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ABSTRACT The Energy Internet (EI) is transforming power networks by integrating Smart Grids (SGs),
Distributed Energy Sources (DESs), and advanced communication and data technologies. This transforma-
tion increases complexity, as energy transmission evolves into a multi-source, multi-path, and multi-load
system, with Peer-to-Peer (P2P) energy trading markets and Energy Routers as central drivers. As power
networks grow and become more decentralized, the need for efficient and adaptive power routing protocols
has become crucial to ensure their reliable and scalable management. This review focuses on energy
routing strategies using multi-Agent architectures, Artificial Intelligence, and Metaheuristic optimization
techniques. These approaches are well-suited to support the transformation of power networks into more
distributed, dynamic, and complex systems. Spanning research from 2018 to 2024, this paper consolidates
diverse studies, filling a critical gap by providing a comprehensive overview of power routing solutions
for the evolving EI. It highlights key methodologies, limitations, and future research directions, offering a
valuable reference for researchers.

INDEX TERMS Artificial intelligence, energy internet, energy routing protocols, metaheuristic, multi agent
systems, smart grid.

GLOSSARY OF TERMS
Terms Definitions
Energy Internet (EI) Refers to the next-generation

smart energy network that
integrates distributed energy
resources and intelligent
power management systems.
It enables decentralized, effi-
cient, and autonomous energy
trading. EI shares similarities
with the traditional Internet
but focuses on energy routing
rather than data transmission.

The associate editor coordinating the review of this manuscript and

approving it for publication was Qiang Li .

Energy Router (ER) As a key component of
the EI, it provides a power
electronic interface for
information-driven energy
control, enabling energy
routing, precise energy
flow regulation, and power
quality management.

Multi Agent (MA) System A collection of two or more
intelligent agents that work
together to solve problems
in a distributed manner.

I. INTRODUCTION
The Energy Internet (EI) is a newly invented concept that
supports Peer to Peer (P2P) energy trading and provides
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highly efficient energy distribution. In [1], the EI is defined
as ‘‘An implementation of smart grids where energy flows
from suppliers to customers like data packets do, over the
Internet’’. The authors consider EI advantageous due to
its openness, robustness, and reliability. The term EI [2]
is widely used in the United States and China; however,
researchers globally have recognized similar concepts under
different names. In Japan, it is referred to as the digital grid.
The Digital Grid in Japan [3] is a fully decentralized energy
system that enables P2P energy transactions while enhancing
grid stability and supporting new on-demand energy markets.
Digital Grid Routers enable direct energy transfers between
points, like data packets on the internet. This innovation trans-
forms energy distribution and market dynamics, allowing
more efficient and flexible power routing. The EI architec-
ture [2] consists of seven layers (FIGURE 1), inspired by
the Open Systems Interconnection model (OSI). The Phys-
ical Layer serves as the foundation, consisting of energy
cells. The Energy Link Layer enables P2P energy trading
within an Energy Intranet, while the Network Layer man-
ages the physical connections between energy cells, where
Energy Routers (ERs) play a key role in establishing and
maintaining these links. The Transmission Layer facilitates
power exchange between different Energy Intranets, and the
Consumption Layer regulates energy usage within energy
cells. The Communication Layer ensures seamless interac-
tion among devices, entities, and stakeholders, while the
Business Layer oversees financial transactions.

Recently, the authors, in [4], redefined the EI as a trans-
formative system consisting of three layers: the physical
layer, information layer, and value layer. The Physical Layer
connects various energy sources, including electricity, heat,
cooling, and gas, enabling energy sharing and demand
response through distributed energy resources (DERs). The
Information Layer gathers data from the physical layer,
enabling real-time coordination and decentralized energy
management. The Value Layer leverages this data to create
new business models.

In [5], the proposed EI model introduces a decentralized
approach to energy exchange, allowing resources to trade
energy independently of a centralized operator while ensuring
system stability through an Energy Internet Service Provider
(Energy ISP). The Energy ISP ensures secure and reliable
energy transactions by implementing dynamic quantity limits
on exchanges and managing centralized resources when nec-
essary. Structurally, the EI is designed to mirror traditional
Internet protocols, incorporating elements such as Energy
Internet Cards (analogous to MAC addresses) and Energy IP
addresses for network identification and mobility tracking.
Additionally, an energy-specific Transport Layer protocol
ensures the reliable transmission of energy data, while an
Application Layer facilitates standardized communication for
energy exchanges.

ERs play a crucial role within the EI by enabling energy
routing between geographically dispersed resources. These
devices manage power dispatch, information exchange, and

FIGURE 1. Energy internet architecture.

transmission scheduling, thus supporting a dynamic grid
structure. The introduction of ERs is central to manag-
ing power flow across interconnected lines, making them
essential for maintaining the stability and efficiency of
this evolving grid. The structure of the ER consists of
input/output ports to connect energy sources, loads, other
ERs, a power exchange structure formed by converters, and a
controller. Various architectures for ERs exist in the literature.
FIGURE 2 illustrates a general ER architecture.

Microgrids (MGs) are essential within this system, as they
integrate energy sources, storage, communication networks,
and intelligent devices to optimize power flowwithin the grid.
With the evolution of network architecture, energy routing
needs upgraded ERs to support bidirectional power flows
and efficiently perform energy routing functions. Energy
routing problems are addressed by matching producers
with consumers (subscriber matching), preventing conges-
tion and failures (transmission scheduling), and identifying
efficient transmission paths. ERs should be associated with
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an appropriate routing algorithm to deliver energy from the
source to a specific destination. Optimizing energy routing
minimizes transmission losses, maximizing energy delivery
while reducing greenhouse gas emissions and dependence
on fossil fuels. Efficient energy routing supports renewable
energy integration by optimizing electricity flow, reducing
fluctuations, and enhancing grid reliability. Energy rout-
ing protocols support P2P energy trading and decentralized
energy markets. They encourage cleaner energy use and
decrease reliance on fossil-fuel-based power plants.

FIGURE 2. General architecture of the ER.

The motivation for this review paper stems from the gap
in the existing literature, where previous reviews [6], [7],
[8], [9], [10] on power routing protocols fail to sufficiently
categorize existing methods based on their characteristics
and functions. These reviews often lack detailed comparative
analysis and clear future directions to guide researchers in
the field. Moreover, they do not adequately address all the
methodologies and categories used to solve power routing
problems, which limits the development of new and efficient
strategies. Power routing in energy networks is a rapidly
evolving and promising domain with numerous challenges,
including dynamic energy distribution, security concerns, and
computational efficiency. Therefore, a comprehensive evalu-
ation of energy routing protocols is necessary to identify their
strengths, limitations, and suitability for different network
conditions. This paper aims to fill this gap by providing
an in-depth analysis of energy routing protocols based on
Multi-Agent (MA) architecture, Artificial Intelligence (AI)
computation, and metaheuristic optimization.

The key contributions of this paper lie in its compre-
hensive review of energy routing protocols, focusing on
the integration of metaheuristics, AI, and MAS to optimize
power distribution in decentralized power grids. By catego-
rizing existing methods, this paper highlights the strengths
and weaknesses of each approach, emphasizing how meta-
heuristic algorithms minimize energy losses, AI improves
system performance through predictive routing, and MAS
promotes decentralized decision-making. The integration of
these strategies is proposed as a framework to optimize
energy routing in dynamic and renewable energy networks.

