
The Journal of Systems and Software 222 (2025) 112353

A
0
n

Contents lists available at ScienceDirect

The Journal of Systems & Software

journal homepage: www.elsevier.com/locate/jss

Automatic instantiation of assurance cases from patterns using large
language models✩

Oluwafemi Odu a, Alvine B. Belle a ,∗, Song Wang a, Segla Kpodjedo b, Timothy C. Lethbridge c ,
Hadi Hemmati a

a Lassonde School Of Engineering, York University, Toronto, Canada
b Department of Software Engineering and Information Technology, École de technologie supérieure, Montreal, Canada
c School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, Canada

A R T I C L E I N F O

Keywords:
Requirement engineering
Assurance cases
Assurance case patterns
Pattern formalization
Generative artificial intelligence
Large language models
GPT

A B S T R A C T

An assurance case is a structured set of arguments supported by evidence, demonstrating that a system’s non-
functional requirements (e.g., safety, security, reliability) have been correctly implemented. Assurance case
patterns serve as templates derived from previous successful assurance cases, aimed at facilitating the creation
of new assurance cases. Despite using these patterns to generate assurance cases, their instantiation remains
a largely manual and error-prone process that heavily relies on domain expertise. Thus, exploring techniques
to support their automatic instantiation becomes crucial. This study aims to investigate the potential of Large
Language Models (LLMs) in automating the generation of assurance cases that comply with specific patterns.
Specifically, we formalize assurance case patterns using predicate-based rules and then utilize LLMs, i.e., GPT-
4o and GPT-4 Turbo, to automatically instantiate assurance cases from these formalized patterns. Our findings
suggest that LLMs can generate assurance cases that comply with the given patterns. However, this study also
highlights that LLMs may struggle with understanding some nuances related to pattern-specific relationships.
While LLMs exhibit potential in the automatic generation of assurance cases, their capabilities still fall short
compared to human experts. Therefore, a semi-automatic approach to instantiating assurance cases may be
more practical at this time.
1. Introduction

Complex critical systems such as cyber–physical systems, are in-
creasingly designed to be interoperable and interconnected. The grow-
ing complexity of their configurations and operations in dynamic en-
vironments underscores the importance of system assurance. Ensur-
ing the correct implementation of non-functional requirements, such
as safety and security, is vital to prevent these systems’ failure that
could result in severe consequences, including fatalities and financial
losses (Napolano et al., 2015; Sivakumar et al., 2023).

Assurance cases (ACs) are structured arguments with a supporting
body of evidence that allow demonstrating that the non-functional
requirements of a system have been correctly implemented (Bloomfield
and Bishop, 2009). Assurance cases are utilized across various domains
(e.g., medicine (Bagheri et al., 2022; King et al., 2015; Picardi et al.,
2019), automotive (Burton et al., 2019; Robert and Ibrahim, 2010;
Wagner et al., 2010) to support the certification and compliance of
critical systems with industry standards (e.g., ISO 26262 (Palin et al.,

✩ Editor: Prof W. Eric Wong.
∗ Corresponding author.
E-mail address: alvine.belle@lassonde.yorku.ca (A.B. Belle).

2011), DO-178C (Holloway, 2013)). Manually creating assurance cases
can be time-consuming, especially for large, complex, and intercon-
nected systems (Maksimov et al., 2019; Sivakumar et al., 2024b).
For instance, Maksimov et al. (2019) noted that an assurance case
for an air traffic control system may consist of over 500 pages and
include references to 400 documents. This suggests that the manual
creation and subsequent modifications of an initial assurance case
draft can take several months (Nguyen and Ellis, 2011). To facilitate
this creation process, practitioners use assurance case patterns (ACPs).
These patterns are templates composed of evidence-based arguments
derived from previous successful assurance cases. Practitioners instan-
tiate assurance case patterns with system-specific information to create
new assurance cases more efficiently. Several notations allow repre-
senting ACs and ACPs. These include the Goal Structuring Notation
(GSN) (Goal Structuring Notation Standard Working Group, 2023)
and the Claims-Arguments-Evidence (CAE) notation (Bloomfield and
Bishop, 2009).
vailable online 24 January 2025
164-1212/© 2025 The Authors. Published by Elsevier Inc. This is an open access art
c-nd/4.0/).

https://doi.org/10.1016/j.jss.2025.112353
Received 29 September 2024; Received in revised form 20 December 2024; Accept
icle under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-

ed 16 January 2025

https://www.elsevier.com/locate/jss
https://www.elsevier.com/locate/jss
https://orcid.org/0000-0001-7533-7212
https://orcid.org/0000-0001-9410-2056
https://orcid.org/0000-0003-0204-9812
mailto:alvine.belle@lassonde.yorku.ca
https://doi.org/10.1016/j.jss.2025.112353
https://doi.org/10.1016/j.jss.2025.112353
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2025.112353&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

c
c
a

t
a
f
s
b

e
n
c
a
c
i

s
t
t
n
i
c
g

a

e

d

g
m

a
t

p

n

a

Despite the use of assurance case patterns to create assurance
ases, the instantiation process remains tedious, error-prone, and time-
onsuming. This is primarily due to the heterogeneous nature of system
rtifacts and the complexity of mission-critical systems (Hartsell et al.,

2021). Instantiating these patterns with system-specific information
still requires domain expertise to efficiently extract the necessary sys-
tem artifacts. Experts must then manually replace the abstract elements
within these patterns with concrete values from the extracted artifacts
to create an assurance case that complies with the given pattern(s).

There is a wealth of literature on the automatic instantiation of
assurance case patterns. However, it is worth noting that in this litera-
ure, the expressions ‘instantiation of assurance case patterns to generate
ssurance cases’ and ‘instantiation of assurance cases from patterns’ are
requently used interchangeably. Most of the existing approaches for in-
tantiating assurance cases from patterns strongly depend on the model-
ased engineering approach that supports extraction of information

from system models (e.g., model-based design (Hartsell et al., 2021;
Ayoub et al., 2012; Lin and Shen, 2015; Lin et al., 2016; Sivakumar
t al., 2024a). However, a strong dependence on a model-based engi-
eering approach can limit the application of assurance case patterns in
reating assurance cases for systems that do not conform to this design
pproach. This highlights the need for new techniques to automati-
ally instantiate assurance cases from patterns for any given system,
rrespective of its design methodology.

The rapid adoption of generative AI technologies like OpenAI’s GPT
eries has fostered the automatic generation of content and spurred
heir increasing use in the automation of several software engineering
asks (Wu et al., 2023). To capitalize on this momentum, we propose a
ovel approach that utilizes Large Language Models (LLMs) to automat-
cally instantiate assurance cases complying with a specified assurance
ase pattern(s). Our experiment results reveal LLMs can effectively
enerate assurance cases. Thus, our contributions are fourfold:

• We propose a novel method for formalizing ACPs into predicate-
based rules complying with GSN. This allows for capturing the
internal structure of ACPs more generically and uniformly.

• We explore the use of LLMs to automatically generate assurance
cases complying with formalized ACPs.

• We experiment with two popular and very recent LLMs (i.e. GPT-
4 Turbo and GPT-4o) to explore their ability to automatically
generate ACs from patterns.

• We release the dataset and source code of our experiments to help
other researchers replicate and extend our study1.

The remainder of this paper is organized as follows: Section 2
presents some background concepts. Section 3 discusses related work.
Section 4 presents our methodology. Section 5 describes the experimen-
tal setup. Section 6 reports the results of our study. In Section 7, we
discuss our results. Section 8 identifies the threats to validity associated
with our study. We conclude and outline future work in Section 9.

2. Background

2.1. Assurance case

An assurance case is a well-established, structured, reasoned, and
uditable set of arguments designed to support a specific goal (Belle

et al., 2019). These arguments are often supported by evidence demon-
strating that a system meets desirable non-functional requirements
(e.g., safety, security). There are several types of assurance cases, each
focusing on a specific non-functional requirement: safety cases (Bagheri
t al., 2022; Lin et al., 2017), security cases (Finnegan and McCaffery,

2014; Xu et al., 2017), and reliability cases (Zhu et al., 2018).

1 https://doi.org/10.6084/m9.figshare.27103225.v2
2

Assurance cases are utilized to prevent system failure in various
omains, including medicine (Bagheri et al., 2022; King et al., 2015;

Picardi et al., 2019) and automotive (Burton et al., 2019; Robert and
Ibrahim, 2010; Wagner et al., 2010). They are also used to ensure the
reliability of mission-critical systems and facilitate certification in line
with industry standards (e.g., ISO 26262, DO-178C). Regulatory bodies
like the Food and Drug Administration (FDA) advocate for the use
of assurance cases to bolster the safety confidence of medical devices
during their approval process (Finnegan and McCaffery, 2014).

An assurance case comprises three primary components (OMG,
2021; Mansourov and Campara, 2010): (1) a top claim (root claim)
which is usually subdivided into sub-claims. This top claim serves as
the fundamental statement indicating that the system fulfills a specific
requirement. (2) body of evidence supporting both the sub-claims and
the root claim. (3) a collection of structured arguments that estab-
lish connections between the evidence and the sub-claims, linking all
sub-claims to the top claim of the assurance case (Graydon et al., 2007).

2.2. Assurance case pattern

Similar to design patterns used in software engineering (SE), as-
surance case patterns are templates formed from common repeated
structures and previous successful assurance cases (Carlan and Gallina,
2020). These assurance case patterns contain placeholders filled with
eneric information that can be replaced with system-specific infor-
ation during their instantiation (Hartsell et al., 2021; Carlan and

Gallina, 2020). The use of assurance case patterns fosters the reuse
and eases the creation of assurance cases. There are various types of
ssurance case patterns based on the non-functional requirements they
arget. Assurance case patterns are also used to mitigate assurance

deficits (Viger et al., 2023; Cârlan et al., 2016; Shahandashti et al.,
2024a). Assurance deficits refer to ‘‘any knowledge gap that prohibits
erfect confidence’’ in an assurance case (Hawkins et al., 2011).

2.3. Representation of assurance cases and assurance case patterns

2.3.1. Assurance case representation
Several notations allow for representing assurance cases and can

be broadly categorized into textual and graphical notations. Holloway
(2008) described five text-based notations for representing assurance
cases, including normal (i.e. unstructured) prose representation and
structured prose representation. The latter is a notation that introduces
a structured format to address the typical verbosity, lack of struc-
ture, and ambiguity characterizing the normal prose representations of
assurance cases (Selviandro et al., 2020; Kelly and Weaver, 2004).

Graphical notations also address the limitations of unstructured rep-
resentations by improving the clarity and structure of assurance cases.
Graphical notations include GSN (Goal structuring Notation) (Goal
Structuring Notation Standard Working Group, 2023), CAE (Claim-
Argument-Evidence) (Bloomfield and Bishop, 2009), and Eliminative
Argumentation (EA) (Goodenough et al., 2015). The Object Manage-
ment Group (OMG) recently introduced SACM (Structured Assurance
Case Metamodel) (OMG, 2021) to promote interoperability and stan-
dardization (Wei et al., 2019). SACM aligns with existing assurance case
otations (e.g., GSN, CAE). Still, GSN is the most popular notation (Wei

et al., 2019). GSN supports the representation of an assurance case
s a goal structure. The latter is a GSN diagram depicted as a tree-

like structure. The GSN standard (Goal Structuring Notation Standard
Working Group, 2023) proposes the following six main GSN elements
to represent assurance cases:

• A Goal is depicted as a rectangle and represents the main claim
or a sub-claim. Examples are G1 through G4 in Fig. 2.

• A Strategy is depicted as a parallelogram and describes the
inference between a goal and its sub-goals. See S1 in Fig. 2.

https://doi.org/10.6084/m9.figshare.27103225.v2

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 1. On the right, an example of a partial safety case (GSN diagram) adapted from Vierhauser et al. (2019); on the left, the equivalent of the safety case in structured prose.
• A Solution is depicted as a circle and represents the evidence
supporting an argument or goal. See Sn1 and Sn2 in Fig. 1.

• A Context is rendered as a rounded rectangle, presenting a con-
textual artifact. This can be a reference to contextual information,
or a statement. See C1 in Fig. 2.

• An Assumption is rendered as an ellipse with the letter ‘A’ at the
top or the bottom right denoting an intentionally unsubstantiated
statement.

• A Justification is rendered as an ellipse with the letter ‘J’ at the
top or the bottom right and presents a statement of rationale for
the inclusion or wording of a GSN element.

Assurance cases’ claims, evidence, and arguments respectively map
to GSN goals, solutions, and strategies (Mansourov and Campara,
2010). It is possible to decorate GSN elements using the Undeveloped
decorator. The latter allows indicating a GSN element has not been
developed yet (Goal Structuring Notation Standard Working Group,
2023). It is depicted as a hollow diamond applied to the bottom
center of an element (Goal Structuring Notation Standard Working
Group, 2023). Furthermore, the GSN standard (Goal Structuring No-
tation Standard Working Group, 2023) defines two main relationships
between GSN elements: SupportedBy and InContextOf. SupportedBy is
depicted as a line with a solid arrowhead and represents supporting
relationships between GSN elements. InContextOf is depicted as a line
with a hollow arrowhead and represents a contextual relationship
between GSN elements.

The GSN standard (Goal Structuring Notation Standard Working
Group, 2023) proposes guidelines to convert an assurance case repre-
sented in the textual format (e.g., structured prose) into a GSN diagram.
Fig. 1 shows an excerpt of an assurance case adapted from Vierhauser
et al. (2019). This excerpt is represented in the GSN and the structured
prose.

2.3.2. Assurance case pattern representation
GSN and some reference literature on GSN patterns (e.g., Matsuno

(2014), Matsuno and Taguchi (2011), Matsuno (2011)) also propose
the following additional decorators to help represent assurance case
patterns:

• Uninstantiated — This decorator is depicted with a small tri-
angle applied to the bottom center of an element. It allows
indicating that a GSN element is yet to be instantiated, i.e., an
abstract element in a placeholder needs to be replaced by a
concrete instance (Goal Structuring Notation Standard Working
Group, 2023).
3

• Undeveloped and Uninstantiated — Both the undeveloped and
uninstantiated decorators are overlaid to form this decorator. It
denotes that a GSN element requires both further development
and instantiation.

• Parameterized expressions within Placeholders - Parameter-
ized expressions are abstract expressions inside placeholders that
need to be replaced with concrete information (Matsuno, 2014;
Matsuno and Taguchi, 2011; Matsuno, 2011).

• Multiplicity — Multiplicity symbols allow describing how many
instances of one element type relate to another element. These
symbols are generalized n-ary relationships between GSN ele-
ment (Goal Structuring Notation Standard Working Group, 2023).

• Optionality — It represents optional and alternative relation-
ships between GSN elements which generalizes n-of-m choices be-
tween GSN elements (Goal Structuring Notation Standard Work-
ing Group, 2023).

• Choice. This decorator is depicted as a solid diamond. The choice
decorator denotes possible alternatives in satisfying a relation-
ship (Goal Structuring Notation Standard Working Group, 2023).

Fig. 2 shows a sample safety case pattern adapted from Alexander
et al. (2007) and represented using GSN.

2.4. Large language models (LLMs)

LLMs are advanced artificial intelligence systems with computa-
tional ability to generate human language, with at least the appearance
of understanding it (Naveed et al., 2023; Hou et al., 2023). These
models are complex neural network structures with massive parameter
sizes and trained on vast amounts of data from diverse sources (Hou
et al., 2023). LLMs can generate new content, answer questions, and
capture inherent rules of a domain (Naveed et al., 2023; Yang et al.,
2023; Brown et al., 2020). These capabilities of LLMs have ensured
their wide application across various fields including automated soft-
ware engineering. Some examples of LLMs include the GPT series by
OpenAI (Wu et al., 2023), BERT (Devlin et al., 2018), T5 (Raffel et al.,
2020), and ERNIE (Sun et al., 2019).

Prompt engineering refers to the different techniques used to pro-
vide instructions and guidelines to an LLM to ensure a desired gen-
erated response (White et al., 2023). It improves the efficiency and
quality of LLMs responses. The most popular prompting techniques
include the Chain-of-Thought (CoT) prompting technique (Wei et al.,
2022), Zero-shot prompting, (Romera-Paredes and Torr, 2015), and
Few-shot prompting (Snell et al., 2017). CoT utilizes a series of inter-
mediate reasoning steps to significantly improve the ability of LLMs to

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 2. A sample assurance case pattern adapted from Alexander et al. (2007).
perform complex reasoning tasks (Wei et al., 2022). Zero-shot prompt-
ing (Romera-Paredes and Torr, 2015) — a technique whereby we
prompt an LLM without any examples, attempting to take advantage
of the reasoning patterns it has extracted. Few-shot prompting (Snell
et al., 2017) is a technique whereby we prompt an LLM with several
concrete examples of task performance so that the model can learn from
these examples.

