes are repeatedly executed until the
last FL round is reached. This is emphasized in lines
7-15 of Algo. 1.

Remark 1: To mitigate potential biases arising from local
validation sets that may not initially reflect the global
data distribution, our framework leverages an iterative and
multi-round approach. After each round, selected high-
performing agents contribute to the global model, which
is then disseminated to all agents for local retraining. In
subsequent rounds, agents re-evaluate their updated models,
and those demonstrating improved performance can be
selected later. Over time, this iterative process integrates
insights from a more diverse set of agents, thus preventing
any single local model from dominating, and guiding the
global model toward a more balanced and representative data
distribution.

C. ANALYSIS OF COMMUNICATION COST

In conventional SAC-based P2P FL, each agent must send
the computed partitions and subtotals of W model weight
values to the other (N — 1) agents in each FL round [20].
Consequently, the total communication effort per round is
calculated as 2WN (N —1), resulting in a total communication
cost of

¢ =2WN®N — DT. 7)

ITo be noted that this global model, generated at intermediate stages,
facilitates incremental improvements during training but is not to be
deployed. Only the final global model, obtained after convergence in the
last FL round, is used for deployment.
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Conversely, our proposed method, which incorporates
agent selection, reduces the training effort. In each round ¢,
K; agents participate in SAC. Therefore, the communication
cost for training in round ¢ is ¢;,1 = 2WKy(K; — 1), Vi =
1,...,T. Also, the SAC-based exchange of averaged FI
Avgr and Accuracy Avg,.. requires a communication effort
of ¢;» = 20N(N — 1), where Q represents the averaging
cost. Finally, transfer learning necessitates a broadcast cost
of ¢;3 = W. Thus, the total communication cost for a single
round in our proposed method is c¢; 1 + ¢;2 + ¢;,3, and the
overall cost can be expressed as

T

¢ = (eni+aa+es)

1

-
Il

QWK,(K; — 1) +20N(N — 1) + W).  (8)

I
[\'j ~

1

-
Il

Finally, for the conventional centralized FL [22], the
communication cost is given by

" =WNN+ 1T, 9

since it needs N transmissions from the agents to the central
aggregator to upload their model parameters and only one
broadcast transmission from the aggregator to the agents to
update their models.

V. PERFORMANCE EVALUATION
In this section, we assess the performance of our proposed FL.
method, termed “SAC-based P2P FL-ASTL”, for detecting
cyberattacks in network traffic, focusing on accuracy and
communication efficiency. We compare our approach with
the traditional “Centralized FL” [22] and the decentralized
“SAC-based P2P FL” [7] in a simulated environment first,
where existing datasets were used for assessment.
Subsequently, our evaluation is extended to a real-
world deployment within a 5G O-RAN testbed. Within
the testbed, we assess these methods across a broad range
of metrics, including execution time, communication cost,
model accuracy, model loss, and testing of the global model
on live traffic. This allows us to evaluate the adaptability and
resource efficiency of the approaches under real-time, IID, or
non-IID data conditions. The obtained results from both the
simulated and real environments provide a comprehensive
view of the achievable performances in such conditions.

A. PERFORMANCE ASSESSMENT IN A SIMULATED
ENVIRONMENT
1) DATASET SETUP
For detecting cyberattacks, we selected the UNSW-NB15
dataset, a contemporary dataset for network intrusion detec-
tion systems (NIDS) [23]. This dataset includes nine attack
categories, with each category comprising a set of records.
Each record features 49 extracted features.

Preprocessing steps: We have considered a subset of the
UNSW-NBI15 dataset (2 data files out of the four available)
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and preprocessed it to be suitable for the purpose of cyber-
attack detection in O-RAN. Specifically, we merged the data
of the two files and removed six non-relevant features, which
are {srcip, dstip, attack_cat, ct_flw_http_mthd, is_ftp_login,
ct_ftp_cmd}. The first three features have been eliminated
for effective detection since, in real-world scenarios, network
flows lack attack categories, and IP addresses may be
dynamic or manipulated through IP spoofing. The other
three features have been discarded due to their high number
of null values. As a result, each record is left with 43
features. Moreover, preprocessing steps such as splitting,
feature/categorical encoding, and normalization have been
applied. The dataset has been partitioned into training,
validation, and testing datasets. Each agent has local training
and validation datasets, and a final testing dataset to evaluate
the global model.

