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Abstract: The global adoption of hybrid renewable energy systems (HRESs) is accelerat-
ing as a strategic response to escalating energy demands and the imperative to mitigate
greenhouse gas emissions. Despite the development of various technological tools, such
as pre-feasibility analysis, sizing, and simulation tools, challenges persist due to their
limited flexibility in modifying system architectures and their typically long computation
times, which hinder their practical efficiency. This study introduces a novel hybrid method
that integrates the Branch and Bound (BB) heuristic search algorithm with the k-Nearest
Neighbors (kNN) algorithm to drastically reduce the simulation time of microgrid models
in Simulink. Validation considering four distinct case studies reveals that our method can
decrease the simulation time by up to 94.68% while maintaining an acceptable accuracy.
Specifically, simulation times in certain cases were reduced from approximately 21,780 and
118,580 s to 1442.7969 and 6306.0625 s, respectively. This significant reduction facilitates the
rapid evaluation and selection of optimal HRES configurations, enhancing the efficiency of
both editable and non-editable systems. Through streamlining the simulation process, this
approach not only accelerates the design and analysis phases but also supports the broader
adoption and deployment of HRESs, which is critical for achieving a sustainable future.
This advancement offers a robust and efficient methodology for optimizing simulation
times, thereby addressing a key bottleneck in the development and implementation of
hybrid renewable energy solutions.

Keywords: branch and bound; k-nearest neighbors; optimization; renewable energy;
simulations

MSC: 37M05

1. Introduction
The growing demand for energy, combined with the growing concern about envi-

ronmental pollution and greenhouse gas production, is contributing to the increased use
of renewable energy sources, including solar, wind, biomass, hydraulic, and geothermal
sources. Although these sources are diverse, each has a unique energy supply issue. This
uniqueness is mainly due to the energy source, the load demand to be met, and the im-
plementation conditions. Moreover, the renewable sources that can be used in an area
may not meet the projected energy demands and/or are subject to significant fluctuations.
Therefore, renewable sources are often combined with generators for compensatory energy
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production and storage systems for energy storage to ensure the continuity of energy
availability. These combinations are deemed hybrid renewable energy systems (HRESs).

Several technologies and approaches have been proposed to ease the problematic
decision-making process related to choosing the right system. These are grouped into
four subcategories [1] with complementary objectives. Pre-feasibility analysis tools help
engineers in their initial analysis of the suitability of a renewable energy system. Sizing tools
help to find the best values for various parameters, such as the number of solar photovoltaic
panels to be used to meet energy demand. These tools consider energy demand as an
objective and deal with the problem by searching for values that optimize different objective
functions. There are also simulation and open architecture tools. Simulation tools, as the
name suggests, are based on user-provided specifications, such as the size of the system
to implement. The simulation tool then provides the user with a detailed analysis of the
system’s behavior, which is supplied as an input to the simulation model. The last category
is open-architecture tools, which are the opposite of the other types (particularly simulation
tools, which are primarily black boxes that do not allow for structural modifications).
As indicated in their name, such tools offer an open possibility to make modifications
thanks to their R&D-oriented components.

The key problem of sizing a hybrid renewable energy system is related to the fact that
renewable energy sources cannot consistently produce energy at all times of the day and
year, which makes it essential to combine renewables with alternative energy sources. It is
also important to find the best size for each source, considering factors such as investment
costs and the available installation surface area. Even with a combination of different energy
sources, in many cases, it is necessary to add a generator to the system (e.g., to supply
energy to medical facilities, which need to be kept powered at all times). Considering when
the generator will have to use fossil fuel, depending on the available investment cost, it
is important to determine the correct generator size to limit this consumption as much as
possible to reduce greenhouse gas emissions. In addition, given the variability of renewable
energy production sources, it is necessary to attach external systems.