Additionally, the paper outlines the importance of address-
ing key issues such as energy loss minimization, scalability,
renewable energy integration, and adaptability to fluctuating
demands. Future research directions are identified to enhance
the efficiency and sustainability of energy routing systems,
fostering further exploration in this promising domain. Ulti-
mately, this paper provides a foundation for developing
more effective energy routing solutions, contributing to the
optimization of energy flow in smart, decentralized energy
networks.

The remainder of this paper is organized as follows:
Section II introduces the energy routing problem in the EI-
based Networks; Section III discusses the key characteristics
to consider when implementing power routing protocols;
Section IV presents existing energy routing protocols based
on MA architecture, AI computation, and metaheuristic opti-
mization; Section 0 provides a comparative analysis of these
approaches and discusses future directions in power routing
within the EI. Finally, Section VI concludes the paper.

II. POWER ROUTING PROBLEM IN EI-BASED NETWORK
The power network, composed of multiple ERs [11], [12],
[13], [14], [15], [16], [17], [18] is structured into two main
layers: the Communication Layer and the Power Transmis-
sion Layer. The architecture of an ER [19], [20], [21], [22]
remains largely consistent across most studies, with differ-
ences arising primarily in the design, implementation, and
control strategies.

The power routing algorithm, integrated into the ER’s
routing controller (refer to FIGURE 2), dynamically deter-
mines the routing decisions based on data exchanged within
the communication layer. Optimal Power Flow (OPF) and
the power routing problem differ in their focus, scope, and
objectives. OPF is primarily concerned with optimizing the
operation of power systems by determining the power gen-
erated at each generator to minimize the cost of operating a
transmission network. In contrast, the power routing problem
focuses on dynamically directing electrical power through
networks, particularly in decentralized systems with ERs,
DERs, and P2P trading mechanisms. The objective of power
routing is to achieve efficient, real-time energy distribution
by selecting the optimal path for each source-load pair while
minimizing transmission losses and supporting power con-
straints.

VOLUME 13, 2025 41627



A. Fawaz et al.: Energy Routing Protocols for EI: A Review on MASs, Metaheuristics, and AI Approaches

The EI model (see FIGURE 3) is characterized by a graph
where ERs are the vertices, and power lines are the edges.

During power routing, the following constraints must be
considered:

- The power losses of a path wpath (1) should be less than
the transmitted power Pc, path is formed by several ERs
to deliver a power packet from a source to a destination:

wpath < Pc (1)

- The transmitted power Pc (2) should not exceed the
maximum capacity of the path which is the minimum
between the lowest interface capacity of PERS capacity and
the lowest capacity of the power lines that constructed
the path Plinkscapacity :

Pc ≤ min
(
Plinks scapacity ,PERScapacity

)
(2)

- The total power transmitted through a power line (3)
should not exceed its available capacity P(vi,v j)c :∑

Pvi,vj ≤ P(vi,v j)c (3)

- The total power flows into the same ER interface (4)
should not exceed its capacity P(vi)C :∑

Pvi ≤ P(vi)C (4)

One of the objective functions that have been used in different
works [23], [24], [25], [26], [27], [28], [29], [30], [31], [32] to
find the optimal path is minimizing power transmission losses
TL. In DC lines, the total power loss in a power line that links
two ER is related to the active power. Therefore, they depend
on the resistance Rij, the voltage Vij, the pre-existing power
Pij in the line Lij, and the transmitted power from producer to
consumer Pc.

They are calculated using (5):

wij =
Rij
v2ij

[(
Pc + Pij

)2
− P2ij

]
(5)

On the other hand, the total power loss in an ER i (6) is related
to the efficiency of electronic converters ηi:

wi = (1 − ηi)Pc (6)

Hence, the overall power loss of a transmission path between
a producer and a consumer (7) is equal to the sum of power
losses of all routers and power lines that compose this path.

TL = Wpath
p→c

=

∑
i∈path

wi +
∑

(i,j)∈path
Wij (7)

III. ENERGY ROUTING PROTOCOL CHARACTERISTICS
When designing an energy routing protocol, it is essential to
consider the following characteristics:

- Energy routing schemes: Various strategies exist for
power transmission, including centralized, distributed,
and semi-centralized methods. Centralized routing aims
to minimize transmission losses and meet network

FIGURE 3. EI model formed by 9-ERs, (Ri) transferring energy between
microgrids (MGi).

power limits but requires a central controller, impact-
ing system reliability, privacy, and flexibility. Dis-
tributed routing allows users to choose their paths
independently, reducing power losses but limiting global
network optimization. Semi-centralized routing com-
bines both approaches, using a central controller for
power constraints and distributed algorithms for effi-
cient paths, reducing computational load. Each method
has trade-offs in terms of efficiency, control, and system
characteristics.

- Algorithm complexity and computation time: The
algorithm’s complexity is assessed based on memory
usage and execution time relative to the network size.
These factors can vary based on network techniques
and considerations. Some methods utilize specialized
algorithms, increasing both complexity and computation
time.

- Power routing constraints: They represent significant
challenges for the EI and encompass limitations on
energy supply, ER capabilities, and power link capac-
ities. These constraints affect how energy is routed,
especially in terms of avoiding overflows and ensuring
security.

- Congestion management: It is a significant challenge
in energy networks due to the rapid growth in power
demand, leading to delays in energy delivery and
increased network losses. It involves assessing the avail-
able capacity of power routing paths and considering
factors like power level changes in links, which affect
path selection due to increased link losses with higher
transmitted power. Multi-packet routing becomes nec-
essary because power link and ER capabilities limit
the energy a single source or a single path can deliver,
prompting some consumers to use multiple sources or
multiple paths to meet their energy needs.

- Failure of ERs and links and topology changes: Routing
algorithms must account for the dynamic behavior of
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energy networks to adapt effectively to network failures
and topology adjustments.

- Security: Ensuring security in power networks involves
safeguarding data communicated to multiple users.
Authentication, integrity, and confidentiality measures
are crucial before transmitting power packets. Design-
ing routing protocols for data networks introduces the
challenge of protecting against severe attacks.

- Scenarios: The power routing protocol must account for
various scenarios based on the number of energy sources
available and the number of energy loads requesting
power. These scenarios include multi-source multi-load
(MSML), single-source single-load (SSSL), single-
source multi-load (SSML), and multi-source single-load
(MSSL).

- According to the literature, energy routing algorithms
should address three primary functions:

1. Subscriber Matching (SM): Energy routing is demand-
driven, so a power packet, source, and destination are
not known in advance until a power demand from a
load occurs. Additionally, the demander does not know
from which supplier it will obtain the required energy.
Consequently, a subscriber matching process is needed
to facilitate P2P energy trade among all participants.
The ER must accomplish this process after receiving
the demand to determine which suppliers best satisfy
the demander’s requirements, such as delivery time,
duration, power, and price. For some critical and heavy
loads, more than one supplier is necessary to satisfy load
demand. Therefore, one supplier can transmit energy to
multiple consumers simultaneously, and consumers can
receive energy from multiple suppliers at the same time.
Subscriber matching can be executed in either one-to-
one or one-to-many mode.