Dataset distribution: Following preprocessing, the remain-
ing dataset includes 150,000 records, distributed among
N = 100 agents for training and validation, with an
additional separate testing dataset comprising 10,000 records
for global model testing. Within the records, 60% represent
the attack classes. Each agent receives 1,500 records split
into (80%, 20%) between training and validation. Therefore,
each agent will have the same dataset size.

The partition of the attack classes at each agent depends
on the type of distribution, i.e., IID or non-IID. For an IID
distribution, agents have an equal attack class partition of
60%. In contrast, for a non-1ID distribution, the partition of
the attack class was varied randomly within specific ranges
of attack class partitions, in particular, we designed the range
[20%, 40%] for the intense non-IID setting and [30%, 60%]
for the moderate non-IID setting.

2) FL MODEL ARCHITECTURE AND

HYPERPARAMETERS TUNING

We adopt here a deep learning (DL) architecture comprising
four layers for our system. Specifically, the input layer
is tailored to handle 43 features, followed by two dense
hidden layers with 30 and 10 neurons, respectively. The
architecture concludes with an output layer consisting of
two neurons and is accompanied by a softmax layer for
probabilistic classification between “attack” and “no attack”.
The ReLU activation function is applied to the hidden
layers, supplemented by L1 regularization. Throughout our
experiments, we set the learning rate to 10~* and the batch
size to 100. Moreover, we run FL for 7 = 50 rounds, where,
in each round, an FL agent trains locally for ¢ = 10 episodes.

3) SIMULATION RESULTS

In Table 1, we evaluate and compare the communication
costs for the proposed “SAC-based P2P FL-ASTL”, and the
two benchmarks “Centralized FL” and “SAC-based P2P FL”.
We assume here an IID distribution of datasets and that
the FL. model of any agent has W = 1622 weight values.
As shown in Table 1, Centralized FL exhibits the lowest
communication cost, approximately 31.25 megabytes (MB),
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FIGURE 2. Accuracy of: SAC-based P2P FL-ASTL (top row); Several FL methods (bottom row), with different data distributions, using the UNSW-NB15 dataset.

TABLE 1. UNSW-NB15: Communication costs.

Avg. commun. Total
# model
FL Method . cost per commun.
weight values
round (MB) cost (MB)
SAC-based
¢ = 32115600 122.55 6127.5
P2P FL
SAC-based
P2pP ¢/ = 8068500 31.92 1595.6
FL-ASTL
Centralized
L ¢ = 163822 0.625 31.25

due to its minimal transmission requirements to and from the
aggregation server. In contrast, SAC-based P2P FL incurs
the highest communication cost, around 6127 MB, because
of the extensive data exchanges among all N = 100 agents
in the FL system. Our proposed method, however, reduces
the communication cost by 74% compared to SAC-based
P2P FL, thanks to its incorporation of agent selection and
transfer learning. Despite the low communication effort of
Centralized FL, it remains vulnerable to security breaches
and failures due to its centralized architecture and lack of
robust security mechanisms.

Fig. 2 illustrates the global accuracy of our proposed
method (top row) compared to benchmarks (bottom row) for
both IID and non-IID distributions. In the top row, SAC-
based P2P FL-ASTL achieves convergence after 19, 23, and
42 rounds with accuracy levels exceeding 98.6%, 98.4%, and
96.5% for 11D, moderate non-IID, and intense non-IID sce-
narios, respectively. This demonstrates the efficiency of our
approach in detecting cyberattacks. However, as non-IIDness
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FIGURE 3. Selection rate distribution for 50 agents, sampled from N = 100 agents
(different lIDness settings), using the UNSW-NB15 dataset.

increases, convergence takes longer and accuracy slightly
decreases (by 0.3% to 2%), showcasing the robustness of our
method in non-IID environments. This is also reflected in the
increasing variance of accuracy performance at convergence
(area between red dashed lines).

