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ABSTRACT This paper presents a novel smart greenhouse integrated into a microgrid (SGIM) designed
to optimize energy and microclimate management for sustainable agriculture. The SGIM integrates photo-
voltaic (PV) panels, a micro-combined heat and power (micro-CHP) unit, and an energy storage system
to deliver efficient, localized energy generation and management. Within this framework, a Nonlinear
Model Predictive Control (NMPC) and an Extended Kalman Filter (EKF) are employed to regulate critical
microclimate parameters such as temperature, relative humidity, CO2 concentration, and lighting intensity,
while optimally managing energy storage to reduce grid power imports. The NMPC minimizes a cost
function encompassing multiple objectives and constraints, whereas the EKF enhances control precision
by addressing measurement errors and model noise. Simulations revealed that the SGIMmet over 83% of its
energy needs through local generation, with only 3.8% sourced from the external grid. This approach offers
an effective solution for achieving near-zero energy consumption in sustainable agriculture, with scalability
for various greenhouse types and sizes.

INDEX TERMS Smart greenhouse, microgrid, renewable energy, energy efficiency.

NOMENCLATURE
SYSTEM VARIABLE
BatSOC Battery stage of charge [%].
CCO2,i Indoor CO2 concentration [ppm].
Il Indoor light intensity [µmol/(sm2)].
Rhi Indoor relative humidity [%].
Ti Indoor temperature [oC].

AMBIENT VARIABLE
Gsr Global Solar irradiation [W/m2].
Rha Ambient relative humidity [%].
Ta Ambient temperature [oC].
vwind Wind speed [m/s].

PARAMETERS
Af Greenhouse floor surface [m2] 42.
Ahmax Maximum capacity of battery [Ah] 100.
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Apv Solar panel area [m2] 40.
Av Area of open window [m2] 1.
Ca Specific heat capacity of air [W/(kgK)] 1005.

CONTROL VARIABLES
Ichg Battery charging current [A].
Idis Battery discharging current [A].
Qs Heating supply of micro-CHP [W].
ual Operational status of supplemental lighting,

0≤ual ≤ 1.
uCO2 Operational status of CO2 injector, 0≤uCO2≤1.
udeh Operational status of dehumidifier, 0 < udeh < 1.
ufog Operational status of fogging system, 0≤ufog≤1.
α Ventilation open angle [o], 0 ≤ α ≤ 44.
nr Number or hot water radiator [unit] 2.
Pa Atmospheric air pressure [Pa] 101325.
Pal Power rating of lamp [W] 2500.
Pf Packing factor [pu] 0.83.
Pdeh Power rating of dehumidifier [W] 1100.
CCO2,o Outdoor CO2 concentration [ppm] 420.
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Cr Specific heat of radiator wall [J/(kgK)] 447.
Cw Specific heat of water [J/(kgK)]] 4186.
D Hydraulic diameter of pipe [m2] 0.1128.
E Evapotranspiration rate of plants in green-

house [pu] 0.5.
H Height of the greenhouse [m] 3.5.
Ichg,max Battery maximum charging current [A] 15.
Idis,max Battery maximum discharging current [A] 15.
Ill0 Light output rating of artificial lighting

[µmol/(sm2)] 200.
K1 Constant 100.
K2 Constant [Pa] 1.7001.
K3 Constant [Pa]; 7/7835.
K4 Constant [1/K] 1/17.0789.
K5 Constant [kgw/kga] 0.6228.
K6 Coefficient associated with the respiration rate

of the crop [oC] -0.27.
K7 Coefficient associated with the respiration rate

of the crop (no dim.) 0.05.
Ki Thermal conductivity of hot water [W/(mK)]

0.64.
Kinj,max Max carbon injected by CO2 generator

[kg/m2] 0.8e-3.
Kle Efficiency of conversion visual light to PAR

0.5.
Kph,max Photosynthesis coefficient of the crop

[kg/(Wh)].
Kres,max Respiration coefficient of the crop

[kg/(m2hK)] 1.224e-6.
Lp Equivalent pipe length [m] 3.5.
mr Weight of radiator [kg] 97.
mw Volume flow rate of hot water [m3/s]

0.000667.
N Greenhouse infiltration rate [1/h] 0.75.
Nc Control horizon of NMPC, 3.
Np Prediction horizon of NMPC, 18.
Pfog Power rating of fogging system [W] 1100.
Pfan Power rating of circulation fan [W] 370.
Ppump Power rating of hot water pump [W] 185.
Pr Prantl number of waters at 50 oC 3.559.
Qs,max Micro-CHP maximum heating output [W]

23100.
Qs,min Micro-CHP maximum heating output [W]

4100.
BatSOCmax Battery maximum stage of charge [%] 90.
BatSOCmin Battery minimum stage of charge [%] 10.
Sr Surface area of radiator [m2] 5.
Ts Time step of controller [s] 600.
Tw,max Maximum temperature of water [oC] 60.
Tw,min Minimum temperature of water [oC] 35.
U Overall heat transfer coefficient of greenhouse

[Wm2/K] 2.2713.
Va Greenhouse volume [m3] 212.5.
Vw Capacity of Thermal Storage System (TSS)

[m3] 1.
Wdeh,max Max rate of dehumidifier [kg/(m2h)] 1.6.

Wevp Evaporation rate of the crop [kg/(m2h)]
0.1258.

Wfog,max Max vapor rate of fogging systems
[kgW/(m2h)] 0.0096.

βchg Efficiency of charging the battery 0.9.
βdis Efficiency of discharging the battery 0.9.
ηpc Power conditioning efficiency 0.9.
ηpv Efficiency of the solar panel 0.2.
ρa Gravity density of air [kg/m3] 1.207.
1Qs,max Micro-CHP maximum ramp rate of heating

output [W/s].
1Qs,min Micro-CHP minimum ramp rate of heating

output [W/s].

I. INTRODUCTION
Traditional farming methods are increasingly being supple-
mented by technological innovations such as greenhouses,
which provide controlled environments to optimize crop
production. However, the energy demands of greenhouse
operations, particularly for climate control, pose new chal-
lenges. As energy costs increase and environmental concerns
regarding carbon emissions grow, there is a critical need for
more sustainable and energy-efficient greenhouse manage-
ment solutions. Smart agriculture leverages technologies such
as automation, intelligent control, and energy management
to address these challenges. By integrating energy-efficient
management systems, smart agriculture can reduce costs and
improve sustainability while ensuring optimal growth con-
ditions [1]. Smart greenhouses, as crucial components of
modern agricultural practices, must adopt advanced technolo-
gies to thrive in an era of resource constraints.