Adopting a hybrid renewable energy system requires carrying out three essential steps.
Step 1: Scenario generation—This step consists of defining different potentially feasible

configurations of these systems, taking into account various factors such as the renewable
energy sources available (solar, wind, biomass), the different energy demand profiles that
the system must meet, and, above all, environmental and economic constraints (e.g., the lo-
cation and total cost of the system must be taken into account) [2]. The literature abounds
with methods, such as genetic algorithms (GAs) and probabilistic methods (Monte Carlo),
which enable the definition of realistic data sets and scenarios based on temporal correla-
tions and uncertainties [3]. Considering that renewable sources alone do not guarantee
system resilience, the generation process can integrate not only storage sources (batteries)
but also external production sources (generators) [4,5].

Step 2: Simulation of previously generated configurations—Simulation tools and
software, such as HOMER/HOMER Pro (version 3.11.6561.20287) [1,2,6], are available
to evaluate the performance of these configurations [7,8]. A large body of research has
used optimization algorithms, such as particle swarm optimization (PSO) [9,10] and simu-
lated annealing, with the aim of optimizing implementation costs and the proportion of
renewable energy [11,12].

Step 3: Feasibility analysis—This final stage is crucial in determining which of the
many final systems will be adopted. It consists of evaluating systems in terms of their tech-
nical, economic, environmental, and social aspects. In this stage, energy costs, net present
value, CO2 emissions, job creation rates, and many other factors are evaluated to determine
the optimal configuration [13–15]. Implementing these different steps, though necessary,
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requires significant costs in terms of both time and resources. These processes can take
several tens of hours [16,17], depending on the different characteristics considered.

Simulation time is a significant research issue across multiple fields. The problem
has attracted the attention of many researchers in various fields, including the energy
field [17–21] and in the field of image characterization and reconstruction [22].

Table 1 summarizes the key contributions of previous work on hybrid renewable en-
ergy systems. Martinez-Turegano et al. (2019) [21] have addressed the problem of extended
simulation time for wind farms through developing admittance models with the aim of
reducing the mathematical complexity and maintaining acceptable accuracy in perfor-
mance. This approach has proven very useful in the context of large-scale networks, such
as offshore wind farms. In light of this work, Banihashemi et al. (2022) [19] proposed the
use of the auto-encoder approach due to its ability to reduce the size of system parameters.
In particular, the use of auto-encoders enables the extraction of the essential characteristics
of energy systems, considerably reducing simulation times. This approach has many advan-
tages when researchers have sufficient and representative data at their disposal. Regarding
the work by Tounsi (2022) [17], the approach consisted of replacing modules which were
deemed to be complex in the simulation model. Although this approach may address the
issues of complexity and simulation time, it remains domain-specific. Finally, in a similar
vein to the work of Banihashemi et al. and Tounsi, Mange and Skowronska (2023) [20] have
proposed the use of machine learning (ML) models. The aim of their research was to replace
the entire simulation model with predictive models. This reduces processing time while
guaranteeing uncertainty management. In this approach, the ML models need to be trained
on high-quality data sets and their reliability assessed based on robust model validation.

Table 1. Summary of methodologies and applications.

Reference Methodology Key Points Applications

Martínez-
Turégano, et al.

(2019) [21]

Using an
admittance model

Use of aggregation
techniques based

on admittance
models to reduce
simulation time

Offshore wind
farms

Banihashemi et al.
(2021) [19]

Model order
reduction with
auto-encoders

Use auto-encoders
to extract essential

characteristics,
reducing the
number of
parameters
simulated

Used in energy
models for
buildings

Tounsi (2022) [17] Developing a scale
model in Simulink

Replacing complex
models with

simplified versions
in Simulink

Wind energy
systems

Mange and
Skowronska (2023)

[20]

Comprehensive
machine learning

model

Replace the
simulation process

with a machine
learning model that
takes uncertainties
and reliability into

account

Autonomous and
mobile systems

Although these approaches have been effective in their application frameworks, there
are a number of limitations. First, reliable data are required to construct machine learning
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models. In addition, simulations relating to sizing hybrid renewable energy systems
remains a problem relative to each situation. This relativity is an essential problem, as load
demands are not the same for two different consumers and energy production sources
can differ considerably. When considering the use of a simulation model for hybrid
renewable energy systems, such as HOMER (Hybrid Optimization Model for Renewable
Energy) [1,23], it is not possible to develop a replacement component for an entity or for
the entire model. In many cases, a researcher only has simulation rights for simulating
the candidate systems they want to install. Next, the researcher must select an analysis
methodology to adopt for the simulation data after running a simulation. The completion
of the simulation(s) can be a very long process [16,24].