When comparing our method to the benchmarks in the
bottom row of Fig. 2, we observe that all methods achieve
similar accuracy values, indicating comparable robustness to
dataset non-IIDness. However, our approach converges more
quickly in the IID setting, reaching convergence at round
19, whereas centralized FL. and SAC-based P2P FL begin
to converge at rounds 23 and 25, respectively.

To analyze the behavior of our proposed method, we
plotted the selection rates of 50 agents out of the N = 100
available ones performing FL in both IID (blue) and non-IID
(red) settings, as shown in Fig. 3. We observed significant
variation in selection rates among agents, indicating the
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FIGURE 4. Architecture of the 5G O-RAN testbed.

system’s adaptability in selecting agents based on their F1
and accuracy performances. A high selection rate (close to 1)
suggests that an agent is more likely to be chosen in most
rounds. The variation in selection rates is more pronounced
in the non-IID setting compared to the IID one. This strategic
selection under non-IID conditions demonstrates the model’s
robustness by maintaining performance and mitigating the
effects of unbalanced data distributions through adaptive
reliance on different agents.

B. PERFORMANCE ASSESSMENT IN A 5G O-RAN
TESTBED
1) TESTBED SETUP

To evaluate the effectiveness of the FL algorithms, we
designed an O-RAN based 5G testbed, as illustrated in
Fig. 4. This testbed encompasses the 5G core network
(CN), logical near real-time RICs hosted in a physical
real-time RIC [24], gNodeBs (gNBs), and multiple user
equipment (UEs) with either a normal/legitimate profile or
an attacker profile. The CN leverages Open5GS, an open-
source containerized/dockerized 5G core framework that
offers essential network functions and provides seamless
connectivity between the RAN and external networks [25].
The containerized structure enables efficient integration with
other network components, fostering a robust platform for
evaluating our security techniques within the testbed. For
network intelligence, the near real-time RIC (Near-RT RIC)
is deployed using the O-RAN Software Community’s ORAN
SC framework [26]. Our setup includes five logical RICs,
each configured as an FL agent hosting its respective XApp.
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These RICs operate on a shared physical infrastructure,
allowing inter-agent communication for collaborative online
learning. Note that in “Centralized FL”, RIC 1 serves also as
the aggregation server, thus managing and coordinating the
learning process across all agents. This testbed design allows
us to evaluate both distributed and centralized FL paradigms
within the same environment. The RAN setup utilizes the
open-source srSRAN project to deploy modular 5G gNBs,
each partitioned into a central unit (CU) and a distributed
unit (DU) in line with the O-RAN modular architecture [27].
The DU manages virtual UEs through ZeroMQ (zmq)
communication protocol [28]. This protocol enables efficient
data exchange, supporting the srsUE framework in emulating
realistic user behaviors. Each gNB instance connects to two
virtual UEs, allowing a total of 10 emulated users across the
testbed. To evaluate our FL-based attack detection framework
under various conditions, we simulated user activity by
generating HTTP traffic to mimic benign behavior, and
DDoS attacks traffic targeting the CN (specifically, the AMF
network function). The Mausezahn tool was used to emulate
attacks, including TCP, UDP and mixed traffic types [29].
Our experimental setup provides a rigorous and realistic 5G
environment, enabling us to perform in-depth evaluations of
the FL algorithms in response to diverse traffic patterns.

