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ABSTRACT This study introduces an innovative optimization strategy for Electro-Hydraulic Active
Suspension Systems (EHASS), combining game theory with Particle Swarm Optimization (PSO) to tune
backstepping control parameters. Unlike conventional approaches relying on manual tuning or trial-and-
error, our method systematically optimizes these parameters, ensuring a well-balanced trade-off between
ride comfort and road handling. The optimization process considers worst-case road disturbances, leading
to a 79.5% reduction in tracking error, a 44.7% decrease in VDV, and a 51.2% improvement in Crest Factor,
complying with ISO 2631 standards. Comprehensive validation across ten road profiles, including highly
irregular terrains, confirms the robustness of the proposed method. Additionally, a comparison with Genetic
Algorithm (GA)-based optimization highlights that PSO achieves superior convergence and performance.
These findings establish a new benchmark for intelligent suspension control, making our approach a strong
candidate for real-world automotive applications.

INDEX TERMS Electro-hydraulic active suspension, backstepping control, game theory optimization,
comfort control, road handling, multi-objective optimization.

I. INTRODUCTION
Vehicle suspension systems are critical components for
ensuring both road handling performance and passenger
comfort [1], [2], [3]. Among these, Electro-Hydraulic Active
Suspension Systems (EHASS) have emerged as a promising
technology because of their ability to actively respond to
road disturbances and provide superior ride quality [4],
[5]. However, their inherent nonlinearities, such as fluid
compressibility, varying chamber volumes, and complex
valve dynamics, pose significant control challenges [6], [7].
Furthermore, recent advances in robust adaptive control
have demonstrated promising results in handling actuator
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faults and uncertainties in EHASS [8]. These challenges
necessitate advanced control strategies capable of managing
such complexities.

Traditional backstepping control methods have proven
effective for nonlinear systems such as EHASS [9]. However,
their reliance on manual or trial-and-error parameter tuning
often results in suboptimal performance and limits their
applicability under diverse road conditions [10]. Recent
advances in robust control design [11] and learning-based
methods [12] have highlighted the potential of addressing
time-varying delays, disturbances, and uncertainties. Recent
studies have highlighted the potential of deep learning
approaches for active suspension control [13], particularly
for handling complex nonlinear dynamics and uncertain
disturbances.However, while deep learning-based controllers
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have demonstrated strong potential in handling nonlinear
dynamics, they also come with certain limitations. These
models often function as black-box systems, making stability
guarantees difficult to establish [8]. In contrast, our method
is built on a Lyapunov-based backstepping framework,
ensuring global asymptotic stability, which is crucial for
safety-critical automotive applications. Additionally, deep
learning approaches require extensive training data and
computational resources to generalize effectively [14].
In real-time applications, this can pose challenges due to the
high inference latency and potential overfitting issues. Our
approach, however, leverages offline PSO-based optimiza-
tion to tune the backstepping controller parameters, allowing
for real-time execution with minimal computational over-
head. Another key limitation of deep learning-based methods
is their sensitivity to unseen disturbances. While these
controllers generalize from training data, they may struggle
when exposed to unexpected road conditions [15]. Our
Game-theoretic framework addresses this issue by explicitly
optimizing the controller against worst-case disturbances
modeled using ISO 8608 road profiles, ensuring robustness in
extreme conditions. Finally, deep learning-based controllers
often require significant real-world data collection and
fine-tuning before deployment [16]. In contrast, our method
is fully model-based, eliminating the need for large-scale
data acquisition and making it more suitable for practical
deployment in automotive control systems where stability,
safety, and predictability are critical. Nevertheless, most
existing approaches fail to provide a systematic framework
for optimizing multiple performance objectives, including
tracking accuracy and compliance with the ISO 2631 comfort
standards.

Recent studies have explored various strategies for EHASS
control, such as sliding mode control, adaptive control,
and hybrid approaches [9], [10], [17]. However, systematic
parameter optimization for backstepping control remains
underexplored. This is particularly challenging because of
the inherent trade-offs between road handling and passenger
comfort, which require careful balancing.

Game theory provides a powerful framework for address-
ing such trade-offs by modeling the interaction between
competing objectives as a strategic game [5], [18]. When
combined with optimization techniques such as Particle
Swarm Optimization (PSO), game theory offers an efficient
solution to multi-objective problems in complex, nonlinear
control systems [19], [20]. Furthermore, recent studies
have shown the potential of combining multi-objective
optimization with learning-based approaches [14], which
complements our PSO-based strategy. The effectiveness
of multi-objective PSO has been demonstrated in recent
studies, particularly in scenarios requiring the simultaneous
optimization of multiple criteria [21].
This study introduces a novel optimization strategy for

EHASS that integrates game theory with PSO to optimize
backstepping control parameters. Unlike conventional back-
stepping approaches that rely on manual tuning or heuristic

adjustments [4], [9], our method systematically optimizes
these parameters to enhance both ride comfort and road
handling.

The proposed approach models the interaction between
suspension control and road disturbances as a Game-theoretic
problem, where the suspension system is optimized against
worst-case road disturbances (ISO 8608 Class H). This
ensures robust performance under extreme conditions, unlike
previous studies that focus on average road profiles [22],
[23]. Our framework integrates tracking performance met-
rics with ISO 2631 compliant comfort constraints to
achieve precise road handling and enhanced passenger
comfort.

This research aims to address the following key questions:

• How can game theory principles be effectively inte-
grated with PSO to optimize backstepping control
parameters?

• What optimization framework ensures robust tracking
performance and compliance with the ISO 2631 comfort
standards?

• How significant are the improvements compared to
conventional non-optimized control parameters?

Compared to existing methods, our main contributions
include:

• Automated optimization of backstepping param-
eters: Instead of relying on manual tuning, our
PSO-based optimization achieves a well-balanced trade-
off between ride comfort and road handling.

• Game-theoretic robustness: The optimization is per-
formed under worst-case road disturbances, making the
suspension system highly robust compared to traditional
methods [18], [24].

• Extensive validation on ten road profiles:Unlike prior
works limited to two or three conditions [10], [25], our
method is validated across diverse real-world driving
scenarios.