Rule distillation (Yang et al., 2023; Wang et al., 2024b) is a tech-
nique enabling LLMs to learn and acquire knowledge from rules or
instructions. It involves extracting knowledge from defined textual
rules and then explicitly encoding this knowledge into LLM parameters.
This ensures that LLMs can effectively comprehend and apply the
distilled rules (Yang et al., 2023; Wang et al., 2024b).

3. Related work

3.1. Formalization of assurance cases and assurance case patterns

Denney and Pai (2013) proposed a formal definition of an assur-
ance case pattern as a tuple characterized by a directed hypergraph
with specific labeling functions to enhance pattern utilization. Matsuno
(2014) introduced an assurance case language based on GSN, validated
through the D-Case Editor tool, which supports GSN patterns and mod-
ules. Expanding on the concept of assurance case languages, Beyene
and Carlan (2021) developed ‘CyberGSN’, integrating informal GSN
elements with formal Cyberlogic to facilitate safety case creation and
maintenance. To address semantic correctness and logical consistency
in assurance cases, Murugesan et al. (2023) developed a framework
that converts assurance cases into Prolog predicates and utilizes Con-
straint Answer Set Programming (CASP) to ensure consistency and
completeness of the arguments and evidence in assurance cases.

To assess the benefits associated with the formalization of assurance
arguments about a system property, Graydon (2015) surveyed twenty
studies focusing on proposed formal assurance arguments. Their results
revealed that the majority of these studies speculate on the advantages
of formalism without presenting concrete proof to substantiate these
presumed advantages.

Our work is similar to Shahandashti et al. (2024b), in which the
authors extracted predicates from the structural rules embedded in
EA. They then used these predicates to create predicate-based rules
that they incorporated into GPT-4 Turbo prompts to investigate the
effectiveness of that LLM in identifying defeaters within assurance cases
4

represented in EA notation. Defeaters refer to ‘‘arguments that can un-
dermine the effectiveness of assurance cases by compromising the reliability
and adequacy of these assurance cases in verifying a system’s capabilities
such as safety and security’’ Shahandashti et al. (2024b). In contrast,
our work introduces a novel pattern formalization method that uses
formal predicates to capture the internal structure and relationships
among elements within an assurance case pattern presented in GSN.
By leveraging these formal predicates, we enable LLMs including GPT-
4 Turbo and GPT-4o, to automatically generate assurance cases that
adhere to the specified formalized assurance case pattern(s).

Our approach focuses on GSN and utilizes a formalized pattern
to systematically generate assurance cases. This key distinction sets
our work apart from previous research, which did not use formalized
assurance case patterns for the creation of assurance cases and did not
assess the performance of various LLMs in generating these assurance
cases.

3.2. Automatic instantiation of assurance case patterns

Several approaches support the automatic instantiation of assurance
case patterns (e.g., Hawkins et al., 2015b,a; Wardziński and Jarzębow-
icz, 2016; Wardziński and Jones, 2017). For instance, some approaches
(e.g., Hawkins et al., 2015b,a) used a weaving method with the model-
based engineering approach for instantiating assurance case patterns.
This method weaves assurance case patterns with system models, fa-
cilitating the extraction of system-specific information or artifacts from
system models and mapping these artifacts to placeholders in the ACP
to generate an assurance case. Other approaches (e.g., Wardziński and
Jarzębowicz, 2016; Wardziński and Jones, 2017) utilized reference
tables to keep track of system artifacts, requirements, and the map-
ping of these artifacts to placeholders in the ACP. However, these
approaches strongly depend on specific engineering methodologies that
focus on extracting information from system models (e.g., model-based
design (Hartsell et al., 2021; Ayoub et al., 2012; Lin and Shen, 2015; Lin
et al., 2016; Sivakumar et al., 2024a)). Additionally, the use and main-
tenance of reference tables can be complex and challenging, especially
for large systems with numerous requirements and artifacts as evidence.
This complexity can lead to the omission of important artifacts or
evidence if the reference table is not well maintained. Therefore, it is
crucial to devise new techniques to automatically instantiate assurance
case patterns and create assurance cases for systems regardless of their
design methodology.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

L
i
a

m
t
r
m
‘
g
g
e
L
a
t
t

m

G
c
o
m
L

p
c
T
m

r
r
t
E
i
s
a
a
a
a

p

g
c
p
P
t

d

r
p
p
a

i

p
a
p
r

a
r
w

c

3.3. Rule-based learning in LLMs

LLMs sometimes produce inaccurate results or ‘hallucinate’ (Ji et al.,
2023). To address this issue, recent research (Yang et al., 2023; Wang
et al., 2024b) recommended integrating rule-based knowledge into
LMs. This allows LLMs to rely on structured rules when there are
nsufficient example-based learning resources, thereby enhancing their
ccuracy and reliability. Yang et al. (2023) presented a novel learn-

ing paradigm allowing LLMs to assimilate knowledge from rules in a
anner akin to human learning processes. Their approach leverages

he LLMs’ in-context capabilities to first extract knowledge from textual
ules and then encode this rule knowledge explicitly by training the
odel using in-context signals. Wang et al. (2024a) introduced a novel

grammar prompting’ technique to improve the ability of LLMs to
enerate strings from structured languages using a domain-specific
rammar in the Backus–Naur Form (BNF). This method augments each
xample with a specialized grammar sufficient for the output, and the
LM predicts a BNF grammar from the input to generate the output
ccordingly. Their experiments show that this approach enables LLMs
o effectively handle a variety of domain-specific language generation
asks, including semantic parsing and molecule generation.

3.4. LLMs for software modeling

LLMs are currently being utilized for a variety of downstream SE
tasks, including software defect prediction (Gomes et al., 2023), static
code analysis (Mohajer et al., 2024), automated program repair (Xia
et al., 2022), code generation (Ahmad et al., 2021), and software

odeling (Chen et al., 2023b,a). In the field of software modeling, Chen
et al. (2023b) investigated the use of LLMs, specifically GPT-3.5 and

PT-4, to fully automate domain modeling. They concluded that in-
luding examples in prompts significantly improves the performance
f LLMs. Also, Chen et al. (2023a) applied GPT-4 in goal-oriented
odeling, focusing on its use with the Goal-oriented Requirement

anguage (GRL). Their results showed that GPT-4 can generate basic
goal models, though its outputs often require manual domain-specific
adjustments and validation. Chaaben et al. (2023) utilized few-shot
rompt learning to ease the completion of domain diagrams (eg., UML
lass and activity diagrams) without requiring extensive training data.
hey used semantic mappings to convert modeling formalisms into
eaningful patterns of tokens that LLMs can understand to improve

and complete modeling activities. Sivakumar et al. (2024b) conducted
an evaluation of GPT-4’s proficiency in understanding and generating
GSN elements and safety cases. They extracted intricate structural
and syntactic rules from the GSN standard to formulate 19 evalua-
tive questions divided into rule-based and generation-based questions.
They assessed GPT-4’s comprehension of these rules and its capability
to generate GSN elements. Additionally, using both contextual and
domain information, they performed experiments to evaluate GPT-4’s
ability to produce safety cases that are structurally, semantically, and
easonably accurate. Khakzad Shahandashti et al. (2024) analyzed EA
eference documents to extract both the structural and semantic rules
hat EA embodies. These rules served as the foundation for crafting the
A-based questions they used to evaluate GPT-4 Turbo’s proficiency
n understanding EA as well as its ability to generate EA elements
uch as defeaters. Unlike our approach, both Sivakumar et al. (2024b)
nd Khakzad Shahandashti et al. (2024) did not rely on formalized
ssurance case patterns to guide the generation of assurance cases
nd did not compare the performance of various LLMs in generating
ssurance cases.

4. Approach

Fig. 3 shows a high-level overview of our approach. It consists
of four phases that allow LLMs to instantiate assurance cases from
5

assurance case patterns. In phase I (Formalization), based on predicate-
based logic, we propose a novel method that formalizes assurance case
atterns in compliance with GSN. In phase II (Data collection), we

collect the data required to generate assurance cases and validate the
eneration process. The data consists of assurance cases and assurance
ase patterns used to manually instantiate these assurance cases. In
hase III (Data pre-processing), based on the predicates specified in
hase I, we formalize and represent the assurance case patterns that
he LLM would utilize for creating an assurance case. In phase IV

(LLM-based assurance case generation), for each assurance case to be
generated, we feed a formalized assurance case pattern(s) to an LLM(s)
and prompt that LLM to derive an assurance case from it. Note that,
one can also adopt other prompt strategies like few-shot learning to
get more accurate results by helping the LLM recognize the generation
task it needs to perform.

The novelty of our approach lies in the use of LLMs to guide the
automatic generation of assurance cases from formalized assurance
case patterns. This ensures that the LLMs at hand leverage recurring
argumentation structures (i.e. patterns) to guide the generation of
assurance cases. Below, we describe each step of the approach in more
etail.

4.1. Phase I: Formalization of assurance case patterns into predicates

Inspired by the foundational work of Denney and Pai (2013) which
formalizes ACs and ACPs, we propose a set of predicate-based rules to
epresent and therefore formalize assurance cases and assurance case
atterns. The use of predicates for formalization allows capturing the
roperties and relationships among the elements of an assurance case
nd assurance case pattern (Murugesan et al., 2023).

To enhance the usability and understanding of LLMs within graph-
cal notations like GSN, we propose integrating rule-based knowledge

into LLMs using our predicate-based rules. For this purpose, we first
create predicates allowing us to formalize assurance patterns as a set
of predicates rendered in a textual format complying with the very
opular GSN. The predicate-based format is suitable for LLM ingestion
nd can be considered as an advanced and more formal structured
rose. We construct our predicates based on the guidelines, elements,
elationships, and decorators that the GSN Standard (Goal Structuring

Notation Standard Working Group, 2023) outlines. Thus, we formulate
 predicate for each GSN core element, relationship, and decorator
epresented in GSN. This results in three categories of predicates that
e further discuss below.

4.1.1. Predicate for formalizing an assurance case and its decorators
We propose the following predicates to formalize an assurance case

omplying with GSN:

• Goal (G): True if G is a goal within the assurance case. This
predicate can be represented as Goal (ID, Description) where ID
is the unique identifier for the goal, description is the textual
description of the goal.

• Strategy (S): True if S is a strategy within the assurance case. This
predicate can be represented as Strategy (ID, Description) where
ID is the unique identifier for the strategy and description is the
textual description of the strategy.

• Solution (Sn): True if Sn is a piece of evidence within the
assurance case. This predicate can be represented as Solution (ID,
Description) where ID is the unique identifier for the evidence and
description is the textual description of the evidence.

• Context (C): True if C is a context within the assurance case. This
predicate can be represented as Context (ID, Description) where
ID is the unique identifier for the context and description is the
textual description of the context.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 3. High-level overview of our approach.
• Assumption (A): True if A is an assumption within the assurance
case. This predicate can be represented as Assumption (ID, De-
scription) where ID is the unique identifier for the assumption
and description is the textual description of the assumption.

• Justification (J): True if J is a justification within the assurance
case. This predicate can be represented as Assumption (ID, De-
scription) where ID is the unique identifier for the assumption
and Description is the textual description of the assumption.

• Undeveloped (X): True if X is either a Goal or Strategy marked
as undeveloped. This predicate is represented as Undeveloped(X),
where X can be either a goal or strategy.

4.1.2. Predicates for formalizing an assurance case pattern
To formalize an assurance case pattern complying with GSN, we

propose the following predicates:

• Uninstantiated (X): True if element X (can be any GSN element)
is marked as uninstantiated.

• UndevelopStantiated(X): True if element X is either a Goal or
Strategy and is marked both as uninstantiated and undeveloped.

• HasPlaceholder (X): True if element X (can be any GSN ele-
ment) contains a placeholder ‘{}’ within its description that needs
instantiation.

• HasChoice (X, [Y], Label): True if an element X (either a Goal
or Strategy) can be supported by selecting among any number of
elements in [Y] (where Y can be any GSN element) according to
the cardinality specified by an optional Label. The label specifies
the cardinality of the relationship between X and Y. A label is
of the general form m of n (e.g. a label given as 1 of 3 implies
an element in X can be supported by any one of three possible
supporting elements in [Y]).

• HasMultiplicity (X, [Y], Label): True if multiple instances of an
element X (either a Goal or Strategy) relate to multiple instances
of another element [Y] (where Y can be any GSN element)
according to the cardinality specified by an optional Label. The
label specifies how many instances of an element in X relate with
how many instances of an element in [Y] (e.g.m of n implies m
instances of an element in X must be supported by n instances of
an element in Y).

• IsOptional (X, [Y], Label): True if an element X (either a Goal
or Strategy) can be optionally supported by another element [Y]
(where Y can be any GSN element) according to the cardinality
specified by an optional Label. The label specifies the cardinality
of the relationship between X and Y (i.e. an instance of an element
6

in X may be supported by another instance of an element in [Y],
but it is not required).

4.1.3. Predicates for formalizing relationships between GSN elements
The predicates we propose below are analogous to the two core GSN

relationships i.e. InContextOf and SupportedBy.

• IncontextOf (X, [N], D): True if element X at depth D has a
neighbor [N] to the left or right at depth D, where 𝑁 can be an
assumption, justification, or context. X can be a goal or strategy
and D represents the height or depth of the goal or strategy
element and its neighbors in the GSN hierarchical structure.

• SupportedBy (X, [C], D): True if element X at depth D has
children [C] directly below it, where [C] can include Goal(G),
Strategy(S), or Evidence(E) and X can be a goal(G), or strategy(S).

– If X is a Strategy, [C] can only be a Goal.
– If X is a Goal, [C] can be either Goal, Strategy, or Evidence.

4.2. Phase II: Data collection

In our previous work (Odu et al., 2024), we conducted a bibliomet-
ric analysis on assurance case patterns. This allowed us to collect 92
primary studies published within the past two decades that focus on
assurance case patterns. To collect data relevant to our current study,
we analyzed these 92 studies, then selected five of them provided they
described a pattern(s) and assurance cases instantiated (derived) from
that pattern(s). We also made sure the selected patterns and assurance
cases covered various application domains. This allowed us to create
a dataset consisting of a set of assurance case patterns together with
assurance cases derived from them. We divided the dataset into two
categories: one to be used as a one-shot example, and the other for
evaluating our approach’s performance.

4.3. Phase III: Data pre-processing

Based on the defined predicates for GSN elements, relationships, and
decorators we proposed in Phase I, we convert each collected assurance
case pattern in GSN to a corresponding predicate form that an LLM can
understand. This conversion facilitates the LLMs’ comprehension of the
inherent tree-like structure and relationships among the GSN elements
in our dataset. It also aids in the generation of assurance cases comply-
ing with specific assurance case pattern(s). Fig. 4 illustrates a predicate-
based representation of an assurance case pattern in our dataset.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 4. A simple predicate-based representation of the assurance case pattern depicted in Fig. 9 (see appendix).
4.4. Phase IV: Using LLM to automatically generate assurance cases

To generate assurance cases from patterns, we rely on LLMs. Each
LLM takes as input the predicate-based representations of assurance
case patterns and uses this representation as rules to: (1) enhance
its reasoning capabilities by learning the features of patterns that are
typically used to manually generate assurance cases and; (2) guide the
automatic instantiation of assurance cases from the formalized patterns
specified as inputs to the LLM. Each LLM generates an assurance case
in the traditional structured prose (not in the predicate-based format).
This allows using GSN guidelines (Goal Structuring Notation Standard
Working Group, 2023) to turn the generated assurance case into GSN
diagrams.
7

To support the generation process, we rely on prompt engineer-
ing to provide instructions, and guidelines, and enforce rules to en-
sure a desired generated response. We describe the LLMs prompts in
Section 5.5.

5. Experimental setup

5.1. Research questions

Our goal is to explore the potential of generative AI, particularly
LLMs, in facilitating the automatic generation of assurance cases com-
plying with specific assurance case patterns. To achieve this, we inves-
tigate three research questions (RQs):

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

m

t

p
c

c
a

p
e
g
a
t
c

g

t
r

c

t

o
r
t
p
P
g

f
S
t

k
s
f
c

(RQ1): Are LLMs capable of creating well-formed and seman-
tically valid assurance cases when they do not have SE (software
engineering) knowledge specified in the prompts? In this RQ, we
assess the effectiveness of LLMs in creating assurance cases for a given
system without providing SE knowledge to the LLMs.

(RQ2): Are LLMs capable of automatically instantiating assur-
ance cases from assurance case patterns when SE knowledge is
specified in the prompts? In this RQ, we investigate the impact of
providing various types of SE knowledge to our LLMs through prompt
engineering. We assess the performance of these LLMs in generating
assurance cases based on a given assurance case pattern. The categories
of software engineering (SE) knowledge are: (1) examples; (2) domain
information; (3) contextual information; (4) predicate-based rules; and
(5) a combination of the aforementioned four categories of knowledge.
Thus, to facilitate the reasoning about this research question, we further
break it into four sub-research questions:

(RQ2.1): Which impact does an example have on the perfor-
ance of LLMs when it comes to generating assurance cases?

(RQ2.2): Which impact does the domain information have on
he performance of LLMs when it comes to generating assurance

cases?
(RQ2.3): Which impact does contextual information have on

the performance of LLMs when it comes to generating assurance
cases?