2. Energy-Efficient Path (EEP): Finding an energy-efficient
path is critical for reducing power losses during energy
packet transmission. The transmission loss is affected
by several factors such as the voltage drop, congestion,
energy conversion, router efficiency, and power link
impedance. Even if the optimal path is discovered, it may
not be an appropriate one if the ERs and links among that
path do not support the transmitted power rate, type, and
capacity of the transmitted energy. To prevent failures
and overheating in the power system, such paths should
be avoided.

3. Transmission Scheduling (TS): Transmission schedul-
ing is a major operation for controlling and managing
network congestion. In the context of EI, energy routing
is determining the best transmission paths in response
to the energy demand and sources availability. Without
proper transmission scheduling, congestion could delay
power delivery or cause system failures. Bidirectional
power flow, voltage fluctuation, intermittent renewable
energy sources, and the irregular and unstable variations
in customers’ energy demand increase the risk of con-

gestion, leading to power network instability and failures
in power components.

IV. REVIEW ON ENERGY ROUTING STRATEGIES IN EI
Many studies have investigated energy routing challenges
to improve efficiency, proposing various routing algorithms.
This exploration includes MA architecture, metaheuristics
optimization, AI computation, as shown in FIGURE 4. Graph
theory and game theory approaches will also be reviewed in
separate publications.

FIGURE 4. Classification of energy routing approaches.

A. MULTI-AGENT ARCHITECTURE IN POWER NETWORKS
MAS facilitates decentralized decision-making, enabling
agents to dynamically manage energy flow, adjust routing
paths, and allocate resources autonomously. This section
reviews the applications of MAS in power networks, empha-
sizing its role in addressing energy management and routing
challenges. It also examines how these solutions incorporate
power routing characteristics from Sections II and III, with
detailed insights into their approaches, advantages, and limi-
tations provided in Table 1.

[33] introduces a fully distributed P2P control system for
Networked Renewable Energy Resources (NRERs), leverag-
ing anMAS framework integrated with the Internet of Things
(IoT). The proposed system features a dual-layer architecture:
a primary control layer employing droop control for local-
ized power sharing and a secondary control layer utilizing a
distributed diffusion algorithm for network-wide customized
power sharing. The architecture integrates both local and
global communication systems. This approach ensures stable
voltage and frequency regulation while promoting efficient
distributed energy management. This setup enables real-time
distributed control, improving scalability, resilience, and
adaptability in microgrids. Despite its scalability and effi-
ciency, the system faces challenges related to communication
latency, system complexity, security vulnerabilities, and
dependency on stable connectivity. The design also lacks
explicit consideration of ER placement or transmission losses
between buses, focusing instead on the communication and
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control layers. To enhance the system, additional features
like adaptive ER placement strategies and optimized trans-
mission loss minimization could be integrated, ensuring a
more resilient and cost-effective energy network. Simula-
tion results on a modified IEEE 9-node test feeder validate
the approach, demonstrating significant operational improve-
ments with a 52.34% reduction in power losses. These
findings highlight the system’s potential for managing energy
distribution in complex networks, particularly in MSML sce-
narios. Similarly, a bus-based network is employed in [34].
This paper focuses on active distribution networks (ADNs)
as aggregators of Distributed Generation DGs participating
in power markets. It proposes a MAS-based coordinated
scheduling model to optimize DG generation levels and min-
imize operating costs by adjusting power purchased from
the transmission network (TN). ADN agents interact with
Distributed Generation (DG) and Market Operator agents to
determine optimal power dispatch while balancing supply,
demand, and cost efficiency. The scheduling process involves
iterative bid volume adjustments, security assessments, and
market clearing based on the Market Clearing Price. Key
objectives include minimizing operating costs, optimizing
energy routing, and reducing transmission losses. The inte-
gration of renewable energy sources and energy storage
enhances system performance, while coordinated schedul-
ing ensures stability and economic efficiency. By leverag-
ing decentralized decision-making and multi-energy com-
plementary dispatch, the proposed model improves ADN
operations and facilitates a dynamic, market-driven power
distribution network. Performance tests on a systemwith four
suppliers, three buyers, and four ADNs demonstrate effec-
tive subscriber matching and power scheduling. The study
also accounts for power flow, node voltage, and phase angle
limits, offering valuable insights into ADN optimization
in power networks. [35] addresses the subscriber match-
ing problem by proposing a distributed electricity trading
system for P2P electricity sharing among prosumers. The
system uses MAS to facilitate agent coalitions for electric-
ity trading and incorporates a blockchain-based mechanism
to ensure secure and transparent transactions. Coalition
formation allows prosumers to group together and negoti-
ate electricity trading prices and amounts, thus optimizing
local energy transactions. A decentralized trading negotia-
tion protocol ensures autonomous price negotiation without
a central controller allowing dynamic pricing adjustments
for better market responsiveness. The system’s objective
functions include minimizing trading costs by reducing trans-
action costs while maintaining economic fairness, enhancing
energy utilization efficiency through coalition-based trad-
ing, improving scalability and adaptability with a layered
architecture that integrates diverse prosumers, and ensuring
security and transparency via blockchain-based verification
mechanisms. By integrating these components, the proposed
trading system enhances energy distribution efficiency, mar-
ket participation, and resilience in a decentralized electricity

trading framework within ADNs. However, it was applied
in an ADN without considering all power routing functions,
such as transmission paths discovery. The proposed solution
could be extended to a power network with multiple ERs to
address other power routing functions.