• Superior convergence and performance: A compar-
ison with Genetic Algorithm (GA)-based optimization
demonstrates that PSO provides faster convergence
and more stable control performance [15].

The remainder of this paper is organized as follows:
Section II presents the problem formulation, including the
system states, performance metrics, and control objectives.
Section III introduces the road handling factors and levels,
defining the RMSE-based classification used to assess
suspension performance. Section IV describes the comfort
factors and constraints, outlining ISO 2631 based metrics
such as RMS acceleration, Vibration Dose Value (VDV), and
Crest Factor. Section V outlines the optimization approach,
explaining how Particle Swarm Optimization (PSO) and
Game-theoretic principles are integrated to tune the back-
stepping parameters. Section VI details the system modeling,
covering the mechanical structure, electrohydraulic actua-
tor dynamics, and state-space representation. Section VII
presents the backstepping control strategy, including the
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stability analysis and parameter selection. Section VIII
discusses the simulation setup and results, including a
comparative analysis with traditional approaches. Finally,
Section IX concludes the paper and highlights potential
directions for future research.

II. PROBLEM FORMULATION
A. NOTATION
The following notation is used throughout this paper:

1) SYSTEM STATES AND VARIABLES
• y(t) ∈ Rn: State vector including positions and velocities
• u(t) ∈ R: Control input voltage
• xr (t) ∈ R: Road disturbance
• z(t): Vertical position output
• f (·), b(·), h(·): System nonlinear functions
• ki: Backstepping control parameters

2) BACKSTEPPING CONTROL PARAMETERS
• ki:control parameters
• e1, e2, e3, e4: Tracking errors of different system states.
• α1, α2, α3: Stabilizing functions used in backstepping
control.

• ψ3(t), ψ4(t): Bounded nonlinear terms arising from
external disturbances.

• V : Lyapunov candidate function.
• V̇ : Time derivative of the Lyapunov function.

3) PERFORMANCE METRICS
• RMSE: Root Mean Square Error
• aw,RMS: RMS acceleration
• VDV: Vibration Dose Value
• CF: Crest Factor

4) PSO ALGORITHM PARAMETERS
• ω: Inertia weight factor
• c1, c2: Cognitive and Social Coefficients
• r1, r2: Random numbers between 0 and 1
• pij(t): Personal best position
• pgj(t): global best position
• N : Population size of the swarm.
• itermax: Maximum number of iterations.
• λRMSE,λRMS,λVDV,λCrest: Weighting coefficients for
the optimization cost function.

• RMSEthreshold: Maximum acceptable tracking error
threshold.

• athresholdRMS : Maximum allowed RMS acceleration.
• VDVthreshold: Maximum allowed vibration dose value.
• CFthreshold: Maximum allowed Crest Factor.

5) ROAD PROFILE PARAMETERS
• PSD:Power Spectral Density
• Gd (n): PSD of vertical displacement [m3/cycle]
• n: Spatial frequency [cycles/m]
• Gd (n0): Displacement PSD at reference frequency n0

6) HYDRAULIC SYSTEM PARAMETERS
• Av: Valve opening area
• V0: Oil volume in the actuator chamber
• L: Load leakage coefficient
• β: Fluid bulk modulus
• A: Actuator piston area
• τv: Time constant
• k: Servo-valve constant
• PL : Differential pressure due to the load
• Ps: Source pressure
• Cd : Flow discharge coefficient
• ρ: Fluid oil density

B. GENERAL MODEL OF ACTIVE SUSPENSION SYSTEMS

FIGURE 1. General model of an active suspension system.

We considered a general model of an active suspension
system (Figure.1) based on the foundational work of [4]. The
state-space representation is given by:

ẏ(t) = f (y(t), u(t), xr (t)) + b(y(t), t)u(t)

z(t) = h(y(t)) (1)

In active suspension systems, the dynamics can be
characterized by a sixth-order nonlinear system, where the
state variables represent the sprung mass position (y1) and
velocity (y2), unsprung mass position (y3) and velocity (y4),
hydraulic pressure (y5), and valve opening (y6). Following
this physical structure, the system can be expressed as:

ẏ1 = f1(y)
ẏ2 = f2(y)
ẏ3 = f3(y)
ẏ4 = f4(y, xr )
ẏ5 = f5(y)
ẏ6 = f6(y) + g(y)u

(2)

where y = [y1, y2, y3, y4, y5, y6]T ∈ R6 represents the state
vector, u ∈ R is the control input, xr is the road disturbance,
fi(·) and g(·) are sufficiently smooth nonlinear functions.
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C. CONTROL OBJECTIVES
The primary control objectives for the active suspension
system are established based on the key literature on vehicle
dynamics [1]:

• Road Handling: Ensure that the vehicle’s body main-
tains a stable position relative to the road despite
disturbances [1], [3].

• Passenger Comfort Constraints: While not directly
optimized, comfort is ensured by constraining:
-- The weighted Root Mean Square (RMS) accelera-

tion [26]
-- Vibration Dose Value (VDV) [26]
-- Crest Factor [26]

These metrics must comply with ISO 2631 stan-
dards [26]. Recent developments in comfort-oriented
control strategies have highlighted the importance
of considering multiple comfort metrics simultane-
ously [27], which aligns with our proposed approach..

• Control Input Saturation: Ensure that the control
input remains within the physical limits of the actuator,
as discussed in [4].

D. BACKSTEPPING CONTROL STRATEGY AND
OPTIMIZATION
Following the approach outlined in [4], to achieve the
road handling objective, we propose a backstepping control
strategy [17]. The control law takes the following form:

u = φ(y, k1, k2, . . . , km) (3)

where φ : Rn
× Rm

→ R is a nonlinear function derived
through the backstepping design procedure, y ∈ Rn is
the state vector, and k1, k2, . . . , km are the positive control
parameters to be optimized.

The core of our contribution lies in the optimization
of the backstepping control parameters, building upon the
pioneering work on Particle Swarm Optimization (PSO)
by [28] and its extensions in [17] and [19]. Figure 5 illustrates
the overall optimization process for the EHASS.

FIGURE 2. Schematic representation of the optimization process for
backstepping control parameters of the EHASS.