Various studies have also addressed multi-processor execution techniques [25,26].
A key concern regarding multi-processor execution is that it requires a machine with a
multi-core processor and high processing speed [25]. Although many methods have been
discussed in the literature, these methods can only be applied in well-defined study cases.
Their application in our study is limited by (i) the non-availability of historical data to best
represent all zones and (ii) the impossibility of having modification access to the model,
in order to plan the feature extraction study or the replacement of a part of the model
by a new optimized model block. Therefore, this study proposes a new methodology for
reducing the simulation waiting time through applying a hybrid method based on machine
learning and a heuristic search with no historical data or modification of the initial model.
With the aim of simplifying the evaluation process for hybrid energy systems, the proposed
hybrid methodology combines the k-Nearest Neighbors and Branch and Bound methods.
This approach reduces the waiting time for simulation and feasibility analysis tools.

The main contributions of this work revolve around the following three points:

• Innovative hybrid kNN and Branch and Bound (BB)—the integration of kNN
with BB optimization establishes a robust framework for the selection process of
energy systems;

• Targeted exploration optimization—the application of BB enables a solution to
the problem to be found through analyzing nodes and branches. This approach
avoids the exploration of unnecessary branches based on the results obtained in the
previous steps;

• Dynamic definition of sets of hybrid renewable energy systems—the kNN approach
defines sets of feasible systems sharing common characteristics, such as similar neigh-
boring systems. This approach allows for a preliminary classification of systems,
which speeds up the search process.

The remainder of this article is structured as follows. Section 2 presents the methodol-
ogy, beginning with our three-phase model, and describes how the two algorithms (kNN
and BB) help to achieve the objective of the study. The results and comparison with tradi-
tional methods are presented in Section 3. The article ends with concluding remarks and
recommendations for future work in Section 4.

2. Solution Approach
This section outlines the study’s toolset and comprehensive methodology, describing

the approach adopted to address the research objectives.

2.1. Stepwise

The tool used in our research is a three-part model, as described in Section 2 and
illustrated in Figure 1. This tool is both a sizing model [1,6] and a simulation model; that is,
it is a model to predict the behavior of a system extracted from the sizing phase, as well as
a feasibility analysis tool [27].
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Figure 1. Key steps of proposed hybrid renewable energy system (HRES) methodology.

A set of feasible systems (phase 1) is proposed based on the defined specifications,
including the available installation area, technologies, and existential quantification con-
straints. These eligible systems are then evaluated one after the other by the tool’s core,
which consists of a simulation model (phase 2). This simulation model is a multiple-input,
multiple-output (MIMO) black-box model, as it does not present any details of its simula-
tion process. When such a model is used in this context, it is important to remember that
we will not have any editing rights, only the right to simulate our system.

This simulation model, as shown in Figure 2, requires several inputs, which are
listed below.
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• Parameters that define the system to be simulated;
• An energy demand profile;
• Energy pricing;
• Historical solar irradiance data for one year (if evaluating energy production from

solar power).

From these inputs, a one-year simulation is run and the outputs listed below
are provided.

• Annual energy production;
• Total annual energy consumption;
• Fuel consumption.

Once all these simulations of the system have been completed, we move on to phase 3,
in which all simulated systems are evaluated using a decision support method to determine
the best system to implement based on pre-defined criteria [4,9,28], such as the items
listed below.