Simultaneously, the rise of microgrids offers a promising
solution to this energy dilemma. Microgrids are localized
energy systems capable of operating independently or in
conjunction with the main power grid. They are particularly
suited for settings such as greenhouses, which have specific
energy demands and often need to be operated in remote
or semi-remote areas. The integration of renewable energy
sources, such as photovoltaic (PV) panels, into microgrids
allows for the efficient use of green energy, reduces reliance
on fossil fuels and enhances sustainability [2]. The need
for sustainable energy systems in agriculture is underscored
by increasing regulatory pressure to reduce greenhouse gas
emissions, as well as a societal push towards environmentally
friendly farming practices. In this context, microgrids offer
a resilient and energy-efficient alternative for agricultural
settings, especially when combined with intelligent control
systems to dynamically manage energy consumption.

The greenhouse microclimate includes essential parame-
ters, such as artificial lighting, temperature, relative humidity,
and CO2 concentration. Optimal ranges vary based on the
plant type and growth stage, such as seeding, flowering,
or fruiting [3]. In a smart greenhouse, there are wireless
sensor networks (WSN), and the Internet of Things (IoT)
which allow information about outside weather and the
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microclimate to be sampled, stored, and shared between
devices to help the operator of the greenhouse monitor,
and control the microclimate. For example, in [4], data are
collected and transmitted wirelessly, and growers can mon-
itor greenhouse conditions remotely and control systems
via smartphones or computers, improving accessibility and
response times.

The utilization of local sustainable energy in green-
houses has diversified significantly, driven by technological
advancements and growing emphasis on energy sufficiency.
Solar energy remains a primary resource; however, its appli-
cation has expanded beyond traditional rooftop PV panels.
For example, semi-transparent organic solar cells (OSCs)
[5] represent a novel approach that allows for simultane-
ous electricity generation and light transmission for plant
growth. This dual functionality highlights the trend towards
synergistic energy and crop production systems. Trigenera-
tion systems powered by solar energy offer a comprehensive
solution by generating electricity, heating, and cooling within
greenhouses, thereby reducing reliance on external grids [6].
The integration of PV panels with a Proton Exchange Mem-
brane Fuel Cell (PEMFC) adds another layer of energy
independence, which utilizes excess solar energy to produce
hydrogen for on-demand power generation [7]. Geother-
mal energy, accessed through ground source heat pumps
(GSHPs), provides another avenue for local energy utiliza-
tion, particularly for efficient heating and cooling [8]. These
diverse approaches demonstrate the expanding potential for
local sustainable energy integration in greenhouses, creat-
ing a pathway towards a more resilient and environmentally
friendly agricultural sector.

From the perspective of energy management and microcli-
mate control in greenhouses powered by microgrids, model
predictive control (MPC) has emerged as the dominant
approach. Hussain et al. [9] investigated the challenges
of operating greenhouses in islanded mode and proposed
robust optimization strategies and a precedence methodol-
ogy to prioritize essential control parameters based on plant
growth requirements. This study establishes the importance
of considering both grid-connected and islanded scenar-
ios when designing microgrid systems for greenhouses.
Achour et al. [10] incorporated the food-energy-water nexus
into their Supervisory MPC scheme, optimizing the green-
house microclimate while minimizing resource consumption.
The transition from individual to interconnected greenhouses
has marked a significant step towards enhancing sustain-
ability. Ouammi et al. [11] introduced a centralized MPC
approach for coordinating energy and water management
across multiple greenhouses, demonstrating the benefits of
networked operations for maximizing resource utilization
and improving energy efficiency. Ouammi [12] expanded
this concept further by proposing a framework for achieving
net-zero energy consumption in a cluster of interconnected
microgrids powering multiple smart greenhouses. The con-
cept of cooperative energy management within these clusters

allows for efficient power exchanges between microgrids
to balance supply and demand and reduce reliance on the
main grid. Rezaei et al. [13] introduced a hierarchical
distributed energy management framework that integrates
demand response capabilities into greenhouse networks,
allowing them to actively participate in grid services while
optimizing their individual energy consumption. This shift
towards demand-responsive greenhouses paves the way for
greater integration of agricultural systems into the smart grid.

Existing MPCs for smart greenhouse-integrated microgrid
(SGIM) often rely on linearized models or neglect system
nonlinearities [9], [10], [11], [12], [13]. However, the SGIM
is inherently nonlinear, with complex interactions between
microclimate variables and environmental parameters. More-
over, although previous studies have addressed uncertainties
in renewable production related to environmental conditions,
they often overlooked model noise and output measurement
errors which are inevitable in practical applications.

To fill these gaps, this study integrates a nonlinear model
predictive control (NMPC) with an extended Kalman filter
(EKF) for an SGIM, offering a comprehensive approach to
manage nonlinearities, and uncertainties. The originality of
this work is underscored by the following innovations.

• Application to a Smart Greenhouse Integrated into
a Microgrid (SGIM): This study targets a smart
greenhouse operating within a microgrid environment,
incorporating photovoltaic power, a micro-combined
heat and power (micro-CHP) unit, and an energy storage
system to optimize energy use, and climate control.

• Focus on Near-Zero Energy Consumption: This
framework not only optimizes the microclimate for
agricultural productivity but also prioritizes energy sus-
tainability, aiming for near-zero energy consumption by
reducing dependency on the power grid, and minimizing
energy consumption.

• Seamless Integration of NMPC and EKF: This study
combines NMPC’s ability to handle nonlinear dynam-
ics with EKF’s strength in filtering measurement errors
and model noise. The proposed approach provides more
reliable control actions, ensuring the system stability and
optimal performance

• Simulation-based Validation:The methodology was
tested through realistic simulations of an SGIM that was
developed using Multiphysics modeling in MATLAB/
Simulink. This simulator integrates different physical
domains including thermal fluid, air moisture, and elec-
trical domains, providing an integrated environment,
offering practical insights and demonstrating the effec-
tiveness of the approach.

This novel framework bridges the gap between theoretical
advancements inMPC and practical greenhouse management
requirements, offering a resilient and integrated solution.
Different to previous work, this study addresses system non-
linearities and complex interactions between microclimate
variables, which are often oversimplified in linear models.
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In addition, by explicitly targeting model noise and measure-
ment errors, this study paves the way for more reliable and
efficient control of smart greenhouses in practice.