However, [36], [37], [38] introduce a distributed protocol
for achieving optimal routing using consensus techniques,
with each paper having its own specific targets. Refer-
ence [36] introduces a MAS framework to coordinate ERs
in a DC microgrid, using a centralized master node to
assign producers to consumers. The paper proposes a discrete
biased-min consensus (DBMC) algorithm for optimal power
trading in DC microgrids, aiming to minimize power loss
and alleviate line congestion. In this approach, the optimal
power trading problem is formulated as an optimal routing
discovery issue, where ERs exchange information and update
their state values based on the DBMC algorithm until the
system converges to the minimum transmission loss. The
objective function focuses on minimizing the power loss
during transmission and optimizing the routing of energy.
However, this approach raises concerns about security and
network complexity. It was verified using a 12-bus DC
Multi-ER system and a 201-bus distribution system. In [37],
a distributed gossip-based algorithm is introduced for equi-
table energy resource allocation in microgrids, though it faces
challenges such as increased time complexity and commu-
nication overhead with larger networks. The algorithm was
tested using a network composed of multiple nodes, each
representing a microgrid with either surplus or deficient
energy. The algorithm regulates total energy transmission
over a given period, ensuring that surplus energy from certain
grids can be shared with others experiencing shortages. The
objective function focuses on optimizing energy transmission
schedules based on these forecasts, with the goal of main-
taining a balance between supply and demand. Although the
current implementation focuses on regulating total energy
transmission quantities, it envisions future improvements that
could enable detailed real-time power transmission regulation
using advanced techniques such as linear regulation, com-
monly employed in demand response systems. This method
is grounded in the theory of cyber-physical integration,
where energy and information infrastructure are co-located
and controlled through energy routers, facilitating efficient
energy-sharing and transmission across the network. [38]
presents a blockchain-based transaction consensus strategy
for energy trading, addressing the energy subscriber matching
problem but excluding ERs. The algorithm uses key param-
eters such as the Distribution Location Marginal Price and
the transmission system’sMarginal Price. These prices reflect
the clearing value at different locations within the distribution
system and are essential in calculating energy costs, conges-
tion charges, and transmission losses. The objective function
of the optimal power flow aims to minimize the system’s
cost while satisfying constraints related to unit outputs and
real-time load requirements. The DC approximation method
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is employed to model the distribution network, incorporat-
ing constraints on power flow, voltage angles, and system
capacity. The Lagrange multiplier solution is applied to
the minimum cost function for the operating unit, and a
decentralized trading mechanism is proposed, specifically a
P2P trading model that facilitates fair competition and user-
centered participation. The algorithm in [38] was verified
using a modified IEEE 13 bus test feeder system for dis-
tribution network. Each participant functions as a node in
a blockchain network, creating a decentralized system for
power information exchange. Reference [39] introduces two
consensus algorithms within an MA framework. The first
algorithm aims to align the incremental cost of each DG with
the state of the leader agent. The second algorithm estimates
the global powermismatch bymodifying a first-order average
consensus algorithm with a correction term. This approach
focuses on local information exchange between neighboring
agents, eliminating the need for extensive communication.
To maintain a balance between energy supply and demand,
the paper proposes an effective control strategy for the ER.
The authors center their attention on power networks con-
sisting of one ER connected to the main grid. However,
[40] explores consensus control to enhance the security of
energy infrastructures, specifically for recovering networks
during link failures. The main objective function involves
optimizing the accuracy and security of state estimation while
ensuring the robustness of networked coordination in EI. This
method enables intelligent agents in a multi-agent system
(MAS) to estimate the power grid state based on local mea-
surements and shared information from neighboring agents.
To address cyber-attacks and network failures, a consensus-
based update strategy ensures continued coordination despite
topology variations. The key contributions include a fully
distributed state estimation scheme with near-optimal perfor-
mance, integration of consensus control for security against
anomalies, and a recovery mechanism to detect and miti-
gate misbehaving nodes, ensuring network stability. Finally,
[41] utilizes agent-based modeling for energy transmission
scheduling, aiming to maximize renewable energy use and
reduce peak loads on the primary grid in a single ER network.
Collectively, these works demonstrate the potential of MAS
frameworks and consensus algorithms for improving energy
routing, while also highlighting problems such as network
complexity, communication overhead, and scalability chal-
lenges.

In contrast to the previously mentioned approaches, [42]
introduces a fully distributed power routing protocol inspired
by ad hoc computer networks. The proposed system aims
to optimize power distribution and ensure reliable operation
by utilizing intelligent power routing nodes that operate in
a decentralized manner, communicating and collaborating
through an ad hoc wireless network. The proposed power
routing protocol was verified through a dynamically changing
network simulated using Gnucap. The setup initially consists
of 5 smart nodes. Despite being published earlier, this paper
remains a valuable reference for addressing power routing

problems within an MA architecture. Its key advantage is its
distributed control mechanism, which relies on node commu-
nication, making it well-suited for EI-based networks.

By combining the MA architecture and the RL compu-
tation, [43], [44] solve different power routing problems.
Reference [43] presents a distributed power routing proto-
col based on Multi-Agent Reinforcement Learning (MARL)
and Q-learning, aiming to find optimal power routes with
minimum power losses for a source-load pair while consider-
ing maintenance during failures. Unlike traditional methods
such as graph traversal or the shortest path algorithm, this
approach operates within each ER, utilizing information from
neighboring routers. It was validated in a network consist-
ing of 9 ERs. In contrast, [44] tackles energy subscriber
matching and transmission scheduling within an intercon-
nected MG system using Multi-Agent Deep Reinforcement
Learning (MADRL). This paper presents a decentralized
energy management system for an interconnected multi-
microgrid (MMG) network, where each microgrid operates
autonomously with its controller. The optimization model is
formulated as aMarkov game and solved usingMADRL. The
state variables include electricity prices, state of charge of
the energy storage system, forecasted thermal and electrical
loads, power generation from distributed generation, wind
turbines, and photovoltaic systems, as well as node voltage
levels. The action space consists of active and reactive power
control variables for ESS, DG, PV, and power-to-heat units.
The reward function aims to minimize the total operational
costs, including electricity purchase costs, fuel and oper-
ational costs of DGs, gas consumption costs, and voltage
stability penalties. The system is constrained by heat and
power limitations, ensuring the stable operation of the MMG
network. The proposed energy management strategy opti-
mizes power distribution, enhances economic benefits, and
ensures system security while maintaining voltage stability
across interconnected microgrids. The proposed protocol was
validated in a 16-nodemulti-MG system. EachMG controller
is modeled as an intelligent agent that makes decentralized
decisions based on both local and external information. How-
ever, while the approach performs well in various scenarios,
it does not incorporate ERs for energy flow management,
instead utilizing switches.

Using a combination of graph theory and MAS architec-
ture, [45], [46], [47] effectively manage active power flows
in power systems. In [46], the problem is formulated as a
minimum-cost flow problem, considering both the shortest
path and maximum power flow. To solve this problem, the
paper utilizes the Scaling Push-Relabel algorithm, imple-
mented within a MA environment. It was verified through a
3-bus test network. In [47], the OPF is treated as a minimum
cost flow problem, which is addressed using the successive
shortest path algorithm. The agents represent the prosumers
in the network. The complexity of the successive shortest
path algorithm is specified as O(N2 LB), where B is an upper
limitation on each node’s highest supply (demand), N is the
number of nodes, and L is the number of links. In [47] a
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TABLE 1. Advantages, limitations and applicability of power routing
strategies based on MA architecture.

distributed implementation of the cost-scaling push-relabel
algorithm is proposed for effectively managing power flow

TABLE 1. (Continued.) Advantages, limitations and applicability of power
routing strategies based on MA architecture.

in ADNs. It was verified through a radial configuration of
a 5-bus test network. An agent in papers [45], [46], [48]
represents a node (bus) in the network. Reference [47] only
mentioned that each bus has a power router. These papers
demonstrate how graph theory can be applied in a MAS
architecture in power networks formed by multiple ERs.

The reviewed approaches, employing MA architec-
tures, exhibit significant variations in addressing power
routing characteristics. TABLE 4 highlights these differ-
ences in detail. References [36], [42], and [44] focus on
energy-efficient path selection and energy subscriber match-
ing, while [37] and [41] tackle transmission scheduling.
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Meanwhile, [35], [38], and [39] address the energy subscriber
matching problem, and [34] uniquely addresses both energy
subscriber matching and transmission scheduling.

Regarding control architecture, [33], [36], [38], [39], [42],
[43], and [44] adopt a decentralized control structure, prior-
itizing autonomous operation and adaptive behaviors. This
distributed decision-making contrasts with the centralized
approaches found in other works. [45] employs virtual agents
(‘as’ and ‘at’) representing source and sink nodes, focusing
on centralized aspects in scenarios involving two sources
(R1 and R2) and two loads (R3 and R5) (FIGURE 5).
Self-stabilizing and self-healing properties are notable in the
algorithms presented in [46] and [47], enabling adaptation
to transient changes in the network. However, centralized
aspects persist in these papers. References [45], [46], and [47]
emphasize optimal power flow within the network using MA
architecture. These papers have been reviewed to highlight
the application of their proposed approaches in an EI-based
network to solve the power routing problem

FIGURE 5. Multi agent architecture.