2) DATASET SETUP

To effectively detect cyberattacks in the 5G O-RAN envi-
ronment, we generate datasets that support both online
and offline training modes. This approach enables real-time
detection and the analysis of historical data. We generate
Distributed Denial of Service (DDoS) attack traffic alongside
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TABLE 2. Testbed network configuration.

gNodeB | UE | UE IP Address | Attack Status

UEl 10.45.1.2 Attacker
gNodeB 1 .
UE2 10.45.1.4 Benign
UE3 10.45.1.6 Attacker
¢NodeB 2 .
UE4 10.45.1.7 Benign
UES 10.45.1.8 Attacker
gNodeB 3 .
UE6 10.45.1.9 Benign
UE7 10.45.1.10 Attacker
gNodeB 4 .
UE8 10.45.1.11 Benign
UE9 10.45.1.12 Attacker
e¢NodeB 5 .
UEI10 10.45.1.13 Benign

benign traffic, equipping our model to differentiate between
attack and non-attack scenarios. The datasets are collected
and monitored through a dedicated xApp, allowing us to
observe and capture network behaviors for further analysis.
Below, we outline each step of this setup:

Data generation: DDoS attacks are designed to over-
whelm network services by flooding targeted servers with
high volumes of traffic from various distributed sources,
such as compromised Internet-connected devices, e.g., bots,
or attacker’s computers. DDoS attacks can be of sev-
eral types, including volume-based attacks, protocol-layer
attacks, application-layer attacks, and zero-day attacks [30].

Our study focuses on Transmission Control Protocol
Synchronize (TCP SYN) and User Datagram Protocol (UDP)
floods as representative examples of protocol-layer and
volume-based attacks. A TCP SYN flood exploits the TCP
handshake process by sending numerous SYN requests
without completing the handshake, leaving server resources
in half-open connections and leading to denial of service.
Meanwhile, UDP floods overwhelm the target by sending
many UDP packets to random ports. This forces the server
to continuously search for non-existent applications and
respond with Internet Control Message Protocol (ICMP)
error packets, ultimately exhausting the bandwidth and server
resources [30]. In our testbed configuration, we generate
attack and benign traffic from two UEs associated with each
gNodeB, as defined in Table 2. This setup enables a realistic
testing environment by distributing both types of traffic
across multiple sources. For each gNodeB, we designate
specific UEs to generate DDoS attack traffic. The “Attacker”
associated with each gNodeB generates TCP SYN and UDP
flood, while the “Benign” UE generates Hypertext Transfer
Protocol (HTTP) traffic, simulating normal network behavior.
Consequently, we can observe and analyze the network’s
response to cyberattacks alongside regular traffic.

Monitoring xApp: In our testbed, the monitoring xApp,
deployed within the Near-RT RIC, is essential for continuous
traffic data collection and monitoring, enabling a flexible FL.
lifecycle in line with O-RAN standards. This xApp operates
offline and online to support model training and adaptation
based on historical and real-time data. In offline mode, the
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collected dataset is stored as a historical record, serving as
the basis for training the FL model. As a result, an initial
model is deployed for inference, relying on accumulated
network behavior data to detect cyber threats effectively, as
outlined in O-RAN guidelines [31].

In online mode, the monitoring XxApp periodically collects
live traffic data in predefined intervals, e.g., 10 seconds
across four sampling windows for 40 seconds. This live
dataset undergoes immediate preprocessing and integration
into the FL training cycle, enabling continuous model
adaptation. We ensure the model dynamically adjusts to
emerging network patterns and threat behaviors by updating
the model with recent traffic data, which aligns with
key recommendations for adaptive model training in the
O-RAN’s standards [31]. This dual-mode data handling
provides a robust foundation for maintaining precise and
responsive cyberattack detection in the evolving 5G O-RAN
environment.

In both offline and online modes, the monitoring xApp
follows predefined data collection intervals that are identical
for all agents, thus ensuring that each agent naturally
obtains a similar dataset size. Moreover, aligning with
O-RAN standards [31], the offline mode corresponds to
AI/ML inference over cumulative historical datasets. In
contrast, the online mode corresponds to AI/ML training that
periodically incorporates newly captured live traffic data.
In both modes, the datasets continually evolve, either by
accumulating additional historical data or by integrating fresh
traffic samples, thereby preventing them from being static.
This continuous adaptation supports frequent re-evaluation,
ensuring our approach remains practical and responsive in
real-time network environments.