• Investment costs;
• System reliability;
• The capital recovery period;
• The greenhouse gas emission rate.
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The most expensive phases of this modeling tool are phases 2 and 3, comprising the
simulation and feasibility analysis [8]. The search for the best system corresponds to finding
y∗ as defined by Equation (1):

y∗ = {y′ ∈ Y | g(y′) > g(y), ∀y ∈ Y}, (1)

where g is the fitness function for the feasibility analysis; Y is the set of simulation results of
feasible candidate systems produced by the simulation model, defined by the Equation (2);
and y is the simulation result for a feasible candidate system.

Y = {y | y = Ax}, (2)

where A is the simulation model definition matrix and x is the coordinate vector defining
the characteristics of the system to be studied.

2.2. Methodology

Given the considerable time that such a modeling tool may require, our proposed
solution to reduce the waiting time applies to phases 2 and 3 shown in Figure 1. The pro-
posed methodology uses a hybrid method based on the Branch and Bound optimization
algorithm (BB) and the k-Nearest Neighbors (kNN) machine learning technique to mini-
mize the simulation and analysis time of the candidate systems. This hybrid methodology
takes advantage of the strengths of each of these methods. Applying the Branch and Bound
method, we use the conclusions drawn from an initial evaluation of one of the candidate
systems to dispense with the evaluation of other candidate systems and reduce the compu-
tation time. This process is called the branch pruning of candidate solutions. Given the tool
we are studying in this research (i.e., a simulation model), we use the kNN algorithm to
select candidate systems belonging to a defined set based on the distance criterion. These
sets, defined by the kNN algorithm, represent the branches that will be pruned by the
Branch and Bound method. The execution of this methodology requires the definition of a
few parameters, as shown in Table 2. Figure 3 presents the sequence of this methodology.
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Table 2. Parameters to be defined in the proposed methodology.

Parameter Description

τ (seconds) Minimal time spent searching for the best system
µ (seconds) Average system simulation time

t Maximum number of systems to return
η Maximum number of systems to simulate
ρ Minimum number of systems to be defined instead of τ

The proposed methodology is described in detail in the following paragraphs.
First, we define the amount of time τ (in seconds) that we want to spend for the

duration of the simulation or the maximum number of systems to be simulated in the
search for the best system. Once the duration has been defined, the algorithm defines the
number of configurations evaluated, as shown in Equation (3):

ρ =

 τ
µ − t, if ρ + t ≤ η

η − t, else
, (3)

where ρ represents the minimum number of systems to be simulated and µ is the average
simulation time of a system, considering the characteristics of the used hardware. The to-
tal number of systems to be simulated (ρ + t) during parameter initialization must not
exceed η:

ρ + t ≤ η. (4)

Next, the process defines several t values for the best-ordered systems to be presented
at the end of the process, highlighting the best one to emerge. At the end of this definition,
the algorithm evaluates the first t systems utilizing the chosen search strategy. The process
utilizes two search strategies: the random search process and the specific subset search
process. The random process determines those systems that are simulated randomly, while
the subset search process determines those systems with similar traits that are simulated
at the same time. For example, systems that use energy storage devices (ESSs) without
generators are systems to be analyzed together, and systems with ESSs and with generators
will be analyzed together. Then, once the first t systems have been defined, the algorithm
simulates another system. With each simulation, the total number t + 1 of simulated
systems is compared. The system with the worst result is passed to the filtering program
by the kNN, which returns the branch containing the K systems likely to have the same
results such that they can be eliminated. Finally, the algorithm updates the set of candidate
systems that have not yet been simulated by eliminating the returned K systems. This
process is continuous until no systems are left in the creation stage; that is, the kNN
algorithm will have simulated or eliminated all systems. Thus, instead of a user defining
the time predicted to be spent waiting for the simulation to finish, the number of systems
to be evaluated can be defined, that is, ρ systems. This number ρ must be greater than
or equal to σ and comply with the condition given in Equation (5). Thus, the number of
neighboring systems K that will be eliminated by applying the kNN algorithm is defined
by Equation (5).