B. ENERGY ROUTING BASED ON AI COMPUTATION
The adoption of models and algorithms rooted in AI has
not only become prevalent but also imperative [50], [51],
[52]. Recently, AI has played an increasing role in addressing
energy management challenges in complex energy systems.
This section explains how AI computation is used in power
networks and analyzes its contributions to power routing
characteristics. Table 2 shows the advantages, limitations,
and applicability of each paper, along with the power routing
characteristics highlighted in Table 4.
A model-free Deep Reinforcement Learning (DRL)

algorithm was implemented in [49] to address the energy
management problem by controlling the power output of ERs
and DGs within sub-grids. The agent interacts with the EI
system as the environment, using system state observations
to determine actions based on a learned control policy. This
algorithm was validated using a network composed of nine
nodes, each representing a sub-grid. Despite its potential,

DRL poses challenges, including high computational costs,
the need for extensive data for effective learning, and difficul-
ties in acquiring historical data ormodeling system dynamics.
Additionally, the performance of DRL depends heavily on
hyperparameter tuning, requiring significant expertise and
experimentation. References [53] and [54] explore advanced
control frameworks using deep learning (DL) and neural
network (NN)-based reinforcement learning for energy man-
agement and routing in power networks. Reference [53]
presents a DL-based control framework for wide-area power
networks, achieving global optimization through localized
information exchange among neighboring ERs. Amodel-free
deep reinforcement learning approach, such as the Actor-
Critic algorithm, is employed to achieve real-time adaptive
energy routing. Convolutional Neural Networks (CNNs) are
used for demand forecasting, while graph-based algorithms
determine the most efficient power transmission paths. This
integrated approach ensures efficient energy management,
enhances network resilience, and enables optimal power
routing in a dynamic and decentralized EI environment.
However, challenges include the need for substantial training
data, high computational complexity, and limited scalability,
which may hinder real-time applicability in dynamic condi-
tions. Reference [54] uses an artificial neural network-based
reinforcement learning method for optimal energy routing,
incorporating a Q-learning algorithm to dynamically adjust
routes based on renewable energy fluctuations and demand.
The objective functions aim to minimize operating cost,
defined as a combination of gas boiler and combined heat
and power costs, as well as renewable energy system costs.
Additionally, power loss minimization is formulated based on
transmission losses in network connections, while environ-
mental cost minimization accounts for emissions generated
from fossil fuel-based power sources. The optimization strat-
egy leverages RL to adaptively manage the energy routing
process, ensuring high efficiency and cost-effectiveness in
energy transmission. This approach was verified through a
network formed by 7 ERs. While effective, the approach
relies heavily on high-quality training data, and the authors
did not detail the training process of the multi-layer NN used
to approximate Q values. Furthermore, generalization to sce-
narios outside the training domain and hyperparameter tuning
for optimal performance remain significant challenges.

C. ENERGY ROUTING BASED ON METAHEURISTIC
APPROACH
Metaheuristics provide powerful optimization tools for power
routing protocols, enabling efficient routing path selection,
load balancing, and resource allocation, leading to a more
resilient, reliable, and efficient energy distribution network.
Table 3 shows the advantages, limitations, and applicability of
each approach, along with the power routing characteristics
highlighted in Table 4.

The Firefly Algorithm (FA) was utilized in [55] and [56]
to tackle the subscriber matching problem, inspired by the

VOLUME 13, 2025 41633



A. Fawaz et al.: Energy Routing Protocols for EI: A Review on MASs, Metaheuristics, and AI Approaches

TABLE 2. Advantages, limitations and applicability of power routing
strategies based on AI.

social behavior of fireflies. While [55] focuses on solving
the SM problem based on Euclidean distance and energy
price, it overlooks the impact of ER, link impedance, and
voltage drops, which can increase losses in real SGs. The
objective is to match consumers with the best producers in
a way that maximizes overall satisfaction while minimiz-
ing energy costs, power losses, and transmission distances.
The algorithm operates in three phases: initialization, fitness
calculation, and energy quantity update. During the initial-
ization phase, parameters like energy quantities, pricing, and
positions are set up. The fitness of each firefly is evaluated
based on an objective function that considers energy demand,
supply, power loss, and price. Finally, the energy quantities
of both consumers and producers are updated according to
the energy available and needed, ensuring that each con-
sumer’s demand ismet at minimal cost andwithminimal loss.
This method provides an efficient, decentralized solution
for energy routing in complex energy networks, enhancing
energy distribution while minimizing operational costs and
inefficiencies. The algorithm was verified using an EI net-
work with 17 nodes represented as a graph, where each node
represents an ER, a producer, or a consumer. Reference [56]
advances by addressing energy-efficient paths in addition to
subscriber matching. The algorithm was verified through a
network comprising 11 nodes, including 7 producers and
4 consumers. However, both approaches would benefit from
incorporating more comprehensive loss models, dynamic
data, and improved scalability to handle larger grids and
diverse operational challenges. Future work could explore
hybrid methods combining FA with techniques accounting
for power flow dynamics, congestion management, and real-
time decision-making.

The Genetic Algorithm (GA) was applied in papers [57],
[58], [59]. In [57], the authors solve the energy subscriber
matching problem using GA and determine the EEP using a
Path Generator algorithm. The main objective is determining
the most efficient way to allocate energy from produc-
ers to consumers while minimizing power loss and costs.
In [57], solutions are represented as chromosomes, with each
chromosome linking producers or groups of producers to
a consumer. The fitness of each solution is evaluated by
calculating power loss along the paths from producers to
consumers. The goal is to find the set of producers and paths
that minimize total power loss and cost, ensuring an effi-
cient and reliable energy distribution system. This approach
was verified through a network comprising 17 nodes, each
representing an ER. However, the GA is used in [58] to
solve the energy efficient path selection problem. The GA
models solutions as chromosomes and uses crossover and
mutation to find energy transmission routes with minimal
power loss. A 7-node network graph and a 17-node net-
work graph were used to verify the proposed algorithm.
They were generated using Python, with each node rep-
resenting an ER. It effectively reduces losses, especially
over long paths, and outperforms Ant Colony Optimization
(ACO) with a 7.75% efficiency improvement. GA’s adapt-
ability to complex network dynamics and large solution
spaces makes it suitable for various network configurations.
In [59], GA was combined with a graph traversal algorithm
to identify path sets from source to load, considering power
constraints. This work stands out as the first to consider
both objectives simultaneously, contrasting with previous
strategies that primarily focused on minimizing power losses.
The improved unified third version of the nondominated
sorting genetic algorithm U-NSGA-III was employed for
Pareto optimization, weighing carbon emissions and power
losses to select the best solution. Parent-Centric Crossover
(PCX) was introduced, leveraging multiple parents for better
exploration and avoiding suboptimal results. The proposed
approach is a hybrid method, combining the efficiency of
DFS and U-NSGA-III, allowing for a larger search space
and shorter search times compared to existing multi-objective
optimization algorithms. An 11-node network graphwas used
to verify the proposed algorithm. While [57] focuses on
matching energy producers with consumers, [58] extends this
to efficient path selection. Reference [59] further enhances
the methodology by integrating multi-objective optimization
and addressing limitations in traditional genetic opera-
tions. However, all methods share common limitations in
scalability, centralized control requirements, and the need
for dynamic adaptability to handle real-world challenges
such as failures, congestion, and demand-side participation.
Future improvements could integrate distributed implemen-
tation and robust control mechanisms to address these
gaps.