(RQ2.4): Which impact do predicate-based rules have on the
erformance of LLMs when it comes to generating assurance
ases?

(RQ3): Which of the evaluated LLMs performs best when it
omes to automatically instantiating assurance cases from assur-
nce case patterns? In this RQ, we compare the performance of

the analyzed LLMs (i.e. GPT-4 Turbo, and GPT-4o) in the automatic
instantiation of assurance case from patterns.

5.2. Description of the dataset used in the experiments

Our dataset comprises six assurance case patterns and five corre-
sponding assurance cases that comply with these patterns, covering
five distinct systems. These systems span various application domains,
namely: the aviation, automotive, medical, and computing domains.
We selected one assurance case pattern, presented in our formalized
format, along with the assurance case complying with this pattern,
resented in a structured prose format, as a one-shot example for our
xperiments. This example helps to illustrate to our LLM the concept of
enerating assurance cases from assurance case patterns. The remaining
ssurance case patterns, presented in a formalized format, are used in
he LLM prompts. This helps LLMs to generate assurance cases that
omply with these patterns. Table 1 provides various statistics, such

as the count of decorators (e.g., undeveloped, uninstantiated, choice) in
the assurance case patterns, and the count of relationships (e.g., InCon-
textOf, SupportedBy) in the corresponding assurance cases that comply
with these patterns. In the remainder of this section, we provide a
detailed description of our dataset. For each system, we explain the
assurance case and associated pattern(s) used to manually develop the
assurance case. These manually created assurance cases serve as our
round-truth data for evaluating the LLM-generated assurance cases.

The GSN diagrams depicting the ACPs and ACs complying with
hese patterns for the systems in our dataset are available in our
eplication package2.

2 https://doi.org/10.6084/m9.figshare.27103225.v2
8

a

5.2.1. ACAS XU and its assurance framework
ACAS Xu (Airborne Collision Avoidance System Xu) is a collision

avoidance system designed for use in unmanned aerial vehicles (UAVs),
ommonly known as drones (Zeroual et al., 2023). The primary ob-

jective of ACAS Xu is to enhance the safety of drone operations by
preventing collisions between drones or between a drone and other
objects in its environment (Zeroual et al., 2023). The architecture of
ACAS Xu contains four major components: the sensors to gather data
on potential intruders; the processor to compute a suitable avoidance
strategy; the planner that plans the trajectory to navigate safely while
avoiding collisions; and the actuator that executes the planned trajec-
ory (Zeroual et al., 2023). To ensure that ACAS Xu is acceptably secure

against security threats, Zeroual et al. (2023) provided a threat identi-
fication assurance case pattern. They demonstrated the application of
this pattern in creating a partial security case specific to the ACAS Xu
system.

5.2.2. BlueROV2 and its assurance framework
The BlueROV2 system is an advanced Unmanned Underwater Vehi-

cle (UUV) or underwater Remotely Operated Vehicle (ROV) (Hartsell
et al., 2021). Its main objective is to autonomously track pipelines
n the seafloor while avoiding static obstacles such as plants and
ocks (Hartsell et al., 2021). Safety assurance for BlueROV2 is achieved
hrough the identification of potential hazards and reduction of the risk
osed by those hazards based on the ALARP (As Low As Reasonably
racticable) principle (Hartsell et al., 2021). Hartsell et al. (2021),
enerated an assurance case for BlueROV2 using the ALARP pattern se-

quentially composed with another pattern called the ReSonAte pattern.
We utilized these two patterns and the generated assurance case in our
dataset. Fig. 12 (located in the appendix) shows the combined pattern
ormed from both the ALARP pattern and the ReSonAte pattern. The
upportedBy relationship between G3 and S4 in that Figure links the
wo patterns together.

5.2.3. GPCA and its assurance framework
The Generic Patient-Controlled Analgesia (GPCA) system, also

nown as an Infusion pump is one of the most common safety critical
ystems in the medical domain. Some of the operational hazards
aced by this system include ‘‘Overinfusion’’ and ‘‘Underinfusion’’ which
an have dire consequences for patient safety (Lin et al., 2017). To

demonstrate the application of assurance cases for certifying the safety
of critical systems, several studies (Lin and Shen, 2015; Lin et al., 2017)
have utilized the GPCA system as a case study.

Lin et al. (2017) presented a safety case pattern and a safety case
for the GPCA system complying with this pattern. Note that some GSN
elements of this safety case have duplicated identifiers whereas GSN
usually fosters uniqueness of identifiers. To mitigate that duplication,
we systematically reassigned unique identifiers to each duplicated GSN
element.

5.2.4. The instant messaging (IM) server software and its assurance frame-
work

The Instant messaging (IM) server software is used for information
exchange, with the data within the software forming the basis of user
interaction (Xu et al., 2017). That system is characterized by its inde-
pendent behavioral features, known as its internal structure, as well as
by its interactive relationships with external components, referred to as
the external manifestation (EM) (Xu et al., 2017). The EM encompasses
the overall interaction of the software with the outside world, including
the set of external environment entities, the interaction set between
these entities and the software, and the direction of these interactions.
The internal structure (IS) of software focuses on the internal functional
processes and data transmission within the software. This includes
the set of software functional processes, data storage, and internal
interaction sets (Xu et al., 2017). Ensuring that the IM server software is
cceptably secure requires a demonstration to show that critical assets

https://doi.org/10.6084/m9.figshare.27103225.v2

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

w
s
c

i

a

t
u

o
c

e

T
o
f
r
o

Table 1
Overview of our dataset.

System Domain Assurance Case Patterns (ACPs) Assurance Cases (ACs)

Decorators Placeholders Elements Elements Relationships

ACAS XU Aviation 11 10 22 24 23
BLUEROV2 Automotive 17 8 18 24 21
GPCA Medical 6 21 23 27 26
IM SOFTWARE Computing 1 9 15 24 23
DEEPMIND Medical 16 26 17 23 23
t
t
k

such as user account information, and authentication information are
ell-protected (Xu et al., 2017). Thus, Xu et al. (2017) presented a

oftware security top-level argument pattern and utilized this pattern to
reate a software security case for the IM software. Some GSN elements

of this security case are duplicated. To mitigate the duplication as
explained above, we systematically renumbered and reassigned unique
dentifiers to each GSN element.

5.2.5. The DeepMind ML system for retinal disease diagnosis and its assur-
nce framework

The DeepMind system is an example of a safety-critical system
hat uses Machine Learning based functionality. The DeepMind system
tilizes two neural networks to predict retinal disease from eye scans.

The first neural network processes a retinal scan to generate a tissue-
segmentation map. This map is then analyzed by the second neural
network, which provides a diagnosis and referral (Ward and Habli,
2020).

Ward and Habli (2020) presented an assurance case pattern for
justifying the sufficiency of the interpretability of ML in safety-critical
systems. They demonstrated the application of this pattern in creating
an assurance case for the interpretability of the machine learning
component in the DeepMind system.

We utilized both this ACP and AC generated for the ML component
f the DeepMind system as a one-shot example in our experiments. Our
hoice of that example is random.

5.3. Large language models setups

To carry out our experiments, we focused on two LLMs namely:
GPT-4o and GPT-4 Turbo. We chose them because they are power-
ful and incorporate the latest features. Our selection of these Chat-
GPT models was guided by existing literature (Chen et al., 2023b,a;
Sivakumar et al., 2024b; Shahandashti et al., 2024b; Viger et al.,
2024; Gohar et al., 2024) which highlights it as the most common and
ffective model for software modeling tasks. Also, the use of GPT-4o

and GPT-4 Turbo facilitates the possibility of obtaining reproducible
results (Khakzad Shahandashti et al., 2024; Shahandashti et al., 2024b),
an essential feature for ensuring consistency in software modeling tasks.

he non-deterministic nature of LLMs, motivated us to run each of
ur experiments multiple times i.e. K times, where K = 5. This allows
or mitigating the potential inconsistencies in responses and ensuring
eliable evaluation of our LLMs. To interact with both LLMs, we relied
n the OpenAI API (OpenAI, 2023b). We set the default values for the

following parameters when interacting with both LLMs:

• The temperature: it controls the randomness and creativity in
the output of LLMs. By adjusting this parameter, users can balance
creativity and coherence in the generated text (OpenAI, 2023a).
In our experiments, we set the temperature parameter to its
default value of 1.

• The maximum number of tokens: It controls the length of
responses generated by the LLM. In our experiments, we consis-
tently set its value to ‘‘4096’’, the maximum output token limit
available at the time of the experiments, to accommodate longer
text across all experiments.
9

5.4. Description of the experiments and the supporting information

In our experiments, we applied the Chain-of-Thought (CoT) (Wei
et al., 2022) prompting technique. This allows for enhancing the rea-
soning capabilities of the LLMs and therefore improves their ability to
perform a complex reasoning task, namely: the generation of assurance
cases.

5.4.1. Description of the supporting information
As stated previously, we can specify several categories of SE knowl-

edge in our prompts. Like in the literature (e.g., Chen et al., 2023a;
Sivakumar et al., 2024b; Shahandashti et al., 2024b), to allow each LLM
o perform effectively and generate outputs (assurance cases) close to
he ground-truth, we notably rely on the following two categories of SE
nowledge:

• Contextual Information — We define ‘contextual information’ as
the background details conveying the fundamental information
about the structure and representation of the different elements
and decorators in the assurance case and assurance case pattern
represented in GSN. The contextual information also provides
instructions on how to derive an assurance case from an as-
surance case pattern. It aims to allow the LLM to enhance its
ability to interpret and understand the general structure, content,
and guidelines necessary to generate assurance cases complying
with a given pattern effectively. It remains the same across all
our experiments. The contextual information we used in our
experiments is available in the Appendix (see Appendix A.1).

• Domain Information — In our experiments, ‘domain informa-
tion’ refers to the specialized knowledge, terminology, and facts
specific to the domain or system for which an assurance case is
being automatically created. Examples of this information include
details about the mode of operation, test results, and verification
activities within that domain or system. The domain information
enables the LLM to select from a variety of artifacts (arguments,
evidence) necessary to replace the generic information found in
placeholders within the assurance case pattern. The domain infor-
mation can vary from one application domain to another. Hence,
in our experiments, we utilized different domain information for
each system in our dataset. We extracted this domain information
from the cited Refs. Hartsell et al. (2021), Lin et al. (2017), Xu
et al. (2017), Zeroual et al. (2023) that describe our dataset.

5.4.2. Description of the experiments
Table 2 provides a descriptive summary of the various experiments

in our study. Each row, labeled from Experiment 1 to Experiment 9,
describes the individual configuration of each experiment, while each
column represents one of four distinct categories of software engineer-
ing (SE) knowledge: Example, Context Information, Domain Informa-
tion, and Predicate Rules. The presence of each of these categories in a
given experiment is denoted by an ‘X’ mark in the corresponding cell.
For instance, Experiment 1 excludes all four categories, Experiment 2
includes all four, while Experiment 9 only includes Predicate Rules.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

p

d
9

s

Table 2
Overview of our experiments.

Example Context information Domain information Predicate rules

Experiment 1
Experiment 2 x x x x
Experiment 3 x x x
Experiment 4 x x x
Experiment 5 x x
Experiment 6 x x x
Experiment 7 x x
Experiment 8 x x
Experiment 9 x
Fig. 5. A sample system prompt for Experiment 1.
t

c

s

P
f

5.4.2.1. Experiment without software engineering knowledge specified in
the prompts. In this experiment (i.e. Experiment 1), to answer RQ1,
we want to assess the performance of GPT-4 Turbo and GPT-4o in
generating assurance cases when no extra software engineering knowl-
edge is included in their prompts. Hence, in this experiment, we do
not provide context information, domain information, examples, and
redicate rules to both LLMs.

5.4.2.2. Experiments with SE knowledge specified in the prompts. Building
on previous work from literature (e.g., Shahandashti et al., 2024b; Chen
et al., 2023a; Sivakumar et al., 2024b) and to answer our RQ2, we con-
ucted eight additional experiments (i.e. Experiments 2 to Experiments
), each leveraging at least one category of SE knowledge.

Note that all the patterns we use as input are represented in the
predicate-based format that we specified. To allow both LLMs to digest
that format, we therefore specify predicate rules in each of the eight
experiments described above.

5.5. Description of the structure of the prompts used in the experiments

The OpenAI API supports three types of prompts: the system prompt,
the user prompt, and the assistant prompt. These can be categorized
into two main groups that we further explain below.

5.5.1. Input passed to the LLM
The input passed to the LLM is the LLM prompt. The latter results

from the combination of two other prompts:

• System Prompt: This consists of instructions and guidelines pro-
vided to the LLM to ensure it responds appropriately. Depending
on the experiment, our system prompt may contain all or a
combination of the various categories of SE knowledge. Fig. 5
depicts the system prompt given to each LLM for Experiment
1. That system prompt deliberately excludes any SE knowledge.
This allows us to evaluate the inherent performance of the LLMs
without the influence of SE knowledge.

• User Prompt: This is the input or query from the user interacting
with the model, requesting the model to complete a specific
task. In the user prompts specified for the experiment without SE
knowledge (i.e. Experiment 1), We do not specify any assurance
case pattern, as we consider this to be a form of SE knowledge.
Fig. 6 shows a sample of our user prompt for Experiment 1.

5.5.2. Output generated by the LLM
The Assistant Prompt is the output that the LLM generates. More

pecifically, the assistant prompt refers to the response generated by the
model based on the system and user prompts provided to the model.
Thus, in our work, the assistant prompt provides the assurance case
that the LLM generates.
10
5.5.3. Description of system prompts with s.e knowledge
Fig. 7 depicts the template (i.e. the generic structure) of the system

prompts we used in our experiments with SE knowledge.

5.5.3.1. Description of zero-shot system prompts with SE knowledge. In
our zero-shot experiments involving SE knowledge (i.e. Experiments 3,
5, 7, and 9), the system prompts used to query both LLMs may consist
of various categories of SE knowledge. However, these prompts exclude
he example category, which is indicated by red dotted lines in Fig. 7.

5.5.3.2. Description of one-shot system prompts with SE knowledge. In our
One-shot experiments involving SE knowledge (i.e. Experiments 2, 4,
6, and 8), the system prompts used to query both LLMs may consist
of various categories of SE knowledge. This includes the example
ategory, which is indicated by red dotted lines in Fig. 7.

5.5.4. Description of user prompts with s.e knowledge
In the user prompts specified for experiments involving SE knowl-

edge (i.e., Experiments 2 to Experiment 9), we include the assurance
case pattern in our predicate-based format for each system. We then
prompt the model to create an assurance case that complies with this
pattern for a given system in our test dataset. Fig. 8 shows an excerpt
of a sample user prompt in our experiments with SE knowledge.

5.6. Evaluation metrics

Each evaluation metric we outline below allows for assessing the
imilarity between the experiment results (i.e. LLM-generated assurance

cases) and the ground-truth.

5.6.1. Exact match
As in Chang et al. (2024), we employ this metric to gauge the accu-

racy with which our LLMs generated output matches the ground truth,
character by character, without discrepancies. The scoring typically
ranges from 0 to 1, where 0 signifies no similarity and 1 indicates a
perfect or near-perfect match. To compute this measure, we rely on
the Python library called FuzzyWuzzy (Seatgeek, 2024).

5.6.2. BLEU score
As in Hou et al. (2023), to assess the similarity between the gen-

erated text and the ground-truth, we utilize the BLEU score. The
latter is one of the widely used metrics in NLP (Natural Language
rocessing) and one of the most commonly used evaluation metrics
or natural language texts (Papineni et al., 2002). It ranges between

0 and 1, where 0 indicates no match between the generated text and
the ground-truth text, while 1 indicates a perfect match between both
the generated text and the ground-truth text. We use a Python library
called Sacrebleu (SacreBLEU, 2024) for its assessment.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 6. A sample user prompt for Experiment 1.
Fig. 7. Generic structure of our system prompts for experiments with SE knowledge.
5.6.3. Semantic similarity
In this metric, we evaluate how closely the texts in the GSN elements

of the assurance cases generated by our LLMs relate in meaning to the
ground-truth assurance cases. To assess that measure, we rely on the
11
cosine similarity measure (Salton and Buckley, 1988; Rahutomo et al.,
2012). Cosine similarity values range from −1 to 1, where −1 indicates
no similarity or completely dissimilar texts, and 1 indicates identical
texts. We rely on a Python library called scikit-learn (Pedregosa et al.,

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 8. A sample user prompt for experiments with SE knowledge.
2011) to automatically compute the values of that metric.

6. Results

6.1. RQ1: Are LLMs capable of creating well-formed and semantically valid
assurance cases when they do not have SE knowledge specified in their
prompts?

6.1.1. Metric results
Table 3 reports the median of the Exact match, BLEU scores, and

Cosine similarity results we obtained when running each LLM five times
in Experiment 1. The standard deviations of these results are very close
12
to zero. This indicates our results are stable across multiple runs. For
brevity’s sake, we do not report these deviations.