As shown in Figure 2, we formulate this as a constrained
optimization problem, following approaches similar to those
discussed in [18] and [20].

min
k1,k2,...,km

RMSEhandling (4)

subject to: System dynamics (1)

|u(t)| ≤ umax (Control input saturation)

RMSacc ≤ RMSthreshold
VDV ≤ VDVthreshold

CF ≤ CFthreshold
ki > 0, i = 1, 2, . . . ,m (5)

where:

• RMSEhandling is the RMSE between the vehicle body
position and reference trajectory, quantifying the track-
ing performance of the suspension system.

• umax is the maximum allowable control input, represent-
ing the physical limits of the actuator.

• RMSthreshold,VDVthreshold,CFthreshold are comfort thresh-
olds derived from ISO 2631 standards [26].

E. ASSUMPTIONS
To develop a realistic yet tractable control strategy, the
following practical assumptions were considered:

1. Bounded disturbances:Road disturbances are bounded
and differentiable. This assumption is physically justified by
the finite nature of the road irregularities.

2. Controllability and Observability: The system is
controllable and observable. This reflects the practical
capability of the hydraulic actuator to influence the system
states and the availability of reliable sensors for the position
and acceleration measurements.

3. Known Parameters: System parameters such as spring
stiffness, damping coefficients, and actuator properties are
known and constant. Although real parameters may vary
slightly with temperature and wear, their variation is typically
minimal.

F. STABILITY ANALYSIS OF THE BACKSTEPPING CONTROL
Bechause of the cascade structure of our sixth-order system,
the backstepping design focuses on the subsystem that
directly affects the control objectives: the sprung mass
dynamics (y1, y2) and the related hydraulic dynamics (y5, y6).
This subsystem is chosen because it forms a controllable
chain of integrators from the control input to the regulated
output (sprung mass position), while ensuring passenger
comfort and road handling performance.

The tracking errors are defined as:

• e1 = y1 − y1ref : position tracking error of the sprung
mass

• e2 = y2 −α1: velocity tracking error of the sprung mass
• e3 = y5 − α2: pressure tracking error
• e4 = y6 − α3: Valve opening tracking error

where α1, α2, and α3 are the stabilizing functions designed
using the backstepping procedure.

For this controlled subsystem, we establish the following
stability theorem:
Theorem 1: For a sixth-order nonlinear system described

by equation (2), under Assumptions 1-3, there exists a
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backstepping control law with control gains k1, k2, k3, k4 >
0, such that the closed-loop system is globally asymptotically
stable if the following conditions hold:

1) k1 > 1
2 , k2 >

1
2 ,

2) k3 > 1
4 maxt≥0 ∥ψ3(t)∥2,

3) k4 > 1
4 maxt≥0 ∥ψ4(t)∥2,

where ψ3(t) and ψ4(t) represent bounded nonlinear terms
that arise from the system dynamics and external distur-
bances.

Proof:We established the stability of the system using a
backstepping design and Lyapunov analysis.
Step 1 Define the Tracking Errors: Let:

e1 = y1 − y1ref , e2 = y2 − y2ref ,

e3 = y5 − y5ref , e4 = y6 − y6ref . (6)

Taking their time derivatives:

ė1 = ẏ1 − ẏ1ref = y2 − ẏ1ref . (7)

Step 2 First Stabilizing Function: Choose the first stabiliz-
ing function:

y2ref = −k1e1 + ẏ1ref . (8)

Substituting y2ref , we have:

ė1 = −k1e1 + e2, (9)

where e2 = y2 − y2ref .
For the second error e2, taking its derivative:

ė2 = ẏ2 − ẏ2ref = f2(y) + g2(y)u− ẏ2ref . (10)

Define the second stabilizing function:

y5ref = −e1 − k2e2 + ẏ2ref . (11)

Substituting y5ref , we have:

ė2 = −k2e2 − e1 + e3, (12)

where e3 = y5 − y5ref .
Step 3 Third Stabilizing Function: Taking the derivative of

e3:

ė3 = ẏ5 − ẏ5ref = f5(y) − ẏ5ref . (13)

Define the third stabilizing function:

y6ref = −e2 − k3e3 + ẏ5ref . (14)

Substituting y6ref , we have:

ė3 = −k3e3 − e2 + e4 + ψ3(t), (15)

where ψ3(t) captures the nonlinear terms and disturbances.
Step 4 Control Law and Fourth Stabilizing Function:

Taking the derivative of e4 as:

ė4 = ẏ6 − ẏ6ref = f6(y) + g6(y)u− ẏ6ref . (16)

Design the control law:

u = −
1

g6(y)

[
k4e4 + e3 − f6(y) + ẏ6ref

]
, (17)

which gives:

ė4 = −k4e4 − e3 + ψ4(t), (18)

where ψ4(t) captures the nonlinear terms and disturbances.
Step 5 Lyapunov Function: Consider the Lyapunov candi-

date function:

V =
1
2

4∑
i=1

e2i , (19)

which is positive definite. Taking its time derivative:

V̇ =

4∑
i=1

eiėi. (20)

Substituting the error dynamics:

V̇ = e1(−k1e1 + e2) + e2(−k2e2 − e1 + e3)

+ e3(−k3e3 − e2 + e4 + ψ3(t))

+ e4(−k4e4 − e3 + ψ4(t)). (21)

Step 6 Simplification of Terms: Rearranging and grouping
similar terms:

V̇ = −k1e21 − k2e22 − k3e23 − k4e24
+ e3ψ3(t) + e4ψ4(t). (22)

This expression shows that the time derivative of the
Lyapunov function is negative except for the terms involving
ψ3(t) and ψ4(t), which represent system uncertainties.
Step 7 Applying Young’s Inequality:To bound the influence

of the nonlinear terms e3ψ3(t) and e4ψ4(t), we apply Young’s
inequality:

e3ψ3(t) ≤
1
4
e23 + ∥ψ3(t)∥2,

e4ψ4(t) ≤
1
4
e24 + ∥ψ4(t)∥2. (23)

Substituting these inequalities into V̇ , we obtain:

V̇ ≤ −k1e21 − k2e22 − k3e23 − k4e24

+
1
4
e23 + ∥ψ3(t)∥2 +

1
4
e24 + ∥ψ4(t)∥2. (24)