Preprocessing steps: To simplify preprocessing, we incor-
porated the LUCID tool right after data collection, thus
minimizing delay and agreeing with O-RAN’s requirement
for scalable and low-resource processing. The LUCID tool
enables fast and lightweight preprocessing to handle the
large volume of data generated by the monitoring xApp
within the Near-RT RIC. Specifically, with LUCID, we
efficiently extract the necessary features and apply essen-
tial transformations to data while omitting features like
application-layer attributes, link layer encapsulation types,
TCP/UDP ports, and IP addresses, that could hinder model
generalization [32].

In offline mode, the labeling process directly references
attacker IP addresses as predefined in our configuration,
which is feasible since these addresses are known beforehand.
However, in online mode, to handle real-time data adaptively,
we utilize the offline trained model to predict attackers’ IP
addresses for dynamic labeling in real-time environments
while enhancing the adaptive detection capabilities. The
integration and customization of LUCID with our FL
framework ensure arobust and efficient preprocessing pipeline.

Dataset distribution: Each FL agent corresponds to an
xApp in a Near-RT RIC, providing 5 agents deployed across
5 RICs, with each xApp handling its unique dataset. These
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FIGURE 5. Communication cost (top row) and execution time (bottom row) across several FL methods under various data distributions in the bed-coll d d

datasets are based on the data collected from associated UEs,
as explained in Table 2 above. In the IID configuration,
we apply LUCID’s standard data distribution, which equally
balances the dataset between attack and benign traffic at
50% each. This balanced approach establishes our baseline
and aligns with LUCID’s setup for consistent data handling.
Given the need to replicate real-world traffic conditions,
we introduce two non-IID scenarios by customizing LUCID
to achieve varying attack distributions. Specifically, we
test with attack distributions in the ranges of [30%-60%]
and of [20%-40%], respectively, ensuring realistic data
heterogeneity between agents. The attack distributions are
designed as follows:

e [30%-60%] distribution: [30%, 40%, 50%, 55%, 60%]
across Agents 1 through 5, respectively.

e [20%-40%] distribution: [20%, 25%, 30%, 35%, 40%]
across Agents 1 through 5, respectively.

3) FL MODEL ARCHITECTURE AND
HYPERPARAMETERS SELECTION

Here, we consider a Convolutional Neural Network (CNN)
architecture with four primary layers for our system. The
input layer accepts data with dimensions 10 x 11 x 1,
representing the features in our dataset. A convolutional
layer with 64 neurons follows, each with a kernel size
of 3 x 11 and “valid” padding, thus reducing the spatial
dimension and producing an output shape of 1 x 64. This
configuration effectively captures spatial features across the
input data. The activation function used for this layer is
ReLU, introducing non-linearity and enabling the network
to learn complex patterns. Subsequently, we introduce a
global max pooling layer that reduces each feature map to its
maximum value, producing an output shape of 64. This step
simplifies computations and minimizes overfitting risks. A
flattening layer follows, converting the pooled feature maps
into a one-dimensional vector, thus preparing the data for
the final classification stage. The model concludes with a
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TABLE 3. Testbed dataset: Communication costs.

Avg. commun.
Total commun. o
FL Method cost per Data Distribution
cost (MB)
round (MB)
SAC-based
ase 1.55 15.5 All distributions
P2P FL

SAC-based 0.70 7.08 1ID

P2P 0.738 7.38 non-1ID [30%-60%]
FL-ASTL 0.799 7.99 non-1ID [20%-40%]
Centralized o

FL 0.272 2.72 All distributions

dense output layer of a single neuron, paired with a sigmoid
activation function for binary classification between “attack”
and “no attack”.

Throughout our experiments, we set the learning rate to
1073 and the batch size to 1024 to balance convergence
speed and stability. The FL is conducted over T = 10 rounds,
with each FL agent training locally for ¢ = 10 episodes per
round.