The metric values Table 3 reports are extremely low and therefore
mediocre. More specifically, the exact match values in Table 3 are
notably very low, with the highest median exact match value being
0.05. On the other hand, both the BlueROV2 system under both models
and the IM Software system under GPT-4o yield the lowest median
exact match value of 0.02. When it comes to the BLEU scores Table 3
reports, we observe that GPT-4o yields the highest median BLEU score
value of 0.03 across all runs for the ACAS XU system. Finally, as Table 3
shows, the semantic similarity results are slightly better compared to
both the Exact match and BLEU score values but still remain below
average (i.e. 0.5). Note that the ACAS XU system under GPT-4o and

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

m

Table 3
Median exact match, BLEU score, and semantic similarity results for experiments without SE knowledge.

System Model Exact match BLEU score Semantic similarity

ACAS XU GPT-4o 0.04 0.03 0.23
GPT-4 Turbo 0.03 0.02 0.22

BlueROV2 GPT-4o 0.02 0 0.08
GPT-4 Turbo 0.02 0.01 0.07

GPCA GPT-4o 0.04 0 0.04
GPT-4 Turbo 0.04 0.01 0.11

IM Software GPT-4o 0.02 0.01 0.09
GPT-4 Turbo 0.05 0.01 0.13

DeepMind GPT-4o 0.05 0.01 0.23
GPT-4 Turbo 0.05 0.01 0.22
g
a
r

DeepMind system under GPT-4o yields the highest semantic similarity
edian value of 0.23 across all runs in Experiment 1.

6.1.2. Reasons explaining Experiment 1 results
The manual analysis of the LLM-generated assurance cases obtained

with Experiment 1 allowed us to identify some reasons explaining the
poor results it yields:

• Lack of a clear goal structure: In Experiment 1, the major-
ity of LLM-generated assurance cases lack the goal-structured
hierarchy required for clarity. These assurance cases list GSN
elements in an unclear and unstructured manner, failing to cap-
ture the relationships between them. This random organization
of elements deviates from the structural rules defined in the
GSN standard Goal Structuring Notation Standard Working Group
(2023), causing confusion about the statements in goals, the
strategies for achieving these goals, and the supporting evidence.

• Inconsistent GSN Element names and IDs: In some of the
LLM-generated assurance cases Experiment 1 yields, there are
inconsistencies in GSN element names and the symbols the LLMs
use to identify them. For instance, when generating the assurance
case for ‘‘ACAS XU’’ in Run 1, GPT-4 Turbo used the same symbol
‘‘S’’ to represent both a strategy and a solution, whereas assurance
case developers usually use two different symbols/abbreviations
to name and distinguish strategies from solutions. Likewise, when
generating the assurance case for ‘‘DeepMind’’ in Run 2, GPT-4o
used a variety of inconsistent abbreviations (i.e. ‘‘su’’, ‘‘sp’’, ‘‘st’’,
‘‘sd’’, ‘‘sn’’, ‘‘sm’’, ‘‘sl’’) to represent solutions, leading to ambiguity
in the assurance cases. Assurance case developers usually use a
unique symbol/abbreviation to name solutions.
Furthermore, when generating the assurance case of BlueROV2
for Run 2, the assurance case that GPT-4o generated included an
element called ‘‘Evidence’’ in addition to a ‘‘Solution’’ element.
This can lead to confusion as ‘‘Evidence’’ is not a GSN concept.
Similarly, when generating the assurance case of the BlueROV2
system for Run 2, GPT-4 Turbo termed an element ‘‘Argument’’,
whereas ‘‘Argument’’ is not a GSN concept. Likewise, when gen-
erating the assurance case for the GPCA system for Run 5, GPT-4
Turbo generated an assurance case that includes an unexpected
element called ‘‘Inference’’. Both ‘‘Argument’’ and ‘‘Inference’’ are
not recognized as GSN elements (i.e. concepts) within the GSN
standard. Thus, this further contributes to inconsistency and po-
tential misinterpretation of the elements within an assurance
case.

• Absence of GSN Element Identifier: In some of the LLM-
generated assurance cases, there are no element IDs. For instance,
when generating the assurance case of ‘‘BlueROV2’’ for Run
2, GPT-4o included in that assurance case a list of elements
having no IDs. This absence of unique identifiers can impede the
understanding of inferential links between GSN elements. It can
also complicate the understanding of how the evidence (through
solutions) supports the arguments within an assurance case.
13
In summary, our analysis of Experiment 1 for RQ1 reveals that
without SE knowledge, LLMs cannot generate reliable assurance
cases. The exact match values are very low, with the highest
median exact match value being only 0.05. The highest median
BLEU score is 0.03, and the best semantic similarity value is
0.23. These values indicate that the generated assurance cases
significantly differ from the ground-truth assurance cases, ren-
dering them ineffective for supporting system assurance. This
emphasizes the need for incorporating SE knowledge to improve
the reliability of LLM-generated assurance cases.

6.2. RQ2: Are LLMs capable of automatically instantiating assurance cases
from assurance case patterns with SE knowledge specified in the prompts?

6.2.1. Metric results
Similar to the methodology used by Chen et al. (2023a), Sivakumar

et al. (2024c), we performed each of our experiments five times (K
= 5) for each of the four analyzed systems. Therefore, across the 8
experiments involving SE knowledge, both GPT-4o and GPT-4 Turbo
generated a total of 320 assurance cases for our test systems. Tables 4,
5, and 6 respectively report the median of the Exact match results,
BLEU scores, and Semantic similarity results we obtained across our 8
experiments involving SE knowledge (i.e., Experiment 2 to Experiment
9), using the AC and ACP of DeepMind as the one-shot example. Each
row in these tables corresponds to a system in our test dataset under
both GPT-4o and GPT-4 Turbo. In the eight experiments, the standard
deviations associated with metrics values are close to zero, indicating
stability in these values. Thus, for brevity’s sake, we do not report them.
We discuss the results reported in these three tables in the remainder
of this section.

Table 4 shows that the median Exact match results are quite high
for both the ACAS XU and BlueROV2 systems. However, these results
are quite low for the GPCA system, while the IM software system has
the lowest Exact match values.

As shown in Table 5, the median of BLEU score results ranges from
moderately high to moderate for both the ACAS XU and BlueROV2
systems. However, the scores are relatively low for both the GPCA
system and the IM software system.

Table 6 reports the semantic similarity results obtained for the
systems in our test dataset. Thus, for each experiment, the semantic
similarity results are outstanding for the ACAS XU system and high
for the BlueROV2 system. This indicates the assurance cases the LLMs
enerated for both systems are semantically close to the ground-truth
ssurance cases. For both the GPCA and IM Software systems, the
esults vary between moderate and low depending on the type of

experiment and the LLM utilized. It is worth noting that the semantic
similarity results are relatively higher compared to the BLEU score
and Exact match measure for the majority of our experiments. This
is probably because the semantic similarity measure mainly considers

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

s

Table 4
Median exact match result for experiments with software engineering knowledge.

System Model E2 E3 E4 E5 E6 E7 E8 E9

ACAS XU GPT-4o 0.79 0.85 0.84 0.82 0.77 0.74 0.83 0.82
GPT-4 Turbo 0.65 0.59 0.83 0.81 0.56 0.65 0.52 0.69

BlueROV2 GPT-4o 0.65 0.78 0.75 0.75 0.8 0.75 0.77 0.71
GPT-4 Turbo 0.76 0.76 0.66 0.58 0.81 0.78 0.64 0.61

GPCA GPT-4o 0.26 0.3 0.26 0.34 0.22 0.28 0.35 0.35
GPT-4 Turbo 0.25 0.31 0.3 0.21 0.23 0.32 0.32 0.25

IM Software GPT-4o 0.1 0.1 0.12 0.12 0.1 0.28 0.12 0.27
GPT-4 Turbo 0.09 0.1 0.07 0.09 0.08 0.14 0.08 0.08
Table 5
Median BLEU score result for experiments with software engineering knowledge.

System Model E2 E3 E4 E5 E6 E7 E8 E9

ACAS XU GPT-4o 0.73 0.75 0.68 0.68 0.76 0.72 0.68 0.64
GPT-4 Turbo 0.71 0.4 0.69 0.6 0.7 0.41 0.67 0.65

BlueROV2 GPT-4o 0.54 0.53 0.55 0.52 0.57 0.56 0.55 0.53
GPT-4 Turbo 0.58 0.46 0.5 0.4 0.62 0.56 0.55 0.51

GPCA GPT-4o 0.32 0.28 0.27 0.23 0.21 0.31 0.26 0.23
GPT-4 Turbo 0.16 0.22 0.19 0.17 0.25 0.2 0.22 0.15

IM Software GPT-4o 0.27 0.27 0.3 0.29 0.27 0.29 0.22 0.23
GPT-4 Turbo 0.17 0.19 0.18 0.16 0.21 0.18 0.16 0.17
Table 6
Median semantic similarity result for experiments with software engineering knowledge.

System Model E2 E3 E4 E5 E6 E7 E8 E9

ACAS XU GPT-4o 0.92 0.92 0.91 0.91 0.92 0.9 0.91 0.85
GPT-4 Turbo 0.91 0.89 0.91 0.91 0.9 0.85 0.87 0.9

BlueROV2 GPT-4o 0.88 0.9 0.64 0.67 0.92 0.83 0.73 0.59
GPT-4 Turbo 0.89 0.89 0.57 0.58 0.9 0.87 0.53 0.63

GPCA GPT-4o 0.81 0.76 0.37 0.28 0.73 0.76 0.37 0.27
GPT-4 Turbo 0.56 0.57 0.28 0.27 0.57 0.55 0.31 0.27

IM Software GPT-4o 0.7 0.7 0.58 0.59 0.71 0.71 0.57 0.54
GPT-4 Turbo 0.65 0.66 0.5 0.52 0.65 0.64 0.52 0.5
i

the meaning of the texts associated with the elements comprised in the
generated assurance cases. Thus, if two texts have similar meanings but
different wording, they can still have a high cosine similarity.

Potential reasons for the low results associated with GPCA and IM
oftware are mainly ACP-related and may include the following:

• Cardinality Ambiguity in Multiplicity Relationship: In an ACP,
cardinality specifies the required number of instances of a partic-
ular element that must be associated with other elements within
the pattern. However, the common use of generic labels such as
(‘‘0...*’’, ‘‘1....*’’, ‘‘N’’) to specify the cardinality of the multiplicity
relationship in a pattern allows for various interpretations by
LLMs. Hence, if the LLM at hand is not able to properly interpret
that cardinality, this may lead to mismatches in the number of
branches or relationships between elements of the generated as-
surance case compared to the ones in the ground-truth assurance
cases. Also, due to the ambiguity in the cardinality of multiplicity
relationships within patterns, we observed that LLMs occasionally
generate duplicated GSN elements across the goal structure. For
example, the same goal may be generated multiple times with
identical IDs and descriptions, or nearly identical descriptions.
This may result in a discrepancy between the GSN elements
generated by LLMs and the ground-truth GSN elements.

• Mismatch in Instantiating Abstract Parameters with Multiple
Available Values: In an ACP, a single abstract parameter can
be instantiated with multiple concrete values, depending on the
multiplicity within the pattern structure (Hartsell et al., 2021).
For elements with generic placeholders that can be replaced with
14
diverse information from the available domain information, a
mismatch in the number of branches or relationships between ele-
ments of the generated assurance case can occur. This mismatch is
caused by the generic label for the cardinality of the multiplicity
relationship and may result in a mismatch when instantiating
multiple branches with multiple concrete values.

• The complexity of the pattern: that complexity might affect the
performance and efficiency of the LLMs. For example, the number
of placeholders in the assurance case pattern for ACAS XU and
BLUEROV2 systems are 10 and 8, respectively while the number
of placeholders in the assurance case pattern for the GPCA system
and IM software system are 21 and 9, respectively. This could
impact the performance of LLMs in generating ACs close to the
ground-truth ACs especially when there is a cardinality ambigu-
ity in the multiplicity relationships in the input assurance case
pattern.

Figs. 10 and 11 (see Appendix) both illustrate the effects of cardinal-
ty ambiguity in multiplicity relationships. Fig. 11 illustrates a graphical

notation (i.e., a GSN representation) of the assurance case that GPT-4
Turbo generated for the BlueROV2 system. Fig. 10 illustrates a graphi-
cal notation of the assurance case that GPT-4o generated for the same
system and for the same experiment (i.e., Experiment 2)3. To facilitate

3 GPT-4 Turbo and GPT-4o generated both Figs. 10 and 11 in structured
prose format. Thus, in accordance with the GSN standard guidelines (Goal
Structuring Notation Standard Working Group, 2023), we have converted both
Figures into a graphical notation (GSN).

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

a

4
c
‘

M
t
i

s

a

a
u

v

9
h
e
c

i
s
c

3
m
H
o
E
t
a
i
b
b
d
f

t

r

c

i
s

t
b

m

k

the discussion and reasoning about these two figures, we compare both
figures with the ground-truth assurance case of the BlueROV2 system
that Fig. 13 depicts.

The differences between the assurance cases generated by GPT-4o
nd GPT-4 Turbo for the BLUEROV2 system are significant. Figs. 10

and 11 highlight these differences: GPT-4o generated an assurance
case with 42 GSN elements, whereas GPT-4 Turbo generated an as-
surance case with only 18 GSN elements. In contrast, the ground-truth
assurance case, depicted in Fig. 13, consists of 24 GSN elements.

This discrepancy in the number of GSN elements generated by GPT-
o and GPT-4 Turbo, as compared to the ground-truth assurance case,
an be attributed to the ambiguity in the cardinality (‘‘1....*’’, ‘‘0....*’’,
‘1....*’’) of the multiplicity relationships that the pattern in Fig. 12
depicts. This pattern contains the following multiplicity relationships:
HasMultiplicity (S1, G3, 1 of *), HasMultiplicity (S4, A1, 0 of *), Has-
ultiplicity (G5, G10, 1 of *). According to these multiplicity rules,

he ground-truth assurance case contains three instances of G3, three
nstances of A1, and one instance of G10.

However, as illustrated in Fig. 11, GPT-4 Turbo generated only
one instance of each element (G3, A1, and G10), which is fewer than
pecified in the ground-truth assurance case. On the other hand, GPT-

4o generated three instances of each element (G3, A1, and G10),
dhering more closely to the ground truth assurance case. Also, GPT-4o

further developed the other two instances of G3 that the ground-truth
assurance case left undeveloped. This may explain the higher number
of GSN elements (i.e. 42 elements) that GPT-4o generated.

The discrepancy in the number of generated elements between both
LLMs and the ground-truth assurance case can thus be partly explained
by the ambiguity in the cardinality of the multiplicity relationships
in the pattern illustrated in Fig. 12. We should point out that, occa-
sionally, both LLMs might overlook removing the pattern decorators
after instantiating a given pattern to create an assurance. Removing
the pattern decorators is critical because their presence introduces
ambiguity about whether each element in the generated assurance case
is fully developed and instantiated. This ambiguity can lead to doubts
bout the completeness and reliability of the assurance case, potentially
ndermining its use for certification and compliance purposes.

In the remainder of this section, we further discuss the experiment
results in light of the RQ2 four sub-research questions.

6.2.2. RQ2.1: Comparative analysis of one-shot vs zero-shot experiments
The results reported in Tables 4 to 6 show that when the median

alues are ranked from highest to lowest for a given system-model-
metric combination across different experiments (i.e. Experiments 2 to
), the one-shot experiments (i.e. Experiments 2, 4, 6, 8) tend to achieve
igher median values across various metrics compared to the zero-shot
xperiments (i.e. Experiments 3, 5, 7, 9). Experiment 6, in particular,
onsistently yields the highest metric values.

Based on these results, we can conclude that the one-shot prompting
approach is more effective for the automatic instantiation of assurance
cases from assurance case patterns. Providing one example gives the
LLMs a specific reference point to learn from, which aids in understand-
ing the pattern instantiation task better and ensures that the generated
assurance cases are closer to the ground truth assurance cases.

6.2.3. RQ2.2: Impact of domain information
The results presented in Tables 4 to 6 indicate that experiments

ncorporating domain information (i.e. Experiments 2, 3, 6, 7) yielded
ignificantly higher median values across the three evaluation metrics
ompared to those without domain information (Experiments 4, 5, 8,

9). GPT-4o shows significant improvements when domain information
is included in its prompts, thus achieving higher scores across all
metrics. GPT-4 Turbo also benefits from this inclusion but to a lesser
degree.

These findings highlight the crucial role of domain information in
maintaining high performance across most metrics, especially semantic
15
similarity, where the highest median semantic similarity values for
different system-model combinations were observed in experiments
with domain knowledge — with the only exception being Experiment
4 and 5 under GPT-4 Turbo for the ACAS XU system that is tied for
highest with Experiment 2.