Rearranging the terms:

V̇ ≤ −k1e21 − k2e22 −

(
k3 −

1
4

)
e23

−

(
k4 −

1
4

)
e24 + ∥ψ3(t)∥2 + ∥ψ4(t)∥2. (25)

To ensure **global asymptotic stability**, all quadratic
terms must have negative coefficients. This leads to the
conditions:

k1 >
1
2
, k2 >

1
2
, k3 −

1
4
> 0, k4 −

1
4
> 0. (26)

Thus, the minimum values for k3 and k4 are:

k3 >
1
4
, k4 >

1
4
. (27)
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1) ASSUMPTIONS ABOUT ψ3(T ) AND ψ4(T )
To ensure stability, we assume that the nonlinear terms ψ3(t)
and ψ4(t), which represent system uncertainties and external
disturbances, are **bounded**. These terms are primarily
influenced by:

• External road disturbances xr (t) and their derivatives
ẋr (t).

• Nonlinear actuator dynamics, including hydraulic pres-
sure variations.

• Unmodeled dynamics in the suspension system.
Thus, we assume the existence of positive constantsψ3,max

and ψ4,max such that:

∥ψ3(t)∥ ≤ ψ3,max, ∥ψ4(t)∥ ≤ ψ4,max, ∀t ≥ 0. (28)

2) BOUNDING THE NONLINEAR TERMS AND COMPUTING
K3 AND K4
By substituting these bounds into the Lyapunov derivative:

V̇ ≤ −k1e21 − k2e22 −

(
k3 −

1
4

)
e23 −

(
k4 −

1
4

)
e24

+ ψ2
3,max + ψ2

4,max. (29)

For V̇ < 0, we require:

k3 −
1
4
>

1
4
ψ2
3,max, k4 −

1
4
>

1
4
ψ2
4,max. (30)

Rearranging these inequalities gives the final conditions:

k3 >
1
4
max
t≥0

∥ψ3(t)∥2, k4 >
1
4
max
t≥0

∥ψ4(t)∥2. (31)

3) FINAL STABILITY CONDITION
Under these conditions:

V̇ ≤ −η

4∑
i=1

e2i , (32)

where η > 0, proving the global asymptotic stability of the
closed-loop system. □
To complete the stability analysis, it is essential to verify

the stability of the zero dynamics corresponding to the
uncontrolled states (y3, y4). This analysis ensures that, while
controlling the sprung mass position and the hydraulic
dynamics, the unsprung mass motion remains bounded and
stable.

III. ROAD HANDLING FACTORS AND LEVELS
The road handling of a vehicle is an important aspect
that determines its ability to respond accurately to road
disturbances and maintain stability, as discussed in [1]
and [3]. This is typically evaluated using the root mean square
error (RMSE) of the position, which measures the deviation
of the vehicle’s body position from a desired reference
position.
Building on the work of [1] and [3], the RMSE in position,
RMSEposition, is a statistical measure that quantifies the
average deviation of a vehicle’s body position from a

reference position over time. This metric is important for
assessing how well a suspension system maintains the
desired body position in response to road disturbances. The
continuous-time form of the RMSE is given by:

RMSEposition =

√
1
T

∫ T

0
(y1(t) − yref(t))2 dt (33)

where y1(t) is the actual position of the vehicle’s body at time
t , yref(t) is the reference position at time t , and T is the total
time period over which the evaluation is performed.

Following the framework established by [1] and [3], dif-
ferent levels were defined based on the position RMSE.The
levels are presented in Table 1.

IV. COMFORT FACTORS AND CONSTRAINTS
Passenger comfort assessment in active suspension systems
is guided by several criteria outlined in the ISO 2631
standard [26], including Weighted Root Mean Square (RMS)
acceleration, Vibration Dose Value (VDV), and Crest Factor.
These metrics are used as constraints in the optimization
problem to ensure that the comfort levels remain within
acceptable thresholds while prioritizing road handling.

A. COMFORT METRICS
1) WEIGHTED RMS ACCELERATION
The Weighted Root Mean Square (RMS) acceleration,
aw,RMS, quantifies the vibration magnitude while accounting
for the frequency-dependent sensitivity of the human body to
vibrations [26]. It is defined as:

aw,RMS =

√
1
T

∫ T

0
a2w(t) dt, (34)

where T is the duration of the measurement, and aw(t)
represents the weighted acceleration signal.

2) VIBRATION DOSE VALUE (VDV)
VDV is a cumulative measure of vibration exposure over
time and is particularly sensitive to high-magnitude transient
vibrations.This is expressed as [26]:

VDV =

(∫ T

0
a4w(t) dt

) 1
4

. (35)

3) CREST FACTOR
The Crest Factor evaluates the ratio of peak vibration to RMS
vibration and serves as an indicator of transient shocks. This
defined as [26]:

Crest Factor =
aw,peak
aw,RMS

, (36)

where aw,peak is the maximum weighted acceleration.

B. COMFORT LEVELS AND THRESHOLDS
Table 2 presents the comfort levels and their corresponding
thresholds based on ISO 2631 [26]. These thresholds were
used as constraints in the optimization framework to maintain
acceptable passenger comfort.
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TABLE 1. Quantitative definitions of road handling levels.

TABLE 2. Comfort levels and thresholds based on ISO 2631 [26].

V. OPTIMIZATION APPROACH
The proposed optimization approach employs Particle Swarm
Optimization (PSO) [28] to minimize the RMSE while
respecting the constraints on the comfort and control inputs.
The strategy uses five ISO road profiles (Classes D-H) to tune
parameters under severe conditions and validates them across
ten diverse profiles, following ISO 2631 standards [26].

A. PARTICLE SWARM OPTIMIZATION FRAMEWORK
PSO identifies the optimal backstepping control parameters
by modeling the collaborative behavior of the particles. The
choice of PSO for parameter optimization is supported by
recent comprehensive reviews that demonstrate its effective-
ness in tuning nonlinear control systems [15].Each particle
represents a solution, and its movement is determined by the
velocity vij(t) and position xij(t) updates as follows:

vij(t + 1) = ωvij(t) + c1r1[pij(t) − xij(t)]

+ c2r2[pgj(t) − xij(t)], (37)

xij(t + 1) = xij(t) + vij(t + 1), (38)

where c1, c2 are cognitive and social coefficients, and r1,
r2 are random numbers.