The remainder of this paper is organized as follows: The
Methodology section describes the system model, which
includes the greenhouse microclimate, PV power genera-
tion, micro-CHP unit, artificial lighting, and energy storage
system. Next, we present a nonlinear control framework,
detailing the NMPC design, its state-space representation,
objective functions, constraints, and the EKF. The Simulation
and Discussion section demonstrates the effectiveness of the
NMPC combined with the EKF in regulating the greenhouse
microclimate and the energy storage system. Finally, the Con-
clusion highlights the limitations of this study and outlines the
directions for future research.

II. SYSTEM MODEL AND CONTROL ALGORITHM
A. SYSTEM MODEL
The microgrid model integrates a greenhouse with renewable
energy sources and energy storage. Themicrogrid connects to
the main grid allowing bilateral electricity trading. It includes
photovoltaic (PV) panels for solar power generation, a micro-
CHP unit to supply electricity and heat, and a battery system
for energy storage. The microgrid is designed to manage the
energy needs of the greenhouse andmaintain both energy effi-
ciency and a microclimate favorable for plant development.
This setup allows for the coordination of power generation
and storage to meet varying demands, ensuring a stable and
eco-friendly energy supply. Fig.1 shows the layout of the
proposed microgrid.

FIGURE 1. Layout of the smart greenhouse integrated microgrid.

1) HEATING MODEL
This heating model is based on the condition that the
micro-CHP system always operates to satisfy the heating
demands of the greenhouse. The heating supply to the green-
house is controlled by regulating the heating output of the
micro-CHP. The dynamic temperature of the greenhouse air
follows the energy transfer and mass balances, which can be
expressed as

Qgain − Qloss = CaρaVa
dTi
dt

(1)

where, Ti is the indoor air temperature (oC), Ca is the specific
heat capacity of air (W/(kgK)), ρa is the gravity density of
dry air (kg/m3), Va is the total volume of dry air inside the
greenhouse (m3), Qgain is the sum of thermal energy entering
the greenhouse (W), and Qloss is the sum of thermal energy
exiting the greenhouse (W).

The total thermal energy loss in the greenhouse consists
of heat loss by conduction, convection and radiation due to
temperature differences with the environment, heat loss by
infiltration, and heat loss due to natural ventilation

Qloss = Qrc + Qinf + Qven (2)

The heat loss to the environment is composed of heat losses
due to radiation, conduction, and convection,Qrc is calculated
as [14]:

Qrc = US(T i−T a) (3)

where U is the overall heat transfer coefficient which
depends on glazing method and materials of the greenhouse
(W/m2K)), S is the area of the cover (m2), Ti is the tem-
perature inside the greenhouse (oC), and Ta is the ambient
temperature (oC).

The heat loss due to air infiltration in the greenhouse is
calculated as [14]:

Qinf = ρaV aN [Ca(T i−T a) + hfg(Wi −Wo)] (4)

where Va is the volume of air inside the greenhouse (m3), N is
the infiltration rate (1/s), ρa is the density of greenhouse air
(kg/m3), Ca is the specific heat capacity of air (W/(kgK)), hfg
is the latent heat of vaporization of water at Ti (J/kg), Wi is
the humidity ratio of the inside air (kgwater/kgair), and Wo is
the humidity ratio of the outdoor air (kgwater/kgair).

In this model, a natural ventilation window is used when
the greenhouse is overheated. The total heat loss due to the
operation of the ventilation window can be calculated as:

Qven = ρaV aNven[Ca(T i−T a) + hfg(Wi −Wo)] (5)

where Nven is the air exchange rate (1/s), depending on the
wind speed outside, and the type of ventilator window, Nven
can be calculated from [11]

Nven = 3600AvvwindG(α) (6)

where Av is the ventilation window area (m2), vwind is the
outside wind speed (m/s), and G (α) is a function of the
opening angle window α (o), which is determined by:

G(α) = 2.29 ∗ 10−2
∗ (1 − exp

(
−

α

21.1

)
) (7)

The heat sources are solar irradiation, the heating effect
of artificial light, and the controllable heat source from the
micro-CHP.

Qgain = Qsen + Qal + Qech (8)
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In greenhouses, sensible heat, which is the heat gain from
evaporation activity can be estimated using the following
equation:

Qsen = (1 − E)τGsrAf (9)

where E is the evapotranspiration coefficient, which is
between 0 and 1, depending upon the crop, and conditions
of humidity that contribute to evaporation inside the green-
house, τ is the solar transmissivity of cover, Gsr is the global
horizontal radiation (W/m2), and Af is the area of greenhouse
floor (m2).

Qal = (1 − ηal)Palual (10)

where ηal is the efficiency of the artificial lighting system, Pal
is the rated power of the artificial lighting (W/m2), and ual is
the operational status of the artificial light system.

The heat supplied from the micro-CHP through the Ther-
mal Storage System (TSS), and hot water radiators can be
expressed by the following equations:

Qech = nrkrAr (TH−T i) (11)

Qtss − Qech = nrCrmr
dTH
dt

(12)

Qs − Qtss = CwρwVw
dTw
dt

(13)

where Qech is the convection heat transfer from radiator to air
(W), nr is number of radiators, kr is the convection heat trans-
fer coefficient (W/( m2K)), Ar is the surface area of radiator
(m2), TH is the temperature at of the radiator wall (oC), Ti is
the indoor temperature (oC),Qtss is the heat transferring from
TSS through radiators via water pump, and Qs is supplying
heat from the micro-CHP (W).

The heat transfer from the TSS to the radiator tank via hot
water using a water pump was modeled as heating transfer
via a heating pipe. The heat is the sum of the conduction heat
and the convection heat, which is calculated as follows:

Qtss = nr ∗

{
kISH
D

(Tw − TH )

+Cwmw

(
1 − e

−hSH
Cwmw

)
(Tw − TH )

}
(14)

where D is the hydraulic diameter (m), kI is the thermal
conductivity of the hot water (W/ (mK)), defined internally
for each pipe segment, SH is the surface area of the pipe wall,
TH is the pipe wall temperature (oC), Tw is the hot water
temperature (oC), and the heat transfer coefficient is:

h =
Nukavg
D

(15)

where kavg is the average thermal conductivity of the thermal
liquid over the entire pipe (W/(mK)), Nu is the average Nus-
selt number in the pipe, calculated using the Dittus-Boelter
correlation as [15]

Nu = 0.023R0.8e P0.4r (16)

where Re is Reynolds number, and Pr is the Prandtl number
respectively.