4) EXPERIMENTAL RESULTS

Table 3 presents the communication costs (in megabytes)
of the proposed “SAC-based P2P FL-ASTL”, and the
two benchmarks “Centralized FL” and “SAC-based P2P
FL”, when using data from our testbed. Similarly to the
results in Table 1, “Centralized FL” achieves the lowest
communication cost (2.72 MB) given its broadcast nature
of the global model while “SAC-based P2P FL” realizes the
highest cost of 15.5 MB due to the extensive data exchange
between the N = 5 agents, given any data distribution. In
contrast, the proposed “SAC-based P2P FL-ASTL” incurs a
communication cost between 7.08 MB (IID case) and 7.99
MB (worst non-IID case), which is up to 55% less than
SAC-based P2P FL.

Fig. 5 presents a more detailed landscape of the com-
munication cost (top row) across the FL rounds, with an
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assessment of the execution times (bottom row). As can
be seen, the communication cost of the proposed method
fluctuates between the minimal cost (by “Centralized FL”)
and is consistently below the worst cost (by “SAC-based
P2P FL”). This fluctuation is due to the dynamic agent
selection mechanism, as shown in Fig. 6. Indeed, this
mechanism adjusts the number of participating agents based
on the agents’ performances in each round, thus resulting
in decreased communication costs during rounds where
fewer agents are selected (e.g., rounds 4 to 6). However,
the increase in communication cost in rounds 7 and 8
reflects a reintroduction of more agents to maintain model
performance as the data distribution stabilizes, especially in
non-IID scenarios. However, we notice that the execution
time of “SAC-based P2P FL-ASTL” is often higher than
that of the other methods. This is expected since the agent
selection mechanism is a multi-step process that involves
(1) executing SAC for performance evaluation, (2) agent
selection, (3) SAC for model aggregation among selected
agents, and (4) transfer learning for model refining. In
contrast, the “SAC-based P2P FL” method only performs
SAC for model aggregation without additional steps, making
it faster. Nevertheless, the extra steps in “SAC-based P2P
FL-ASTL” are essential for achieving robust performance
and adaptability in varied data distributions, as they allow
for a more selective and efficient approach to P2P FL.

Fig. 7 illustrates the accuracy performance of the afore-
mentioned FL methods in different data distribution settings
within the 5G O-RAN testbed. The top row displays
the accuracy performances (average validation, average
prediction, Min/Max validation, and range of validation)
of the “SAC-based P2P FL-ASTL” only, while the bottom
row compares its average results with those of “Centralized
FL” and “SAC-based P2P FL’ benchmarks, as functions of
the number of FL rounds. In the IID scenario (top row,
left), “SAC-based P2P FL-ASTL” converges rapidly within
the first few rounds, achieving accuracy levels exceeding
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99%. The narrow range of accuracy variance throughout the
training indicates stability when handling homogeneous data
distributions. In the non-IID 30%-60% attack distribution
setting (top row, middle), the model converges by round 7,
achieving an accuracy of 99.81% with limited fluctuations.
This outcome demonstrates the model’s robustness against
moderate non-IIDness, where attack traffic affects data
distributions. Under the more intense non-IID 20%-40%
attack distribution (top row, right), the “SAC-based P2P FL-
ASTL” converges slightly earlier, around rounds 5 and 6, and
stabilizes at a similarly high accuracy level of 99.8%. These
results demonstrate the model’s robustness and adaptability
to any level of attack intensity and data distribution. In
the bottom row of Fig. 7, “SAC-based P2P FL-ASTL”
consistently achieves better accuracy than the benchmarks.
It converges to its best performance in about 6 or 7 rounds,
against a faster convergence of “Centralized FL” (in 4 to 6
rounds) and “SAC-based P2P FL” (in 3 to 6 rounds).

In Fig. 8, we depict the different methods’ train-
ing/validation losses as functions of the FL rounds. First, for
any method, we notice that the training and validation losses
are almost identical, demonstrating their stable operation.
Then, “SAC-based P2P FL-ASTL” stabilizes its loss in 5
rounds only (achieving a loss of 1072), compared to 10
FL rounds for “SAC-based P2P FL’ and a higher number
of rounds for “Centralized FL”, to reach the same loss
value. The loss analysis confirms that high accuracy can be
reached with minimal loss, supporting the decision to limit
the number of rounds for optimal resource use. Hence, “SAC-
based P2P FL-ASTL” is suitable for efficient and reliable
real-time deployments.