B. GAME-THEORETIC OPTIMIZATION
The game theory models the interaction between the suspen-
sion controller (Player 1) and road disturbances (Player 2).
Player 1 seeks to minimize tracking error while maintaining
passenger comfort, whereas Player 2 represents external road
disturbances that introduce unpredictable terrain variations,
challenging the suspension performance.

By formulating this interaction as a min-max opti-
mization problem, the controller is optimized against the
most extreme disturbances, ensuring worst-case robustness.
Instead of tuning parameters for average conditions, our
approach anticipates the worst disturbances and adapts
accordingly. PSO is then used to fine-tune the backstepping

control parameters within this framework, optimizing the
trade-off between ride comfort and road handling.

As shown in Figure 3:

FIGURE 3. Game-theoretic min-max optimization approach.

To explicitly formalize the Game-theoretic optimization,
we define the interaction as a two-player min-max problem.
The suspension controller (Player 1) seeks to minimize devi-
ations from the desired response, while the road disturbances
(Player 2) act as adversarial inputs that maximize system
deviations. This interaction is structured as:

min
k

max
xr

J (k, xr ), (39)

where k = [k1, k2, k3, k4] are the backstepping con-
trol parameters, and xr represents the road disturbances
modeled using ISO 8608 profiles. The objective function
J (k, xr ) is structured to balance tracking performance
and ride comfort.By structuring the problem as a Game-
theoretic min-max optimization, the backstepping parameters
are optimized to ensure robustness against worst-case
disturbances.
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Recent research has demonstrated the effectiveness of
Game-theoretic approaches in handling multiple perfor-
mance objectives in active suspension systems [24], partic-
ularly when dealing with competing control objectives. This
formulation ensures a Nash equilibrium in which neither
player can unilaterally improve their objective without affect-
ing the other. Therefore, the controller achieves robustness
against worst-case disturbances.

C. OPTIMIZATION PHASES
1) OPTIMIZATION PHASE
The optimization used ISO 8608 road profiles [26], charac-
terized by their PSD:

Gd (n) = Gd (n0)
(
n
n0

)−2

, n0 = 0.1. (40)

Table 3 summarizes the road classifications.

TABLE 3. ISO 8608 road profile classifications.

2) VALIDATION PHASE
Validated using ten profiles,including step,sinusoidal, and
random profiles, the tuned parameters where tested under
various conditions (Table 4, Figure 4).

TABLE 4. Validation road profiles.

D. OPTIMIZATION WORKFLOW
The optimization workflow is depicted in Figure 5,which
illustrates the iterative tuning and validation processes.

VI. SYSTEM MODELING
This section presents the systematic modeling approach to
derive the complete state-space representation of the Elec-
trohydraulic Active Suspension System (EHASS). Starting
with the mechanical structure, we integrated the hydraulic
dynamics, leading to a unified sixth-order nonlinear model
that matches the general form presented in Section II.
This modeling approach follows previous studies that have
established detailedmathematical formulations for electrohy-
draulic active suspension systems [29].

FIGURE 4. Validation road profiles.

A. QUARTER-CAR MECHANICAL MODEL
The quarter-car model (Figure 6) combines the following
elements:

• Passive element: A traditional spring-damper system.
• Active element: A hydraulic actuator.
• Tire model: A parallel spring-damper configuration
(Figure 7).

B. ELECTROHYDRAULIC ACTUATOR DYNAMICS
The dynamics of the electrohydraulic system are modeled
based on a single-stage servo valve that controls the hydraulic
actuator. The key equations are as follows:

1) SERVO VALVE DYNAMICS

τvȦv + Av = ku, (41)

2) FLOW RATE EQUATION

Q = CdAv

√
Ps − PLsigm(Av)

ρ
, (42)

where the sigmoidal approximation is given by:

sigm(Av) =
1 − exp(−pAv)
1 + exp(−pAv)

, p > 0. (43)
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FIGURE 5. Workflow of the optimization process for backstepping control.
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FIGURE 6. Quarter-car electrohydraulic active suspension system.

FIGURE 7. Tire model with parallel spring-damper configuration.

3) CONTINUITY EQUATION
The flow balance, accounting for the actuator motion,
leakage, and fluid compressibility, is expressed as:

Q = CdAv

√
Ps − PLsigm(Av)

ρ

+ A(Ẋs − Ẋ ) + LPL

+ ṖL
V 2
0 − A2(Xs − X )2

2V0β
. (44)

C. VEHICLE BODY DYNAMICS
The motion of the sprung and unsprung masses is derived
using Newton’s laws:

1) UNSPRUNG MASS (WHEEL ASSEMBLY)

Mr Ẍ = Kp(Xs − X ) + Bp(Ẋs − Ẋ )

−Kr (X − Xr ) − Br (Ẋ − Ẋr )−APL . (45)

2) SPRUNG MASS (VEHICLE BODY)

MV Ẍs = −Kp(Xs − X ) − Bp(Ẋs − Ẋ ) + APL . (46)

D. STATE-SPACE REPRESENTATION
Defining the state vector as:

y = [y1, y2, y3, y4, y5, y6]T = [Xs, Ẋs,X , Ẋ ,PL ,Av]T ,

the complete nonlinear state-space model is:

ẏ1 = y2,

ẏ2 = −a(y1 − y3)−b(y2 − y4) + cy5,

ẏ3 = y4,

ẏ4 = d(y1 − y3) + e(y2 − y4)−f (y3 − xr )

−n(y4 − ẋr )−hy5,

ẏ5 =
J

f (y1, y3)

(
cdy6g(y5, y6)

+ A(y4 − y2)−Ly5
)
,

ẏ6 = −
1
τ
y6 +

kv
τ
u, (47)

where:

f (y1, y3) = V 2
0 − A2(y1 − y3)2,

g(y5, y6) =

√
Ps − sigm(y6)y5

ρ
,

sigm(y6) =
1 − exp(−py6)
1 + exp(−py6)

. (48)

The system parameters are given by:

a =
Kp
MV

, b =
Bp
MV

, c =
A
MV

,

d =
Kp
Mr
, e =

Bp
Mr
, f =

Kr
Mr
,

n =
Br
Mr
, h =

A
Mr
, J = 2V0β.