K =

⌈
Γ − t

ρ
− 1

⌉
, (5)

where Γ defines the total number of systems for a given project. This means that the number
of systems to prune, K, is specific to each project and the best system is to be determined
according to pre-defined constraints. The Branch and Bound method works by defining the
branches that do not need to be explored in the search for the best system. Applying the



Mathematics 2025, 13, 360 8 of 16

kNN method enables us to eliminate a branch that represents a set of systems with a high
probability of encountering the same results as a system which was previously judged to
be irrelevant. To verify the results of our methodology, simulation tests with and without
the proposed hybrid BB and kNN methodology were carried out for different projects
implementing renewable energy hybrid systems.

2.2.1. Branch and Bound Algorithm

The Branch and Bound algorithm is an enumeration-based optimization approach [29].
This method subdivides the main problem into smaller sub-problems, each defining easily
controllable search areas. The search is performed in a branch-by-branch manner, and those
underlying branches that are not likely to provide better results for the cost function evalua-
tion are pruned. In short, the Branch and Bound optimization algorithm reduces the search
space for the best solution xi in the space of possible solutions X = (x1, x2, . . . , xn) that
minimizes (or maximizes) a cost function f , as generally used in combinatorial problems
(Equation (6)):

min
x∈X

f (x). (6)

This optimization approach defines three essential components: the node, the node
branching, and the generation process. The node represents the decision point for dividing
a problem (or set) or subproblem (or subset) into subproblems (or search subsets) that are
easier to solve. Branching and generating nodes generate all the child nodes that can be
derived from a parent node. The Branch and Bound solution search consists of finding the
possible set of solutions X′, which is a subset of X corresponding to a limit function f ′ such
that the condition in Equation (7) is satisfied:

f ′(x) ≤ f (x) ∀x ∈ X′ ⊆ X. (7)

The major problem faced by this approach is defining the subset X′ and the fitness
function f ′ that best reduces the search space and computation time. Therefore, we apply
the kNN machine learning algorithm to define the subset contained in the set of possi-
ble solutions.

2.2.2. k-Nearest Neighbors

The k-Nearest Neighbors (kNN) algorithm is a basic supervised machine learning
method [30], which is mainly used for solving classification problems in various fields [31].
The process of the k-Nearest Neighbors (kNN) algorithm involves determining, for a given
element or system, k systems with similar features (traits), where k represents an integer
value that defines the number of systems with common features that should be considered
when applying the algorithm. The kNN algorithm, derived from the Nearest-Neighbor
approach [30] for unlabeled data processing problems, is implemented in three steps. First,
the algorithm calculates the distances of the input data from the remainder of the available
data set. Several distance functions can be applied, including the Euclidean distance (De),
Manhattan distance (Dm), or the Hamming distance (Dh). Once the various distances
have been calculated, the algorithm selects the k systems with the smallest distances to
the unlabeled input (the second step). Finally, the majority class among the k selected
datasets is assigned to the unlabeled input. The major challenge in applying this algorithm
is defining the optimal number of neighbors to be considered [30,32].

For the approach adopted in this study, the kNN algorithm selects the branch of
systems to be eliminated, with a maximum of K systems to be eliminated simultaneously.
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3. Results and Discussion
In this section, we explore the specific system under study by detailing its compo-

nents and characteristics and defining the parameters used for modeling and evaluation.
The simulation results are presented, and an analytical discussion is conducted to interpret
the performance of the proposed methodology. This methodology was implemented using
PyCharm, which leverages the Python programming language and its third-party libraries,
including Numpy, Pandas, Scikit-Learn, and Scipy. This process facilitated comprehensive
system analysis, data manipulation, and algorithm implementation for accurate simulations
and robust evaluation.

3.1. Type of System Evaluated

The proposed solution approach considers a series-connected hybrid renewable energy
system (HRES) [33,34], as illustrated in Figure 4. One renewable energy generation source,
solar, is used (1). The renewable source is supported by a generator (5) for provision of
the energy difference between production and demand. In addition, a battery bank (3) is
utilized to back up the surplus energy when the energy produced by the solar system
exceeds the energy demand, which is the total amount of energy required to operate the
loads (7 and 8). In addition, this study considers that, when the production surplus is very
large and impossible to conserve, the consumer can inject it into the public grid (6).