The main heating source in this model is the micro-CHP
which is proposed because of its ability to maximize energy
efficiency by producing both heat and electricity from a single
fuel source. This approach significantly reduces energy waste
by recovering heat from exhaust gases, while also supporting
localized energy production, and decreasing dependency on
external power grids. On the electrical side, the micro-CHP
also offers the potential to sell excess electricity to the main
grid. This dual benefit makes them a highly efficient and
economically viable solution for greenhouse energy manage-
ment [16].
In the model, we implemented a micro-CHP system using

Internal Combustion Engine (ICE) technology. The heating
output is generated by recovering heat from exhaust gases,
which are then used to heat the water stored in a TSS. The
control strategy was designed to regulate the heating output to
meet the greenhouse heating demand, whereas the electrical
output was determined using a lookup table, PCHP = f(Qs).
Fig. 2 shows the micro-CHP and TSS model.

The heating supply by the micro-CHP system and its ramp
rate are subject to the following constraints:

Qs,min≤ Qs (t) ≤ Qs,max (17)

1Qs,min≤ 1Qs (t) ≤ 1Qs,max (18)

The temperature of hot water is subject to its working
temperature range:

Tw,min≤ Tw (t) ≤ Tw,max (19)

FIGURE 2. Micro-CHP and TSS model.

2) RELATIVE HUMIDITY
Relative humidity is an important parameter in the

microclimate inside a greenhouse, and is defined as:

Rhi(t) =
Ppar (t)
Psat (t)

∗ 100% (20)
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where saturated pressure and partial pressure can be esti-
mated by:

Psat (t) = K1(−K2 + K3eK4Ti ) (21)

Ppar (t) =
WinPa
K5

(22)

The water content of the indoor air Wi is modeled based on
the mass balance theory, considering the moisture ventilated
by natural air ventilation and the water quantity added or
removed by the fogging system or dehumidifier, as follows

dW i

dt
=

A
ρaVa

[Wevp + ρa
Va
A
N
ven

(Wo −Wi)

+ ufogWfog,max − udehWdeh,max] (23)

where ambient water content Wo can be calculated approxi-
mately by:

Wo =
K5RhaK1(−K 2 + K3eK4Ta )

Pa
(24)

Relative humidity revolution can be derived as below
equation

dRhi
dt

=
Pa

C5Psat

dW i

dt
−

Rhi
Psat

dPsat
dt

(25)

where:
dPsat
dt

= K1K3K4eK4Ti dTi
dt

(26)

The relative humidity, and operation status of the fogging
system and dehumidifier can be constrained between the
minimum and maximum values as follows:

Rhi,min≤ Rhi (t) ≤ Rhi,max (27)

0 ≤ ufog(t) ≤ 1 (28)

0 ≤ udeh(t) ≤ 1 (29)

Besides, the fogging system and dehumidifier should not
operate simultaneously:

ufog (t) udeh (t) = 0 (30)

3) CO2 CONCENTRATION
The CO2 concentration in the greenhouse is mainly influ-
enced by the injected CO2, and CO2 consumption by the
plants via photosynthesis and exchange with the envi-

ronment via natural ventilation. The change in the indoor
CO2 concentration is modeled as [10]

dCCO2,i

dt
=

Af
ρaVa

[Kmax
inj uCO2

+ ρa
Va
Af
N
ven

(
CCO2,o − CCO2,i

)
+ Kres (K6 + K7Ti) − KphoIl] (31)

where CCO2,i, CCO2,o, and uCO2 represent the indoor CO2
rate, ambient CO2 rate, and operational status of CO2 gener-
ator, respectively; Af, Va, and ρa denote the area, air volume
of the greenhouse, and air density, respectively; Kres, Kpho,

and Kinj,max are the respiration coefficient, photosynthesis
coefficient, and maximum carbon injected by CO2 gener-
ator, respectively; and Nven is the ventilation rate of the
greenhouse. For simplicity, we assume that the ambient CO2
concentration, CCO2,o, is constant. The indoor CO2 concen-
tration can be constrained within the boundary values as
follows:

CCO2i,min≤ CCO2,i (t) ≤ CCO2i,max (32)

The operation status of the CO2 injector is within its oper-
ation range

0≤ uCO2, (t) ≤ 1 (33)

4) SUPPLIMENTAL LIGHTING
The model uses light-emitting diodes (LEDs) as supple-
mental lighting sources. LEDs are efficient in greenhouse
lighting, achieving remarkable energy efficiency by convert-
ing up to 49% of the electrical energy into photon energy [17]
One of the key advantages of using LEDs is their compat-
ibility with Pulse Width Modulation (PWM) control, which
allows for precise regulation of light output [18]. This control
approach ensures that plants receive supplemental light only
when needed, thereby optimizing energy usewhile promoting
healthy growth. The effectiveness of dynamic lighting con-
trol (DLC) further illustrates the benefits of PWM in LED
systems. By integrating a quantum Photosynthetically Active
Radiation (PAR) sensor and programmable microcontroller,
the DLC circuit can intelligently modulate light levels based
on real-time conditions. This innovative strategy results in a
20% reduction in electricity consumption compared to tra-
ditional lighting systems that operate under a simple on-off
regime [19]. The light intensity in the greenhouse includes
solar irradiation, and supplemental artificial light.

Il = Isl + Ial (34)

where Isl is the light intensity gained by solar irradiation:

Isl = τKleGsr (35)

where, Gsr is the global solar irradiation (W/m2), Kle is the
factor of solar irradiation that contributes to PAR, τ is the
visual light transmission, and I al is the light intensity pro-
duced by artificial lighting, which is modeled as a first-order
equation:

Ial = Ill0
(
1 − e−Kt

)
ual (36)

where, Ill0 is the light output rating of the artificial lighting
system (µmol/(sm2), ual is the operation status of the artifi-
cial lighting, K is a time constant value, K = 2/Ts, and Ts is
the time step of the system (s).

Assuming that global solar irradiation is constant during a
prediction step, the evolution of the light intensity inside the
greenhouse can be expressed as:

dI l
dt

= −KIl + KIsl + KIll0ual (37)
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The operation status of the artificial lighting is subject to
constrain:

0 ≤ ual(t) ≤ 1 (38)

Amicroclimate model of the greenhouse was created using
physical modeling in Simulink/Simcape. The heating system
was modeled with the fluid domain, while the greenhouse air
volume was represented using the Moist Air domain. This
approach allows for the description of the physical structure
of the system, rather than relying on the underlying mathe-
matical equations. A model of the greenhouse microclimate
is shown in Fig. 3.

FIGURE 3. Greenhouse microclimate model.

5) PV POWER
The photovoltaic (PV) power produced can be calculated as
follows [12]:

Ppv = ApvηpvPf ηpcGsr (39)

where Apv is the solar panel area (m2), ηpv is the efficiency
of the solar panel, Pf is the packing factor, ηpc is the power
conditioning efficiency, and Gsr is the global solar irradiation
(W/m2).