This state-space model comprehensively captures the
nonlinear dynamics of the system and, servs as the foundation
for backstepping control design.

VII. BACKSTEPPING CONTROL DESIGN
The backstepping control design targets the vertical motion
of the vehicle body as the primary regulated variable, directly
influencing road handling and passenger comfort objectives.
The tracking error for this regulated variable is defined as:

e1 = y1 − y1ref . (49)

Because of the cascaded structure of the system model,
as noted by [4], where the hydraulic dynamics (y5, y6) directly
influence the sprung mass motion (y1, y2), the backstepping
approach is applied sequentially to this controllable subsys-
tem.

A. CONTROL DESIGN
Step 1: Starting with the regulated variable e1, y2 is used as
the virtual input to the subsystem ẏ1 = y2. Following the
approach in [4], the stabilizing function, which is the desired
value of y2, is given by:

y2d = −k1e1. (50)

Step 2: Introducing the error variable e2 = y2 − y2d and
y5 as the virtual input to the subsystem:

ẏ2 = −a(y1 − y3) − b(y2 − y4) + cy5, (51)
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the stabilizing function, which is the desired value of y5,
is given by:

y5d = α0e1 − α1e2 + α2(y2 − y4) + α3(y1 − y3). (52)

Step 3: Define the error variable as e3 = y5 − y5d and
consider y6 as the virtual input to the subsystem:

ẏ5 =
J
V0

(
Cdy6g(.) + A(y4 − y2)−Ly5

)
. (53)

The stabilizing function, which determines the desired
value of y6, is expressed by:

y6d =
f (.)

JCdg(.)

[
− β1e1 − β2e2 − β3e3 − γ1y1

− γ2y2 + γ3y3 − γ4y4 + γ5y5 + a2ẏ2
]
. (54)

Step 4: Finally, define the error variable as e4 = y6 − y6d .
The actual control input u is derived from the subsystem:

ẏ6 = −
1
τ
y6 +

kv
τ
u. (55)

The stabilizing control law u is given by:

u =

(
kv
τ

−
f (.)
JCd

J (.)
g2(.)

Y (.)
)−1 [

− kve4 +
1
τ
y6

−
J
f (.)

Cdg(.)e3 −
f (.)
JCd

Y (.)
(
H (.) − I (.)

g2(.)

)
+

f (.)
JCdg(.)

X (.) +

˙f (.)
JCdg(.)

Y (.)
]
. (56)

To ensure that the control law remains well-defined, the
denominator in Equation (56) must be strictly nonzero. Since
the system parameters kv, τ , J , and Cd are strictly positive,
the critical term:

D(y) =

(
kv
τ

−
f (.)
JCd

J (.)
g2(.)

Y (.)
)

(57)

remains nonzero as long as g(y) is bounded away from
zero, which is ensured by actuator design constraints.
Additionally, the nonlinear terms f (y) and Y (y) remain within
physical limits, preventing singularities in practical operating
conditions. Thus, the control law is always well-defined.

The resulting closed-loop error dynamics are:

ė1 = −k1e1 + e2,

ė2 = −e1 − k2e2 + ce3,

ė3 = −ce2 − k3e3 +
J
f (.)

Cdg(.)e4

+ a2
(
fxr + nẋr

)
,

ė4 = −
JCdg(.)
f (.)

e3 − k4e4

−
γ4f (.)
Jcdg(.)

(
fxr + nẋr

)
. (58)

B. STABILITY ANALYSIS
The stability of the closed-loop system was verified using the
results of Theorem 1. The error dynamics can be expressed
as:

ė1 = −k1e1 + e2,

ė2 = −k2e2 − e1 + e3,

ė3 = −k3e3 − e2 + e4 + ψ3,

ė4 = −k4e4 − e3 + ψ4. (59)

Here, the terms ψ3 and ψ4 are identified as:

ψ3 = a2
(
fxr + nẋr

)
, (60)

ψ4 = −
γ4f (.)
Jcdg(.)

(
fxr + nẋr

)
. (61)

From Theorem 1, cccthe following conditions for the
controller gains hold:

k1 >
1
2
, k2 >

1
2
, (62)

k3 >
a22
4

max
t≥0

∥(fxr + nẋr )2∥, (63)

k4 >
1
4

(
γ4

Jcdg(.)

)2

max
t≥0

∥(fxr + nẋr )2∥. (64)

These conditions ensure that the Lyapunov candidate
function:

V =
1
2

4∑
i=1

e2i (65)

satisfies:

V̇ ≤ −η

4∑
i=1

e2i , (66)

where η > 0, which guarantees the global asymptotic
stability of the error dynamics under the proposed control law.

C. ZERO DYNAMICS ANALYSIS
Because the backstepping design yields a 4th-order error
dynamicwhile the original system is of the 6th-order, wemust
analyze the zero dynamics corresponding to the uncontrolled
states (y3, y4). Setting y1 = e1 = 0, the reduced dynamics
are: (

ẏ3
ẏ4

)
=

(
0 1
A03 A04

)
︸ ︷︷ ︸

M

(
y3
y4

)
+

(
0 0
f n

) (
xr
ẋr

)
(67)

where:
• A03 =

h
C a−d − f

• A04 =
h
cb−e− n

The stability of zero dynamics is ensured by the negativity
of the eigenvalues of matrixM , which completes the stability
analysis of the full system.

Building on the theoretical framework and stability anal-
ysis, the following section presents the simulation tests and
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TABLE 5. System parameters and optimization settings.

FIGURE 8. Comparative analysis of PSO and GA optimization performance for backstepping control parameters.
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FIGURE 9. Analysis of suspension performance with non-optimized backstepping parameters under: (a) Step profile, (b) Smooth wave, (c) Pothole,
(d) Series of bumps.

TABLE 6. Performance metrics of the suspension system with non-optimized parameters.

optimization procedures conducted to validate and enhance
the performance of the proposed optimized backstepping
control strategy.