6.2.4. RQ2.3: Impact of contextual information
Experiments leveraging contextual information are Experiments 2,

, 4, and 5. The results reported in Tables 4 to 6 indicate that experi-
ents with and without context information performed relatively well.
owever, a notable distinction emerges when ranking the performance
f experiments without context information (Experiments 6, 7, 8, 9).
xperiments 8 and 9, which also lack domain information, often yield
he lowest median of metric values compared to other experiments for
 given system-model-metric combination. Interestingly, when count-
ng the frequency or number of times an experiment performs the
est or gives the highest results across all system-model-metric com-
inations, Experiment 6 (one-shot, without context information, with
omain information, and with predicate rules) emerges with the highest
requency of top values across different metrics, models, and systems.

Initially, we expected Experiment 2 (one-shot, with context informa-
ion, with domain information, and with predicate rules) to yield the

highest frequency of top values and be the best experiment overall. This
expectation was based on the assumption that having comprehensive
context information would significantly enhance the model’s perfor-
mance. However, the results indicate otherwise. Experiment 6 out-
performed all other experiments, including Experiment 2, consistently
achieving the highest frequency of top metric values.

One possible reason for this outcome could be our predicate-based
ules, formulated in accordance with the guidelines, elements, and

decorators outlined in the GSN Standard. These GSN characteristics also
informed our context information. The use of predicate-based rules that
omply with the GSN standard may have contributed to the success of

Experiment 6, even in the absence of explicit context information. Also,
t is possible that both GPT-4o and GPT-4 Turbo, have a prior under-
tanding of the information embedded within our context information,

and hence, were able to perform effectively despite the lack of explicit
context information in Experiment 6.

In conclusion, although incorporating context information was an-
icipated to enhance performance, its absence, particularly when com-
ined with a lack of domain information, predicate-based rules, and

one-shot examples, can lead to poorer results. While context infor-
ation alone does not drastically affect performance, the presence of

predicate-based rules, domain information, and one-shot examples sig-
nificantly mitigates the negative impact of missing context information.

6.2.5. RQ2.4: Impact of predicate-based rules
Recall from above that, in each of the eight experiments with SE

nowledge, we specify the predicate-based rules in LLMs prompts.
The results presented in Tables 4 to 6 indicate that Experiment 9
(zero-shot, without context information, without domain information,
and with predicate-based rules) frequently yields the lowest median
values compared to all other experiments when these median values
are ranked from highest to lowest for a given system-model-metric com-
bination. This suggests that predicate-based rules are not meant to be
utilized alone for the automatic instantiation of assurance case patterns.
Rather, they should be used in combination with other categories of SE
knowledge (e.g., domain information, context information, and one-
shot examples) to ensure the generation of assurance cases that are
close to the ground truth.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

g
i
c
k
s
s
m
f
b
m
d
T
m
s
r
b

i
e
b
e

,

f
s

c
w
D

b

In summary, for RQ2, our experiments demonstrate that incor-
porating SE knowledge into LLMs significantly enhances their
ability to generate assurance cases that comply with given
patterns and closely align with ground-truth assurance cases.
Experiment 6, which leverages a one-shot example, domain
information, and predicate-based rules, consistently showed
superior performance compared to other experiments. For in-
stance, it achieved a median exact match value of 0.81 for the
BlueROV2 system and a median BLEU score of 0.76 for the ACAS
XU system.
Cardinality ambiguity in multiplicity relationships posed chal-
lenges, particularly for the GPCA and IM Software systems,
resulting in lower exact match and BLEU score values across
all experiments, with the highest median exact match for both
systems being equal to 0.35 and 0.28 respectively. However,
domain information significantly improved performance, as evi-
denced in experiments incorporating it, where models achieved
higher semantic similarity scores. For example, ACAS XU under
GPT-4o achieved a score of 0.92 in Experiments 2, 3, and 6,
while GPCA saw a score of 0.81 in Experiment 2 under GPT-4o,
and IM Software achieved 0.71 in Experiments 6 and 7.
Notably, semantic similarity scores were generally higher com-
pared to Exact match and BLEU scores across most experiments,
indicating that while text wordings might differ, the generated
assurance cases were still meaningfully close to the ground-
truth assurance cases. Comparative analysis also revealed that
the one-shot approach generally produced better results than the
zero-shot method.
Also, while we initially expected that having comprehensive
context information would significantly enhance model per-
formance, experiments without explicit context information
but with predicate-based rules, domain information, and one-
shot examples still performed exceptionally well. Experiment
6, which lacked context information yet incorporated these
other categories of SE knowledge, frequently outperformed
experiments that included context information.
Finally, incorporating various categories of SE knowledge helps
achieve reliable and effective LLM-generated assurance cases
that comply with given patterns, while addressing complexi-
ties like ambiguous cardinality in patterns further ensures that
LLM-generated assurance cases closely align with ground-truth
cases.

6.3. RQ3: which of the evaluated LLMs performs best when it comes to
automatically instantiating assurance cases from assurance case patterns?

Tables 4 to 6 highlight in bold the higher median value for a
iven system-model combination under the different metrics. Evaluat-
ng which model has the higher median value for each system-model
ombination across the different metrics and experiments with SE
nowledge shows that GPT-4o achieves 77% of the highest median
cores across the various metrics and experiments for the different
ystems. On the other hand, GPT-4 Turbo achieves 17% of the highest
edian scores across the various metrics and experiments for the dif-

erent systems. The remaining 6% represents the single instance where
oth GPT-4o and GPT-4 Turbo are tied for having the same highest
edian value in an experiment across the various metrics for the
ifferent systems. Based on this analysis, GPT-4o outperforms GPT-4
urbo in the median values for the Exact Match, BLEU score, and se-
antic similarity results across the majority of our experiments for each

ystem. This suggests that GPT-4o seems to understand subtle ACP-
elated nuances like cardinality ambiguity in multiplicity relationships
etter than GPT-4 Turbo.
16
In summary, for RQ3, our analysis reveals that GPT-4o outper-
forms GPT-4 Turbo in 77% of the 8 experiments incorporating
SE knowledge, across various metrics and systems. Overall,
GPT-4o shows an enhanced grasp of SE knowledge, including
nuanced pattern details like cardinality ambiguity in multiplic-
ity relationships, enabling it to produce assurance cases that are
closer to the ground truth compared to GPT-4 Turbo.

7. Discussion

7.1. Analyzing varying one-shot example

As stated in Section 5.2.5, to conduct our four one-shot experiments
with SE knowledge, we randomly picked DeepMind’s AC together with
its ACP as an example. Still, in this section, we aim to determine
f picking a specific example over another when running one-shot
xperiments has a significant impact on the quality of the results. For
revity’s sake, we only focus in this section on Experiment 2 i.e. the
xperiment that leverages all the combinations of SE knowledge.

7.1.1. Methodology
To assess the impact of varying the example on Experiment 2 results,

we adapted the popular Leave One Out Cross-Validation (LOOCV) (Stone
1974; Vehtari et al., 2017) method to split our example and test data.
This ensures the utilization of all systems in our dataset for both the
one-shot example and testing data. Given that the number of systems
(N) in our dataset is 5, we iterated and picked one system from N to
use as a one-shot example while we used the remaining N-1 systems as
test data to validate the LLMs performance. We iterated over N until all
systems in N have been utilized as a one-shot example. Besides, we ran
Experiment 2, K=5 times, and we calculated the median metric values
across the 5 runs for the different one-shot examples.

7.1.2. Results
Tables 7, 8, and 9 report the comparison of the median metric re-

sults the LLMs yield when we vary the one-shot example in Experiment
2 across five runs. Each column under the ‘‘One-shot Example’’ header
specifies each system used as a one-shot example. Each row under the
‘‘Test System’’ header represents each system used as test data. ‘‘Null’’
values indicate cases where the same system is meant to serve as both
the test and one-shot example, which we do not evaluate. The values
highlighted in bold indicate the highest median value for a given test
system across the different one-shot examples.

The results in Tables 7 to 9 indicate that when analyzing the
requency of the top metric results across the various metrics and test
ystems, the ACs and ACPs of both GPCA and DeepMind might be

the most effective as one-shot examples. For instance, when including
ounts of ties, the GPCA system emerges as the best one-shot example
hile when excluding the six tie counts, the frequencies shift, making
eepMind the best one-shot example.

Tables 7 to 9 also indicate that using the AC and ACP of either
ACAS Xu or IM Software as a one-shot example produces the lowest
count of top values across all metrics. Specifically, the IM Software as
an example fails to achieve any top values under the Exact Match metric
while the ACAS Xu system as an example fails to achieve any top values
under the BLEU score metric. This indicates that, among all the systems
in our dataset, both the IM Software system and ACAS Xu system might
e the least effective as a one-shot example.

Our analyses of the results we obtained when varying different
systems’ ACs and ACPs as one-shot examples highlight that the
selection of a specific system’s AC and ACP as an example is
crucial, as it influences the performance of LLMs across different
metrics. Thus, choosing the most suitable one-shot example can
significantly improve the quality of one-shot experiments.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

o

e
u

f
o
o

g
m

Table 7
Exact match comparison of varying one-shot example.

Test system Model One-shot example

ACAS XU BlueROV2 DeepMind GPCA IM Software

ACAS XU GPT-4o Null 0.87 0.79 0.78 0.75
GPT-4 Turbo Null 0.6 0.65 0.66 0.5

BlueROV2 GPT-4o 0.2 Null 0.65 0.2 0.21
GPT-4 Turbo 0.78 Null 0.76 0.72 0.75

DeepMind GPT-4o 0.3 0.35 Null 0.27 0.29
GPT-4 Turbo 0.25 0.3 Null 0.28 0.23

GPCA GPT-4o 0.31 0.22 0.26 Null 0.27
GPT-4 Turbo 0.28 0.28 0.25 Null 0.24

IM Software GPT-4o 0.36 0.28 0.1 0.29 Null
GPT-4 Turbo 0.09 0.17 0.09 0.25 Null
Table 8
BLEU score comparison of varying one-shot example.

Test system Model One-shot example

ACAS XU BlueROV2 DeepMind GPCA IM Software

ACAS XU GPT-4o Null 0.76 0.73 0.81 0.74
GPT-4 Turbo Null 0.7 0.71 0.69 0.58

BlueROV2 GPT-4o 0.44 Null 0.54 0.4 0.4
GPT-4 Turbo 0.6 Null 0.58 0.63 0.58

DeepMind GPT-4o 0.21 0.22 Null 0.17 0.21
GPT-4 Turbo 0.16 0.19 Null 0.2 0.22

GPCA GPT-4o 0.26 0.23 0.32 Null 0.29
GPT-4 Turbo 0.24 0.28 0.16 Null 0.3

IM Software GPT-4o 0.29 0.31 0.27 0.29 Null
GPT-4 Turbo 0.19 0.31 0.17 0.31 Null
Table 9
Semantic similarity comparison of varying one-shot example.

Test system Model One-shot example

ACAS XU BlueROV2 DeepMind GPCA IM Software

ACAS XU GPT-4o Null 0.93 0.92 0.93 0.9
GPT-4 Turbo Null 0.9 0.91 0.9 0.86

BlueROV2 GPT-4o 0.89 Null 0.88 0.86 0.89
GPT-4 Turbo 0.86 Null 0.89 0.85 0.85

DeepMind GPT-4o 0.59 0.59 Null 0.61 0.61
GPT-4 Turbo 0.54 0.52 Null 0.55 0.59

GPCA GPT-4o 0.59 0.74 0.81 Null 0.67
GPT-4 Turbo 0.55 0.58 0.56 Null 0.59

IM Software GPT-4o 0.71 0.7 0.7 0.71 Null
GPT-4 Turbo 0.65 0.69 0.65 0.71 Null
l

a

K

w

7.2. Are human experts still needed for assurance case creation in the age
f llms?

We have manually assessed the best results the two LLMs produced
to determine if they are equivalent to the ones generated by human
xperts and more specifically to the ones assurance case developers
sually create. We further discuss that work below.

7.2.1. Methodology used for the manual assessment
As we stated in Section 6.2.4, Experiment 6 yields the best results

or both LLMs. We therefore decided to focus on the manual assessment
f that experiment’s results. To manually assess these results, we relied
n a metric called reasonability (Chen et al., 2023b; Sivakumar et al.,

2024b; Shahandashti et al., 2024b; Sivakumar et al., 2024c). A rea-
sonable GSN element is a GSN element that ‘‘could reasonably be in the
round-truth but is not ’’ (Sivakumar et al., 2024b,c). The reasonability
etric allows assessing the degree to which the assurance cases gener-

ated by LLMs are useful, coherent, and contain GSN elements that are
valid but that are not present in the ground-truths i.e. GSN elements
which the human experts have not thought of but that could have
17
enriched the assurance case.
Two researchers (i.e. raters) – and more specifically two authors

with strong experience in system assurance and GSN – independently
assessed the reasonability of the forty assurance cases the two LLMs col-
ectively generated for Experiment 6. These researchers utilized a linear

scale to assess the reasonability of each of the corresponding assurance
cases. In that scale, 1 equals Totally reasonable, 2 signifies Mostly reason-
ble, 3 meansModerately reasonable, 4 represents Slightly reasonable, and

5 denotes Unreasonable. To assess the inter-rater reliability, we relied
on Kendall’s Tau (Kendall, 1938) as in the literature (e.g., Khakzad
Shahandashti et al., 2024; Sivakumar et al., 2024b; Chen et al., 2023b).

endall’s Tau is a correlation coefficient that varies between - 1 and
1. A value equal to 1 indicates a strong level of agreement between
raters. A negative value indicates there is no agreement between raters.
As in Khakzad Shahandashti et al. (2024), Sivakumar et al. (2024b),

e relied on an online tool called GIGAcalculator4 to automatically
compute the value of that coefficient with a 95% confidence interval.

4 https://www.gigacalculator.com/calculators/correlation-coefficient-
calculator.php

https://www.gigacalculator.com/calculators/correlation-coefficient-calculator.php
https://www.gigacalculator.com/calculators/correlation-coefficient-calculator.php

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

E

t
b
T

o

H

w

a

u
w
w
e
t
X
G
e
s
m
f
a
p
f

m

a
c
a
a

E

Note that to help in the automatic conversion of the assurance cases
xperiment 6 yields, we relied on SmartGSN 5

7.2.2. Discussion of the reasonability results
The Kendall’s Tau value obtained from reasonability ratings is equal

o 0.69 when considering all the ratings the two raters provided for
oth the assurance cases that both GPT-4o and GPT-4 Turbo generated.
his indicates a good agreement between the two researchers who

graded Experiment 6 results. This means that the two researchers who
graded Experiment 6 results produced consistent, reliable, and similar
ratings.

Table 10 reports for each rater, for each LLM, and for each system,
the average of the reasonability ratings. That Table also aggregates
these ratings for each LLM at hand. Hence, the averages of the rea-
sonability scores across all the forty assurance cases Experiment 6
yields and across the two raters are respectively 2.75 for GPT-4o and
3.05 for GPT-4 Turbo. These averages are close to 3 i.e. Moderately
reasonable. Thus, the reasonability results demonstrate that LLMs like
GPT-4o and GPT-4 Turbo do quite well at generating assurance cases
from assurance case patterns. Particularly in one-shot settings such as
Experiment 6, where domain information and predicate-based rules are
leveraged, these models showcase remarkable proficiency in assurance
case generation.

These findings suggest that LLMs can effectively perform a signif-
icant portion of the pattern instantiation process, offering invaluable
time and resource savings, especially in generating initial drafts of
assurance cases — a task that can be laborious, error-prone, and time-
consuming when performed manually (Hartsell et al., 2021; Menghi
et al., 2023).

However, despite the performance of LLMs in assurance case gen-
eration, human expertise remains currently indispensable. Assurance
cases often demand adherence to specific standards or regulatory re-
quirements, as well as an understanding of subtle pattern-related nu-
ances (e.g., an inferred cardinality for a multiplicity relationship) that
LLMs may not fully grasp or overlook. There is also the potential
for LLMs to hallucinate, especially when complex context and domain
information are involved, raising concerns about the reliability of
generated assurance cases.

To address these limitations, we believe a semi-automatic approach
may be more suitable to create assurance cases. In this regard, one
can leverage LLMs for the automatic instantiation of assurance case
patterns to create initial assurance case drafts. Subsequently, human
experts (i.e. assurance case developers) can refine and adjust these
drafts, ensuring they meet necessary standards, address potential gaps
r inconsistencies, and enhance the overall quality of the assurance

process. This is in accordance with Chen et al. (2023b) who concluded
that LLMs are still not able to fully automate the domain modeling task.

owever, a human modeler can continuously provide feedback to the
model to improve the model’s output incrementally. This also aligns

ith Sivakumar et al. (2024c) who concluded that while LLMs can
significantly accelerate the development of safety cases, the expertise
and oversight of human safety case developers remain indispensable,
particularly for ensuring the highest levels of safety assurance.

5 SmartGSN is the prototype of a web-based tool whose main features
include converting assurance cases from structured prose to GSN diagrams. The
core technologies used to develop SmartGSN are ReactJS and Google FireBase.
More specifically, SmartGSN relies on React Flow, a customizable React
component, for the implementation of its node-based editors and interactive
18

diagrams.
Table 10
Average reasonability rating of assurance cases Experiment 6 yields.