6) ENERGY STORAGE SYSTEM
The battery stage of charge can be modeled as [11]

BatSOC (t) = BatSOC0 +

∫
βchgI chgdt

Ahmax
−

∫
Idisdt

βdisAhmax
(40)

where Ichg, Idis are the charging and discharging currents
(A), respectively; βch, βdis are the charging and discharging
efficiencies, respectively; and Ahmax is the battery capacity
(Ah).

State transition of the battery SOC can be presented as
below:

dBatSOC
dt

=

βchgI chg
Ahmax

−
Idis

βdisAhmax
(41)

The battery SOC, and currents are subjected to the bound-
ary constraints:

BatSOC,min≤ BatSOC (t) ≤ BatSOC,max (42)

Ichg,min≤ I chg (t) ≤ Ichg,max (43)

Idis,min≤ Idis (t) ≤ Idis,max (44)

In addition, the charging and discharging processes must
not be operated simultaneously

Ichg (t) Idis (t) = 0 (45)

The battery is controlled to be charged when there is excess
power in the microgrid, and it discharges when the microgrid
power is insufficient.

7) POWER BALANCE IN THE MICROGRID
The power balance in the microgrid can be presented as
follows:

Pchp + Ppv+Pdis+Pimp = Pgh+Pchg+Pexp (46)

where Pchp is the power generated from the micro-CHP, Ppv
is the power generated from PV panels, Pdis is the power
discharged from the battery, Pimp is the power imported from
the grid; Pgh is the total load of greenhouse, Pchg is the power
charging the battery, and Pexp is the power exported to the
grid.

The total greenhouse load is calculated as follows:

Pgh= Ppump+Pfan+Pal+PCO2+Pfog+Pdeh (47)

where Ppump is the power consumed by the water pump (W),
Pfan is the power consumed by the circulation fan (W), and Pal
is the power consumed by the artificial lighting system (W),
which is proportional to the operational status of the lighting
system.

Pal =
Ial
ηal

ual (48)

where Ial (µmol/s) is the lighting output from the lighting sys-
tem, and ηal (µmol/J) is the efficiency of converting electrical
power to PAR.

Refer to (47), PCO2, Pfog, Pdeh are the power consump-
tions of the CO2 injector, fogging system and dehumidifier,
respectively. These are calculated as the products of their
operational status and the corresponding maximum rating
powers.

PCO2 = PCO2,maxuCO2 (49)

Pfog = Pfog,maxufog (50)

Pdeh = Pdeh,maxudeh (51)

The power exchanged with the main grid can be written as:

Pech = Pexp−Pimp = Pnet+Pdis − Pchg (52)

where:

Pnet= Pchp + Ppv−Pgh (53)
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Pnet represents the net power generated by the microgrid,
excluding storage battery power.We aim to control the battery
to maximize local power usage and minimize imports from
the main grid. When Pnetis positive, the microgrid generates
more power than the greenhouse’s needs, and the excess
power either charges the battery or is exported to the grid.
When Pnet is negative, the greenhouse consumes more power
than the microgrid’s generation, and the battery discharges to
supply the deficit, reducing the need to import power from
the grid.

B. NMPC-EKF CONTROL ALGORITHM
NMPC optimizes control actions by minimizing a cost func-
tion for a constrained system over a receding horizon Np.
At each timestep, the controller evaluates the plant outputs
and disturbances, predicts future states based on an internal
model, and determines the control actions over a control
horizon Nc (where Nc ≤ Np) by minimizing the objective
function. The first control action is applied, and the process
is iteratively repeated at each new step. NMPC can accom-
modate nonlinear models, inequality constraints, nonlinear
constraints, and various cost functions. EKF plays a critical
role in estimating the system states and mitigating the effects
of process noise and measuring errors, thereby improving the
accuracy of the predictions. Fig. 4 shows the control loop of
the control framework.

FIGURE 4. Proposed NMPC-EKF control loop for SGIM.

1) NONLINEAR MPC
The NMPC design focuses on multiple objectives:

• Optimizing greenhouse conditions for plant growth by
monitoring and adjusting internal variables, such as
temperature, relative humidity, CO2 concentration, and
artificial lighting. The goal is to closely follow the
reference setpoints while accounting for the complex
interactions among variables, fluctuations in renewable
resources, and external conditions.

• The energy storage system aims to maximize its SOC to
balance renewable energy production and load fluctua-
tions, ensuring a stable power supply. It prioritizes the
use of local renewable energy and minimizes reliance
on the main grid.

• To reduce power exchange with the main grid, the
system focuses on optimizing local energy usage by
prioritizing the charging and discharging of the energy
storage system to minimize grid imports.

• Minimize the heating consumption of the greenhouse
which contributes to the energy efficiency of the green-
house.

The objective function of NMPC is expressed as follows:

J (zk) =

∑ny

j=1

∑Np

i=1

[
wyi,j
syi,j

(
ri,j − yi,j

)]2

+

nu∑
j=1

Np∑
i=1

[
w1u
i,j

sui,j
(1ui)

]2
+

∑Np

i=1

(
wpi
spi
Pi

)2

+

∑Np

i=1

(
wQi
sQi

Qi

)2

+ J (εk ) (54)

The first component is the cost of output reference track-
ing, where Np is the number of prediction horizon steps, ny is
the number of output variables, ri,j, and yi,j are the reference
and output of variable j at interval i respectively. The second
component is the cost of the move suppression of nu manipu-
lated variables. The third component is the cost of importing
power frommain grid, while the fourth component represents
the cost of heating consumption. Here, wki,j, s

k
i,j (where k =

y, 1u,P,Q) are the weighting and scaling factors at interval
i for the output variables, manipulated variables, imported
power, and heating output, respectively. The last term, J (εk),
represents the penalty cost of constraint violations.