The solar inverter (2) in this system transfers electrical energy from the direct current
(DC) produced by the solar panels to an alternating current (AC), which can be used directly
by the loads. Meanwhile, the bidirectional converter (4) converts surplus energy from
alternating current (AC) to direct current (DC), which is suitable for storage in batteries,
to conserve it in battery banks in the event of overproduction or converts the energy stored
in batteries from direct current (DC) to alternating current (AC) to supply loads in the event
of underproduction.
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Thousands of candidate systems were generated when this HRES was set up. In the
following, we refer to these systems as configurations. A configuration denotes the as-
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signment of specific values to the parameters of the hybrid renewable energy system [35].
These parameters include tilt, azimuth, solar panels, battery storage capacity, generator
output, and the number of electric vehicle charging stations installed. Based on the above
parameters, we define two configuration examples in Table 3 [10]. To validate our approach,
different projects with different numbers of configurations were studied in order to com-
pare the results of this methodology with the traditional approach, which consists of a
complete simulation of all configurations before analysis for decision-making.

Table 3. Example parameter value definitions.

Parameter Configuration i Configuration j

Number of PV Panels 150 200
Tilt 30 45

Azimuth South South-West
Generator Capacity 15 kWh 10 kWh

BESS Capacity 15 kWh 20 kWh
EV Charger 1 3

3.2. Parameter Definition

Considering the available computational power—that is, a computer with a 2.8 GHz
Intel processor and 16 GB RAM—the first step was to define the average simulation time for
a configuration. The time evaluation measure was CPU time. This measure represents the
difference between the beginning and the end of the simulation process (i.e., the reception
of parameters by the simulation model). For the simulation model considered in this study,
the simulation time for 60 configurations was evaluated. The results of this evaluation are
shown in Figure 5, with minimum and maximum simulation times of 18.17 and 27.64 s,
respectively. This gives us an average time of 21.94 s over 60 configurations, which allowed
us to consider an average time of 22 s for the remainder of the work. This means that,
for a system whose candidate configuration generation generates 1000 configurations,
the average simulation time required is 22,000 s (or 6 h, 6 min, and 40 s). Thus, this study
considered the basic parameter definitions listed in Table 4, including the three simulation
waiting times τ of 1 h, 1 h 30 min, and 2 h. The total number of best configurations t that
we present at the end of the process is 10.

Table 4. Parameter initialization.

Parameter Value

τ (seconds) 3600, 5400, 7200
µ (seconds) 22

t 10
η 250
ρ 50

In addition, the maximum number of configurations to be simulated was limited to
η = 250 configurations. This limitation strikes a balance between computational constraints
and performance, ensuring efficient simulation without compromising the quality of the
results. Instead of defining the time we wish to spend searching for the best configuration,
we define the minimum number of configurations to simulate as σ = 50 configurations.
Finally, to validate the approach, different projects with different numbers of configurations
to be evaluated, varying between 330 and 5930 (representing small- to large-scale projects),
were evaluated to compare the final solution obtained with the proposed approach with
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that from the traditional approach. The different projects considered and the number of
configurations are shown in Table 5.
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Table 3. Example parameter value definitions.