ACO has been applied to energy routing problems in
SGs in different contexts. In [60], the ACO-based proto-
col addresses energy demand and supply matching while
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determining optimal energy paths between consumers and
producers. It focuses on two critical routing challenges: sub-
scriber matching and efficient path selection. Building upon
this, [61] extends the methodology to include subscriber
matching, efficient routing, and transmission scheduling.
The protocol in [61] optimizes energy paths to minimize
congestion and losses, achieving the most efficient routing
configuration. The time complexity of the ACO algorithm,
as derived in [61], is expressed as O (n x (n-1) xm xmaxIT/2).
‘n’ represents the number of ER, ‘m’ represents the number
of ants, and ‘maxIT’ denotes the maximum number of iter-
ations. A 17-node network graph was used to validate the
proposed algorithm. Each ER linked to a consumer imple-
ments an IACO-based energy routing algorithm to identify
the most energy-efficient path between producer-consumer
pairs. However, the algorithm’s high computational demands
and extended time requirements pose challenges for real-time
applications, particularly in large-scale networks. Scalability
problems arise as network size increases, often leading to
suboptimal routing outcomes. Another limitation of ACO lies
in its reliance on predefined pheromone trails and heuris-
tics, which restrict adaptability to dynamic changes in smart
grid environments. Additionally, the algorithm’s perfor-
mance is heavily influenced by parameter tuning, including
pheromone evaporation rates and the balance between explo-
ration and exploitation.

Identifying optimal parameter settings often demands
extensive experimentation. Despite these challenges, ACO
demonstrates significant potential in energy routing optimiza-
tion, particularly for medium-sized and relatively stable smart
grids. Its ability to optimizemultiple routing objectivesmakes
it an effective solution for such networks. To address limita-
tions in scalability, adaptability, and computational demands,
future work may explore hybrid approaches or enhanced
ACO versions tailored for dynamic and large-scale smart grid
applications.

Inspired by the foraging behavior of bees, the Bee Colony
Optimization (BCO) is employed in [62] and [63], with
distinct implementations and functions. In [62], the BCO
algorithm determines the optimal producer-consumer match-
ing based on energy demand and routes energy through the
most efficient path, considering transmission cost and delay.
This process is essential for identifying the most energy-
efficient path, considering both the transmission loss and the
available energy resources at each node. The optimization
goal is tominimize energy loss and path lengthwhile ensuring
the demand is met efficiently. This algorithm has not been
verified or implemented in a network. In [63], the focus shifts
to finding a path with minimal congestion and losses while
selecting the optimal energy producers to meet consumer
requests within power and time constraints. This algorithm
was verified using a network formed by ERs, where the IEEE-
30 Bus electric network, and a 9-bus network were modified
by replacing each bus with an ER. The BCO-based energy
routing protocol enables autonomous and self-organized

behavior, allowing agents to make efficient decisions and
explore multiple path options for energy routing.

The Discrete-Artificial Bee Colony algorithm (D-ABC),
introduced in [64], extends the ABC algorithm for
energy-efficient pathfinding in capacity-constrained EI envi-
ronments. D-ABC employs crossover and mutation during
the employed and onlooker bee phases, improving conver-
gence and reducing suboptimal solutions by diversifying
strategies. However, these algorithms face limitations such as
high computational demands, sensitivity to parameter tuning,
and memory-intensive operations in large networks. BCO
and D-ABC provide robust energy routing solutions in SG
environments, leveraging bio-inspired heuristics to address
complex challenges. Their scalability and applicability in
large, dynamic networks could be enhanced by integrating
adaptive techniques and leveraging computational advances.

The Particle Swarm Optimization (PSO) algorithm has
been applied in [61] and [65] to address energy rout-
ing challenges in SGs. In [61], PSO is used to select a
group of producers and determine the optimal energy allo-
cation to meet consumer demand, focusing on the energy
subscriber matching problem. In [65], PSO is employed
within a multi-objective optimization framework to balance
energy supply and demand by optimizing the energy path
between producers and consumers. The protocol involves
nodes sending energy request messages and receiving link-
state information, with PSO optimizing path selection based
on metrics like transmission latency, hop count, distance,
and cost. Fitness values are calculated considering the rel-
ative importance of these metrics. The algorithm in [65]
was verified using a 10-nodes energy network. Due to its
rapid convergence and high accuracy, PSO, one of the most
widely used intelligent optimization methods, is chosen to
solve the virtual energy routing problem to reduce power
loss and improve energy efficiency in the Energy Internet.
However, the classical PSO algorithm is not suitable for the
discontinuous routing problem. Therefore, its discrete form
is used in [67], and it was verified through a network formed
by 30 buses, transformed into a network with 7 ERs. PSO
provides a versatile tool for energy routing with a robust
optimization framework. However, challenges such as pre-
mature convergence and dynamic network handling need
to be addressed. Future improvements could include hybrid
methods and dynamic adjustments to enhance its efficiency
and scalability in real-world applications.

The Simulated Annealing (SA) algorithm is applied in
the power routing protocol proposed in [66] to optimize
path selection and scheduling in energy routing. It begins by
generating an initial solution using a backtracking method to
identify a random path between the source and destination.
The energy function evaluates power losses during trans-
mission and conversion, aiming to minimize these losses.
Additionally, the protocol addresses congestion caused by
intersecting paths at power lines, which can lead to significant
losses. This protocol was verified through two networks:
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a 7-node energy network and a 17-node network, where
each node represents an ER. While the SA-based protocol
effectively minimizes power losses and manages congestion,
its high computational demands and sensitivity to parameter
tuning highlight the need for hybrid methods and dynamic
adaptations for large-scale, real-time applications.

Metaheuristic optimization methods are frequently
employed in power routing protocols due to their ability to
solve complex optimization problems. However, they share
common drawbacks, including significant computational
complexity when applied to complex networks. Additionally,
their performance relies heavily on parameter tuning, such as
population size, iteration limits, and mutation rates, which
can hinder convergence and lead to suboptimal results if
not properly optimized. Referring to Section III, energy
routing schemes can be categorized based on their archi-
tecture. Centralized approaches, as presented in [58], [59],
[61], [63], and [67], rely on a single control node, which
simplifies decision-making but introduces challenges related
to scalability, single points of failure, and network over-
head. Conversely, decentralized methods, as implemented
in [55], [56], [57], [62], and [68], distribute decision-making
across nodes, enhancing adaptability to dynamic changes and
reducing reliance on a central node. However, decentralized
approaches often increase communication overhead, as seen
in [55], where every node maintains information about all
others. Semi-centralized protocols, such as [60], strike a
balance but still raise concerns about security, privacy, and
the overhead introduced by the central coordinator. Several
papers, including, including [63], [64], [66], [67], address
congestion management by incorporating power capacity
constraints on links and ERs and utilizing multi-packet
transmission techniques. In [66], congestion arising from
intersecting paths is mitigated through strategies like First
in First Out, shortest job first, and Round Robin scheduling.
Reference [63] emphasizes the selection of non-congested
paths and the transmission of energy in packets to reduce
delays and improve link and ER utilization. The simula-
tion results in [64] demonstrate that the D-ABC algorithm
outperforms other approaches like ACO [61] and Greedy
search [27] in finding congestion-free paths, particularly in
large networks. Despite these advancements, some papers in
this section do not address congestion management strate-
gies. Specifically, [61] is criticized for disregarding edges
and nodes incapable of transmitting power, resulting in a
subgraph.