The set of (1), (12), (13), (25), (31), (37), and (41) define
the dynamic model of the system, which can be discretized
as a nonlinear time-invariant system. For a given prediction
horizon length Np, a compact form of the model can be
expressed as:

x = f (x0,u,md) (55)

The system states x include hot water temperature Tw,
temperature of the radiator wall TH, indoor air temperature
Ti, relative humidity Rhi, indoor CO2 concentration CCO2,i,
lighting intensity Il, and battery SOC BatSOC. The control
inputs u consists of the micro-CHP heating output Qs, ven-
tilation open angle α, fogging operation ufog, dehydrating
operation udeh, CO2 injection uCO2, supplemental light ual,
charging and discharging currents of the battery Ichg, and
Idis. The disturbancesmd contain solar radiation Gsr, ambient
temperature Ta, ambient relative humidity Rha, and ambient
wind speed vwind. x0 is the initial state of the dynamic model.
The output of the system includes the hot water temper-

ature Tw, indoor air temperature Ti, relative humidity Rhi,
indoor CO2 concentration CCO2,i, lighting intensity Il, and
battery SOC BatSOC. The output function is given by:

y= h(x) (56)

We defined constraints for control inputs, ramp rate of
control inputs and boundary limit of its system states. The
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set of (17), (18), (28), (29), (33), (38), (43), and (44) are
the constraints of the manipulated control variables. The set
of (19), (32), and (42) present the constraints of state x. These
constraints can be discretized and presented in the following
compact form throughout the entire prediction horizon Np:

Guuk ≤ gu (57)

G1u1uk ≤ g1u (58)

Gxxk+1 ≤ gx (59)

where Gu, gu are vectors that represent the control input
constraint, G1u, g1u are vectors that represent the boundary
limits of the ramp rates of control inputs, and Gx, gx are
vectors representing the state boundary limits. Equations (30)
and (45) define the nonlinear equality constraints of the
manipulated variables that have a compact form as follows:

ceq(uk) = 0 (60)

The nonlinear optimization problem can be written for a
prediction horizon Np as below:

min
uk

J (zk)

S.t



x = f (x0,u,md)

Guuk ≤ gu
Gx1uk ≤ g1u

Gxxk+1 ≤ gx − ε

ε ≥ 0
ceq (uk) = 0

(61)

We add a vector of slack variables ε to the objective func-
tion because there are limitations to the control inputs that
could cause the nonlinear optimization problem to become
infeasible. Because the slack variables ε are always non-
negative (≥ 0), they effectively soften the constraints by
providing a ‘‘buffer zone.’’ This approach ensures that the
optimization problem remains solvable, even if strict adher-
ence to all constraints is impossible in certain situations.

2) EXTENDED KALMAN FILTER
In practical situations, system models (55) and (56) often
contain process noise, and measurement errors are inevitable
when sensing the output variables. Therefore, it normally
considers a discrete system with model uncertainties and
sensor errors as follows:

xk+1 = f (xk , uk ,mdk) + wk (62)

yk+1 = h (xk+1) + vk (63)

Here, we assume that wk is additive noise which accounts
for process noise, and vk is additive noise that accounts
for measurement errors. Both wk and vk follow Gaussian
distributions.

wk ∼ (0,Qk) ; vk ∼ (0,Rk) (64)

where Qk and Rk are the covariance matrices for model noise
and measurement errors, respectively.

The EKF algorithm is based on the linearization of the
nonlinear model function, and the measured output function
for their most recent estimate states using the Taylor series
expansion. The Jacobian matrices of the state function and
output function over the estimated states are derived as

F (x)
k =

∂f
∂x
f
(
xk|k , uk ,mdk

)
(65)

H (x)
k+1 =

∂h
∂x
h
(
xk+1|k

)
(66)

Given an initial state x0 and covariance P0, the EKF
algorithm has the following expressions [20]
Predict step:

xk+1|k = f
(
xk|k , uk ,mdk

)
(67)

Pk+1|k = F (x)
k Pk|kF

(x)T
k + Qk (68)

yk+1|k = h
(
xk+1|k

)
(69)

Correct step:

Sk+1 = H (x)
k+1Pk+1|kH

(x)T
k+1 + Rk+1 (70)

Kk+1 = Pk+1H
(x)T
k+1 S

−1
k+1 (71)

xk+1|k+1 = xk+1|k + Kk+1(yk+1 − yk+1|k ) (72)

Pk+1|k+1 = Pk+1|k − Kk+1Sk+1KT
k+1) (73)

The selection of covariance matrices Qk, and Rk signifi-
cantly affect the performance of the EKF. In the literature,
the covariance matrix Rk is typically determined based on the
accuracy of the measurement sensors. For uncorrelated sen-
sors, covariance matrix Rk has the form of a diagonal matrix,
where each element represents the variance of the sensor’s
accuracy. It is commonly assumed that the covariance matrix
Qk is diagonal, where each element corresponds to the error
variance of a state caused by the process noise [21]. Tun-
ing Qk can follow a trial-and-error procedure, as described
in [22], or auto-tuning techniques can be applied, as presented
in [23], [24], [25], and [26]. In this study, we employed
an auto-tuning approach using Particle Swarm Optimization
(PSO), as proposed in [25]. We select covariance matrix Qk
by minimizing the mean normalized square error (MNSE)
calculated as follows:

MNSE =
1
K

∑nx

i=1

∑K

j=1
[1/si(x̂ij − xij)]

2 (74)

where x̂ij, xij are ith predicted state and actual state, respec-
tively at jth sample, si is a scale factor of ith state, K is the
number of samples, and nx is the number of states.

III. APPLICATION TO CASE STUDY
A. SIMULATION SETUP
To evaluate the performance of the proposed NMPC-EKF
framework, we ran simulations across multiple scenarios.
These include a 24-hour operation under ideal conditions
(Case Study 1) and a 3-day operation incorporating weather
forecast and measurement uncertainties (Case Study 2).
In each case study, the length of the prediction horizon and
control horizon were set to 3h and 30 min, respectively, with
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a control interval of 10 min. The proposed control strat-
egy was applied to an SGIM equipped with a micro-CHP,
PV generation, fogging system and dehumidifier, artificial
light source, CO2 generator, battery, and sensors. We con-
sidered installing semi-transparent PV panels [27] on rooftop
of the greenhouse which offers light transmission coefficient
of approximately 0.35. The proposed control strategy is run
for an SGIM specialized in the cultivation of lettuce [3]
where a day temperature of 25◦C and a night temperature
of 22◦C are optimum for its root growth and plant develop-
ment, and where a diurnal increase in the indoor CO2 from
its ambient level to 1000 (ppm) is essential for enhancing
its growth rate. The adequate relative humidity requirement
is approximately 65%, and the light intensity required by
photosynthesis is 100 mmol/(sm2) at the plant surface. Note
that the initial guess of the states and manipulated variables
are assumed to have high accuracy, which is achieved by
using the last operating point of the previous simulation as
the initial conditions of the next simulation. The SGIM and
the NMPC-EKF algorithm were created and simulated using
MATLAB/Simulink software. TheNMPCoptimization prob-
lem was solved by the fmincon function using the Sequential
Quadratic Programming (SQP) algorithm. The results were
achieved by performing simulationswith the fixed-step solver
Backward Euler at the fundamental time 10 seconds.