Parameter Configuration i Configuration j
Number of PV panels 150 200

Tilt 30 45
Azimuth South South-West

Generator capacity 15 kWh 10 kWh
BESS Capacity 15 kWh 20 kWh

EV Charger 1 3

3.2. Parameter definition 314

Considering the available computational power—that is, a computer with a 2.8 GHz 315

Intel processor and 16 GB RAM—the first step was to define the average simulation time for 316

a configuration. The time evaluation measure was CPU time. This measure represents the 317

difference between the beginning and the end of the simulation process (i.e., the reception 318

of parameters by the simulation model). For the simulation model considered in this study, 319

the simulation time for 60 configurations was evaluated. The results of this evaluation 320

are shown in Figure 5, with minimum and maximum simulation times of 18.17 and 27.64 321

seconds, respectively. This gives us an average time of 21.94 seconds over 60 configurations, 322

which allowed us to consider an average time of 22 seconds for the remainder of the work. 323

This means that, for a system whose candidate configuration generation generates 1000 324

configurations, the average simulation time required is 22,000 s (or 6 hours, 6 minutes, 325

and 40 s). Thus, this study considered the basic parameter definitions listed in Table 4, 326

including the three simulation waiting times τ of 1 hour, 1 hour 30 minutes, and 2 hours. 327

The total number of best configurations t that we present at the end of the process is 10. 328

Table 4. Parameter initialization.

Parameter Value
τ (seconds) 3600, 5400, 7200
µ (seconds) 22

t 10
η 250
ρ 50

Figure 5. Simulation times for different numbers of configurations.

In addition, the maximum number of configurations to be simulated was limited to 329

η = 250 configurations. This limitation strikes a balance between computational constraints 330

Figure 5. Simulation times for different numbers of configurations.

Table 5. Case study projects and their numbers of configurations.

Project Total Number of Configurations

1 330
2 990
3 1540
4 5390

Table 5 presents the four test cases and five parameters evaluated. Considering the
different variations in the number of configurations (from 330 to 5930) and the simulation
waiting time (from 3600 to 7200 s), the number of configurations to be simulated and the
number of configurations to be pruned after the simulation of an additional configuration
were determined. In the second step, this research provides in Table 6 the number of
configurations ρ needed to simulate and then calculate the number K of configurations to
prune. Notably, the number K is specific to each project.

Table 6. Parameters considered in this study.

Parameters Γ

t = 10 330 990 1540 5390

Given tau (τ), τ (seconds) 3600 3600 5400 7200

compute rho ρ 154 154 236 240

(ρ) and K K 1 5 5 21

Given rho (ρ), ρ 50 50 100 190

compute K K 4 15 14 27
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3.3. Simulation Results and Discussion
3.3.1. Proposed BB and kNN Results

The results of this methodology are presented in Table 7, which shows the simulation
time results; these are also visually represented in Figure 6. Both show two projects, each
with four different numbers of configurations, defined as ρ and τ. In this case, the re-
sults show almost identical simulation times for projects with 330 and 990 configurations
when using our proposed BB and kNN approach. It should be noted that the approach
implements a machine learning algorithm—the kNN algorithm—which also incurs a com-
putational time cost. From this result, the conclusion was that, even though the proposed
approach incorporates an algorithm that requires computations for each pass, the compu-
tation time decreases as the simulation process progresses and the final simulation time
remained relatively short, compared to the traditional simulation approach. Applying
this methodology allows the best configurations to be obtained without running all of the
configurations through the simulation process, thereby considerably reducing the time
required to select the best configuration.

Table 7. Simulation time results.

Γ Considered Method Time to Find the Best Configuration (in Seconds)
Given τ Given ρ

330 Traditional process 7260
Proposed BB and KNN 3931.0156 1214.4219

990 Traditional process 21,780
Proposed BB and KNN 4380.7812 1442.7969

1540 Traditional process 33,880
Proposed BB and KNN 6309.3125 4185.5938

5390 Traditional process 118,580
Proposed BB and KNN 7944.0781 6306.0625

The computation time of the kNN algorithm was evaluated for three types of project—
namely, with 330, 990, and 1540 configurations—considering the values ρ = 50 and t = 10
configurations. Figure 7 shows the evolution of the CPU execution time of the kNN
algorithm for these three projects. As shown in Figure 7, the calculation time decreased
over time as each time the algorithm is run, and the number of configurations that must be
run is reduced by K + 1.