The real-world applicability of metaheuristic-based pro-
tocols necessitates addressing diverse scenarios. Refer-
ences [58] and [59] validate their approaches under the
MSML scenario, whereas [55], [57], [61], and [66] focus on
SSSL and MSSL scenarios. However, the absence of MSML
considerations in these works underscores their limitations in
handling more complex scenarios. Protocols [62], [64], [65],
and [67] restrict their scope to SSSL, overlooking key aspects
such as link failures, multiple energy requests, and dynamic
changes. For example, [64] fails to address security concerns

and system adaptability, while [65] and [67] lack clarity on
managing such challenges. The centralized approach in [61]
outperforms graph traversal methods but shows limited flex-
ibility for dynamic changes. The decentralized approach
in [66] demonstrates effective resource allocation, reduced
power loss, and congestion mitigation in MSSL and SSSL
scenarios, indicating strong performance. Similarly, MSML-
focused protocols in [58], [59], and [63] achieve optimal
solutions by balancing power loss, transmission time, and
congestion management. In contrast, [60] does not address
critical problems like link failures and congestion, limiting
its practicality in varied environments. Metaheuristic-based
protocols, such as D-ABC [64] and BCO [62], offer inno-
vative solutions for optimizing power distribution in smart
grids. However, they face challenges related to computational
complexity, parameter sensitivity, and limited scenario cov-
erage. Future research should focus on integrating adaptive
techniques, hybrid metaheuristic methods, distributed control
architectures, and dynamic routing strategies to enhance scal-
ability, robustness, and real-world applicability.

V. DISCUSSION AND FUTURE DIRECTIONS
Table 4 presents a comparative analysis of various power
routing protocols, categorized based on key characteristics.
A detailed evaluation of power routing protocols based on
MA architecture, AI computing, and metaheuristic optimiza-
tion reveals that while significant progress has been made in
addressing individual challenges, no single protocol compre-
hensively tackles all aspects. Existing studies often focus on
limited combinations of energy routing functions. Subscriber
matching appears in multiple protocols, underscoring its role
in aligning energy supply and demand for efficient routing.
Similarly, the presence of Energy Efficient Path features high-
lights their importance in minimizing losses and optimizing
power flow. Transmission scheduling is included in a few
protocols, ensuring that energy is routed at optimal times to
prevent overloads and maintain system stability.

Table 4 further classifies protocols based on their
architectural approach—centralized, decentralized, or semi-
centralized. Centralized algorithms demonstrate strong opti-
mization capabilities for minimizing power losses but rely
heavily on complete network information, limiting their
scalability in decentralized and dynamic environments. Addi-
tionally, such approaches introduce increased infrastructure
complexity, security vulnerabilities, and computational over-
head. Semi-decentralized protocols attempt to mitigate these
issues by balancing computational demands while still rely-
ing on network data. This dependency imposes scalability
constraints. In contrast, fully distributed algorithms lever-
age local information from neighboring nodes, making them
more adaptable to real-time topology changes, congestion
management, and efficient energy routing in decentralized
networks.

Failure management [37], [40], [42], [43] and conges-
tion control [38], [43], [63], [64], [65], [66], [67] play
a vital role in maintaining network stability in dynamic
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TABLE 3. Advantages, Limitations and applicability of power routing
strategies based on metaheuristics optimization.

TABLE 3. (Continued.) Advantages, Limitations and applicability of power
routing strategies based on metaheuristics optimization.

networks. Protocols incorporating these mechanisms help
mitigate disruptions caused by ER failures or congestion,
ensuring continuous and reliable power transmission. Many
protocols require knowledge of the entire network to function
effectively. While this improves decision-making accuracy,
it also increases communication overhead, particularly in
large-scale networks.

Real-world energy networks require power routing pro-
tocols that can dynamically adapt to diverse operational
conditions, including MSML, SSML, MSSL, and SSSL.
However, as Table 4 shows, current research has yet to
develop a comprehensive solution that addresses all these
scenarios simultaneously.

Despite these advancements, many existing protocols still
face significant gaps, particularly in congestion manage-
ment, real-time network adaptation, and cybersecurity. These
aspects remain underexplored, especially in decentralized,
dynamic and large networks, highlighting the need for more
comprehensive solutions.
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Handling network failures in decentralized energy sys-
tems remains a critical challenge. A viable solution is the
use of multiple ERs to enhance fault tolerance and ensure
resilient energy routing. These routers can dynamically
redirect energy flow through alternative paths when fail-
ures occur, minimizing disruptions and maintaining stable
power distribution. Another challenge lies in addressing the
unpredictability of demand and supply, especially with the
increasing integration of renewable energy sources. Current
algorithms often struggle to handle such variability, as they
typically rely on more stable, predictable conditions for
optimal path planning. Future energy routing protocols will
need to incorporate real-time data and predictive models,
using advanced AI and machine learning techniques, to better
adapt to these dynamic conditions. Amore dynamic, adaptive
approach is necessary, one that can continuously update its
knowledge base and optimize routing decisions. Many power
routing algorithms struggle with inefficiency in dynamic and
large systems. To address these challenges, distributed opti-
mization can replace traditional centralized approaches, using
MAS to balance computation across multiple nodes while
ensuring fast decision-making.

In the context of congestion management within energy
routing protocols, several strategies have been proposed, yet
there remain significant gaps that need to be addressed for
more efficient and scalable solutions. Existing approaches
often focus on power constraints, such as limiting the max-
imum capacity of ERs and network links. While this method
can provide basic congestion alleviation, it does not fully
account for dynamic fluctuations in energy demand and
supply, especially in decentralized networks where these vari-
ables can change rapidly. Some studies have also introduced
the concept of dividing the energy flow into multiple ‘‘power
packets’’ to reduce congestion, but this strategy can be
inefficient when dealing with highly variable network condi-
tions. To address these gaps, future research should consider
integrating more adaptive mechanisms, such as real-time
monitoring and dynamic allocation of network resources,
allowing for flexible routing decisions that respond to fluc-
tuating energy demands. Furthermore, the implementation
of MAS could improve congestion management by enabling
decentralized decision-making, where individual agents can
autonomously adjust their routing decisions based on local
network conditions. These approaches can offer amore robust
and adaptive response to congestion in dynamic energy sys-
tems, ensuring better utilization of network resources and
enhanced system performance.