To consider measurement errors, we assumed that Gaus-
sian white noise was added to the output measurements.
These noises have a zero mean, with a standard deviation of
0.255◦C for temperaturemeasurements, 2.55% for CO2 level,
and lighting intensity, and 1.53% for relative humidity, and
battery SOC. These standard deviations were derived from
the accuracy of the measurement sensors which were 0.5 ◦C,
3% (relative humidity), 5% (CO2 concentration), 5% (light
intensity), 3% (SOC) for temperature, relative humidity, CO2
concentration, lighting intensity, and battery SOC, respec-
tively. Fig. 5 shows the white noises of the output variable
measurements.

To simulate imperfect prediction when considering fore-
cast errors, Gaussian white noise was added to the envi-
ronmental data inputs (Gsr, Ta, Rha, vwind). These noises
have a zero mean, with standard deviations of 7.65% of the
measured value for solar irradiation, 0.77◦C for ambient tem-
perature, 7.65% of the measured value for relative humidity,
and 0.92 m/s for wind speed. Two other measured parameters
(val, and Pnet) were estimated based on forecast environment
data and reference settings, or by using feedback signals
derived from the model.

B. RESULTS AND DICUSSION
1) CASE 1
This case study illustrates the performance of NMPC with-
out considering prediction errors, and output measurement
errors. The simulation was performed for a 24-hour period
with the environmental profile shown on Fig. 6. Because
model noise and output measurement errors were not

FIGURE 5. Output sensor white noises: (a) Hot water temperature,
(b) Indoor temperature, (c) Indoor relative humidity, (d) Indoor CO2
concentration, (e) Indoor lighting intensity, (f) Battery stage of charge.

considered, the covariance matrices Q and R of the EKF were
assigned small values as shown in Table 1.

TABLE 1. Covariance matrices in case 1.

FIGURE 6. Environmental profile used in case study 1: (a) Solar
irradiation, (b) Ambient temperature, (c) Relative humidity, (d) Wind
speed.

Fig. 7a shows the temperature tracking, where the inside
temperature follows reference temperature closely. The heat-
ing supplied by the micro-CHP was higher during the early
morning hours (0 AM to 4 AM) due to lower ambient tem-
peratures and a lower reference setting of 22oC. The heating
output of micro-CHP was reduced gradually from 4 AM
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to 6 PM due to the ambient temperature raised, the reference
setting increased to 25oC, and solar irradiation along with
artificial lighting provided supplement heating to the green-
house. The natural ventilation window remained closed all
the time to limit heating loss. Fig. 7b shows relative humidity
tracking where the dehumidifier operated throughout the day
to reduce moisture inside greenhouse caused by high ambient
relative humidity. Fig. 7c illustrates the CO2 concentration
and the operational status of CO2 injector. From 0 AM mid-
night to 4 AM, the plants were resting, and supplement of
CO2 was not necessary, resulting in lower operational status
of CO2 injector. Fig. 7d shows the lighting intensity. From 0
AM to 4 AM, the artificial lighting was off to allow the plants
to rest. Starting from 4 AM, the artificial light was activated
to facilitate photosynthetic process. Between 8AM and 6PM
artificial lighting decreased when there was natural light in
this period.

Fig. 7e illustrates the battery SOC and battery operation
currents. The battery was charged in two periods: from 0
AM to 4 AM, and from 10 AM to 6 PM, when there was
excess power generated from the micro-CHP and/or the solar
panels. The battery was discharged from 4 AM to 10 AM,
and from 6PM to midnight due to a power deficit in the
microgrid. The efficiency operation of the battery reduced the
amount of power imported from the main grid. Additionally,
the constraints on the battery SOC boundary limits were
satisfied.

Fig. 7f shows themean absolute errors (MAE) and standard
deviation (STD) of the variables in this case. TheMAE values
for indoor temperature, relative humidity, CO2 concentration,
and lighting intensity were 0.45oC, 1.17%, 33.73 ppm and
4.05 µmol/(sm2) respectively. The MAE of the battery SOC
was 37.08%, indicating that, on average, the battery SOCwas
maintained at 37.08% below its reference setting, because
the battery was controlled to discharge power to reduce
imported power from the main grid, thereby illustrating the
efficiency of battery use. The MAE of the imported power
(Pimp) was 0.21 kW, indicating that, on average, themicrogrid
imported 0.21 kW, corresponding to a total of approximately
4.8 kWh over the day. The MAE of the heating supply (Qs)
was 7.99 kWth, meaning that, on average, the micro-CHP
supplied 7.99 kWth above its lower bound limit (Qs,min =

4.1kWth). The total heat supplied by the micro-CHP in this
case amounted to 290.4 kWthh.

Fig. 8 depicts the power balance within the microgrid. The
greenhouse load (Pgh) increased between 4AM and midnight
due to the operation of artificial lighting and the CO2 injector.
During the period from 9AM to 3PM, when solar irradiation
was at its peak, the local power production reached its highest
levels. This excess energy was used to charge the battery, with
any remaining surplus exported power to the main grid. The
power imported from the grid was needed during the period
of 9PM to midnight due to the high load, driven primarily by
the increased operation of CO2 injector, and the battery had
been discharged to lower level.

2) CASE 2
In this case, we extended the simulation to cover three consec-
utive days by considering measurement errors, and weather
forecast errors. By introducing these uncertainties, we esti-
mated covariance matrices Q and R of the EKF, allowing it to
operate effectively alongside the NMPC. The environmental
profile for this case is shown in Fig. 9.

The covariance matrix of the measurement noise, R, was
estimated based on the sensor accuracy of the output sig-
nals. R was structured as a 6 × 6 diagonal matrix, where
each element on the diagonal represents the variance of
each measurement error—calculated as the square of the
corresponding standard deviation: R = diag(0.2552, 0.2552,
(2.55%Rhi)2, (2.55%CCO2,i)2, (2.55%Il)2, (1.53%SOC)2),
where Rhi, CCO2,i, Il and SOC are actual values of rela-
tive humidity, CO2 concentration, light intensity, and battery
SOC, respectively.

The process noise covariancematrix Qwas a 7×7 diagonal
matrix, given by Q = diag (qTw, qTh, qTi, qRhi, qCCO2, qIl,
qSOC), where the temperature errors due to process noise
were directly added to the actual temperature values, while
the errors in the other parameters were proportional to their
actual values. Table 2 shows the Mean Normalized Square
Error (MNSE) values obtained by manually selecting various
process noise variances for Q (case 2a to 2e).

TABLE 2. MNSE at difference process noise variances.