As can be seen from the results in Table 7, considering the two projects with 330
and 990 configurations, which would require 7260 s and 21,780 s, respectively, with the
traditional approach and an average simulation time of 22 s, the results showed very similar
search times for the best configuration. For a value of ρ = 50, the times obtained with the
proposed approach were 1214.4219 and 1442.7969 s, respectively, for these two projects.
With a value of τ = 3600 s, the simulation obtained times of 3931.0156 and 4380.7812 s,
respectively, for the same two projects.
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Figure 6. Simulations time by method and number of configurations.
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Figure 7. kNN processing time depending on the number of configurations.
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3.3.2. Comparing the Proposed BB and kNN Approach with the Traditional Process

Applying the proposed hybrid Branch and Bound and kNN method considerably
reduced the time needed to find the best configuration. Depending on the method chosen—
that is, the definition of waiting time or the number of minimum configurations to be
simulated—the percentage time reduction increases with the size of the project. Table 7
shows that the minimum and maximum reduction rates when the waiting time was set to
τ ∈ {3600, 5400, 7200} s were 45.85% and 93.30%, respectively. The minimum and maxi-
mum rates were 83.27% and 94.68% for the number of configurations τ ∈ {50, 100, 190}.

The proposed methodology was applied by random selection on the first two projects
and by specific area selection on the last two projects. Comparing the best configuration
score obtained with the proposed approach with that of the traditional method yielded the
score accuracies listed in Table 8. The accuracy was measured by comparing the overlap of
configurations selected by the proposed and traditional methods. The evaluation shows that
the number of simulated configurations impacts the accuracy of the result when compared
to the traditional method; namely, the greater the time reduction, the lower the precision.
However, it is important to note that the very worst loss obtained was 16.73%, which is very
important regarding the research time incurred. When applied to the simulation of hybrid
renewable energy system configurations, this approach means that the best configuration
can always be achieved while reducing the required time. In addition, the hybrid Branch
and Bound and kNN method is versatile and can be adapted to other systems, such as
those including fuel cells, with minor modifications to the simulation parameters.

Table 8. Percentage time reduction using the proposed BB and kNN method.

Project Size Γ
(Configurations)

Traditional
Process Time

(Seconds)

Proposed BB and kNN Method

ρ ∈ {50, 100, 190} τ ∈ {3600, 5400, 7200}
Time Reduction

(%) Accuracy (%) Time Reduction
(%) Accuracy (%)

330 7260 83.27 83.36 45.85 92.26
990 21,780 93.38 84.21 79.89 95.12

1540 33,880 87.65 95.60 81.38 97.25
5390 118,580 94.68 92.80 93.30 96.27

4. Conclusions
The effective deployment of hybrid renewable energy systems hinges on the identi-

fication of a well-defined optimal system configuration. This process typically involves
extensive and resource-intensive simulations due to the vast number of potential con-
figurations. Our study presented a hybrid methodology that combines the Branch and
Bound (BB) heuristic with the k-Nearest Neighbors (KNN) algorithm to significantly re-
duce the computational time required for selecting the best HRES configuration. Through
implementing a continuous pruning process, our approach efficiently narrows down the
configuration space, retaining only those sets with similar characteristics. When applied to
four case studies, the proposed method demonstrated a substantial decrease in simulation
time—up to 94.68%—while preserving acceptable accuracy. For instance, simulation times
were reduced from 21,780 and 118,580 s to 1442.7969 and 6306.0625 s in two projects with
differing energy demand profiles. This efficiency gain not only accelerates the selection
process but also enhances the feasibility of using simulation tools in real-world scenarios
where time and resources are constrained. In conclusion, the integration of the BB and
kNN algorithms provides a robust framework for optimizing simulation times in HRES
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design, offering a significant improvement over traditional methods. Future research could
extend this methodology to other domains requiring rapid simulation and optimization,
as well as explore the dynamic adaptation of the kNN algorithm to better handle evolving
configuration parameters. This advancement paves the way for more efficient and scalable
approaches in the design and deployment of hybrid renewable energy systems, ultimately
contributing to a more sustainable energy landscape.
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