Fig. 9 illustrates the agent selection rate distribution when
using “SAC-based P2P FL-ASTL” across N = 5 agents.
Similarly to the results of Fig. 3, variations in selection
rates reflect the system’s capability to adapt based on the
agents’ F1 and accuracy performances. This fluctuation is
accentuated in the non-IID settings showcasing flexibility
in mitigating the unbalanced data effect. Interestingly, we
notice that Agent 3 is always selected in any IIDness setting,
suggesting its role as a central agent (with better data
distributions) to improve the overall FL. performances.

Finally, Tables 4, 5 and 6 present the live traffic testing
results for the IID, non-IID (30%-60%), and non-IID (20%-
40%) settings, respectively, in terms of DDoS detection rate,
benign traffic detection rate, and identification or not of
the attacker(s), and given different types of traffic (benign
HTTP and/or TCP attack and/or UDP attack). When only one
type of traffic is present (HTTP, TCP, or UDP), all methods
perform perfectly in any data IIDness setting, correctly
classifying 100% of the traffic and identifying the attacker.

However, differences emerge in mixed traffic scenarios.
Under the IID setting, as shown in Table 4, while all
methods achieve high detection performances for DDoS
attacks, “SAC-based P2P FL” occasionally misclassifies a
benign user as an attacker (false positive). In contrast,
“Centralized FL” and “SAC-based P2P FL-ASTL” methods
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TABLE 4. Live traffic testing results for global models of FL methods (IID scenario).

Detected
Scenario FL Method Detected DDoS | Detected Benign Attacker
IP Address
Centralized FL,
SAC-based P2P FL, 0% 100% X
Benign Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
TCP Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
UDP Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
TCP & UDP SAC-based P2P FL-ASTL
Benign & TCP Centralized FL 86.49% 13.51% 10.45.1.6
SAC-based P2P FL 86.53% 13.47% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL-ASTL 87.37% 12.63% 10.45.1.6
Benign & UDP Centralized FL 86.78% 13.22% 10.45.1.6
SAC-based P2P FL 86.82% 13.18% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL-ASTL 86.78% 13.22% 10.45.1.6
Benign & TCP & UDP Centralized FL 95.02% 3.79% 10.45.1.6
SAC-based P2P FL 94.30% 5.70% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL-ASTL 93.98% 6.20% 10.45.1.6

* Misclassified as an attacker (false positive) or as benign user (false negative).

correctly classify all users, demonstrating a better detection
performance. In non-IID scenarios with moderate attack
distributions (30%-60%), “Centralized FL” and “SAC-based
P2P FL” begin to exhibit misclassifications, leading to
increased false positives, as shown in Table 5. This issue
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becomes more pronounced under intense non-IID conditions
(20%-40%), as presented in Table 6. Indeed, when the TCP
SYN flood attack is mixed with the benign traffic, the bench-
marks fail to detect attackers, and they incorrectly classify
all users as benign, thus leading to increased false negatives.

VOLUME 6, 2025



‘IEEES IEEE Open Journal of the
Comdoc communications Society

TABLE 5. Live traffic testing results for global models of FL methods (Non-lID (30-60% attacks)).