Model System Average reasonability ratings

Rater 1 Rater 2

GPT-4o

ACAS XU 2 2
BLUEROV2 3.2 2.4
GPCA 3.8 3.2
IM SOFTWARE 3 2.4

GPT-4 Turbo

ACAS XU 2.2 2.4
BLUEROV2 3.4 2.6
GPCA 3.6 3
IM SOFTWARE 3.8 3.4

8. Threats to validity

8.1. Internal validity

The dataset used in our experiment consists of six assurance case
patterns and five partial assurance cases complying with these patterns.
We experienced difficulties in obtaining full assurance cases complying
with a given pattern due to the large size of these documents and
the sensitive and confidential nature of the information contained in
them (Mohamad et al., 2021). This limits the availability of full assur-
nce case patterns and derived assurance cases from these patterns, as

they are not readily published or available. To mitigate this, we selected
patterns and assurance cases spanning various application domains. We
also contacted some of these assurance case developers, which was
usually fruitless.

The threat identification pattern that Fig. 9 depicts, and that is part
of our dataset, is divided into two parts. The first part is highlighted
in red while the second part is highlighted in blue. One potential
threat to the validity of our work may emerge from the ground-truth
assurance case derived from this pattern. Zeroual et al. (2023) in their
study, provided only an instantiation of the part highlighted in blue
due to brevity’s sake. They stated that the placeholder ‘‘System’’ in the
ninstantiated nodes (C0, G0, G1, G2) in the part highlighted in red
ould be replaced by ‘‘ACAS Xu’’. To obtain a complete assurance case,
e refined their assurance case. Hence, we manually instantiated the

lements in the initial part (highlighted in red) of the threat identifica-
ion pattern by simply replacing the placeholder ‘‘System’’ with ’’ACAS
u’’. This manual instantiation of the initial part (elements C0, G0, G1,
2) may pose a validity threat, as it may introduce a potential human
rror. The latter could impact the consistency and correctness of the
o-obtained ground-truth assurance case. This underscores the need for
ethods that facilitate the automatic instantiation of assurance cases

rom patterns. To mitigate the aforementioned threats in future work
nd have access to high-quality and large-scale examples, we aim to
artner with the industry to gain access to full assurance cases derived
rom a given pattern.

We utilized the Exact Match, BLEU Score, and Semantic Similarity
etrics to assess the quality of the LLM-generated assurance cases

against the ground truth assurance cases. These three metrics are
among the most widely used ground-truth similarity measures in the
literature (e.g., Hou et al., 2023; Sivakumar et al., 2024b; Shahandashti
et al., 2024b; Chang et al., 2024) for evaluating both lexical and
semantic similarity between LLM-generated content and the ground
truth. Finally, as in the literature (e.g., Chen et al., 2023a; Shahandashti
et al., 2024b; Sivakumar et al., 2024b), we incorporated a qualitative
nalysis through a reasonability measure to evaluate the assurance
ases generated from Experiment 6. This manual assessment provides
 validation approach to ensure that the generated assurance cases
re reasonable and logically coherent. Still, there is a slight possibility

that the evaluation metrics we adopted are not comprehensive enough
for the experiments we performed. Hence, in future work, we plan to
explore the use of additional metrics (e.g., ROUGE (Chang et al., 2024),
dit Similarity (Hou et al., 2023)) to further assess our experiment

results.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

t

s
m

c

o
f
a
a
s

v
m
l
e
H
e

c
a

a
c

c
e
o
t
f
w
e

o

o
t
a

e
c

C

M
t
V
L
t
V

t
O

8.2. Construct validity

We extracted the domain information used in our experiments from
he following cited references which describe our dataset: (Zeroual

et al., 2023; Hartsell et al., 2021; Lin et al., 2017; Xu et al., 2017).
Thus, the ACs generated by the two LLMs at hand relied solely on the
information available in the cited references. Consequently, key details
uch as arguments or artifacts related to real-life data or scenarios
ight have been omitted when deriving domain information.

It is also possible that subtle details of how we formalized the
patterns based on the GSN standard might have influenced the results.
Future work could try repeating the experiments with small permuta-
tions on how the patterns are expressed. We intend to enhance our
omprehensive predicate-based rules by integrating multiplicity-related

considerations into the predicate formulation. This refinement would
aim to address the cardinality ambiguity issue in multiplicity relation-
ships within assurance case patterns, as identified in our experimental
analysis. By addressing these issues, we aim to improve the robustness
and expand the applicability of our approach.

Also, one potential threat to the validity of our results is the number
f runs (K = 5) used in our experiments. By performing each experiment
ive times, we aimed to capture a sufficient amount of variability
nd ensure the reliability of our findings. We picked that number in
ccordance with the literature focusing on the use of LLMs to automate
oftware modeling tasks (e.g., Chen et al. (2023b), Sivakumar et al.

(2024b)). However, this number of runs may not fully reflect the
ariability in the non-deterministic results generated by our LLMs. To
itigate this threat and enhance the robustness of our findings, we uti-

ized various test systems across different domains and included varied
xperimental conditions, categorizing different types of SE knowledge.
owever, in future work, we aim to increase the number of runs to
nsure greater confidence in our findings.

8.3. Conclusion validity

The knowledge cut-off date for our two LLMs is 2023. The dataset
utilized in our work was published before this date, suggesting that
our models’ training data might overlap with our dataset, potentially
affecting the generalizability of our results. To address this in accor-
dance with Shahandashti et al. (2024b), we formalized our assurance
case patterns in the predicated-based format to obtain representations
that both LLMs have never seen before. Still, in future work, we plan to
validate the effectiveness of our approach by using more recent datasets
oming from the industry, especially the ones that are not publicly
vailable.

9. Conclusion and future work

In this study, we relied on large language models (LLMs) to support
the automatic instantiation of assurance cases in compliance with
ssurance case patterns formalized using predicate-based rules. We
onducted a variety of experiments across four systems to evaluate the

impact of different categories of software engineering knowledge on the
performance the LLMs yield when instantiating assurance cases.

Our experiment results show large language models can automati-
ally generate relatively good assurance cases when leveraging software
ngineering knowledge, including knowledge represented in the form
f patterns. Still, our experiments also show that we need human exper-
ise to refine the LLM-generated assurance cases to make them suitable
or the certification of mission-critical systems. This is in accordance
ith other results in the literature (e.g., Chen et al., 2023b; Sivakumar
t al., 2024b).

By combining the expertise of humans with the speed and efficiency
f LLMs, we can achieve the swift generation of more reliable assurance

cases. This can be accomplished by incorporating additional categories
of relevant knowledge, such as the results of Hazard Analysis and
19
Risk Assessment (HARA), system requirements, detailed insights into
international standards such as ISO 26262, compliance requirements,
ethical considerations, and the operational context relevant to the
system under assessment. Moreover, integrating Retrieval-Augmented
Generation (RAG) can further enhance this process. RAG leverages
the strengths of information retrieval and LLMs, enabling the model
to access a wider range of domain-specific artifacts, arguments, and
evidence curated by human experts.

We have developed ‘‘SmartGSN’’6 — the first generative AI-powered
nline tool for managing assurance cases complying with GSN. This
ool offers the capability to automatically convert our LLM-generated
ssurance cases in the textual format into structured GSN diagrams

(argument structure). This feature significantly reduces the manual
ffort traditionally required to translate the LLM-generated assurance
ases in natural language into argument structures, thereby enhancing

both the usability and practical benefits of the LLM-generated assurance
cases.

In future work, we intend to improve our comprehensive predicate-
based rules by integrating multiplicity-related considerations into the
predicate formulation. This refinement would aim to address the car-
dinality ambiguity issue in multiplicity relationships within assurance
case patterns, as identified in our experimental analysis. By addressing
these issues, we aim to improve the robustness and expand the appli-
cability of our approach. Also, we will further validate our approach
by conducting more experiments aiming at instantiating additional
assurance case patterns using a wider range of LLMs (e.g., Llama-3,
Gemini).

Finally, we plan to integrate the automatic conversion of argument
patterns directly into predicate forms within SmartGSN. This enhance-
ment will further minimize user effort, maximizing the efficiency and
benefits of our approach and tool. Since our approach can be applied to
other contexts that may be very different, we also plan to explore the
use of our approach to instantiate software artifacts. Examples could
include generating software designs from design patterns, or software
architecture models from architectural patterns.

CRediT authorship contribution statement

Oluwafemi Odu: Writing – original draft, Visualization, Validation,
Software, Methodology, Investigation, Formal analysis, Data curation,

onceptualization. Alvine B. Belle: Writing – original draft, Visu-
alization, Validation, Supervision, Resources, Project administration,
Methodology, Investigation, Funding acquisition, Formal analysis, Data
curation, Conceptualization. Song Wang: Writing – original draft, Vi-
sualization, Validation, Supervision, Resources, Project administration,

ethodology, Investigation, Formal analysis, Data curation, Concep-
ualization. Segla Kpodjedo: Writing – original draft, Visualization,
alidation, Methodology, Investigation, Conceptualization. Timothy C.
ethbridge: Writing – original draft, Validation, Methodology, Inves-
igation, Conceptualization. Hadi Hemmati: Writing – original draft,
alidation, Methodology, Investigation, Conceptualization.

Declaration of competing interest

The authors declare the following financial interests/personal rela-
ionships which may be considered as potential competing interests:
luwafemi Odu reports financial support was provided by York Univer-

sity. If there are other authors, they declare that they have no known
competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

6 https://smartgsn.vercel.app/’’

https://smartgsn.vercel.app/''

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

p
G
B
d
s
f
v

r
t

S

e
b
p
d

T

a

c
h
d

i
a
T
w
o
w
n
t
t
c
t

Acknowledgments

We would like to thank the Mitacs Globalink Research Internship
rogram for helping us secure the funding required to develop Smart-
SN. We would like to thank the two Mitacs interns (i.e. Emiliano
errones Gutiérrez and Daniel Méndez Beltrán) who are currently
eveloping SmartGSN. We would also like to thank two former graduate
tudents (i.e. Mithila Sivakumar and Kimya Khakzad Shahandashti)
or their involvement in the early development of a former SmartGSN
ersion.

Appendix

A.1. Contextual information

@Context_AC

An assurance case, such as a safety case or security case, can be
epresented using Goal Structuring Notation (GSN), a visual representa-
ion that presents the elements of an assurance case in a tree structure.

The main elements of a GSN assurance case include Goals, Strategies,
olutions (evidence), Contexts, Assumptions, and Justifications.

Additionally, an assurance case in GSN may include an undeveloped
lement decorator, represented as a hollow diamond placed at the
ottom center of a goal or strategy element. This indicates that a
articular line of argument for the goal or strategy has not been fully
eveloped and needs to be further developed.

I will explain each element of an assurance case in GSN so you can
generate it efficiently.

1. Goal – A goal is represented by a rectangle and denoted as G.
It represents the claims made in the argument. Goals should
contain only claims. For the top-level claim, it should contain
the most fundamental objective of the entire assurance case.

2. Strategy – A strategy is represented by a parallelogram and
denoted as S. It describes the reasoning that connects the parent
goals and their supporting goals. A Strategy should only sum-
marize the argument approach. The text in a strategy element is
usually preceded by phrases such as ‘‘Argument by appeal to. . . ’’,
‘‘Argument by . . . ’’, ‘‘Argument across . . . ’’ etc.

3. Solution – A solution is represented by a circle and denoted as
Sn. A solution element makes no claims but are simply references
to evidence that provides support to a claim.

4. Context (Rounded rectangles) – In GSN, context is represented
by a rounded rectangle and denoted as C. The context element
provides additional background information for an argument
and the scope for a goal or strategy within an assurance case.

5. Assumption – An assumption element is represented by an oval
with the letter ‘A’ at the top- or bottom-right. It presents an
intentionally unsubstantiated statement accepted as true within
an assurance case. It is denoted by A

6. Justification (Ovals) – A justification element is represented by
an oval with the letter ‘J’ at the top- or bottom-right. It presents
a statement of reasoning or rationale within an assurance case.
It is denoted by J.

@End_Context_AC

@Context_ACP
Assurance case patterns in GSN (Goal Structuring Notation) are

templates that can be re-used to create an assurance case. Assurance
case patterns encapsulate common structures of argumentation that
have been found effective for addressing recurrent safety, reliability, or
security concerns. An assurance case pattern can be instantiated to de-
velop an assurance case by replacing generic information in placeholder
decorator with concrete or system specific information.
20
To represent assurance case patterns in GSN format, additional
decorators have been provided to support assurance case patterns.

hese additional decorators are used together with the elements of an
assurance case to represent assurance case pattern. I will explain each
dditional decorator below to support assurance case pattern in GSN.

1. Uninstantiated — This decorator denotes that a GSN element
remains to be instantiated, i.e. at some later stage, the generic
information in placeholders within a GSN element needs to be
replaced (instantiated) with a more concrete or system specific
information. This decorator can be applied to any GSN element.

2. Uninstantiated and Undeveloped — Both decorators of unde-
veloped and uninstantiated are overlaid to form this decorator.
This decorator denotes that a GSN element requires both further
development and instantiation.

3. Placeholders — This is represented as curly brackets ‘‘’’ within
the description of an element to allow for customization. The
placeholder ‘‘’’ should be directly inserted within the descrip-
tion of elements for which the predicate ‘‘HasPlaceholder (X)’’
returns true. The placeholder ‘‘’’ can sometimes be empty or
contain generic information that will need to be replaced when
an assurance case pattern is instantiated.

4. Choice — A solid diamond is the symbol for Choice. A GSN
choice can be used to denote alternatives in satisfying a relation-
ship or represent alternative lines of argument used to support
a particular goal.

5. Multiplicity — A solid ball is the symbol for multiple instan-
tiations. It represents generalized n-ary relationships between
GSN elements. Multiplicity symbols can be used to describe how
many instances of one element-type relate to another element.

6. Optionality — A hollow ball indicates ‘optional’ instantiation.
Optionality represents optional and alternative relationships be-
tween GSN elements.

The following steps is used to create an assurance case from an
Assurance cases pattern.

1. Create the assurance case using only elements and decorators
defined for assurance cases.

2. Remove all additional assurance case pattern decorators such as
(Uninstantiated, Placeholders, Choice, Multiplicity, Optionality,
and the combined Uninstantiated and Undeveloped decorator)

3. Remove the placeholder symbol ‘‘’’ and replace all generic in-
formation in placeholders ‘‘’’ with system specific or concrete
information.

@End_Context_ACP

A.2. Domain information for ACAS Xu system

@Domain_Information
ACAS Xu (Airborne Collision Avoidance System Xu) is a collision

avoidance system designed for use in unmanned aerial vehicles (UAVs),
ommonly known as drones. The primary objective of ACAS Xu is to en-
ance the safety of drone operations by preventing collisions between
rones or between a drone and other objects in its environment.

The scenario involves two drones. One called the ‘‘intruder’’ which
s any other drone or object that poses a collision threat to the ownship.
nd the other called the ‘‘ownship’’ which is the perspective we adopt.
he ownship is equipped with ACAS Xu and has a functional space in
hich it must operate. This space is conceptually partitioned into two
perational areas: collision avoidance threshold and collision volume
ith an elevated risk of collision for the ownship with intruders. When
o risk of collision is detected, the ownship follows the current heading
o the destination area. Otherwise, if another drone is detected in
he collision volume, the ownship will turn right or left to avoid the
ollision and prevent the intruder from reaching the collision avoidance
hreshold.

The architecture of ACAS Xu contains the following components.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 9. Assurance case pattern for Threat Identification. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Source: Adapted from Zeroual et al. (2023).
• Sensors: The ownship’s sensors gather data on potential intrud-
ers, including their velocity, angle, and distance relative to the
ownship.

• Processor: The collected data is processed to compute a suitable
avoidance strategy (e.g., turn left, turn right, or do nothing).

• Planner: Based on the processor’s decision, a trajectory is planned
to navigate the ownship safely while avoiding collisions.

• Actuator: The planned trajectory is executed by the actuator,
ensuring the ownship follows the new path.

ACAS Xu’s security can be compromised if an attacker alters the
messages sent to the processor, leading to incorrect decisions that
may result in collisions. Therefore, ensuring the security of ACAS Xu
involves: security requirements decomposition that aims to identify se-
curity threats, and formalization of the system and the security threats
to later verify the absence of threats when developing a secure system.
If it can be shown that all the relevant threats have been identified and
mitigated, then the system is acceptably secure.
21
The following security requirements (SRs) below are imposed to
design a secure ACAS Xu.

• SR1: The GPS messages are genuine and have not been intention-
ally altered.

• SR2: The processor must receive data only from valid sensors.
• SR3: The system should employ mechanisms to mitigate unautho-

rized disclosure of the planning information.
• SR4: ACAS Xu development shall be done considering security

risk assessment procedures.