To find optimal variances (qT, qRhi, qCO2, qIl, qSOC),
we employed the PSO algorithm aimed at minimizing the
MNSE. The values of process noise covariance were assumed
to fall within the lower bound, [10−6, Rh2i 10

−9, C2
CO2,i10

−9,
I2l 10

−9, SOC210−9] (case 2a) and the upper bound [10−4,
Rh2i 10−7, C2

CO2,i10
−7, I2l 10

−7, SOC210−7] (case 2c). The
resulting optimized process noise variances are shown as
case 2∗ in Table 2.

We ran simulations for case 2e (non-tuned EKF) and
case 2∗ (tuned-EKF) and compared the MAEs of the tracking
variables between these cases. Table 3 shows that, in the

VOLUME 13, 2025 22253



T. M. Tran et al.: Near-Zero Energy SGIM for Sustainable Energy and Microclimate Management

FIGURE 7. Output variable tracking in case study 1: (a) Indoor Temperature, (b) Indoor relative humidity, (c) Indoor CO2 concentration, (d) Indoor
lighting intensity, (e) Battery SOC, (f) MAE of variables; (a)- (e): Left axes: output variables, right axes: control variables.

FIGURE 8. Microgrid power balance in case study 1.

non-tuned EKF case, there were significantly larger errors
in CO2 concentration tracking and imported power from the
main grid compared to those in the tuned-EKF case. For other
parameters such as temperature, relative humidity, lighting
intensity, and battery SOC, the tracking errors were similar
in both cases. These results demonstrate that the tuned EKF

FIGURE 9. Environmental profile in case study 2: (a) Solar irradiation,
(b) Ambient temperature, (c) Relative humidity, (d) Wind speed.

enhances the controller’s performance by improving the accu-
racy of CO2 concentration and grid power import tracking,
indicating its effectiveness in reducing errors and optimizing
control.

The control system effectively managed the green-
house’s microclimate maintaining close alignment with their
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FIGURE 10. Output variable tracking in case 2∗: (a) Indoor Temperature, (b) Indoor relative humidity, (c) Indoor CO2 concentration, (d) Indoor lighting
intensity, (e) Battery SOC, (f) Mean absolute error of variables; (a)-(e): Left axes: output variables, right axes: control variables.

TABLE 3. Mean absolute errors of variables.

reference settings, as depicted in Fig. 10a to 10f. The
micro-CHP unit met the greenhouse’s heating demand, ensur-
ing the hot water temperature remained within its operating
range. Fig. 10e highlights that the battery reached its highest
SOC around noon, when solar generation and micro-CHP
power generation peaked.

The system’s accuracy is quantified in Fig. 10f, which
presents Mean Absolute Errors (MAEs) and standard devia-
tions (STDs). Notably, the temperatureMAEwas 0.49 ◦C, the
relative humidity MAE was 1.33 %, the CO2 concentration
MAE was 33.65 ppm, and the lighting intensity MAE was
3.52 µmol/(s·m2).

FIGURE 11. Microgrid power balance in case study 2 (case 2∗).

Fig. 11 illustrates the microgrid’s power balance, showing
increased greenhouse load Pgh during the period of 4AM
to midnight due to higher artificial lighting and CO2 injec-
tion operations. From 8AM to 3PM, when solar irradiation
was available, the local power production was higher, and it
charged the battery.

As illustrative examples, Fig. 12 and Fig. 13 compare the
optimal storage state of the battery SOC and the optimal
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FIGURE 12. Comparison between the optimal battery SOC considering
the two approaches.

FIGURE 13. Comparison between the optimal power exchanged with the
grid considering two approaches.

FIGURE 14. Energy stored absolute error considering the two approaches.

energy exchanged with the main grid, respectively. These
comparisons are made between results obtained using the
NMPC algorithm and those assuming perfect predictions.
Fig. 14 presents the absolute error in the stored energy of
the battery for the two approaches. The analysis of these
figures demonstrates that the NMPC optimization effectively

addresses uncertainties, significantly improving the accuracy
and quality of the results.

Fig. 15 breaks down the power contributions to the green-
house load. Local sources provided 83.4% of the total power
consumption, with 12.8% supplied by the battery and only
3.8% imported from the grid. These results demonstrate the
greenhouse’s ability to achieve near-zero energy consump-
tion, emphasizing the effectiveness of the integrated control
system.

FIGURE 15. Greenhouse load contribution in case study 2 (case 2∗).

The solution offers scalability to different types and sizes
of greenhouses due to its modular design and adaptabil-
ity of the control framework. The NMPC and EKF can be
reconfigured to account for the unique characteristics and
constraints of various greenhouse systems, such as differ-
ences in thermal dynamics, energy demands, or microclimate
requirements. Additionally, the integration of photovoltaic
panels, micro-CHP units, and energy storage systems can
be scaled proportionally to match the specific energy and
operational needs of each greenhouse, making the solution
versatile for diverse agricultural settings.

While the theoretical models and simulations presented
offer valuable insights into microclimate control and energy
management in smart greenhouses integrated with micro-
grids, experimental implementation remains essential. Such
validation is critical to bridging the gap between theoretical
concepts and practical applications, ensuring that the devel-
oped models perform reliably under real-world conditions.
By conducting experimental studies, unforeseen variables
can be addressed, system performance and reliability can
be verified, and control strategies can be refined to further
optimize energy efficiency and environmental conditions.

IV. CONCLUSION
In this study, we developed a simulator for a smart greenhouse
integrated into a microgrid comprising PV panels, micro-
CHP unit, and energy storage system.We designed an NMPC
combined with an EKF to regulate the main microclimate
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parameters, such as temperature, relative humidity, CO2 con-
centration, and lighting intensity, and to control the operation
of the energy storage system to reduce the power imported
from the grid. The simulation results demonstrated that
the NMPC effectively controlled the complex system and
addressed its nonlinearity. In addition, the EKF mitigated
the model noise and measurement errors by correcting the
predicted states.

Power contribution analysis revealed that 83.4% of
the greenhouse’s energy demand was local generation,
12.8% was from the energy storage system, and only a
small portion—3.8%— was imported from the main grid.
The results indicate that the smart greenhouse integrated
with the microgrid successfully achieved near-zero energy
consumption.

Since the findings are based on simulations, experimental
validation on real greenhouses is essential to confirm their
practical feasibility. Additionally, this study assumed that
the micro-CHP system would supply heat to the greenhouse
during a winter day. To generalize the findings, it is crucial to
extend the simulator to account for seasonal variations.

Future work will focus on incorporating seasonal variabil-
ity, refining NMPC parameter tuning methods, and exploring
advanced control strategies, such as reinforcement learning,
to further enhance system performance.
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