As mentioned earlier, cybersecurity challenges are still not
well explored in the domain of energy routing protocols.
Decentralized energy systems are increasingly vulnerable
to cyber-attacks that could manipulate routing decisions,
leading to suboptimal paths, overloads, or system fail-
ures. As routing relies on real-time data and predictive
models, ensuring data integrity is crucial. Cyber-attacks
could disrupt path selection, causing energy wastage, con-
gestion, or imbalances. Future improvements in securing

energy routing protocols could leverage advanced cyberse-
curity techniques such as secure multi-party computation
(SMPC) and blockchain. SMPC ensures data privacy and
prevents manipulation, while blockchain provides a transpar-
ent, immutable ledger to secure energy trading and routing
decisions. However, integrating these solutions requires fur-
ther research to address practical implementation challenges
and computational overhead, which could impact real-time
decision-making in large-scale networks.

Implementing power routing algorithms in real-world
systems presents several practical challenges beyond theoret-
ical modeling. One major issue is computational overhead,
as many metaheuristic and AI-driven algorithms require sig-
nificant processing power, making real-time decision-making
difficult. High-dimensional search spaces and complex opti-
mization objectives increase execution time, especially in
large-scale networks. Hardware limitations further constrain
implementation, as embedded systems and IoT devices
used in smart grids often have limited processing capacity,
memory, and energy resources. The integration of paral-
lel computing and edge computing can help alleviate these
constraints but requires additional infrastructure investments.
Moreover, real-world network dynamics, such as fluctuating
demand, unpredictable failures, and communication delays,
create challenges that theoretical models often oversimplify.

To summarize this discussion, a comparative table
(Table 5) is provided, offering a comparative analysis
of different energy routing protocols, highlighting their
strengths, weaknesses, and ideal applications in the context
of decentralized energy systems. Metaheuristic optimiza-
tion techniques excel at finding optimal paths and reducing
energy losses, making them suitable for relatively stable
network environments. However, their application is often
challenged by high computational demands and sensitivity
to parameter tuning, which can affect real-time decision-
making in energy networks. To enhance their efficiency,
adaptive parameter tuning techniques, such as reinforcement
learning-based adjustments, can be integrated to optimize
performance dynamically. Additionally, hybrid approaches
combiningmetaheuristics withmachine learning can improve
convergence speed and solution accuracy while reducing
computational costs. Parallel processing on GPUs and dis-
tributed computing frameworks can further accelerate com-
putations, making metaheuristic-based power routing more
scalable. AI computing techniques offer adaptability and
real-time decision-making capabilities. These approaches
are well-suited for dynamic, evolving networks and can
autonomously predict and adjust to network conditions. How-
ever, their high computational cost and need for large training
datasets are notable limitations. Graph Neural Networks
and network flow optimization techniques can be used to
enhance scalability by efficiently modeling energy transmis-
sion paths. MA architectures stand out for their decentralized
nature, making them ideal for distributed energy networks.
These protocols offer high scalability and flexibility, enabling
them to handle dynamic topologies and congestion man-
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TABLE 4. Power routing protocols characteristics: MA architecture, Metaheuristic optimization, and AI computation-based methods.
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TABLE 5. Strengths, weaknesses and ideal applications of different
approaches.

agement effectively. However, coordination among agents in
large-scale networks can become challenging.

Therefore, future protocols should integrate metaheuris-
tics, AI, and MA architectures to address the challenges
while also ensuring scalability, adaptability, and security
for real-world applications. Therefore, hybridizing meta-
heuristic optimization techniques with AI methods, such as
Reinforcement Learning, can enable real-time adaptation to
dynamic network conditions, reducing reliance on large-scale
computations. Additionally, the use of edge computing and
data-efficient AI algorithms can alleviate the high compu-
tational demands of AI techniques. In MA architectures,
implementing agent clustering and decentralized coordi-
nation can address scalability issues, while autonomous
decision-making through reinforcement learning can enhance
agent autonomy.

However, there are some challenges that can arise when
using hybrid methods. The integration of AI and ML into
energy routing protocols faces key challenges, including data
scarcity and the need for specialized AI models. Data scarcity
limits AI training in dynamic energy systems, requiring
data-efficient methods like reinforcement learning and few-
shot learning. High computational demands of AI models

hinder real-time decision-making, which can be mitigated
through edge computing and distributed AI. Future develop-
ments should focus on transfer learning, federated learning,
and optimized AI architectures to improve scalability, adapt-
ability, and real-time responsiveness, ensuring resilient and
sustainable energy networks.

The integration of these approaches presents a promising
avenue for future research. Hybrid energy routing proto-
cols combining the strengths of metaheuristics, AI, and
MA systems could address the complexities of dynamic,
decentralized energy systems. Future work should focus on
effectively integrating these methods to improve scalability,
adaptability, and the security of energy routing. AI-based
models could predict energy demand and supply fluctuations,
enabling real-time optimization of energy flow. Multi-agent
frameworks could decentralize decision-making, enhancing
system robustness and reducing vulnerabilities to failures.
Additionally, incorporating blockchain or other security mea-
sures should be considered to protect against cyber-attacks
and ensure the confidentiality and integrity of routing deci-
sions.

In conclusion, the integration of AI, metaheuristics, and
MA systems offers a promising path forward for building
more resilient and efficient energy routing protocols, with
the goal of creating sustainable and decentralized energy
networks capable of supporting the transition to renewable
energy.

VI. CONCLUSION
This paper provides a significant contribution to the research
field, particularly in shaping the future of energy routing
within the context of EI. It reviews and highlights power
routing protocols, emphasizing the advantages of incor-
porating Metaheuristic optimization and AI computation
intoMA architecture. Metaheuristics optimization effectively
enhances energy route selection. AI computation plays a
crucial role in enhancing the intelligence and adaptability
of agents. By integrating them into MA architecture, agents
can make informed decisions, optimize energy utilization,
manage network congestion, adapt to dynamic conditions,
and enhance overall system efficiency and reliability. This
combination leverages the strengths of metaheuristics for
optimization and AI for intelligent decision-making within
a collaborative MA environment.

Future research will explore other promising approaches
such as graph theory [30], [69] and game theory [70],
[71], expanding the research scope in this domain. Addi-
tionally, future efforts will focus on developing a novel
energy routing architecture that integrates DC distribution
networks with ERs capable of covering all critical energy
routing functions, including real-time power flow control,
fault tolerance, and congestion management. This new ER
design will be simulated and tested in various decentralized
network scenarios to evaluate its scalability and efficiency.
Additionally, hybrid methodologies that combine AI, MAS,
and metaheuristics will be explored to enhance real-time
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decision-making and network adaptability. Advanced AI
techniques such as deep reinforcement learning, federated
learning, and transfer learning will be investigated to improve
routing intelligence while reducing computational com-
plexity. Another crucial direction for future studies is the
implementation of blockchain-based security mechanisms to
enhance resilience and support decentralized energy rout-
ing protocols. These security frameworks will ensure data
integrity, prevent cyber-attacks, and maintain stable energy
transactions across distributed networks. Additionally, real-
world implementation and large-scale simulations using edge
computing and cloud-based frameworks will be pursued to
evaluate the feasibility of proposed methodologies in practi-
cal energy systems.

By integrating these advanced approaches, future energy
routing protocols can achieve greater efficiency, adaptability,
and robustness, paving the way for more intelligent, decen-
tralized, and resilient energy networks capable of supporting
the transition to renewable energy.

One notable aspect highlighted in this review is the
potential of distributed protocols to address power routing
challenges, especially in large networks. This perspective
indicates a promising future for distributed protocols in
tackling the complexities of energy routing and optimizing
network performance.
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