The four SR are decomposed into requirements about the satisfac-
tion of asset protection (SR1–SR3) and secure development process
requirements (SR4). The former concerns requirements to protect re-
sources that are worth protecting. The latter concerns the requirements
about the development activities that must conform to a relevant secure
development methodology and/or security standard.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 10. An Assurance case for the BLUEROV2 System Generated by GPT-4o.
Fig. 11. An assurance case for the BLUEROV2 system generated by GPT-4 Turbo.
In addition, ACAS Xu has low level elements that capture functional
architecture in terms of components and connectors, and the behav-
ioral aspects of the architectural elements. These elements include the
following.

• Component: a modeling artifact which represents a piece of soft-
ware architecture.
22
• MsgPassing: the representation of a message exchanged between
two components (sender, receiver).

• Port: the interaction point through which a Component can com-
municate with its environment.

• ConnectorMPS: a link that enables communication between Ports.
• Payload: the useful data contained in a Message.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 12. The ALARP pattern sequentially composed with the ReSonAte pattern.
Source: Adapted from Hartsell et al. (2021).
Based on the Microsoft STRIDE threat analysis technique, the fol-
lowing security threats (STs) against the components and the commu-
nication links are identified from the security requirements (SRs).

• ST1: Tampering — This threat is identified from SR1 and involves
GPS sensors and processor.

• ST2: Spoofing — SR2 Sensors and processor
• ST3: Elevation of privileges — SR3 Planning system

Finally, to ensure that ACAS Xu is acceptably secure, during the
creation of its security case, an instance of the goal (G0.X) is created
for each security threat against which the system must be protected,
where X denotes the order of the threat.

@End_Domain_Information

A.3. Assurance case pattern for ACAS XU system

See Fig. 9.
23
A.4. Assurance case for the BLUEROV2 system generated by GPT-4o

See Fig. 10.

A.5. Assurance case for the BLUEROV2 system generated by GPT-4 Turbo

See Fig. 11.

A.6. Assurance case pattern for BlueROV2 system

See Fig. 12.

A.7. Ground truth assurance case for the BlueROV2 system

See Fig. 13.

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Fig. 13. Ground truth assurance case for the BlueROV2 system.
Source: Adapted from Hartsell et al. (2021).
Data availability

We have shared the link to our data.

References

Ahmad, W.U., Chakraborty, S., Ray, B., Chang, K.W., 2021. Unified pre-training for
program understanding and generation. arXiv preprint arXiv:2103.06333.

Alexander, R., Kelly, T., Kurd, Z., McDermid, J., 2007. Safety Cases for Ad-
vanced Control Software: Safety Case Patterns. Final Report, NASA Contract
FA8655-07-1-3025, Univ. of York.

Ayoub, A., Kim, B., Lee, I., Sokolsky, O., 2012. A safety case pattern for model-based
development approach. In: NASA Formal Methods: 4th International Symposium,
NFM 2012, Norfolk, VA, USA, April 3–5, 2012. Proceedings 4. Springer, pp.
141–146.

Bagheri, M., Lamp, J., Zhou, X., Feng, L., Alemzadeh, H., 2022. Towards developing
safety assurance cases for learning-enabled medical cyber-physical systems. arXiv
preprint arXiv:2211.15413.

Belle, A.B., Lethbridge, T.C., Kpodjedo, S., Adesina, O.O., Garzón, M.A., 2019. A novel
approach to measure confidence and uncertainty in assurance cases. In: 2019 IEEE
27th International Requirements Engineering Conference Workshops. REW, IEEE,
pp. 24–33.

Beyene, T.A., Carlan, C., 2021. CyberGSN: a semi-formal language for specifying safety
cases. In: 2021 51st Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops. DSN-W, IEEE, pp. 63–66.
24
Bloomfield, R., Bishop, P., 2009. Safety and assurance cases: Past, present and possible
future–an adelard perspective. In: Making Systems Safer: Proceedings of the
Eighteenth Safety-Critical Systems Symposium. Bristol, UK, 9–11th February 2010,
Springer, pp. 51–67.

Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakan-
tan, A., Shyam, P., Sastry, G., Askell, A., et al., 2020. Language models are few-shot
learners. Adv. Neural Inf. Process. Syst. 33, 1877–1901.

Burton, S., Gauerhof, L., Sethy, B.B., Habli, I., Hawkins, R., 2019. Confidence arguments
for evidence of performance in machine learning for highly automated driving func-
tions. In: Computer Safety, Reliability, and Security: SAFECOMP 2019 Workshops,
ASSURE, DECSoS, SASSUR, STRIVE, and WAISE, Turku, Finland, September 10,
2019, Proceedings 38. Springer, pp. 365–377.

Cârlan, C., Beyene, T.A., Ruess, H., 2016. Integrated formal methods for constructing
assurance cases. In: 2016 IEEE International Symposium on Software Reliability
Engineering Workshops. ISSREW, IEEE, pp. 221–228.

Carlan, C., Gallina, B., 2020. Enhancing state-of-the-art safety case patterns to support
change impact analysis. In: 30th European Safety and Reliability Conference.

Chaaben, M.B., Burgueño, L., Sahraoui, H., 2023. Towards using few-shot prompt
learning for automating model completion. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering: New Ideas and Emerging Results. ICSE-NIER,
IEEE, pp. 7–12.

Chang, Y., Wang, X., Wang, J., Wu, Y., Yang, L., Zhu, K., Chen, H., Yi, X., Wang, C.,
Wang, Y., et al., 2024. A survey on evaluation of large language models. ACM
Trans. Intell. Syst. Technol. 15 (3), 1–45.

Chen, B., Chen, K., Hassani, S., Yang, Y., Amyot, D., Lessard, L., Mussbacher, G.,
Sabetzadeh, M., Varró, D., 2023a. On the use of GPT-4 for creating goal models:
an exploratory study. In: 2023 IEEE 31st International Requirements Engineering
Conference Workshops. REW, IEEE, pp. 262–271.

http://arxiv.org/abs/2103.06333
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb2
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb3
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb3
http://arxiv.org/abs/2211.15413
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb5
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb6
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb7
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb8
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb9
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb10
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb11
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb12
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb13
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb14
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb14

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.
Chen, K., Yang, Y., Chen, B., López, J.A.H., Mussbacher, G., Varró, D., 2023b.
Automated domain modeling with large language models: A comparative study.
In: 2023 ACM/IEEE 26th International Conference on Model Driven Engineering
Languages and Systems. MODELS, IEEE, pp. 162–172.

Denney, E., Pai, G., 2013. A formal basis for safety case patterns. In: Computer
Safety, Reliability, and Security: 32nd International Conference, SAFECOMP 2013,
Toulouse, France, September 24–27, 2013. Proceedings 32. Springer, pp. 21–32.

Devlin, J., Chang, M.W., Lee, K., Toutanova, K., 2018. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.
04805.

Finnegan, A., McCaffery, F., 2014. A security argument pattern for medical device
assurance cases. In: 2014 IEEE International Symposium on Software Reliability
Engineering Workshops. IEEE, pp. 220–225.

Goal Structuring Notation Standard Working Group, 2023. GSN (version 3). URL:
https://scsc.uk/gsn. (Accessed 30 November 2023).

Gohar, U., Hunter, M.C., Lutz, R.R., Cohen, M.B., 2024. Codefeater: Using llms to find
defeaters in assurance cases. In: Proceedings of the 39th IEEE/ACM International
Conference on Automated Software Engineering. pp. 2262–2267.

Gomes, L., da Silva Torres, R., Côrtes, M.L., 2023. BERT-and TF-IDF-based feature
extraction for long-lived bug prediction in FLOSS: A comparative study. Inf. Softw.
Technol. 160, 107217.

Goodenough, J.B., Weinstock, C.B., Klein, A.Z., 2015. Eliminative Argumentation: A
Basis for Arguing Confidence in System Properties. Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, Tech. Rep. CMU/SEI-2015-TR-005,
Citeseer.

Graydon, P.J., 2015. Formal assurance arguments: A solution in search of a problem? In:
2015 45th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, pp. 517–528.

Graydon, P.J., Knight, J.C., Strunk, E.A., 2007. Assurance based development of
critical systems. In: 37th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. DSN’07, IEEE, pp. 347–357.

Hartsell, C., Mahadevan, N., Dubey, A., Karsai, G., 2021. Automated method for
assurance case construction from system design models. In: 2021 5th International
Conference on System Reliability and Safety. ICSRS, IEEE, pp. 230–239.

Hawkins, R.D., Habli, I., Kelly, T., 2015a. The need for a weaving model in assurance
case automation. Ada User J. 187–191.

Hawkins, R., Habli, I., Kolovos, D., Paige, R., Kelly, T., 2015b. Weaving an assurance
case from design: a model-based approach. In: 2015 IEEE 16th International
Symposium on High Assurance Systems Engineering. IEEE, pp. 110–117.

Hawkins, R., Kelly, T., Knight, J., Graydon, P., 2011. A new approach to creating clear
safety arguments. In: Advances in Systems Safety: Proceedings of the Nineteenth
Safety-Critical Systems Symposium. Southampton, UK, 8–10th February 2011,
Springer, pp. 3–23.

Holloway, C.M., 2008. Safety case notations: Alternatives for the non-graphically
inclined? In: 2008 3rd IET International Conference on System Safety. IET, pp.
1–6.

Holloway, C.M., 2013. Making the implicit explicit: Towards an assurance case for
DO-178C. In: International System Safety Conference, No. NF1676L-16361.

Hou, X., Zhao, Y., Liu, Y., Yang, Z., Wang, K., Li, L., Luo, X., Lo, D., Grundy, J.,
Wang, H., 2023. Large language models for software engineering: a systematic
literature review (2023). arXiv preprint arXiv:2308.10620.

Ji, Z., Lee, N., Frieske, R., Yu, T., Su, D., Xu, Y., Ishii, E., Bang, Y.J., Madotto, A.,
Fung, P., 2023. Survey of hallucination in natural language generation. ACM
Comput. Surv. 55 (12), 1–38.

Kelly, T., Weaver, R., 2004. The goal structuring notation–a safety argument notation.
In: Proceedings of the Dependable Systems and Networks 2004 Workshop on
Assurance Cases, Vol. 6. NJ, Citeseer Princeton.

Kendall, M.G., 1938. A new measure of rank correlation. Biometrika 30 (1–2), 81–93.
Khakzad Shahandashti, K., Sivakumar, M., Mohajer, M.M., Boaye Belle, A., Wang, S.,

Lethbridge, T., 2024. Assessing the impact of GPT-4 turbo in generating defeaters
for assurance cases. In: Proceedings of the 2024 IEEE/ACM First International
Conference on AI Foundation Models and Software Engineering. pp. 52–56.

King, A.L., Feng, L., Procter, S., Chen, S., Sokolsky, O., Hatcliff, J., Lee, I., 2015.
Towards assurance for plug & play medical systems. In: Computer Safety, Reli-
ability, and Security: 34th International Conference, SAFECOMP 2015, Delft, the
Netherlands, September 23–25, 2015, Proceedings 34. Springer, pp. 228–242.

Lin, C.L., Shen, W., 2015. Applying safety case pattern to generate assurance cases
for safety-critical systems. In: 2015 IEEE 16th International Symposium on High
Assurance Systems Engineering. IEEE, pp. 255–262.

Lin, C.L., Shen, W., Drager, S., 2016. A framework to support generation and
maintenance of an assurance case. In: 2016 IEEE International Symposium on
Software Reliability Engineering Workshops. ISSREW, IEEE, pp. 21–24.

Lin, C.L., Shen, W., Hawkins, R., 2017. Support for safety case generation via model
transformation. ACM SIGBED Rev. 14 (2), 44–52.

Maksimov, M., Kokaly, S., Chechik, M., 2019. A survey of tool-supported assurance
case assessment techniques. ACM Comput. Surv. 52 (5), 1–34.

Mansourov, N., Campara, D., 2010. System Assurance: Beyond Detecting Vulnerabilities.
Elsevier.

Matsuno, Y., 2011. D-Case Editor: A Typed Assurance Case Editor. University of Tokyo.
25
Matsuno, Y., 2014. A design and implementation of an assurance case language. In:
2014 44th Annual IEEE/IFIP International Conference on Dependable Systems and
Networks. IEEE, pp. 630–641.

Matsuno, Y., Taguchi, K., 2011. Parameterised argument structure for GSN patterns.
In: 2011 11th International Conference on Quality Software. IEEE, pp. 96–101.

Menghi, C., Viger, T., Di Sandro, A., Rees, C., Joyce, J., Chechik, M., 2023. Assurance
case development as data: A manifesto. In: 2023 IEEE/ACM 45th International
Conference on Software Engineering: New Ideas and Emerging Results. ICSE-NIER,
IEEE, pp. 135–139.

Mohajer, M.M., Aleithan, R., Harzevili, N.S., Wei, M., Belle, A.B., Pham, H.V., Wang, S.,
2024. Effectiveness of ChatGPT for static analysis: How far are we? In: Proceedings
of the 1st ACM International Conference on AI-Powered Software. pp. 151–160.

Mohamad, M., Steghöfer, J.P., Scandariato, R., 2021. Security assurance cases—state
of the art of an emerging approach. Empir. Softw. Eng. 26 (4), 70.

Murugesan, A., Wong, I.H., Stroud, R., Arias, J., Salazar, E., Gupta, G., Bloomfield, R.,
Varadarajan, S., Rushby, J., 2023. Semantic analysis of assurance cases using s
(CASP). In: Goal Directed Execution of Answer Set Programs (GDE) Workshop in
Int’l Conf. on Logic Programming. ICLP workshops

Napolano, M., Machida, F., Pietrantuono, R., Cotroneo, D., 2015. Preventing recurrence
of industrial control system accident using assurance case. In: 2015 IEEE Interna-
tional Symposium on Software Reliability Engineering Workshops. ISSREW, IEEE,
pp. 182–189.

Naveed, H., Khan, A.U., Qiu, S., Saqib, M., Anwar, S., Usman, M., Barnes, N., Mian, A.,
2023. A comprehensive overview of large language models. arXiv preprint arXiv:
2307.06435.

Nguyen, E.A., Ellis, A.G., 2011. Experiences with assurance cases for spacecraft safing.
In: 2011 IEEE 22nd International Symposium on Software Reliability Engineering.
IEEE, pp. 50–59.

Odu, O., Belle, A.B., Wang, S., Shahandashti, K.K., 2024. A PRISMA-driven bibliometric
analysis of the scientific literature on assurance case patterns. arXiv preprint
arXiv:2407.04961.

OMG, 2021. Structured assurance case metamodel (version 2.2). URL: https://www.
omg.org/spec/SACM/2.2/About-SACM. (Accessed 27 January 2024).

OpenAI, 2023a. How should I set the temperature parameter. URL: https:
//platform.openai.com/docs/guides/text-generation/how-should-i-set-the-
temperature-parameter. (Accessed 15 May 2024).

OpenAI, 2023b. Openai API. URL: https://openai.com/api/.
Palin, R., Ward, D., Habli, I., Rivett, R., 2011. ISO 26262 Safety Cases: Compliance

and Assurance. IET.
Papineni, K., Roukos, S., Ward, T., Zhu, W.J., 2002. Bleu: a method for automatic

evaluation of machine translation. In: Proceedings of the 40th Annual Meeting of
the Association for Computational Linguistics. pp. 311–318.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blon-
del, M., Prettenhofer, P., Weiss, R., Dubourg, V., et al., 2011. Scikit-learn: Machine
learning in Python. J. Mach. Learn. Res. 12, 2825–2830.

Picardi, C., Hawkins, R., Paterson, C., Habli, I., 2019. A pattern for arguing the
assurance of machine learning in medical diagnosis systems. In: Computer Safety,
Reliability, and Security: 38th International Conference, SAFECOMP 2019, Turku,
Finland, September 11–13, 2019, Proceedings 38. Springer, pp. 165–179.

Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
Liu, P.J., 2020. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res. 21 (140), 1–67.

Rahutomo, F., Kitasuka, T., Aritsugi, M., et al., 2012. Semantic cosine similarity. In:
The 7th International Student Conference on Advanced Science and Technology,
Vol. 4, No. 1. ICAST, University of Seoul South Korea, p. 1.

Robert, P., Ibrahim, H., 2010. Assurance of automotive safety–a safety case approach.
In: Proc. 29th International Conference, Vol. 2010. SAFECOMP, pp. 82–96.

Romera-Paredes, B., Torr, P., 2015. An embarrassingly simple approach to zero-shot
learning. In: International Conference on Machine Learning. PMLR, pp. 2152–2161.

SacreBLEU, 2024. SacreBLEU. URL: https://github.com/mjpost/sacreBLEU. (Accessed
25 June 2024).

Salton, G., Buckley, C., 1988. Term-weighting approaches in automatic text retrieval.
Inf. Process. Manage. 24 (5), 513–523.

Seatgeek, 2024. Seatgeek/fuzzywuzzy: Fuzzy string matching in Python. URL: https:
//github.com/seatgeek/fuzzywuzzy?tab=readme-ov-file. (Accessed 25 June 2024).