VIII. SIMULATION AND RESULTS ANALYSIS
This section is organized into multiple subsections to
systematically analyze the performance of the proposed
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FIGURE 10. Analysis of suspension performance with non-optimized backstepping parameters under: (a) Random Wave, (b) Sinusoidal wave,
(c) Ramp profile, (d) Smooth bump.

TABLE 7. Performance Metrics of the suspension system with PSO optimized parameters.

backstepping control strategy. It begins by outlining the
parameter settings and simulation configurations, followed
by a detailed evaluation of the optimization process using
Particle Swarm Optimization (PSO). The results were then
analyzed to assess the effectiveness of the controller in
improving both ride comfort and road handling across various
test scenarios.

A. PARAMETER SETTING
The simulation and optimization parameters are presented
in Table 5. The system parameters were selected based
on a validated electrohydraulic suspension design. Their
detailed values are provided in Appendix A. The opti-
mization settings were configured to ensure robustness and
computational efficiency by tuning PSO parameters for stable
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FIGURE 11. Analysis of suspension performance with non-optimized backstepping parameters under: (a) Gentle rolling, (b) Gradual decline.

FIGURE 12. Analysis of different performance metrics with non-optimized backstepping parameters: (a) Tracking error metrics; (b) Comfort metrics.

convergence and testing under ISO 8608 Class H road
profiles.

The PSO hyperparameters were chosen based on opti-
mization best practices. The cognitive and social coefficients
(c1 = c2 = 2.0) provide a balance between exploration
and exploitation, preventing premature convergence while
ensuring solution stability [15], [28]. The population size
(N = 50) and maximum iterations (100) were selected to
ensure convergence within a reasonable computational time
without excessive resource consumption.

Optimization Was performed using MATLAB’s parti-
cle swarm optimization algorithm with the parameters
specified in Table 5. The objective function evaluation
combines performance criteria and comfort constraints using

a min-max approach [30]to ensure robustness across all test
profiles.

B. OPTIMIZATION RESULTS ANALYSIS
The optimization results depicted in Figure 8 present a
comprehensive comparison between the Particle Swarm
Optimization (PSO) and Genetic Algorithm (GA) for tuning
the backstepping control parameters of the EHASS. The
analysis revealed the significant advantages of PSO over GA
in terms of convergence characteristics and solution quality.

For parameter k1 Figure 8.a, PSO demonstrates remarkable
performance by rapidly converging to an optimal value of
10 after only a few iterations, despite brief initial oscillations.
In contrast, GA exhibits a much slower convergence pattern,
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FIGURE 13. Analysis of suspension performance with PSO optimized backstepping parameters under: (a) Step profile, (b) Smooth wave,
(c) Pothole, (d) Series of bumps.

gradually increasing to approximately 3.5 after 100 iterations.
This substantial difference in both the convergence speed and
final value highlights PSO’s superior ability to escape local
optima and find more optimal solutions.

The evolution of parameter k2 Figure 8.b, shows that
PSO quickly stabilizes at a lower value of approximately 1,
whereas GA demonstrates a stepped increase toward higher
values (approximately 6-7). PSO’s ability to maintain a
stable, low gain value suggests that it has identified a more
efficient control configuration that could lead to a smoother
system response and reduced actuator effort.

Parameter k3 Figure 8.c, exhibits PSO’s exploratory
nature with initial oscillations between 4 and 10, even-
tually stabilizing around 4.However, GA maintains a
conservative approach with values of approximately 2,
showing limited exploration of the parameter space. This
behavior demonstrates the PSO’s capacity to thoroughly

explore the solution space while still achieving a stable
convergence.

The optimization of parameter k4 Figure 8.d, further
reinforces PSO’s effectiveness, showing initial explo-
ration with oscillations between 6 and 10 before settling
at approximately 7, whereas GA gradually increases
from 2 to 6. This pattern consistently demonstrates PSO’s
superior ability to explore and exploit the parameter space
effectively.

The superior performance of PSO for EHASS parameter
optimization can be attributed to several key factors:

1) Rapid convergence to optimal values, particularly
evident in k1 optimization

2) Enhanced exploration capabilities while maintaining
convergence stability

3) Achievement of more optimal final values compared to
GA
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FIGURE 14. Analysis of suspension performance with PSO optimized backstepping parameters under: (a) Random wave, (b) Sinusoidal wave,
(c) Ramp profile, (d) Smooth bump.

4) Efficient balance between exploration and exploitation
phases

The ability to quickly identify and converge to optimal
values whilemaintaining the flexibility to escape local optima
makes PSO a more effective choice for this application
than GA.Furthermore, the PSO optimization process demon-
strated stable convergence behavior across multiple runs.
On average, the algorithm converged within 60–80 iterations
out of the 100 allowed, showing consistent parameter
tuning without excessive computational cost. This confirms
that the optimization approach is efficient while ensuring
robustness in selecting the optimal backstepping control
parameters.

C. CONTROL PERFORMANCE RESULTS ANALYSIS
The performance analysis of the backstepping con-
troller for the EHASS demonstrated significant improve-
ments achieved through the PSO parameter optimization.

Figures 9-11 present the non-optimized controller behavior
across different road profiles, with Figures 9(a-d) showing
responses to step profile, smooth wave, pothole and
series of bumps, Figures 10(a-d) illustrating the behavior
under random waves, sinusoidal waves, ramp profiles and
smooth bump disturbances, and Figures 11(a-b) depicting
responses to gentle rolling and gradual decline profiles.
The corresponding performance metrics are listed in
Table 6.
The tracking error metrics show a remarkable improve-

ment with PSO optimization, as shown in Figures 13-15. For
the Step Profile, which represents one of themost challenging
disturbances, the maximum tracking error was reduced
from 0.0312m to 0.0064m (79.5% reduction), whereas the
smooth wave profile showed a decrease from 0.0260m
to 0.0053m (79.6% reduction). These improvements are
clearly visualized in the comparative plots in Figures 12(a)
and 16(a).
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FIGURE 15. Analysis of suspension performance with PSO optimized backstepping parameters under: (a) Gentle rolling, (b) Gradual
decline.

FIGURE 16. Analysis of different performance metrics with PSO optimized backstepping parameters: (a) Tracking error metrics; (b) Comfort metrics.