Detected
Scenario FL Method Detected DDoS | Detected Benign Attacker
IP Address
Centralized FL,
SAC-based P2P FL, 0% 100% X
Benign Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
TCP Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
UDP Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
TCP & UDP SAC-based P2P FL-ASTL
Benign & TCP Centralized FL 86.82% 13.18% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL 86.82% 13.18% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL-ASTL 86.49% 13.51% 10.45.1.6
Benign & UDP Centralized FL 86.82% 13.18% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL 86.82% 13.18% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL-ASTL 86.78% 13.22% 10.45.1.6
Benign & TCP & UDP Centralized FL 95.00% 5.00% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL 96.14% 3.86% 10.45.1.6, 10.45.1.7*
SAC-based P2P FL-ASTL 94.70% 5.30% 10.45.1.6
* Misclassified as an attacker (false positive) or as benign user (false negative).
TABLE 6. Live traffic testing results for global models of FL methods (Non-lID (20-40% attacks)).
Detected
Scenario FL Method Detected DDoS | Detected Benign Attacker
IP Address
Centralized FL,
SAC-based P2P FL, 0% 100% X
Benign Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
TCP Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
UDP Only SAC-based P2P FL-ASTL
Centralized FL,
SAC-based P2P FL, 100% 0% 10.45.1.6
TCP & UDP SAC-based P2P FL-ASTL
Benign & TCP Centralized FL 0% 100% X*
SAC-based P2P FL 0% 100% X*
SAC-based P2P FL-ASTL 86.49% 13.51% 10.45.1.6
Benign & UDP Centralized FL 86.49% 13.51% 10.45.1.6
SAC-based P2P FL 86.78% 13.22% 10.45.1.6
SAC-based P2P FL-ASTL 86.78% 13.22% 10.45.1.6
Benign & TCP & UDP Centralized FL 36.92% 63.08% X*
SAC-based P2P FL 34.22% 65.78% X*
SAC-based P2P FL-ASTL 94.95% 5.05% 10.45.1.6

* Misclassified as an attacker (false positive) or as benign user (false negative).

In contrast, “SAC-based P2P FL-ASTL” consistently shows settings. Adaptive agent selection and SAC successfully
robust detection across all scenarios, where it accurately manage diverse data sources and reduce misclassifications.
identifies attacker IP addresses, even in challenging non-IID  These findings highlight our proposed method’s strength in
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Non-IID (20-40% attacks) Comparison: Training and Validation Loss
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FIGURE 8. Training/Validation loss as a function of FL rounds (Non-lID (20-40%
attacks), several FL methods).

Agent Selection Distribution (lID, non-lID 30-60%, non-IID 20-40%)
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FIGURE 9. Selection rate distribution across N = 5 agents in different lIDness
settings.

achieving reliable detection in decentralized settings such as
5G O-RAN.

VI. CONCLUSION

In this work, we proposed a novel SAC-based P2P FL-ASTL
method adapted for use within the RICs of an O-RAN based
5G network to efficiently detect cyberattacks. Unlike the
conventional SAC-based P2P FL, we aim to reduce the com-
munication cost through the integration of two mechanisms,
namely agent selection and transfer learning. Agent selection
has been developed in a secure manner where only agents
presenting high performances, in terms of F1-score and accu-
racy, are allowed into P2P FL, while transfer learning ensures
that all involved FL agents benefit from the SAC-based P2P
FL. Our method enhances security in parameter sharing and
reduces SAC’s computational burden, paving the way for
a more secure and streamlined O-RAN in 5G and beyond.
Through both simulations and real experiments using our
developed 5G O-RAN testbed, we showed that SAC-based
P2P FL-ASTL successfully cuts the communication cost
by up to 74% compared to the conventional SAC-based
P2P FL, while achieving equivalent or higher accuracy
than the benchmarks. Our approach has also been proven
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robust against moderate and intense dataset non-IIDness
with a negligible degradation in accuracy (below 2%). In
addition, the proposed deployment and led experiments
demonstrated the system’s efficiency and adaptability in
handling real-time non-IID traffic. Specifically, we observed
high detection accuracy, efficient model convergence, stable
loss around 1072, and effective handling of live traffic.
Indeed, SAC-based P2P FL-ASTL consistently maintained
detection rates around 99% for DDoS attacks in mixed traffic
scenarios, even under challenging non-IID distributions.
The combination of the simulation and experimental results
confirmed the suitability of SAC-based P2P FL-ASTL
for real-world applications consistently maintaining high
detection accuracy and operational efficiency in O-RAN
networks.
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