Selviandro, N., Hawkins, R., Habli, I., 2020. A visual notation for the representation
of assurance cases using sacm. In: Model-Based Safety and Assessment: 7th
International Symposium, IMBSA 2020, Lisbon, Portugal, September 14–16, 2020,
Proceedings 7. Springer, pp. 3–18.

Shahandashti, K.K., Belle, A.B., Lethbridge, T.C., Odu, O., Sivakumar, M., 2024a. A
PRISMA-driven systematic mapping study on system assurance weakeners. Inf.
Softw. Technol. 107526.

Shahandashti, K.K., Belle, A.B., Mohajer, M.M., Odu, O., Lethbridge, T.C., Hemmati, H.,
Wang, S., 2024b. Using GPT-4 turbo to automatically identify defeaters in assurance
cases. In: 2024 IEEE 32nd International Requirements Engineering Conference
Workshops. REW, IEEE, pp. 46–56.

Sivakumar, M., Belle, A.B., Shahandashti, K.K., Odu, O., Hemmati, H., Kpodjedo, S.,
Wang, S., Adesina, O.O., 2024a. I came, I saw, I certified: some perspectives on
the safety assurance of cyber-physical systems. arXiv preprint arXiv:2401.16633.

http://refhub.elsevier.com/S0164-1212(25)00021-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb15
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb16
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb16
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://arxiv.org/abs/1810.04805
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb18
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb18
https://scsc.uk/gsn
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb20
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb21
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb22
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb23
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb24
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb25
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb26
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb27
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb28
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb29
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb30
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb30
http://arxiv.org/abs/2308.10620
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb32
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb33
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb34
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb35
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb36
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb37
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb38
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb39
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb40
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb41
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb42
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb43
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb44
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb45
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb46
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb47
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb47
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb47
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb48
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb49
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb49
http://arxiv.org/abs/2307.06435
http://arxiv.org/abs/2307.06435
http://arxiv.org/abs/2307.06435
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb51
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb51
http://arxiv.org/abs/2407.04961
https://www.omg.org/spec/SACM/2.2/About-SACM
https://www.omg.org/spec/SACM/2.2/About-SACM
https://www.omg.org/spec/SACM/2.2/About-SACM
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://platform.openai.com/docs/guides/text-generation/how-should-i-set-the-temperature-parameter
https://openai.com/api/
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb56
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb57
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb58
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb59
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb60
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb61
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb62
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb62
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb62
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb63
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb63
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb63
https://github.com/mjpost/sacreBLEU
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb65
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb65
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb65
https://github.com/seatgeek/fuzzywuzzy?tab=readme-ov-file
https://github.com/seatgeek/fuzzywuzzy?tab=readme-ov-file
https://github.com/seatgeek/fuzzywuzzy?tab=readme-ov-file
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb67
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb67
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb67
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb67
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb67
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb67
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb67
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb68
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb68
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb68
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb68
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb68
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb69
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb69
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb69
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb69
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb69
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb69
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb69
http://arxiv.org/abs/2401.16633

The Journal of Systems & Software 222 (2025) 112353O. Odu et al.

a

a
g

a
d
C
a
T

t
A

C
a
r
a

H
s
i
d

Sivakumar, M., Belle, A.B., Shan, J., Adesina, O., Wang, S., Chechik, M., Fokaefs, M.,
Shahandashti, K.K., Odu, O., 2023. The last decade in review: Tracing the evolution
of safety assurance cases through a comprehensive bibliometric analysis. arXiv
preprint arXiv:2311.07495.

Sivakumar, M., Belle, A.B., Shan, J., Shahandashti, K.K., 2024b. Exploring the capabili-
ties of large language models for the generation of safety cases: the case of GPT-4.
In: 2024 IEEE 32nd International Requirements Engineering Conference Workshops.
REW, IEEE, pp. 35–45.

Sivakumar, M., Belle, A.B., Shan, J., Shahandashti, K.K., 2024c. Prompting GPT–4 to
support automatic safety case generation. Expert Syst. Appl. 255, 124653.

Snell, J., Swersky, K., Zemel, R., 2017. Prototypical networks for few-shot learning.
Adv. Neural Inf. Process. Syst. 30.

Stone, M., 1974. Cross-validatory choice and assessment of statistical predictions. J. R.
Stat. Soc. Ser. B Stat. Methodol. 36 (2), 111–133.

Sun, Y., Wang, S., Li, Y., Feng, S., Chen, X., Zhang, H., Tian, X., Zhu, D., Tian, H.,
Wu, H., 2019. Ernie: Enhanced representation through knowledge integration. arXiv
preprint arXiv:1904.09223.

Vehtari, A., Gelman, A., Gabry, J., 2017. Practical Bayesian model evaluation using
leave-one-out cross-validation and WAIC. Stat. Comput. 27, 1413–1432.

Vierhauser, M., Bayley, S., Wyngaard, J., Xiong, W., Cheng, J., Huseman, J., Lutz, R.,
Cleland-Huang, J., 2019. Interlocking safety cases for unmanned autonomous
systems in shared airspaces. IEEE Trans. Softw. Eng. 47 (5), 899–918.

Viger, T., Diemert, S., Foster, O., 2023. Patterns for integrating NIST 800-53 controls
into security assurance cases. In: International Conference on Computer Safety,
Reliability, and Security. Springer, pp. 165–175.

Viger, T., Murphy, L., Diemert, S., Menghi, C., Joyce, J., Di Sandro, A., Chechik, M.,
2024. AI-supported eliminative argumentation: Practical experience generating
defeaters to increase confidence in assurance cases. In: 2024 IEEE 35th International
Symposium on Software Reliability Engineering. ISSRE, IEEE, pp. 284–294.

Wagner, S., Schätz, B., Puchner, S., Kock, P., 2010. A case study on safety cases
in the automotive domain: Modules, patterns, and models. In: 2010 IEEE 21st
International Symposium on Software Reliability Engineering. IEEE, pp. 269–278.

Wang, B., Wang, Z., Wang, X., Cao, Y., A Saurous, R., Kim, Y., 2024a. Grammar
prompting for domain-specific language generation with large language models.
Adv. Neural Inf. Process. Syst. 36.

Wang, S., Wei, Z., Choi, Y., Ren, X., 2024b. Can LLMs reason with rules? Logic
scaffolding for stress-testing and improving LLMs. arXiv preprint arXiv:2402.11442.

Ward, F.R., Habli, I., 2020. An assurance case pattern for the interpretability of machine
learning in safety-critical systems. In: Computer Safety, Reliability, and Security.
SAFECOMP 2020 Workshops: DECSoS 2020, DepDevOps 2020, USDAI 2020, and
WAISE 2020, Lisbon, Portugal, September 15, 2020, Proceedings 39. Springer, pp.
395–407.

Wardziński, A., Jarzębowicz, A., 2016. Towards safety case integration with hazard
analysis for medical devices. In: Computer Safety, Reliability, and Security: SAFE-
COMP 2016 Workshops, ASSURE, DECSoS, SASSUR, and TIPS, Trondheim, Norway,
September 20, 2016, Proceedings 35. Springer, pp. 87–98.

Wardziński, A., Jones, P., 2017. Uniform model interface for assurance case integration
with system models. In: Computer Safety, Reliability, and Security: SAFECOMP
2017 Workshops, ASSURE, DECSoS, SASSUR, TELERISE, and TIPS, Trento, Italy,
September 12, 2017, Proceedings 36. Springer, pp. 39–51.

Wei, R., Kelly, T.P., Dai, X., Zhao, S., Hawkins, R., 2019. Model based system assurance
using the structured assurance case metamodel. J. Syst. Softw. 154, 211–233.

Wei, J., Wang, X., Schuurmans, D., Bosma, M., Xia, F., Chi, E., Le, Q.V., Zhou, D., et
al., 2022. Chain-of-thought prompting elicits reasoning in large language models.
Adv. Neural Inf. Process. Syst. 35, 24824–24837.

White, J., Fu, Q., Hays, S., Sandborn, M., Olea, C., Gilbert, H., Elnashar, A., Spencer-
Smith, J., Schmidt, D.C., 2023. A prompt pattern catalog to enhance prompt
engineering with chatgpt. arXiv preprint arXiv:2302.11382.

Wu, T., He, S., Liu, J., Sun, S., Liu, K., Han, Q.L., Tang, Y., 2023. A brief overview of
ChatGPT: The history, status quo and potential future development. IEEE/CAA J.
Autom. Sin. 10 (5), 1122–1136.

Xia, C.S., Wei, Y., Zhang, L., 2022. Practical program repair in the era of large
pre-trained language models. arXiv preprint arXiv:2210.14179.

Xu, B., Lu, M., Zhang, D., 2017. A layered argument strategy for software security
case development. In: 2017 IEEE International Symposium on Software Reliability
Engineering Workshops. ISSREW, IEEE, pp. 331–338.

Yang, W., Lin, Y., Zhou, J., Wen, J., 2023. Enabling large language models to learn
from rules. arXiv preprint arXiv:2311.08883.
26
Zeroual, M., Hamid, B., Adedjouma, M., Jaskolka, J., 2023. Formal model-based argu-
ment patterns for security cases. In: Proceedings of the 28th European Conference
on Pattern Languages of Programs. pp. 1–12.

Zhu, S., Lu, M., Xu, B., 2018. Software reliability case development method based
on the 4+ 1 principles. In: 2018 12th International Conference on Reliability,
Maintainability, and Safety. ICRMS, IEEE, pp. 197–202.

Oluwafemi Odu is a research assistant at the Department of Electrical Engineering and
Computer Science at York University, Toronto, Canada. His research interests include
the safety assurance of cyber–physical systems, and machine learning. He is currently
a master’s student at the Department of Electrical Engineering and Computer Science
t York University, Toronto, Canada. He just defended his M.Sc. thesis. The latter has

been recommended for the best thesis award.

Alvine B. Belle is an Assistant Professor at the Department of Electrical Engineering
nd Computer Science at York University, Toronto, Canada. Her work focuses on
enerative AI, safety assurance, autonomous systems and EDI in computing. She holds

a Ph.D. in software engineering from the University of Quebec (Ecole de Technologie
Supérieure), Montreal, Canada. She worked for two years as a postdoctoral researcher
t the University of Ottawa, Ottawa, Canada. She has recently completed a graduate
iploma in public administration and governance at McGill University, Montreal,
anada. She has authored several papers in top-tier venues such as Information
nd Software Technology, ACM Computing Surveys, ICSA (formerly ECSA), and ACM
ransactions on Computing Education.

Song Wang received the dual B.E. degrees from Sichuan University, the master’s
degree from the Institute of Software Chinese Academy of Sciences, and the Ph.D.
degree from the University of Waterloo. He is an Associate Professor with the York
University, Canada. He worked at the intersection of software engineering and artificial
intelligence. He has more than 60 high-quality publications including IEEE Transactions
on software engineering, ACM Computing Surveys, ICSE, TOSEM, FSE, ASE. He is
he recipient of four Distinguished/Best Paper Awards. He is currently serving as an
ssociate Editor of ACM Transactions on Software Engineering.

Segla Kpodjedo received a Ph.D. degree in software engineering from Ecole Polytech-
nique de Montreal, Canada. After getting his PhD degree, he worked as a postdoctoral
fellow at Ecole Polytechnique de Montreal, Montreal, Canada. He currently works as
a Professor at the University of Quebec (Ecole de Technologie Superieure), Montreal,
Canada. His current research interests include machine learning, software evolution,
empirical studies in software engineering, graph matching, combinatorial optimization,
and meta-heuristics. He is the author of dozens of papers published in top-tier venues
including MODELS, ICPC, ICSA (formerly ECSA), GECCO, ISSRE, IEEE Transactions on
software engineering, Information and Software Technology and Empirical Software
Engineering.

Timothy C. Lethbridge is a Professor at the University of Ottawa, Canada. His research
currently focuses on software modeling tools, particularly the user experience of such
tools, their educational use, code generation, and the Umple technology. He is a
licensed Professional Engineer, a senior member of both ACM and IEEE and a fellow
of the Canadian Information Processing Society (CIPS). He received the IEEE Computer
Society TCSE Outstanding Educator Award in 2016. He is co-general chair of the
International Conference on Software Engineering (ICSE) 2025 in Ottawa.

Hadi Hemmati is an Associate Professor at the electrical engineering and computer
science department, at York University. Previously he was an Associate Professor at
the electrical and software engineering department at the University of Calgary, AB,

anada. In the past, he was also an Assistant Professor at the University of Manitoba,
nd a postdoctoral fellow at the University of Waterloo, and Queen’s University. He
eceived his Ph.D. from the University of Oslo, Norway. His main research interests
re automated software engineering (with a focus on software testing, debugging,

and repair), and trustworthy AI (with a focus on robustness and explainability).
is research has a strong focus on pragmatic software/ML solutions for large scale

ystems and empirically investigating them in practice. He has been a PI on multiple
ndustry research projects in different domains such as IT, aviation, insurance, urban
evelopment, fintech, and beyond.

http://arxiv.org/abs/2311.07495
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb72
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb72
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb72
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb72
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb72
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb72
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb72
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb73
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb73
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb73
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb74
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb74
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb74
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb75
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb75
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb75
http://arxiv.org/abs/1904.09223
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb77
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb77
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb77
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb78
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb78
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb78
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb78
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb78
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb79
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb79
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb79
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb79
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb79
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb80
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb80
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb80
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb80
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb80
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb80
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb80
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb81
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb81
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb81
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb81
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb81
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb82
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb82
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb82
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb82
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb82
http://arxiv.org/abs/2402.11442
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb84
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb85
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb85
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb85
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb85
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb85
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb85
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb85
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb86
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb86
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb86
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb86
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb86
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb86
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb86
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb87
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb87
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb87
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb88
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb88
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb88
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb88
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb88
http://arxiv.org/abs/2302.11382
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb90
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb90
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb90
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb90
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb90
http://arxiv.org/abs/2210.14179
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb92
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb92
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb92
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb92
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb92
http://arxiv.org/abs/2311.08883
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb94
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb94
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb94
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb94
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb94
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb95
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb95
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb95
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb95
http://refhub.elsevier.com/S0164-1212(25)00021-4/sb95

	Automatic instantiation of assurance cases from patterns using large language models
	Introduction
	Background
	Assurance Case
	Assurance Case Pattern
	Representation of Assurance Cases and Assurance Case Patterns
	Assurance Case Representation
	Assurance Case Pattern Representation

	Large Language Models (LLMs)

	Related Work
	Formalization of Assurance Cases and Assurance Case Patterns
	Automatic instantiation of assurance case patterns
	Rule-based Learning in LLMs
	LLMs for Software Modeling

	Approach
	Phase I: Formalization of Assurance Case Patterns into Predicates
	Predicate for Formalizing an Assurance Case and Its Decorators
	Predicates for Formalizing an Assurance Case Pattern
	Predicates for Formalizing Relationships between GSN elements

	Phase II: Data Collection
	Phase III: Data Pre-processing
	Phase IV: Using LLM to Automatically Generate Assurance Cases

	Experimental Setup
	Research Questions
	Description of the dataset used in the experiments
	ACAS XU and Its Assurance Framework
	BlueROV2 and Its Assurance Framework
	GPCA and Its Assurance Framework
	The Instant Messaging (IM) Server Software and Its Assurance Framework
	The DeepMind ML system for retinal disease diagnosis and Its Assurance Framework

	Large Language Models Setups
	Description of the Experiments and the supporting information
	Description of the supporting information
	Description of the Experiments

	Description of the structure of the prompts used in the experiments
	Input passed to the LLM
	Output generated by the LLM
	Description of System Prompts with S.E Knowledge
	Description of User Prompts with S.E Knowledge

	Evaluation Metrics
	Exact Match
	BLEU Score
	Semantic Similarity

	Results
	RQ1: Are LLMs capable of creating well-formed and semantically valid assurance cases when they do not have SE knowledge specified in their prompts?
	Metric results
	Reasons explaining Experiment 1 results

	RQ2: Are LLMs capable of automatically instantiating assurance cases from assurance case patterns with SE knowledge specified in the prompts?
	Metric results
	RQ2.1: Comparative Analysis of One-Shot vs Zero-Shot Experiments
	RQ2.2: Impact of Domain Information
	RQ2.3: Impact of Contextual Information
	RQ2.4: Impact of Predicate-based Rules

	RQ3: Which of the evaluated LLMs performs best when it comes to automatically instantiating assurance cases from assurance case patterns?

	Discussion
	Analyzing varying One-Shot example
	Methodology
	Results

	Are Human Experts Still Needed for Assurance Case Creation in the Age of LLMs?
	Methodology used for the manual assessment
	Discussion of the reasonability results

	Threats to Validity
	Internal Validity
	Construct Validity
	Conclusion Validity

	Conclusion and Future Work
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Appendix
	Contextual Information
	Domain Information for ACAS Xu System
	Assurance Case Pattern for ACAS XU System
	Assurance case for the BLUEROV2 System Generated by GPT-4o
	Assurance case for the BLUEROV2 System Generated by GPT-4 Turbo
	Assurance Case Pattern for BlueROV2 System
	Ground Truth Assurance Case for the BlueROV2 System

	Appendix . Data availability
	References