The comfort-related metrics demonstrate substantial
enhancements between the non-optimized and optimized
cases. The RMS acceleration values, particularly for the
Step Profile, decreased from 0.376 m/s2 to 0.260 m/s2

(30.9% improvement) as shown in Table 7. The VDV saw
a significant reduction from 1.41 to 0.78 (44.7% decrease)
for the Step Profile, with consistent improvements across
other profiles illustrated in Figures 12(b) and 16(b). The
Crest Factor showed dramatic improvement, reducing from
13.39 to 6.53 for the Step Profile and from 9.78 to 7.08 for
the Pothole profile.

The comfort level distribution comparison between
non-optimized and optimized parameters is presented in
Figure 17. Figure 17(a) shows initial varying comfort
levels including ‘‘Extreme Uncomfortable’’ (Step Pro-
file) and ‘‘Uncomfortable’’ (Pothole), while Figure 17(b)

demonstrates the optimized system’s achievement of
either ‘‘Acceptable’’ or ‘‘Comfortable’’ ratings across all
profiles. This improvement is reflected in the consistent
control responses shown in Figures 13(a-d), 14(a-d), and
15(a-b),respectively.

A comprehensive performance comparison between
Tables 6 and 7 validates the effectiveness of the PSO
approach, demonstrating significant improvements in:

• Maximum tracking errors (average reduction over 75%)
• Tracking consistency (lower standard deviations)
• Vibration control (reduced VDV and Crest Factors)
• Comfort levels (elimination of all uncomfortable condi-
tions)

• Disturbance handling (particularly for aggressive pro-
files)
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FIGURE 17. Comfort level distribution comparison between non-optimized and optimized
backstepping parameters.

These results confirm the PSO-optimized controller’s
ability to achieve a superior balance between tracking
performance and ride comfort, particularly evident in its han-
dling of aggressive disturbances while maintaining passenger
comfort. The consistent improvement across all metrics
and road profiles, as documented throughout Figures 9-17,
demonstrates the robustness of the PSO-optimized solution
for EHASS control applications.

This study has made significant contributions to the
optimization and control of Electro-Hydraulic Active Sus-
pension Systems (EHASS). By leveraging Particle Swarm
Optimization (PSO) within a Game-theoretic framework, the
study achieved notable improvements in tracking accuracy,
ride comfort, and overall system stability under various
road conditions. The results demonstrate reductions in
tracking and significant enhancements in comfort metrics,
including vibration dose values and crest factors. These
advancements highlight the robustness and adaptability of
the proposed control strategy,which makes it a promising
solution for real-world applications in advanced suspension
systems. Furthermore, the compliance of the approach with
ISO 2631 standards ensures its relevance for automotive
industries aiming to develop next-generation intelligent sus-
pension technologies, offering improved safety and passenger
comfort.

IX. CONCLUSION
This study introduced a novel optimization strategy for
backstepping control parameters in Electro-Hydraulic Active
Suspension Systems, integrating game theory principles
with Particle Swarm Optimization. The proposed approach
addresses the fundamental challenge of simultaneously
optimizing road handling and passenger comfort while
overcoming the limitations of traditional parameter tuning
methods.

The obtained results demonstrate significant improve-
ments over conventional approaches, with the PSO-optimized
controller achieving a 79.5% reduction in maximum
tracking error for step profiles and a 44.7% decrease in
vibration exposure. The game theory framework effectively

manages the inherent trade-off between road handling and
passenger comfort, successfully eliminating all instances
of ‘‘uncomfortable’’ ride conditions while maintaining
excellent tracking performance. Furthermore, comparative
analysis with Genetic Algorithm (GA) optimization confirms
the superior convergence characteristics of the PSO-based
approach, achieving optimal parameters in fewer iterations
while maintaining better stability.

It should be noted that this study assumes constant system
parameters, without considering parametric uncertainties that
might affect real-world performance. Additionally, while the
current approach ensures asymptotic stability, it does not
guarantee finite-time or fixed-time convergence, which could
be crucial for certain automotive applications requiring strict
temporal performance bounds.

Furthermore, the proposed method has some limitations
that should be acknowledged:

• Dependence on Accurate System Modeling: The
controller assumes known system parameters, which
may vary in real-world applications.

• Computational Cost: The PSO-based optimization
requires multiple iterations, making real-time imple-
mentation challenging.

• Lack of Experimental Validation: The current study
is simulation-based, and future work will also focus on
the experimental validation of the proposed approach
using a real electrohydraulic suspension system.
This will allow us to assess its real-world perfor-
mance, particularly in terms of robustness, actuator
dynamics, and computational feasibility in practical
applications.

• Extreme Uncertainties: While the approach is robust
against disturbances, its performance under severe
uncertainties (e.g., actuator faults) requires further
analysis.

Despite the computational cost of PSO, it is important to note
that the optimization is performed **offline** to determine
the optimal backstepping control parameters. In real-time
applications, the controller operates using **pre-optimized
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fixed parameters**, requiring only algebraic calculations,
which ensures computational efficiency.

These findings align with recent advances in active
suspension control while offering novel contributions through
the Game-theoretic PSO approach.

Future research should address the current limitations of
this study by exploring several advanced control objectives.
One promising direction is the development of adaptive
versions of the proposed control scheme to manage para-
metric and time-varying uncertainties effectively. Another
important avenue involves the integration of finite-time
control techniques to ensure convergence within specified
time bounds, particularly for applications that require strict
temporal performance. Furthermore, extending the method-
ology to fixed-time stability frameworks would enhance
its robustness by enabling convergence independent of the
initial conditions. Finally, the experimental validation of
physical systems is crucial for evaluating the robustness
and practicality of the proposed approach under real-world
uncertainties and disturbances. Although the framework
developed in this study has demonstrated significant improve-
ments in suspension control, it also provides a strong
foundation for addressing these advanced challenges in future
work.

APPENDIX A
SYSTEM VARIABLES
The following table provides the key system variables
and their respective values used in the model of the
electrohydraulic active suspension system (EHASS):

APPENDIX B
CONTROLLER PARAMETERS
The following table presents the controller parameters for
the backstepping control design, showing both non-optimized
and optimized values:
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